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Abstract. We consider polynomial mappings which have atypical fibres due to the asymptotic behav-
ior at infinity. Fixing some proper extension of the polynomial mapping, we study the localizability

at infinity of the variation of topology of fibres and the possibility of interpreting local results at
infinity into global results. We prove local and global Bertini-Sard—Lefschetz type statements for
noncompact spaces and nonproper mappings and we deduce results on the homotopy type or the
connectivity of the fibres of polynomial mappings.
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1. Introduction

Let f:C* — C be a polynomial mapping. A value € C is calledatypical for

f if the mappingf is not topologically trivial over any disc centered@atThe

set of atypical values is known to be finite and may be different from the set of
critical values off. We start giving a general setup for investigating the topology of
complex polynomial mappings which have atypical values produced by so-called
‘singularities at infinity’.

1.1. DEFINITION. LetX C C™ be an irreducible affine variety ovér and let
f:X — C be algebraic. We say thaf, Y, Z) is afibre-compactifying extension
(abbreviated.c.e) of fif f: Y — Cisan algebraic proper morphism which extends
f,suchthatr\ X is a Cartier divisor on the algebraic varietyand Z is a smooth
complex manifold containingy. We shall denoter > := Y\ X and call itthe
divisor at infinity,

One may define similarly a f.c.e. for a mappigngX — CP instead of a func-
tion f.

1.2. EXAMPLE. LetGy := {(z,t) € X x C | f(x) = t} be the graph of and
letC be a compact smooth algebraic variétyy X. LetthenX := X(f,C) denote
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the Zariski closure of/ s in C x C. If X\ X is a divisor, ther{t, X,C x C) is af.c.e.
of f, wheret denotes the restriction ¥ of the projectiorC x C — C.

One may use the projective spateas the smooth compactForX = C*, this
was considered in several papers, e.g. [Br], [Di], [Pa-1], [ST] and [Pa-2]; notice
that X(f,P™) is then a hypersurface if" x C. Instead ofP™, one might use a
smooth toric compactification @ based on a subdivision into nonsingular cones
of the Newton polyhedron at infinity gf, see [Ku], [Oka] and [Br].

The approach we propose relies on the study of the position of the levéalslafive
to the nonzero levels of functions which locally define the divisor at infinity in some
fibre-compactifying extension.

We shall introduce in this paper tipartial Thom stratificatior{Definition 2.1)
which is less demanding than the Whitney stratification, since it does not require
Whitney (b) condition. Thom stratifications are really weaker than Whitney ones;
we may send the reader to the famous example due to Bwazed Speder and
to Bekka’s remark in [Be, Introduction]. We shall see thdt-stratifications are
also less restrictive than the (C)-regular stratifications introduced by Bekka [Be].
Nevertheless they are a good enough context to prove a basic local isotopy theorem
for a nonproper mapping (Theorem 2.5) which may replace Thom'’s First Isotopy
Lemma. As a byproduct, we give an entirely topological proof (Theorem 2.9) of a
resultdue to Briapan, Maisonobe and Merle [BMM, Tdoeme 4.2.1] on the Thom
regularity condition, whose original proof was based»module techniques.

We show tha®T-stratifications appear naturally at infinity and that there is a
canonicaldT-stratification atY®, in caseX is a smooth complex affine variety
with isolated singularities (Theorem 3.6). Actually, this stratification is ‘induced’
by thespace of characteristic covectors at infin{efinition 3.4).

In Section 3 we definicalizability of the variation of topology of fibred
prove that, for polynomial functions wiikolatedg-singularities(Definition 4.2),
whereg is agT-stratification at infinity, the variation of topology of the fibres is
localizable (Theorem 4.3). The use @T'-stratifications allows us to prove, via
Theorem 2.5, the existence of tleeal monodromyandlocal variation mapping
of f at some isolate@-singularity at infinity. These objects depend, of course, on
the chosenf.c.e. of.

We define the singular locus of a mapping with respect &Y astratification
at infinity which satisfies Whitney (a) property, and use this in order to prove and
apply Bertini—-Sard—Lefschetz type results adapted to our affine situation. In case
of a smooth complex affin& andf: X — C with isolatedg-singularities we show
that, up to the homotopy typ&, can be built from a general fibre ¢gfoy attaching
a certain number of cells, all of dimensiendim X (see Theorem 4.6 for a more
general statement).

As another application of our approach, we prove that, forafiime local
complete intersection with isolatédsingularitiesg: C**? — P (Definition 6.1),
the general fibre has the homotopy type of a bouquet of spheres (Theorem 6.2).
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We also find a connectivity result (Theorem 5.5) on the fibres of any polynomial
f:C" — C, in terms of its singularities with respect tad-stratification aty >

with Whitney (a) property. We discuss in Section 3 an interesting example of
a polynomial, from the point of view of its singularities and vanishing cyles at
infinity.

Our point of view and results extend in particular the ones of [ST] — which
were based on Whitney stratifications. Although the results in this paper concern
complex mappings, some of them treat the real case too (e.g. Theorem 2.5). For
some developments in the real case see [Ti-2].

2. JT-Stratifications and a local isotopy theorem

We introduce a stratification which is weaker than a Whitney stratification but will
still allow us to prove a local isotopy theorem which will be used in the next section
to investigate the topology at infinity. In the beginning, the setting is both real and
complex analytic, but later we stick to the complex case.

Let X be aK-analytic space and lgt ¥ — K be aK-analytic function, where
K = C or R. Suppose that’ is endowed with a complex (resp. real) stratification
G = {Ga}aea such thatg1(0) is a union of strata. 15, N G5 # 0 then, by
definition,G, C G and in this case we writg, < G3.

2.1. DEFINITION. We say thaj is adT-stratification partial Thom stratificatioh
relative tog if the following condition is satisfied:

(9ay) any two stratdj, < Gz with G, C g~1(0) andGs C X\g~1(0) satisfy the
Thom (g) regularity condition.

For the definition of the Thom (acondition, one can consult for instance [GWPL,
ch.1]. Local oT-stratifications exist since local Thom stratifications relative to
a function exist, see e.g. [HL-1, €beme 1.2.1], [Hi], [Be] (‘local’ means in
some neighbourhood of a point for any 2z € X). But 9T-stratifications are
less demanding than Thom (or Thom-Whitney) stratifications. We give bellow an
equivalent definition, in terms of the relative conormal.

2.2.LetX c KV be aK-analytic variety. (In the real case, assume thiatontains
at least a regular point.) Léf C KV be an open setand lgtX N U — K be
K-analytic. One defines tirelative conormall; ..., C T*(KN)|xnw, as follows,
see [Te], [HMS]

Ty ver = closure(y, &) € T*(KY) | y € X°NU,&(Ty (9 (g(y))) = O},
where X0 c X is the open dense subset of regular pointstofvhereg is a

submersion. The relative conormal is conical ((#.£) € T;\me = (y,X¢) €
T xrr VA €K).
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) =

Let now G, < Gg be two strata of a stratificatiog and let (T

9195
T;‘@ N7~ Y(z), wherer: T*(KV) — KV denotes the canonical projection. Then,
locally atz, the condition(9a,) for the strataj,, andGg translates to
Tga ) (Tg|%)m7 (1)

whereTy; C T*(K") denotes the conormal to the stratgm

2.3. DEFINITION. Letx c KV be aK-analytic set endowed with &-analytic
stratificationS = {S; }iei which satisfies Whitney (a) property.

For aKK-analytic mapping = (g1,...,9p): X — K?, we define thecritical
locusof g with respect taS by

Singsg = Singgs,.
icl
Then Singy is a closed subset of.
For K-analytic functionsf, h: X — K we say that the set

Ts(f, h) = closurg Sings(f, h)\(Singsf U Singsh)}
is thepolar locuswith respect taS.

LetPV—1 be the set of all hyperplanes®t 1. A hyperplaned € PV —1is defined

by a linear formi;;: K — K and we may occasionally identify these two objects.
We have the following useful Bertini-Sard—Lefschetz type result, not easy to be
found in the literature (we know of no reference in the real case).

2.4. LEMMA (Polar curve theoremlet ¥ c KV be analytic or algebraic and
let f: X — K be analytic or algebraic. Le§ = {S;};c| be a finite family which
stratifies’ with Whitney(a) condition. Then there is an opély c PN 1 (Zariski-
open in the complex case, resp. dense in the real analytic cas that, for any
H € Q4 Ts(lg, f) isacurve or itis void.

Proof. For any stratumS; of dimension> 1 we consider the projectivised
relative conormalPT;s. C PT*(K"). We identifyPT™*(K" ) with K x PN¥-land
we denote byC; the closure of T}, within PN x PV-1 For anyi € I, letr be
the projection on the first factor andthe one on the second. Then the polar locus
[ (I, k) is included inr(y~1(H)), for someH € PN—1,

SinceC; is compact analytic, resp. algebraic, we may apply Verdier's [écFh
reme 3.3] to the proper morphism C; — PV~ to find an operf); ¢ PVN-1
with the properties claimed fd2; and such tha¥H € €2;, H is a regular value
of the restrictiony)c,),.,- Sincevi € |, dim(Cj)reg = N, it follows that either
dimy~1(H) = 1 ory 1(H) = 0. We conclude by defining, as being the inter-
sectionN; ¢ ;. ]
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The basic isotopy theorem we prove is the following.

2.5. THEOREM (open local isotopyllet (X, z) C (K, z) be aK-analytic irre-
ducible space gerngim, X > 2. Denote byB, the open ball centered at, of
radiuse and byD,, C K the open dis¢resp. interva)l centered a0, of radius.
Leth: (X,z) — (K, 0) be an analytic mapping transversal tod -stratification
relative tog, denoted by;. Suppose moreover that\g—1(0) is smooth. Then for
anye > 0small enough an < § < ¢, the following restriction oh

hi: B Nh™1(Ds) N (¥\g~*(0)) = D;

is a topologically trivial fibration.

Proof. G may fail to be a Whitney stratification, hence one cannotapply Thom's
First Isotopy Lemma. Als@ might not be (C)-regular in the sense of Bekka
[Be, Sect. 2, Def. 1.1], nevertheless it is of a similar flavour.

The idea of proof is to lift bys the unit real (resp. complex) vector field 0t
on Ds to a vector field onY tangent to botls, := 9B, and to all positive levels
of g.

First chooses > 0 such that for all 0< £’ < &, the spherés.: is transversal
to all strata ofG and to all positive dimensional strata of the stratification induced
by G onh~1(0) (by e.g. [HL-1, Th. 1.3.2] or [Loo, Lem. 2.2]). Our hypothesis on
h implies that the levels o are transversal to the levels gtifferent from 0O, at
any point ofB.\ g ~(0), for e small enough. We may therefore define a continuous
vector fieldv on B. N h=1(D;) N (X\g~1(0)), without zero, which is a pull-back
of the unit vector field/9dt on Ds and is tangent to the levels of This follows
for instance from the fact that is so to say ‘partially’ (C)-regular, in the sense
that|g|? is a control function for two straté, < G satisfyingG, C ¢~*(0) and
Gz C X\g~1(0). Therefore we may still construct a continuous vector fielitte
done by Bekka in [Be, p. 61, point 1].

But v might not be tangent to the sphefe, so we have to modify it in the
neighbourhood of. N h~1(D;). We need the following.

2.6. LEMMA. With the same notations of Theor@rb, suppose thak: (X, z) —
(K, 0) is transversal toG except possibly at. Then for somé < a < ¢,
0 < § < e we have thati=1(h(q)) is transversal toS. N g~1(g(q)), for any
q € S-Nh~Y(Ds) N g~Y(Dy).

Proof. Our hypothesis implies thdtg (g, k) N ¢g~1(0) C {z}. Indeed, ify €
g7 1(0), y # z, thenh is transversal to the level af at any point withinA, N
X\g~1(0), whereN,, is some small enough neighbourhoodyofit follows that
I'g(g,h) NS.Ng~1(D,) = 0, for small enougl and 0< « < ¢. We recall that
e was chosen small enough such tatis transversal to all positive dimensional
strata of the fornh,~1(0) N G4, with G5 € G.
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If the conclusion of this lemma is not true, then there would exist a sequence of
pointsp; € S.Ng~1(D%) c X\g~1(0), withp; — p € S.Nh~1(0)Ng~1(0), such
that the intersection of tangent spagsh 1(h(p;)) N Tp,9 1(g(p;)) is contained
in T,,(S: N X). Then, provided that the following limits exist (which one may
assume without loss of generality), we would have

lim T,.h " (h(p;)) Nlim Ty, (g(pi)) C T)S-. 2)

On the other hand, lef, C ¢~1(0) be the stratum containing. We have that
lim T,,,h=1(h(p;)) D TG, Sinceg is adT-stratification. Now sincé is transver-
sal tog,, and since» € h=1(0), the set.~1(0) N G, must have positive dimension
and we have assumed thatis transversal to it. But this contradicts (2). O

We now complete the last part of the proof of Theorem 2.5. From Lemma 2.6,
it follows that there exists a continuous vector fieldvithout zero on some collar
of S. Nh~Y(Ds) N g~Y(D%) € B-Nh~Y(Ds) Ng~1(DL), which is a lift of 9/ 0t
by A and is tangent t&.» N g~1(p), for anyp € D ande’ < " < ¢, for someg’
close toe.

Lastly, there exists another continuous vector figeldithout zero onB. N
h~Y(Ds)\g~1(D.) which is again a lift ob/9t and is tangent to the sphese (by
the choice ot).

We then glue those thrag v, w by a partition of unity and get a vector field
which trivializes the fibratior,. O

We stick to the complex case during the rest of this section. We prove the following
Lefschetz type result, which extends (from the point of view of the stratification
involved in the statement) the result of Hamm ar@[HL-2, Cor. 4.2.2].

2.7. COROLLARY.Let (X, x) be acomplexgerm and lgtg: (X, z) — (C,0) be
complex functions such thatis transversal to &7-stratification with respect to
g, except possibly at. Assume that'\ g—*(0) is smooth of dimensiaom. Then for
anye small enough, an§ < 6 < € and anyn € Dy, the pair

(B- N h~HDs) N X\g~(0), B. N h~*(n) N X\g~1(0))

is (n — 1)-connected.
Proof. Under the stated conditions, the following pair

(B N A~ (Ds) N X\g 4(0), (S: Nh™H(Dg)) U (B Nh™(n) N X\g *(0)))

is (n — 1)-connected, by [HL-2, Th. 4.2.1]. See also the proofiof[cit], since
we have given an equivalent (slightly different) form of their result.

Now by our Lemma 2.6, the restriction &fto S. N h=%(D;) N X\g~1(0)
induces a topologically trivial fibration ové?;. The conclusion follows. O
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We end this section by a result concern#if-stratifications, which is a kind of a
converse of Theorem 2.5. Let us first define the local stratified triviality property,
following [BMM, 4.1].

So letX c CV be a complex analytic set endowed with a stratificagibn
having Whitney (a) condition. L&}, be a stratum, dirg,, > 0, letz € G, and let
h:(CN,z) — (TP, 0) be a submersion transversaldg. Let D,, denote the open
ball centered at & €, of radiusy and letB, be the ball within,~1(0) centered
atz, of radiuse. Fore > 0 small enoughg induces a Whitney (a) stratification on
h~1(0); thereforeB. is stratified by the intersections af1(0) with the strata of
G. ThenD, x B, is endowed with the product stratification.

2.8. DEFINITION. The stratificatio of X’ satisfies thdocal stratified triviality
property (abbreviated LST) if and only if for any point X and any submersion
h:(CN,0) — (C?,0) transversal t@, atz, wherez € G, and 0< p < dimG,,
there aren > 0, ¢ > 0, a neighbourhood’ of x within cN and a stratified
homeomorphisn® such that the following diagram commutes

xXnU

One notices that the LST property is preserved when slicing by hyperplanes
transversal to the strata. Moreover, the LST property is preserved when restrict-
ing to Gz, whereGg is some stratum (sincé is a stratified homeomorphism). It

is verified for instance by Whitney stratifications (by Thom—Mather first isotopy
lemma).

2.9. THEOREM.Let X ¢ CV be endowed with a complex stratificatiGrwhich
satisfies Whitneya) condition, such thay=1(0) is a union of strata and that
G verifies thelocal stratified triviality property (abbreviatedLST). Theng is a
oT-stratification(and hence a Thorta, )-stratification).

This is a remarkable result due to Bri@mm; Maisonobe and Merle [BMM,
Th. 4.2.1]. The original proof uses some import@rmodules technical results.
We give bellow a self-contained proof using a polar curve argument.

Proof. By absurd, leyy € g=(0) be a point where th@a,) condition forg fails.
We then consider the locas ¢ ¢—%(0) of all points within some neighbourhood
of p where (0a,) fails. Let 7 be some complex Thorfg,)-stratification of a
neighbourhood ofjp in X', which locally refinesj and such that new strata occur
only within Y (which is possible, by the definition af).
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Let 7o be a stratum of which is of maximal dimension among the strata which
are included inY” and which containyg in their closure. Let novgy be a stratum
of G of maximal dimension among those which intersggaind take some point
1o € Go N To. Notice that din/g < dimGg, by the choices we have made and the
definition of Y. Denoting byp the dimension of, letV be a linear affine space in
C¥ such thatdinfV = N —p, V 3 yo, V thy, Go and that, within a small enough
neighbourhood ofp, V' N 7o = {yo}.

Let us fix someo € (T} 1)y, Such thato ¢ Tg,(CV). Then there is a Zariski-
open dense subset of linga¥ —p)-planes/ throughyo which verify the conditions
imposed above and moreover have the property

(Y, o) & Tgonv (V). 3)

We shall fix such & for the rest and we shall identify it with¥ —7. Notice that
the choseV has the property that

( ;\Xm/):v C Tgmv((CNip)a (4)

vz € ¢g~1(0) NV within some neighbourhood @b, = # 1o, whereg, denotes the
stratum to whiche belongs.

The stratificatior induces ot NV a stratificationtC which also has Whitney
(a) property. By (3), there is some stratutp of X such that

(T o & T 7). )

wherelCo = GoN'V.
We identify &, with a linear form onCY and denote by its restriction tok;.
We consider the germ g of the polar Iocust‘,c(l,g‘,c—l). By the properties (4)

and (5), we gei[‘,c(l,g‘,c—l) N ¢~%(0) = {yo}. Since non void, this polar locus
must be of positive dimension. This is so because in our af‘c)@(é,g‘,c—l) =

-1 . % . * DN —p—1
closurdmo(y~(1))}, wheremyq: (PTguc_l)\’Cl — K1 andy: IP>Tg|K—1 — PY7P~*are

the canonical projections and moreover the complex va[?iié‘é},%1 has dimension
N —p (see also the proof of Lemma 2.4). TH&g(!, g‘K—l) is precisely of dimension

1: if it were of dimension/ > 1, then it would intersect the hypersurfage!(0)
along ad—1)-dimensional set, which would contradict the fact that this intersection
is just the pointyg.

The LST property inherited byt NV and then byk; implies that the com-
plex links CL(K1,y0) and CL(K1 N ¢~%(0),yo) are contractible (see [GM] for
the definition and properties of the complex link). We consider the germ at
yo of the mapping(l,g‘):lc_l — C? (where dimiC; > 2) and take a small
enough polydisc neighbourhod®@ of yo (see [L&-1] and also [Ti-1] for the
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definition). The slicel=1(I(yo) + €) N P, for ¢ > 0 small enough, is noth-

ing else but the complex link GIKy, o). This slice is obtained, up to homo-
topy type, fromi=(i(yo) + €) N ¢g~1(0) N P (which itself is just the complex

link CL(IC1 N g~(0), yo)), by attaching a finite number of cells of dimension

= dim¢ K1 — 1 (compare to [ST, proof of Prop. 4.5]). These cells come from the
singularities of the functiog oni—1(I(yo) + €) N P, which are exactly the points
where the polar curvEy (I, g‘,c—l) intersectd—2(I(yo) +¢)NP. Sincel' (1, QIK_l) is

a nonvoid curve, the number of these intersection points is greater than 0, hence the
number of cells is also greater than zero (to one singular point there corresponds
at least one cell). But this contradicts the contractibility of( €L, yo). O

3. 9T-Stratifications and singularities at infinity

We shall now focus on an algebraic morphigmX — C, whereX C C" is a
complex affine variety.

3.1. DEFINITION. @T-stratifications at infinity). Le(f,Y,Z) be a f.c.e. off.
If a stratificationS of some neighbourhood & within Y, with Y>° a union of
strata, has the property that, locally at ang Y°, it is a 9T -stratification with
respect tog, whereg = 0 is some local equation of*° aty, then we callS a
0T -stratification (at infinity) aty .

Partial Thom stratifications at infinity do exist. We may construct one as follows.
Take a Whitney stratification of the algebraic spaGehavingY > as union of
strata (which is possible, see e.g. [GWPL, 2.7]). Then Theorem 2.9 shows that this
is also adT'-stratification aty *°.

We would like to construct some weaker stratification, not to involve Whitney
conditions, but arising somehow naturally from the relative conormal. We first need
some preliminary stuff.

3.2. PROPOSITIONLet (f,Y, Z) be af.c.e. off. Letg = 0 be a reduced local
equation of the divisoY > at y. Then(Tg*‘YmU)y does not depend on the choice of

g, whereU is some open subset 8fand T ,; C T*(U).

The proof will clearly follow from the next lemma, which we prove in both real
and complex cases, for later use (e.g. Theorem 4.3 or [Ti-2]).

3.3. LEMMA. Let (X,z) C (KV,z) be a germ of ak-analytic space and let
g: (X,z) — (K, 0) be aK-analytic function. Lety: ¥ — K be analytic such that
v(x) # 0 and denote by’ some neighbourhood afin KV . Then(T;‘WnW)m =

(T¢g|XﬂVV)x'
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Proof. Let g~1(0) be denoted’. Suppose first thatY, z) is smooth. We have
gradyg = ygradg + g grady, hence
gradyg gradg

= + grad
loradgl] ~ " Taradg]] " °

IYL
lgradg||

Sincey is analytic,||grady|| and~y are bounded within some neighbourhood:of
By the following tojasiewicz inequality [Lo], valid in a neighbourhood:of

|gradg|| > |g|?, for some 1> 6 > 0,

we get thatg/||gradg|| tends to zero as the point tendsato Therefore, along
any sequence of points tending 10 we have linfgradyg/||gradg||) = ()
lim(gradg/||gradg||), hence the limits of the directions grad and grady are the
same.

In the general case we resol¥ewithin an embedded resolutign X — X, to
a smooth varietyX'. This is an isomorphism ovelieg\). Now apply the result in
the smooth case for the functiop® p and(y o p)(g o p), then pull down to the
conormal ofX, by the following diagram

(T*KN)|;€np—1(W) — P*(T*KN)WHW - (T*KN)WHW

™

xnptw) 2 XNW.

3.4. DEFINITION. Lety € Y*° and letg = 0 defineY* within some affine open
U C Y containingy. Let 7T:T;|YOU — Y N U be the canonical projection. We
denote byC>® (U N Y ) the subspace1(Y>* NU) of Tovnu and we call it the
space of characteristic covectors at infinitye also denote its fibre—1(y) by
(C>)y.

The notationC>),, is not ambiguous, since this fibre does not depend on the local
equatiory = 0, as shown by Proposition 3.2.

3.5. Construction of the canonicdl7-stratification atY>. Let X C C" be a
complex affine variety with isolated singularities and (étY, Z) be a f.c.e. of
f: X — C. LetG be a stratification o¥ in some neighbourhood &f*°, such that
Y is a union of strata. It follows from (1) th&t is a 9T-stratification aty > if
and only if

cUunY®)yc J Té o (6)
Ga €GNY ™
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forany openJ C Y.

Let U be small enough such that™ N U is defined by one equatian= 0.
Then the space of characteristic covectors at infiif&(U N'Y *°) is a Lagrangean
conic space, see [HMS], and therefore has the following property

c=Wny*) =] 13, @)
JEA

whereZ; are certain irreducible complex subspace¥ &fN U, with UjeaZ; =
Y N U andA is a finite set (by [HMS] or [BMM, Sect. 2]).

Now there are stratifications of * N U with connected strata, such that
(Zi)reg\U;j£i Z; is astratumyi € A. We take the coarsest of all such stratifications.
Together with the straturfY N U)\ (Y U Sing( X)), this yields a stratification of
Y NU. We shall call it thdocal canonical stratificationOne may globalize it on
Y, as the following result shows.

3.6. THEOREMLetX C C" be acomplexaffine variety with isolated singularities
and Iet(f,Y, Z) be af.c.e.off: X — C. Then there is a unique@T'-stratification

T at Y*° such that, at any poing € Y*°, T coincides with the local canonical
stratification.

Proof. Let{(U;, g;) }sc1 be a family such thaU; } ;¢ is a family of open subsets
of Y which coversY™ and thatY* N U; is defined byg; = 0, Vi € |. Notice
that the local canonical stratification defined fraltf (U; N Y*°) as in 3.5 is a
OT-stratification, since it verifies the condition (6).

On any intersectio/; N U; the spaces of characteristic covectors at infinity
C*®(U; NY®) andC*(U; N'Y*°) coincide, by Proposition 3.2. We have shown in
the above construction 3.5 that the local canonical stratification depends only on
the space of characteristic covectors at infinity. Therefore one may patch together
the local canonical stratifications to a global one. O

3.7. DEFINITION. We call the stratificatiofi given by Theorem 3.6 theanonical
OT-stratification atY*°.

4. Localizing the variation of topology at the singularities at infinity

In case of a polynomial mapping: C* — C, a still unsolved problem is how

to detect the change in topology from a nearby fibre to a smooth atypical fibre
of f. Results in several variables [Pa-1], [ST], [Pa-2] were recently obtained in
casef has in some senssolated singularities at infinityThe aim was essentially

to localize the global change of topology at a finite number of points on a given
compactification of the atypical fibre. One reason for this restriction is that the
isolated case is rather well understood — for instance we dispose of a local result
in the complex case, the stratified Bouquet Theorem [Ti-1], which describes the
homotopy type of the Milnor fibre at an isolated critical point — whereas there is
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quite much lack of knowledge about local nonisolated singularities. Let us first
give a precise meaning to ‘localizable’. We still keep the previous notations.

4.1. DEFINITION. Let(f,Y,Z) be a f.c.e. of an algebraic morphisfnX — C

and let f~(to) be a fibre with at most isolated singularities. We say that the
variation of topology of the fibres of at g is localizableif there exists a finite
set{ai,...,ax} € f(to) C Y, foreachi € {1,...,k} a complete systeoV; =
{N/};en of neighbourhoods of the poin; and for anyJ = (j1,...,Jk) € N¥
there isé; > 0 such that the restrictiofy: (X'\ U;—1 N/)yn fYDs) - Dsisa
trivial fibration, for any radiug < d;.

In order to study the localizability problem we shall ugE-stratifications at
infinity.

4.2. DEFINITION. LetX have at most isolated singularities. Lt Y, Z) be a
f.c.e. of f X — Cand letg be a stratification of which is adT-stratification at
Y. We say thaff hasisolatedG-singularities(with respecttd f,Y, 2)) if f has
at most isolated singularities arfds transversal t@ at all but a finite number of
points ofY >,

This extends the notion of isolaté®l-singularity of [ST], defined with respect
to a certain canonical Whitney stratificatiof of Y, in caseX = C" andY =

X (f,P").

4.3. THEOREMLet X have at most isolated singularities and fehave isolated
G-singularities. Then the variation of topology of the fibreg att ¢, is localizable,
Vtg € C.

Proof Let{as, ...,ar} € f~1(to)NY* be the points wherg is not transversal
to G, for some fixedtp € C. Let B;, B, be small enough open balls withi,
centered at; such thatB; ¢ B; C B!. For somep € f(to) N Y>®\{a1,...,ax},
let V,, denote a small enough open neighbourhoog w@fithin Z. We cover the
compactf(to) N Y>®\ UF_; B! by a finite number of such neighbourhoods and
denote byiV their union and by = {V,}, the covering. One may assume that
WnNB; =0,V € {1,...,k}. Let p: W — Ryo be theC-function defined
by ¢ = Syepav|gy|?, where{ay }vey is a partition of unity relative td’ and
gy = 0 is the equation o¥ > within V. We now show thay is transversal to
all levels of ¢ within W’ n X, for some oper®W’ ¢ W which also covers the
compactf (to) N Y\ Uk_; Bl Any p € f(to) N Y\ Uk, B!is in the overlap
of several € V. On some small enough neighbourhoog pthe local equations
are related byy. = Ajsgv,, with ;s an analytic function and;;(p) # 0. Now
(T3)p = (T|’;V|2)p, by Lemma 3.3. Lef be the stratum af which contain® (thus

of dimensior> 1, sincep ¢ {a1,...,ax}). But f is transversal tgo atp, hencef is
transversal to the positive levelsivithin some small enough neighbourhood of
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D, since(T;Vj )p C (T¢,)p- We may therefore construct a continuousviftf 9/t

by f onW’ N X, for some opefi¥’’ as above, such that it is tangent to the positive
levels of$. On the other hand we may define a vector figldn B, N X, as in the
proof of Theorem 2.5, which is a lift af /9t by f and is tangent t& B;\ Y . We
finally glue the vector fields, v, . . . , v; by a partition of unity to get a vector field
w which is again a lift ofd /ot by f and is tangent t&B;\Y>, Vi € {1,..., k}.
Thus, by integratingv, we would get a trivialisation of‘W,\(YoonilBi) over a
sufficiently small disd centered aty € C.

We also have to deal with the eventual singular pofhis. . ., b, } of the fibre
f~1(to). We take a sufficiently small bal; at each such point. Then the sphere
0p; cuts transversally any fibre gfover a sufficiently small dis® centered ato.

Itis standard how to lif6 /0t by £ to a vector field ol N f~1(D) N B\ Uj=10;
which is tangent to the spherégj, whereg is a large enough ball ig™.

Glueing this vector field to the one before, we finally get, by integration, a global
topologically trivial fibration:

fi (X\(UfZ1Bi UUj_18)) N fH(D) = D,
for a sufficiently small disc (resp. interval) centered atp € C. O

4.4. Local variation mapping at infinitySuppose we are under the conditions
of Theorem4.2. Lep € Y N f—l(to) be an isolated-singularity of f. We may
associate to such a point certain topological invariants, as followsBLéte an
open ball ap within Z, for some small enough> 0. Then by Theorem 2.5 and
Lemma 2.6, the following restriction gf

f: X nB.n f7Y(Ds\{to}) = Ds\{to} 8

is a topologically trivial fibration, wher®; is a disc of radiug, with 0 < § < &,
centered aty € C. Moreover, the construction used in 2.5 and 2.6 gives that the
restriction off to X N 9B, N f~1(Ds) is topologically trivial overDs.

Let us denote by the fibreX N B. N f~1(y) of the fibration (8), for some
v € Ds\{to} and letdF := X N dB. N f~%(v). By the above remarks, there
exists a geometric monodromy éfwhich is the identity ordF. This proves the
following.

4.5. PROPOSITIONLet f: X — C have an isolated/-singularity atp € Y N
f~(to). Then there exists lacal variation mapping

var:Ho(F,0F) — H.(F),

such thath — Id = varo j, whereh: H,(F') — H,(F') denotes the monodromy,
Id is the identity andj: H,(F') — H,(F,0F) is induced by the inclusiof’ —
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(F,0F). O

The following result compares the spaketo the general fibre of, up to homo-
topy.

4.6. THEOREM.Let X C C" be an affine complex variety of dimensidmvith
at most isolated singularities and such that, at each such singulafiig,a local
complete intersection. Let have isolatedj-singularities with respect to some
f.c.e.(f,Y,Z) and to some stratificatiog of Y which is adT-stratification at
infinity.

Then, up to homotopy type, the spadcés obtained from a general fibre gfto
which one attaches a number, say, of cells of real dimensiod.

Proof. By Theorem 4.3, the variation of topology of the fibresjois local-
izable at a finite number of points ok or on Y*. For those points orX, the
local situation is managed by the classical result of Milnor [Mi] (in the smooth
case) and & [Lé-2, Th. 5.1] (in the singular case): ff. (X,b;) — (C,0) is an
analytic function with isolated singularities on a local complete intersection
of dimensiond, then the paiftB N X N f~Y(D),BN X N f~1(n)) is (d — 1)-
connected, wheré is a small enough ball centeredtgtand D a small enough
disc at Oe C, n € D*. For the points ‘at infinity’, we may apply Corollary 2.7 to
get thatthe paitB N (Y\Y>®) N f~YD), BN (Y\Y*>®)N f~1(n)) is also(d — 1)-
connected. We may conclude that the spacés built up from a fibref—%(n)
which moves within a fibration, encountering a finite number of isolated singulari-
ties{as,...,a,b1,...,b.}. By invoking Switzer’s result [Sw, Prop. 6.13], at each
such point one has to attach a numbertfie local ‘Milnor number’) ofd-cells.
The total number of cells is the sum of all these local Milnor numbers.

The Stein spac& is a CW-complex of dimensiog d, by a well known result

due to Hamm [H-1]. As a nice patrticular case of Theorem 4.6, we then get the
following bouquet result which improves a previous one due to Siersma and the
author [ST, Th. 3.1].

4.7. COROLLARY.Under the assumptions of Theords, suppose in addition
that X is (d — 1)-connected. Then the general fibrefofias the homotopy type of
a bouquet of spheresS4—1. O

We end by an example of a simple polynomial with an interesting local behav-
ior at infinity.

4.8. EXAMPLE. Letf be the following complex polynomial mapping (which was
undoubtly known to Newton, as polynomial in two variables) z%y : C2 — Cin

3 variablesr, y, z and consider its f.c.€t, X, P* x C) (see Example 1.2). We first
recall from [ST], in an equivalent formulation, the definition of-aingularity at
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infinity of f: we say thatf is ¢-regularatp € X if and only if (p,dt) & (C*°),,.
Otherwise we say thatis a¢-singularity of f at infinity. Another interpretation of

p being at-singularity at infinity of f is that the functiort — ¢(p) has vanishing
cycles atp, that isp € supd®,_,)(Cx)). This fact was noticed by Parusinski
[Pa-2, Prop. 1.1, Cor. 1.5] and follows from Ginsburg’s Theorem [Gi], [BMM,
Théoeme 3.4.2] and Sabbah'’s intersection index formula [Sa, 4.6], after applying
a slicing argument that reduces the problem to the isolated singularities case.

We show thaff is not¢-regular at a whole lind. := {xg = z = ¢t = 0} within
X% N t~1(0), hence has a nonisolatesingularity. This also implies that has
nonisolatedj-singularities at infinity, wher§g is the canonicadT'-stratification at
X (see Definition 3.7). The proof goes like this.

Let F := x23 + 2%y — t23. Thet-regularity in the chary # 0 is equivalent
to |y| - ||0f /0| 4 O, as||z,y|| — oo, cf. [ST, p. 780]. But in our example
ly| - |1 + 2zy| tends to O, for instance if — oo, z = 1/y° — 1/2y, z = ay.
The limit points inX*® are the 1-dimensional sét The only atypical value is 0.
Moreover, for any algebraic change of coordinates Aut(C3), the polynomial
f o ¢ has a single atypical value, with nonisolatesingularity at infinity. Indeed,
the singularities at infinity cannot be isolated since then the general fibre would be
homotopically a bouquéf S?; but in our example the general fibre is a circle.

On the other hand, one can easily verify that, for a general linear fogn
az+by+cz with ¢ # 0, the polar curv&(l, f) is void. This implies that, by a generic
linear change of coordinates, one ids’, /') = T'(v/, f') = T'(2', f') = 0, where
f"is the polynomialf in the new coordinates. One can take for instarice = + z,

y =y+z 2 = zandtherf’ = z'—2'+(z'—2')?(y' —2'). Letthen(t', X', P3x C)

be the f.c.e. off’, letp € X' and letyg = 0 be some local equation ¥ atp.

The voidness of the polar loci above implies, by an easy computation, that the local
polar locusl', (¢, yo) atp is also void. It then follows that one can lift the vector
field 9/ 0t by t' to a complex vector field tangent to the nonzero levelsgfwithin

N, N X"\X"*>, whereN,, is some small enough open neighbourhoog iofP3 x C.

By integratingv, one concludes that, for some small enough dise f'(p), the
restrictionf|’: N, N (f)"YD) — D is a topologically trivial fibration. One may
interpret this by saying that’ is locally trivial at infinity at anyp € X"*° (which
howeverdoes not implyhat f has no atypical value!).

We have seen before thats nott-regular at infinity, hence (by the linear change
of coordinates)y’ is nott’-regular at infinity at the whole lin¢’ = {2’ — 2’ =
t' = 0}. In particular, for allp € L' ¢ X', #" is not locally trivial atp sincet’ has
vanishing cycles at.

One may therefore conclude that the condition ‘no vanishing cyclegat >’
is not necessary fof’ to be locally trivial atp.
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5. Connectivity of fibres

When the mapping: X — C has non-isolated-singularities then, in principle,
we cannot localize the variation of topology of fibres at infinity. Nevertheless, we
shall prove some connectivity results for the fibresfolising a Lefschetz type
method.

We denote byH, the affine hyperplanél; = s} ¢ C*, whereH € P*lis a
hyperplane defined by a linear forii: C* — C.

5.1. GENERAL SLICE. LetX C C™ be an affine algebraic variety and jetX —

C be algebraic. Consider the f.c.g, X,P" x C) of f (cf. Example 1.2) and
let W = {W;}ic be a finite complex stratification of satisfying Whitney (a)
property and withX*° as union of strata. By a Bertini type argument similar to the
one in the proof of Lemma 2.4, there is an open déhge_ P~ and a finite set
Ax C CsuchthaVH € Qx, Vs € C\Ax, the affine hyperplan& is transversal
tow;, for all s € | such thatw; C X.

For strataly; ¢ X® C P"~1 x C we use again a Bertini type argument for
the projectionTtTWi — P~ to deduce the following: there is an open dense
Qx= C P"1 such thatVH € Qx, the hyperplandd x C is transversal toV;
within P"~1 x C, except possibly at a finite number of points, foriadl | such that
W; C X, Let then denot€y := Qx N Nxeo.

Consider now the restrictiofiy,: X N H; — C. We identify the hyperplane
H, C P" to P"~! and consider the spacé(fiy,,P"1). Let H € Qx and
s € C\Ax. ThenX>®(f z,,P*~1) = X>°(f,P") N (H x C). We may there-
fore define the following induced stratification.

5.2. DEFINITION. ForH € Qx ands € C\Ax, we denote byVy, the stratifi-
cation ofX(f|Hs,]P’"*1) of which all strata of dimensiop 1 have the following
form

{ W; N H, if W, Cc Xor
Win(H xC)\{p e Wi | Wi f H x C}, if W; C X™.

5.3. DEFINITION. Keeping the above notations, we define ¢h&cal locus at
infinity of f with respect to the stratification’ by

singyf = |J Singtpy,.

W;CY®®

Sing™ f is a closed subset &f°°, sinceWV has Whitney (a) property.

With these definitions, we have the following.

5.4. LEMMA. There exists a Zariski-open €&t C P"~'and afinite sed ¢ Csuch
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that, if H € Q, C P*~1ands € C\A4, thendim Singyy,, fim, <dimSing,f —
1 and dim Singngsfms < dimSingy,f — 1, in casedimSingyf > 1 and
dimSingy, f > 1.

Proof. Let H € Q; N Qx ands € C\Ax. Then, by Lemma 2.4, dim
Singwy, fig, = dim('(lg, f) N Hs) U (Sing,, f N H,). By Bertini-Sard,
dim(Sing,, f N H,;) < dimSing,,f — 1. There is a finite sel C C such that
A D Ax andthatdintl'(lg, f) N H,) < 0wheneverd € QN Qx ands € C\A.
Hence the first inequality in our statement holdsfbe Q; N Qx ands € C\ A.

To prove the latter inequality in our statement we proceed as follows. Take a
stratumW; ¢ X*® < P"1 x C. From 5.1 it follows that, forH € Qx~, the
restrictiont;: W; N (H x C)\Singt)yy, — C has a finite number of critical points.
Notice that the set Sing,, is contained in a finite number of fibres f,,,, let
those bty ) ~1(t;), for j € Ki.

Then, forH € Qx ands € C\ A, we have dim Sin@HS fia, < dimUie jek,
(Singt )y, N H x {t;}). Again by Bertini-Sard, there is another open defse
Pr=1 such that, iff € €, then dim(Sing, N H x {t;}) < dim Singty, — 1,

Vi€l Vj€ K. )
Finally, taking©}; = Q, N Qx N € and the finite sefl as in the first part of this
proof, we get the both claimed inequalities. O

We may then strenghten the connectivity result of Siersma and the author [ST,
Cor. 3.6] as follows.

5.5. THEOREM.Let f: C" — C be any polynomial mapping. Consider the f.c.e.
(t,X,P™ x C) of f and letW = {W;},c| be a finite complex stratification of
such that it has Whitnefa) property, it is aoT-stratification atX*® andC" is one

of its strata. Then the general fibre pfs at least(n — 2—dim(Sing f USing}, f))-
connected. Moreover, a special fibre is at le@st- 3 — dim(Sing f U Sing}}, f))-
connected.

Proof. Remark first that iff € Qx an ds € C\A thenWy, is a Whitney (a)
stratification ofX( |, , P 1), it is a0T-stratification atX**(f 5, ,P"~1) andH,
is one of its strata.

We use a Lefschetz type argument as follows. Slicing a fibre= f~1(¢) by a
general hyperpland,; C C*, we getafibre’. N H; of f|,, whichis a polynomial
mapping in one variable less. Then the péir, F.NH,) is (dim F. —1)-connected,
by a result of Hamm [H-2]. To prove our statement inductively, we also need
dim Singf g, < dimSingf — 1 and dim Sin%HS fig < dimSindy f — 1. This is
done by Lemma 5.4. By repeated slicing and succesively cutting down dimensions,
we arrive at a polynomiat which is the restriction of to a linear affine space,
with dim Singh < 0 and dimSingh < 0, whereT is an induced Whitney (a),
oT-stratification at infinity, obtained by repeated general slicing. This implies that
h has isolated-singularities with respect t@.
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If F. isageneralfibrethenits generalslice is also a general fibre of the restriction
fim,- We then conclude the induction by applying Corollary 4.7 to the polynomial
h. In case we start with an atypical fib#e,, we may get at the end an atypical
fiore 7, of h. Let thenF, be a nearby general fibre af ThenZ, is homotopy
equivalentto a bouquetS? of spheres of dimensian= dim 7;,. To prove the last
part of our theorem, we only need to show thgtF,) = =;(F,), fori < ¢ — 2.

We shall make use of Theorem 4.3, its proof and notations. By this theorem,
the variation of topology of the fibres gfover a small enough disb centered at
a € Cis localizable at a finite set of poinfa, ... ,ax} € F, and{bs,..., b} €
F.NX>. Consider a large enough ballc C* such thatF, N 3 is diffeomorphic
to F, and thatog m F,, Vy € D. Then, forp € D, F, N (3 is obtained from
F, N B by attaching a finite number ¢§ + 1)-cells corresponding to the isolated
singularities;.

For some singularity at infinity;, let g; = O be a local equation oK
at b;. Then we consider the germ of the mappiftgg;): X — C? atb; and a
corresponding small enough polydisc neighbourhBeatb;. As in the proof of
Theorem 4.3, there is a nonvoid polar curye(t, g;) atb;, which cuts7, at a finite
number of points withirP;. This shows thaf, is built from 7, N 3 by attaching a
certain number of-cells for each such intersection point, and foyadl {1, ..., r}.

In conclusion, we have shown the following homotopy equivalences

7. 2 Fn B % (F,NB)ueticels F, X (Fpnp)uU ef-cells 2 VS,

which imply the desired equality of homotopy groups. Now the proofis comptete.

6. Application to affine complete intersections

Letg = (g1,...,9p):C"? — P, n > 0, be a polynomial mapping. If at some
point, g is a local complete intersection with isolated singularity, then its local
Milnor fibre at this point is a bouquet ef-spheres, by Hamm'’s result, see [H-1].
The context we have developed allows us to prove a result of this tyggdal
mappings

Let us introduce some notations. In analogy to Definition 1.1 we may define
a fibre-compactifying extensiofy, Y, Z) of the mappingg. Following 1.2, an
example of a f.c.e. is the following. L&t be the algebraic closure of the graph of
g, within P"™? x CP. The intersectiorX N (H> x C?) will be denoted byX*°,
where H* is the hyperplane at infinitp” P\ C"*?. The data(t, X, P"™? x CP)
define then af.c.e. of the mappipgwheret: X — CP is the restriction tX of the
projectionP™? x P — CP.

6.1. DEFINITION. Let(g,Y, Z) be af.c.e. oy and letWW = {W, };¢ be a finite
complex stratification o¥ with Whitney (a) property, which is &7-stratification

https://doi.org/10.1023/A:1000235106399 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000235106399

INFINITY OF POLYNOMIAL MAPPINGS AND THOM REGULARITY CONDITION 107

atY > and ha<"*? as one of its strata. Let us denote Sigpig:= Sing,,,gUSing g
andA(g) == g(Sing,,g).

We say thay: C"*? — C? is anaffine local complete intersectiga.l.c.i.) with
isolatedV-singularitiesiff the restrictiong: Sing,,g — A(g) is a finite mapping.
Such ag is in particular a local complete intersection with isolated singularity at
any point ofC**?,

6.2. THEOREMLetg: C"*? — P be a polynomial mapping and 163, Y, Z) be
af.c.e. ofy. LetV be a finite complex stratification 8fwith Whitneya) property,
which is agT-stratification atY*> and hasC"*? as one of its strata. I§ is an
a.l.c.i. with isolated/V-singularities then the general fibre gthas the homotopy
type of a bouquet S™.

Proof. Singy g is closed analytic (sinc®V has Whitney (a) property). Since
J|singg is finite, the discriminan\(g) is also closed analytic, of dimensien p.
On the other hand, for anye A(g), the se~1(y) N Sing,g is finite. Notice that
for p = 1 this means that the polynomighas isolatedV-singularities, hence we
are in the conditions of Corollary 4.7 and the conclusion follows.

Forp > 1, we use induction op. There is a Zariski-open subs@t in the
set of linear projections from? to C?~! such that, ifft € Q4, then the restriction
of [ to the analytic subseh(g) C P is a finite mapping. We may assume, by
a linear coordinate change, thats the projection along the last coordinate of
CP. Let's consider the polynomial mapping = (g1,...,gp-1) : C*? — 1
and let us defing’:Y — 1, ¢’ := [ o §. Then the datdg’,Y, Z) represent
af.c.e. ofg’. Moreoverg' is an a. |.c.i. with isolated singularities with respect to
the same stratificationV. Therefore we may assume by induction that the general
fibre of ¢/, say X := (¢')~(¢), is homotopically a bouquetS™*. Moreover,
the algebraic mapping,: X — C has isolated singularities with respect to the
f.c.e.gp: X = g 1({e} x C) — C and the stratification o induced byW. Now
the general fibre of,: X — C is just the general fibre of the initial polynomial
mappingg. We apply Corollary 4.7 to conclude. O
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