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Abstract Let X,Y be two locally compact Hausdorff spaces and T : C0(X) → C0(Y ) be a standard
surjective ε-norm-additive map, i.e.

∣∣‖T (f) + T (g)‖ − ‖f + g‖
∣∣ ≤ ε, for all f, g ∈ C0(X).

Then there exist a homeomorphism ϕ : Y → X and a continuous function λ : Y → {±1} such that

|T (f)(y)− λ(y)f(ϕ(y))| ≤
3

2
ε, for all y ∈ Y, f ∈ C0(X).

The estimate ‘ 3
2
ε’ is optimal. And this result can be regarded as a new nonlinear extension of the

Banach–Stone theorem.
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1. Introduction

Let X be a locally compact Hausdorff space. The space C0(X) will stand for the Banach
space of all continuous real-valued functions which vanish at infinity on X (i.e. {x ∈ X :
|f(x)| ≥ ε} is compact in X for every f ∈ C0(X) and every ε> 0) equipped with the
supremum norm. The following result is well-known as the Banach–Stone theorem (see
[2, 3, 21]).

Theorem 1.1. Let X,Y be two locally compact Hausdorff spaces and T : C0(X) →
C0(Y ) be a linear surjective isometry. Then there exists a homeomorphism ϕ : Y → X
and a continuous function λ : Y → {±1} such that
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T (f)(y) = λ(y)f(ϕ(y)), for all y ∈ Y, f ∈ C0(X).

The Banach–Stone theorem describes a deep fact that the linear metric structure of
C0(X) determines the topology of X. And it has found a large number of generaliza-
tions and variants in many different contexts (see [15] for a survey of corresponding
results). The classical Mazur–Ulam theorem [18] states that every standard surjective
isometry between two real Banach spaces must be linear. Thus, the existence of a stan-
dard surjective isometry between C0(X) and C0(Y ) can also guarantee that X and Y
are homeomorphic. Instead of isometries, Amir and Cambern investigated the linear iso-
morphisms between C0(X) and C0(Y ), where X,Y are compact Hausdorff spaces or
locally compact Hausdorff spaces ([1, 5–7]) . They showed that if the linear isomorphism
T : C0(X) → C0(Y ) satisfies that ‖T‖ · ‖T−1‖ < 2, then the underlying spaces X and Y
are homeomorphic, and the universal constant ‘2’ is optimal (see [9]).
In another direction, the nonlinear extension of the Banach–Stone theorem has

attracted a large number of mathematicians’ attention (see [11–14, 17, 23]). Recently,
Galego and Porto da Silva [14] studied the bijective coarse quasi-isometries between
C0(X) and C0(Y ) and they obtained an optimal nonlinear extension of the Banach–Stone
theorem.
Let E,F be two Banach spaces. A map T : E → F is said to be a coarse quasi-isometry

(or coarse (M,ε)-quasi-isometry) for some constants M ≥ 1 and ε ≥ 0 provided

1

M
‖u− v‖ − ε ≤ ‖T (u)− T (v)‖ ≤ M‖u− v‖+ ε,

for all u, v ∈ E. T is called an ε-isometry when M =1 and an isometry when M =1 and
ε=0. If T (0) = 0, then T is called standard.

Theorem 1.2. (Galego-Porto da Silva). Let X,Y be two locally compact Hausdorff
spaces and T : C0(X) → C0(Y ) be a standard bijective map such that both T and T−1

are coarse (M, ε)-quasi-isometries with M <
√
2. Then there exists a homeomorphism

ϕ : Y → X and a continuous function λ : Y → {±1} such that

|MT (f)(y)− λ(y)f(ϕ(y))| ≤ (M2 − 1)‖f‖+∆ε, for all y ∈ Y, f ∈ C0(X),

where ∆ does not depend on f and y.

The upper bound
√
2 on M is optimal even in the linear case when T is a linear

isomorphism [9]. When M =1, i.e. T : C0(X) → C0(Y ) is a bijective standard ε-isometry,
Theorem 1.2 yields that

|T (f)(y)− λ(y)f(ϕ(y))| ≤ 2ε, for all y ∈ Y, f ∈ C0(X).

As it follows from a result of Omladič and Šemrl [20], T can be weaken as a standard
surjective ε-isometry and the estimate ‘2ε’ is optimal (see, also, [4, p. 360]).
In view of geometry, the isometry T from Banach space E to another Banach space

F preserves the length of one diagonal of the parallelogram generated by two vectors.
But, one may ask what happens if T preserves the length of another diagonal of the
parallelogram instead, that is,

‖T (u) + T (v)‖ = ‖u+ v‖, for all u, v ∈ E.
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By letting g = −f in the above equation, it is clear that T is an isometry with T (−f) =
−T (f) and T (0) = 0. Thus, the Banach–Stone theorem (Theorem 1.1) still holds when
T is surjective. Such transformations are called norm-additive maps and have stronger
properties than isometries when the domain is symmetric. And these maps have been
studied recently in [8, 10, 16, 19, 22].
Let E,F be two Banach spaces and T : E → F be a map, ε ≥ 0. T is called an

ε-norm-additive map provided∣∣‖T (u) + T (v)‖ − ‖u+ v‖
∣∣ ≤ ε, for all u, v ∈ E.

In this paper, we mainly study the properties of the ε-norm-additive map between
C0(X) and C0(Y ) which is a natural and interesting generalization of norm-additive map
to the perturbed case. It is worth noting that although the proof of Theorem 1.2 for the
sharp estimate ‘2ε’ of the surjective ε-isometries is very skilful [14], it cannot be applied
to ε-norm-additive mappings for hunting the sharp estimate because the ε-norm-additive
mapping between C0(X) and C0(Y ) may be a strictly 2ε-isometry (see Example 2.3).
We mainly prove that if X,Y are two locally compact Hausdorff spaces and T :

C0(X) → C0(Y ) is a standard surjective ε-norm-additive map, then there exists a
homeomorphism ϕ : Y → X and a continuous function λ : Y → {±1} such that

|T (f)(y)− λ(y)f(ϕ(y))| ≤ 3

2
ε, for all y ∈ Y, f ∈ C0(X).

The constant ‘ 32 ’ is optimal.

2. Main results

We start this section with the following observation which reveals the relationship
between ε-isometries and ε-norm-additive maps on Banach spaces.

Proposition 2.1. Suppose that E and F are Banach spaces and T : E → F is an
ε-norm-additive map. Then T is a 2ε-isometry.

Proof. For any u ∈ E, by the definition of T, we have∣∣‖T (u) + T (−u)‖ − ‖u− u‖
∣∣ ≤ ε,

i.e.

‖T (u) + T (−u)‖ ≤ ε.

For u, v ∈ E, we obtain that

‖T (u)− T (v)‖ = ‖(T (u) + T (−u))− (T (−u) + T (v))‖
≤ ‖T (−u) + T (v)‖+ ‖T (u) + T (−u)‖
≤ ‖u− v‖+ 2ε,

and

‖T (u)− T (v)‖ = ‖(T (u) + T (−u))− (T (−u) + T (v))‖
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≥ ‖T (−u) + T (v)‖ − ‖T (u) + T (−v)‖
≥ ‖u− v‖ − 2ε.

Thus, T is a 2ε-isometry and the proof is complete. �

Although every ε-norm-additive map is actually a 2ε-isometry, the converse is not true
in general.

Example 2.2. Define T : c0 → c0 by T (u) = (‖u‖, u1, u2, . . .) for u = (un)
∞
n=1 ∈ c0.

Then T is a standard (0−)isometry, but it is not a δ-norm-additive map for any δ ≥ 0.

The following example shows that the constant ‘2’ in Proposition 2.1 is sharp.

Example 2.3. Let X = {a}, then C(X) = R. Fix ε> 0, define T : R → R by

T (u) =


0 if u =0,

− ε
2 if u = ε,

u+ ε
2 if u 6= 0, ε.

Then T is a standard ε-norm-additive map. Note that
∣∣|T (2ε) − T (ε)| − |2ε − ε|

∣∣ = 2ε.
This and Proposition 2.1 together show that T is a strictly 2ε-isometry.

Let X,Y be two locally compact Hausdorff spaces and T : C0(X) → C0(Y ) be a
standard surjective ε-norm-additive map. Combining Proposition 2.1, Theorem 1.2 and
the Omladič–Šemrl’s theorem [20], we have the following result.

Theorem 2.4. Let T : C0(X) → C0(Y ) be a standard surjective ε-norm-additive map.
Then there exists a homeomorphism ϕ : Y → X and a continuous function λ : Y → {±1}
such that

|T (f)(y)− λ(y)f(ϕ(y))| ≤ 4ε, for all y ∈ Y, f ∈ C0(X).

However, the constant in the estimate above is not the best. Our main goal is to obtain
a sharp version of the above theorem by reducing 4ε to 3

2ε. And then we will show that
3
2ε is optimal. To begin with, we establish the following useful lemmas.

Lemma 2.5. Let x ∈ X and f1, f2, ..., fn ∈ C0(X) with (f1(x), f2(x), ..., fn(x)) 6= 0.
Then there exists a g ∈ C0(X) with g(z) ≤ 0 for all z ∈ X such that

‖g‖ = −g(x) and ‖g + fi‖ = −g(x)− fi(x), ∀ i ∈ {1, 2, ..., n}.

Proof. Let I = [−‖f1‖, ‖f1‖] × [−‖f2‖, ‖f2‖] × ... × [−‖fn‖, ‖fn‖] ⊂ Rn. Define
F : X → Rn by

F (z) = (f1(z), f2(z), ..., fn(z)), ∀ z ∈ X.
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Then F is well defined and continuous. Let α = max
1≤i≤n

‖fi‖. For every (u1, u2, ..., un) ∈ I,

let

h((u1, u2, ..., un)) = max
1≤i≤n

{fi(x)− ui − 3α,−3α}.

Then h : I → R is well defined. It is clear that h is continuous and −3α ≤ h(F (z)) ≤ 0
for every z ∈ X. By the Urysohn lemma, there exists a continuous function P : I → [0, 1]
such that P ((0, 0, ..., 0)) = 0 and P (F (x)) = 1. Define g : X → R by

g(z) = (P · h)(F (z))(= P (F (z)) · h(F (z))), ∀ z ∈ X.

Then g is well defined. Since P, h, F are continuous, g is also continuous.
We assert that g ∈ C0(X). For any convergent net {xλ}λ∈Λ with xλ converges to

infinity, we have F (xλ) → (0, 0, ..., 0) ∈ Rn. Hence P (F (xλ)) → 0. Note that |h(F (xλ))| ≤
3α for any λ ∈ Λ, we have g(xλ) → 0. Thus g ∈ C0(X).
For every z ∈ X, 0 ≤ P (F (z)) ≤ 1 and −3α ≤ h(F (z)) ≤ 0. Thus −3α ≤ g(z) ≤ 0 for

every z ∈ X. Note that g(x) = −3α, then ‖g‖ = −g(x). For every i ∈ {1, 2, ..., n} and
every z ∈ X, we have

α ≥ g(z) + fi(z) = P (F (z)) · h(F (z)) + fi(z)

≥ h(F (z)) + fi(z) ≥ fi(x)− fi(z)− 3α+ fi(z)

= fi(x)− 3α = g(x) + fi(x).

Then

|g(z) + fi(z)| ≤ 3α− fi(x) = −g(x)− fi(x), ∀ z ∈ X.

This implies that ‖g + fi‖ = −g(x)− fi(x) and the proof is complete. �

Similar to Lemma 2.5, we have the following lemma.

Lemma 2.6. Let x ∈ X and f1, f2, ..., fn ∈ C0(X) with (f1(x), f2(x), ..., fn(x)) 6= 0.
Then there exists a g ∈ C0(X) with g(z) ≥ 0 for all z ∈ X such that

‖g‖ = g(x) and ‖g + fi‖ = g(x) + fi(x), ∀ i ∈ {1, 2, ..., n}.

For every x ∈ X and f ∈ C0(X), let

P (f, x) = {(y, λ) ∈ Y × {±1} : λT (f)(y) ≥ f(x)− 3

2
ε},

P̄ (f, x) = {(y, λ) ∈ Y × {±1} : λT (f)(y) ≤ f(x) +
3

2
ε}.

Put

P+(x) = ∩f∈C0(X), f(x)≥0P (f, x), P−(x) = ∩f∈C0(X), f(x)≤0P̄ (f, x).

Lemma 2.7. For every x ∈ X, P+(x) is non-empty.
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Proof. Fix x ∈ X, the proof is divided into three steps.
Step I. We prove that for f ∈ C0(X) with f(x) > 3

2ε, P (f, x) is a non-empty compact
set. Let

P1 = {y ∈ Y : T (f)(y) ≥ f(x)− 3

2
ε}, P2 = {y ∈ Y : −T (f)(y) ≥ f(x)− 3

2
ε}.

Since T is an ε-norm-additive map,

2
∣∣‖T (f)‖ − ‖f‖

∣∣ = ∣∣‖T (f) + T (f)‖ − ‖f + f‖
∣∣ ≤ ε,

i.e.

‖f‖ − 1

2
ε ≤ ‖T (f)‖ ≤ ‖f‖+ 1

2
ε.

This yields that at least one of the P1, P2 is non-empty. Note that f(x) > 3
2ε, P1 and

P2 are two compact sets. Since P (f, x) = P1 × {1} ∪ P2 × {−1}, P (f, x) is a non-empty
compact subset of Y × {±1}.
Step II. Fix a f0 ∈ C0(X) with f0(x) > 3

2ε, we prove that P (f0, x) ∩ P (f, x) is a
non-empty compact set for every f ∈ C0(X) with f(x) ≥ 0. It is clear that P (f, x) is
closed in Y × {±1} and hence (P (f0, x) ∩ P (f, x)) ⊂ P (f0, x) is compact. It remains to
prove that P (f0, x)∩P (f, x) is non-empty. By Lemma 2.5, there exists a g ∈ C0(X) such
that

‖g‖ = −g(x), ‖g + f‖ = −g(x)− f(x), ‖g + f0‖ = −g(x)− f0(x).

Since T is an ε-norm-additive map, one has

‖T (g)‖ ≥ ‖g‖ − 1

2
ε, ‖f + g‖+ ε ≥ ‖T (f) + T (g)‖, ‖f0 + g‖+ ε ≥ ‖T (f0) + T (g)‖.

Pick (y, λ) ∈ Y × {±1} such that ‖T (g)‖ = λT (g)(y). Then

−g(x)− f0(x) + ε = ‖g + f0‖+ ε ≥ ‖T (g) + T (f0)‖ ≥ λT (g)(y) + λT (f0)(y)

≥ ‖g‖ − 1

2
ε+ λT (f0)(y) = −g(x)− 1

2
ε+ λT (f0)(y).

This implies −λT (f0)(y) ≥ f0(x) − 3
2ε. Similarly, we can get −λT (f)(y) ≥ f(x) − 3

2ε.
Thus (y,−λ) ∈ P (f0, x) ∩ P (f, x) and P (f0, x) ∩ P (f, x) is a non-empty compact subset
of Y × {±1}.
Step III. We prove that the set family {P (f, x)∩P (f0, x)}f∈C0(X), f(x)≥0 has the finite

intersection property. Fix f1, f2, ..., fn ∈ C0(X) with fi(x) ≥ 0 for every i ∈ {1, 2, ..., n},
by Lemma 2.5, there exists a g ∈ C0(X) such that

‖g‖ = −g(x) and ‖g + fi‖ = −g(x)− fi(x), ∀i ∈ {0, 1, 2, ..., n}.

Pick (y, λ) ∈ Y × {±1} such that ‖T (g)‖ = λT (g)(y). For every i ∈ {1, 2, ..., n}, by the
same argument as in Step II, we obtain

(y,−λ) ∈ P (fi, x) ∩ P (f0, x).
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Thus

∩f∈C0(X), f(x)≥0(P (f, x) ∩ P (f0, x)) 6= ∅.

Note that

P+(x) = ∩f∈C0(X), f(x)≥0P (f, x) = ∩f∈C0(X), f(x)≥0(P (f, x) ∩ P (f0, x)).

The proof is complete. �

The following Lemma 2.8 is analogous to Lemma 2.7 and we omit its proof.

Lemma 2.8. For every x ∈ X, P−(x) is non-empty.

Remark 2.9. Fix x ∈ X, it is not difficult to verify that if (y, λ) ∈ P+(x), then
(y,−λ) /∈ P+(x). Suppose on the contrary that (y, λ), (y,−λ) ∈ P+(x), pick f ∈ C0(X)
with f(x) > 3

2ε, then

λT (f)(y) ≥ f(x)− 3

2
ε > 0, −λT (f)(y) ≥ f(x)− 3

2
ε > 0.

This leads to a contradiction. By a similar argument as above, we can see that if (y, λ) ∈
P−(x), then (y,−λ) /∈ P−(x).

From now on, we assume that T : C0(X) → C0(Y ) is a standard surjective ε-norm-
additive map. For every y ∈ Y and g ∈ C0(Y ), define

Q(g, y) = {(x, λ) ∈ X × {±1} : λf(x) ≥ g(y)− 3

2
ε, f ∈ T−1(g)},

Q̄(g, y) = {(x, λ) ∈ X × {±1} : λf(x) ≤ g(y) +
3

2
ε, f ∈ T−1(g)}.

Put

Q+(y) = ∩g∈C0(Y ), g(y)≥0Q(g, y), Q−(y) = ∩g∈C0(Y ), g(y)≤0Q̄(g, y).

Lemma 2.10. For every y ∈ Y , Q+(y), Q−(y) both are non-empty.

Proof. Let y ∈ Y , we just prove Q+(y) is non-empty, the case for Q−(y) is similar.
The proof is divided into three steps.
Step I. Assume that g ∈ C0(Y ) with g(y) > 3

2ε. We first prove Q(g, y) is a non-empty
compact set. By Lemma 2.5, there exists ḡ ∈ C0(Y ) such that

‖ḡ‖ = −ḡ(y) and ‖ḡ + g‖ = −ḡ(y)− g(y).

Since T is surjective, there exists h ∈ C0(X) such that T (h) = ḡ. Find (x, λ) ∈ X×{±1}
such that ‖h‖ = λh(x). For every f ∈ T−1(g),

‖ḡ‖ − 1

2
ε+ λf(x) ≤ ‖h‖+ λf(x) = λ(h(x) + f(x))

≤ ‖h+ f‖ ≤ ‖T (h) + T (f)‖+ ε
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= ‖ḡ + g‖+ ε = −ḡ(y)− g(y) + ε

= ‖ḡ‖ − g(y) + ε.

Thus −λf(x) ≥ g(y)− 3
2ε. This implies that (x,−λ) ∈ Q(g, y) and Q(g, y) is non-empty.

For every f ∈ T−1(g), let

R(f)1 = {x ∈ X : f(x) ≥ g(y)− 3

2
ε}, R(f)2 = {x ∈ X : −f(x) ≥ g(y)− 3

2
ε},

R(f) = {(x, λ) ∈ X × {±1} : λf(x) ≥ g(y)− 3

2
ε}.

By the above argument, R(f) 6= ∅ and R(f) = R(f)1 × {1} ∪ R(f)2 × {−1}. Since
g(y) > 3

2ε, R(f)1, R(f)2 are compact. By the Tychonoff theorem, R(f ) is a non-empty
compact subset of X × {±1}. Note that Q(g, y) = ∩f∈T−1(g)R(f), this implies that

Q(g, y) is a non-empty compact set.
Step II. Fix g0 ∈ C0(Y ) with g0(y) >

3
2ε, we will show that for every g ∈ C0(Y ) with

g(y) ≥ 0, Q(g0, y) ∩ Q(g, y) is a non-empty compact set. Note that Q(g, y) is closed in
X ×{±1}. Hence (Q(g0, y)∩Q(g, y)) ⊂ Q(g0, y) is compact. By Lemma 2.5, there exists
a ḡ ∈ C0(Y ) such that

‖ḡ‖ = −ḡ(y), ‖ḡ + g‖ = −ḡ(y)− g(y), ‖ḡ + g0‖ = −ḡ(y)− g0(y).

Pick h ∈ C0(X) such that T (h) = ḡ. Find {x, λ} ∈ X × {±1} such that ‖h‖ = λh(x).
For every f ∈ T−1(g),

‖ḡ‖ − 1

2
ε+ λf(x) ≤ ‖h‖+ λf(x) = λ(h(x) + f(x))

≤ ‖h+ f‖ ≤ ‖T (h) + T (f)‖+ ε

= ‖ḡ + g‖+ ε = −ḡ(y)− g(y) + ε

= ‖ḡ‖ − g(y) + ε.

This implies that −λf(x) ≥ g(y) − 3
2ε and (x,−λ) ∈ Q(g, y). Similarly, we can show

(x,−λ) ∈ Q(g0, y). Therefore, Q(g0, y) ∩Q(g, y) is a non-empty compact set.
Step III. We check that the set family {Q(g, y)∩Q(g0, y)}g∈C0(Y ), g(y)≥0 has the finite

intersection property. Fix g1, g2, ..., gn ∈ C0(Y ) with gi(y) ≥ 0 for every i ∈ {1, 2, ..., n},
by Lemma 2.5, there exists a ḡ ∈ C0(Y ) such that

‖ḡ‖ = −ḡ(y), ‖ḡ + gi‖ = −ḡ(y)− gi(y), ∀i ∈ {0, 1, 2, ..., n}.

Pick h ∈ C0(X) such that T (h) = ḡ. Find {x, λ} ∈ X ×{±1} such that ‖h‖ = λh(x). By
the same argument as in Step II, we have

(x,−λ) ∈ Q(g0, y) and (x,−λ) ∈ Q(gi, y), ∀i ∈ {1, 2, ..., n}.
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Thus

∩g∈C0(Y ), g(y)≥0(Q(g, y) ∩Q(g0, y)) 6= ∅.

Note that

Q+(y) = ∩g∈C0(Y ), g(y)≥0Q(g, y) = ∩g∈C0(Y ), g(y)≥0(Q(g, y) ∩Q(g0, y)).

Then Q+(y) is non-empty and the proof is complete. �

Lemma 2.11. For every x ∈ X, P+(x) is a singleton.

Proof. Let x ∈ X, by Lemma 2.7, P+(x) is non-empty. Let (y, λ) ∈ P+(x), by
Lemma 2.10, Q+(y) and Q−(y) are non-empty. For every f ∈ C0(X) with f(x) > 3ε, we
have

λT (f)(y) ≥ f(x)− 3

2
ε.

If λ=1, then T (f)(y) ≥ f(x)− 3
2ε > 0. For every (x′, µ) ∈ Q+(y) and every f ∈ C0(X)

with f(x) > 3ε, one has

µf(x′) ≥ T (f)(y)− 3

2
ε ≥ f(x)− 3ε > 0. (2.1)

We assert that x = x′. Suppose on the contrary that x 6= x′, by the Urysohn lemma,
there exists a f ∈ C0(X) with f(x) > 3ε and f(x′) = 0. This contradicts to (2.1). And
hence we have x = x′ and µ=1. Thus Q+(y) = {(x, λ)}.
If λ = −1, then T (f)(y) ≤ −(f(x) − 3

2ε) < 0. For every (x′, µ) ∈ Q−(y) and every
f ∈ C0(X) with f(x) > 3ε, one has

µf(x′) ≤ T (f)(y) +
3

2
ε ≤ −(f(x)− 3

2
ε) +

3

2
ε = −f(x) + 3ε < 0.

By the same argument as above, we have x = x′ and µ = −1. Thus Q−(y) = {(x, λ)}.
We assert that P+(x) is a singleton. Suppose on the contrary that there exist (y1, λ1) 6=

(y2, λ2) ∈ P+(x). By Remark 2.9, y1 6= y2. Without loss of generality, we assume that
λ1 = 1. Then Q+(y1) = {(x, 1)}. By the Urysohn lemma, there exists g ∈ C0(Y ) such
that g(y1) > 3ε and g(y2) = 0. Then for every f ∈ C0(X) with T (f) = g, we have

f(x) ≥ T (f)(y1)−
3

2
ε = g(y1)−

3

2
ε > 0.

Thus

0 = λ2g(y2) = λ2T (f)(y2) ≥ f(x)− 3

2
ε ≥ g(y1)− 3ε > 0.

This leads to a contradiction. Hence P+(x) is a singleton and the proof is complete. �

Similar to Lemma 2.11, we have the following result.
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Lemma 2.12. For every x ∈ X, P−(x) is a singleton.

Lemma 2.13. For every x ∈ X, P+(x) = P−(x).

Proof. Fix x ∈ X, by Lemmas 2.11 and 2.12, there exist y1, y2 ∈ Y and λ1, λ2 ∈ {±1}
such that P+(x) = (y1, λ1) and P−(x) = (y2, λ2). According to the proofs of Lemma 2.11
and 2.12, we have

(x, λ1) =

 Q+(y1), if λ1 = 1,

Q−(y1), if λ1 = −1,
. and (x, λ2) =

 Q−(y2), if λ2 = 1,

Q+(y2), if λ2 = −1.

We assert that y1 = y2. Suppose on the contrary that y1 6= y2, by the Urysohn lemma,
there exists a g ∈ C0(Y ) such that

λ1g(y1) > λ2g(y2) + 3ε > 6ε. (2.2)

For every f ∈ C0(X) with T (f) = g,f(x) ≥ g(y1)− 3
2ε if λ1 = 1,

−f(x) ≤ g(y1) +
3
2ε if λ1 = −1.

Thus

f(x) ≥ λ1g(y1)−
3

2
ε. (2.3)

On the other hand, for every f ∈ C0(X) with T (f) = g,f(x) ≤ −g(y2) +
3
2ε if λ2 = 1,

−f(x) ≥ −g(y2)− 3
2ε if λ2 = −1.

Thus

f(x) ≤ −λ2g(y2) +
3

2
ε. (2.4)

Combining (2.2), (2.3) and (2.4), we have

−λ2g(y2) +
3

2
ε ≥ f(x) ≥ λ1g(y1)−

3

2
ε > λ2g(y2) +

3

2
ε.

This implies that λ2g(y2) < 0. By (2.2), λ2g(y2) > 0. This leads to a contradiction and
hence y1 = y2.
Next we prove that λ1 = λ2. Choose f ∈ C0(X) such that f(x) > 3ε, then

λ1T (f)(y1) ≥ f(x)− 3

2
ε >

3

2
ε, λ2T (−f)(y1) ≤ −f(x) +

3

2
ε < −3

2
ε.
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If λ1 6= λ2, then

ε ≥ ‖T (f) + T (−f)‖ ≥ |T (f)(y1) + T (−f)(y1)| > 3ε.

This leads to a contradiction. Hence λ1 = λ2 and P+(x) = P−(x). The proof is
complete. �

By a similar argument as Lemmas 2.11, 2.12 and 2.13, we can show the following result.
To simplify this article, we omit its proof.

Lemma 2.14. For every y ∈ Y , Q+(y) = Q−(y) is a singleton.

Remark 2.15. For every x ∈ X, y ∈ Y and λ ∈ {±1}, by Lemmas 2.11, 2.12, 2.13
and 2.14, one has

{(x, λ)} = Q+(y) ⇐⇒ {(y, λ)} = P+(x).

Now we are ready to show the main result of this paper.

Theorem 2.16. Let T : C0(X) → C0(Y ) be a standard surjective ε-norm-additive
map. Then there exists a homeomorphism ϕ : Y → X and a continuous function λ :
Y → {±1} such that

|T (f)(y)− λ(y)f(ϕ(y))| ≤ 3

2
ε, for all y ∈ Y, f ∈ C0(X).

Proof. For y ∈ Y , by Lemma 2.14, there exist x ∈ X, λ ∈ {±1} such that

Q+(y) = {(x, λ)}. (2.5)

Define

ϕ(y) = x, λ(y) = λ,

where x, y, λ satisfy (2.5). Then ϕ : Y → X and λ : Y → {±1} are well defined. It follows
from Remark 2.15 that ϕ is bijective. In what follows, we show that

|T (f)(y)− λ(y)f(ϕ(y))| ≤ 3

2
ε, for all y ∈ Y, f ∈ C0(X). (2.6)

Given y ∈ Y and f ∈ C0(X). The proof is divided into two cases.
Case I. f(ϕ(y)) ≥ 0. By Remark 2.15, we have {(y, λ(y)} = P+(ϕ(y)). Then

λ(y)T (f)(y) ≥ f(ϕ(y))− 3

2
ε. (2.7)

We assert that

λ(y)T (f)(y) ≤ f(ϕ(y)) +
3

2
ε. (2.8)
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Suppose on the contrary that λ(y)T (f)(y) > f(ϕ(y)) + 3
2ε ≥ 0. If λ(y) = 1, we have

{(ϕ(y), 1} = Q+(y) and

f(ϕ(y)) ≥ T (f)(y)− 3

2
ε > f(ϕ(y)).

This leads to a contradiction. If λ(y) = −1, we have T (f)(y) < 0 and {(ϕ(y),−1} =
Q+(y) = Q−(y). Then

−f(ϕ(y)) ≤ T (f)(y) +
3

2
ε < −f(ϕ(y)).

This is a contradiction. Combining (2.7) and (2.8), we have

|T (f)(y)− λ(y)f(ϕ(y))| ≤ 3

2
ε.

Case II. f(ϕ(y)) ≤ 0. By Remark 2.15 again, we have {(y, λ(y)} = P+(ϕ(y)) =
P−(ϕ(y)). Then

λ(y)T (f)(y) ≤ f(ϕ(y)) +
3

2
ε. (2.9)

We assert that

λ(y)T (f)(y) ≥ f(ϕ(y))− 3

2
ε. (2.10)

Suppose on the contrary that λ(y)T (f)(y) < f(ϕ(y)) − 3
2ε ≤ 0. If λ(y) = 1, we have

{(ϕ(y), 1} = Q+(y) = Q−(y) and

f(ϕ(y)) ≤ T (f)(y) +
3

2
ε < f(ϕ(y)).

This leads to a contradiction. If λ(y) = −1, we have Tf(y) > 0 and {(ϕ(y),−1} =
Q+(y) = Q−(y). Then

−f(ϕ(y)) ≥ T (f)(y)− 3

2
ε > −f(ϕ(y)).

This is a contradiction. Combining (2.9) and (2.10), we have

|T (f)(y)− λ(y)f(ϕ(y))| ≤ 3

2
ε.

Next we prove that ϕ is a homeomorphism and λ is continuous. Suppose that {yα}α∈Λ ⊂
Y is a convergent net with yα → y. Choose a compact neighbourhood U of y, without
loss of generality, we can assume that {yα}α∈Λ ⊂ U . By the Urysohn lemma, there exists
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a g ∈ C0(Y ) such that g|U ≡ 3ε+1. By (2.6), for any f ∈ C0(X) with Tf = g, we obtain
that

3

2
ε ≥ |T (f)(yα)− λ(yα)f(ϕ(yα))|

≥ |g(yα)| − |f(ϕ(yα))|
= 3ε+ 1− |f(ϕ(yα))|.

This implies that |f(ϕ(yα))| ≥ 3
2ε + 1 and {ϕ(yα)}α∈Λ is contained in the compact set

{x ∈ X : |f(x)| ≥ 3
2ε+ 1}.

By (2.6), for α ∈ Λ, we have

|Tf(yα)− λ(yα)f(ϕ(yα))| ≤
3

2
ε, for all f ∈ C0(X). (2.11)

For any convergent subnet {ϕ(yα′)}α′∈Λ′ of {ϕ(yα)}α∈Λ with ϕ(yα′) → x, let
{λ(yα′′)}α′′∈Λ′′ be a convergent subnet of {λ(yα′)}α′∈Λ′ with λ(yα′′) → λ. By (2.11),
we have

|T (f)(y)− λf(x)| ≤ 3

2
ε, for all f ∈ C0(X).

This implies that {(x, λ)} = Q+(y) and hence ϕ(y) = x. Thus ϕ is continuous. By the
same argument, we can get ϕ−1 is also continuous. Hence ϕ is a homeomorphism. For
any convergent subset {λ(yα′)}α′∈Λ′ of {λ(yα)}α∈Λ with λ(yα′) → λ, by (2.11) again, we
have

|T (f)(y)− λf(ϕ(y))| ≤ 3

2
ε, for all f ∈ C0(X).

This implies that {(ϕ(y), λ)} = Q+(y) and λ(y) = λ. Hence λ : Y → {±1} is continuous.
The proof is complete. �

The following example shows that the estimate ‘ 32ε’ in Theorem 2.16 is optimal.

Example 2.17. Let X = {x1, x2} with the discrete topology, then C(X) = `2∞. Let

U1 = {(a, b) ∈ C(X) : b ≤ −1

2
ε, a+ b ≥ −1

2
ε, (a, b) 6= (ε,−1

2
ε)}

and

U2 = C(X) \ (U1 ∪ {(0, 0), (ε,−1

2
ε)}).

Define T : C(X) → C(X) by

T ((a, b)) =


(0, 0) (a, b) = (0, 0),

(ε, ε) (a, b) = (ε,− 1
2ε),

(a− 1
2ε, b) (a, b) ∈ U1,

(a, b− 1
2ε) (a, b) ∈ U2.
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It is not difficult to verify that T is a standard surjective map. In what follows, we show
that T is an ε-norm-additive map. By the definition of T,

‖T (f)− f‖ ≤ 1

2
ε, ∀ f ∈ C(X), f 6= (ε,−1

2
ε).

Then for any f, g ∈ C(X) with f, g 6= (ε,−1
2ε), we have∣∣‖T (f) + T (g)‖ − ‖f + g‖

∣∣ ≤ ‖(T (f) + T (g))− (f + g)‖
≤ ‖T (f)− f‖+ ‖T (g)− g‖ ≤ ε.

The left case is f = (ε,−1
2ε) and g ∈ C(X). When g = (0, 0) or (ε,−1

2ε), it is clear that

‖T (f) + T (g)‖ = ‖f + g‖.

Let g = (a, b) ∈ U1, we have

|b+ ε| ≤ |b| ≤ a+
1

2
ε.

Then

‖T (f) + T (g)‖ =max{|a+
1

2
ε|, |b+ ε|} = a+

1

2
ε,

‖f + g‖ =max{|a+ ε|, |b− 1

2
ε|} = a+ ε.

Thus ∣∣‖T (f) + T (g)‖ − ‖f + g‖
∣∣ = 1

2
ε.

Let g = (a, b) ∈ U2, we have∣∣‖T (f) + T (g)‖ − ‖f + g‖
∣∣ = ∣∣‖(a+ ε, b+

1

2
ε)‖ − ‖(a+ ε, b− 1

2
ε)‖

∣∣
≤ ‖(a+ ε, b+

1

2
ε)− (a+ ε, b− 1

2
ε)‖

= ‖(0, ε)‖ = ε.

Therefore, T is an ε-norm-additive map. The homeomorphism ϕ : X → X and λ : X →
{±1} which satisfy Theorem 2.16 are

ϕ = IdX , λ(xi) = 1, for i = 1, 2.

When f = (ε,−1
2ε), then

|T (f)(x2)− λ(x2)f(ϕ(x2))| = |ε− (−1

2
ε)| = 3

2
ε.

This implies that the estimate 3
2ε in Theorem 2.16 is optimal.
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Remark 2.18. The assumption of surjectivity of T in Theorem 2.16 is essential in
general. For instance, let X = {a}, Y = {b, c} be two discrete topological spaces, then
C(X) = R and C(Y ) = `2∞. Define T : R → `2∞ by T (x) = (x, sinx) for all x ∈ R. Then
T is a norm-additive map, but X and Y are not homeomorphic.
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