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Abstract

Experiments in engineering are typically conducted in controlled environments where parameters can be set to any
desired value. This assumes that the same applies in a real-world setting, which is often incorrect asmany experiments are
influenced by uncontrollable environmental conditions such as temperature, humidity, andwind speed.When optimizing
such experiments, the focus should be on finding optimal values conditionally on these uncontrollable variables. This
article extends Bayesian optimization to the optimization of systems in changing environments that include controllable
and uncontrollable parameters. The extension fits a global surrogate model over all controllable and environmental
variables but optimizes only the controllable parameters conditional on measurements of the uncontrollable variables.
The method is validated on two synthetic test functions, and the effects of the noise level, the number of environmental
parameters, the parameter fluctuation, the variability of the uncontrollable parameters, and the effective domain size are
investigated. ENVBO, the proposed algorithm from this investigation, is applied to a wind farm simulator with eight
controllable and one environmental parameter. ENVBO finds solutions for the entire domain of the environmental
variable that outperform results fromoptimization algorithms that only focus on a fixed environmental value in all but one
case while using a fraction of their evaluation budget. This makes the proposed approach very sample-efficient and cost-
effective. An off-the-shelf open-source version of ENVBO is available via the NUBO Python package.

Impact Statement

Providing a practical method for the optimization of expensive experiments and simulations under changing and
externally given environmental conditions allows solving engineering problems that better mimic the challenges
found in real-world applications. It makes results robust when transferring them from the lab to the real world as it
removes simplistic assumptions that fail to hold in realistic scenarios. Instead of running one experiment multiple
times under different environmental conditions, ENVBO, the proposed method, requires only a single opti-
mization run that shares all available information about the controllable variables and the environmental
conditions. This decreases the number of observations needed and lowers the cost of optimization, which is
the main challenge of expensive black-box optimization.
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1. Introduction

Bayesian optimization is a sample-efficient optimization algorithm for the optimization of expensive-to-
evaluate functions that do not possess a mathematical expression or where the expression is too complex
to be solved analytically (Močkus 1974, 1989; Žilinskas 1975; Jones et al. 1998; Snoek et al. 2012).
Examples of these functions are physical experiments and computer simulations. Optimization means
finding the optimal parameter values that maximize some objective. In its original form, Bayesian
optimization is a global optimization algorithm that aims to find a global optimum of a function in a
minimum number of function evaluations, also called observations. For Bayesian optimization to be
effective, all parameters must be controllable, and all environmental factors influencing the output must
remain constant. However, this assumption is only true in completely isolated and controlled environ-
ments. Considering more realistic scenarios or experiments where some variables cannot be controlled, it
is questionable if this assumption holds. Environments in the real world are generally more complex, and
environmental conditions, such as humidity, temperature, and wind speed, are typically given by
uncontrollable external factors.

Many applications of Bayesian optimization—implicitly or explicitly—assume a simplistic world
where all environmental conditions are fixed. In active flow control, for example, where the goal is to
control blowing actuators to maximize the reduction of the skin friction drag over a flat plate, the ambient
wind speed is assumed to be fixed (Mahfoze et al. 2019;Diessner et al. 2022;O’Connor et al. 2023;Mallor
et al. 2024). However, the optimal parameters found from these simulations and experiments give optima
for specific wind speeds and cannot necessarily be generalized to other wind speeds. This approach
requires repeating the experiment for each wind speed to ensure optimality. Because wind speeds are
assumed to be fixed, it is impossible to share observations and, thus, information between experiments.
While observations from different wind speeds will likely not result in the same drag reduction, they will
be correlated and contain some information that can be transferred to problems with varying wind speeds.
Sharing information between different environmental conditions could decrease the number of necessary
observations and make Bayesian optimization more sample-efficient and cost-effective—both essential
properties and the main objectives of Bayesian optimization.

This article presents a practical strategy for optimizing expensive black-box functions such as physical
experiments and computer simulations, with influential environmental conditions that are given by
external circumstances and cannot be controlled during the optimization. The strategy extends Bayesian
optimization by (a) fitting a global surrogate model over all controllable and uncontrollable variables,
(b) solving the acquisition function conditionally onmeasurements taken for the uncontrollable variables,
and (c) restricting the initial training data, which typically consists of many observations generated via a
space-filling design to only one observation. It is shown that ENVBO, the proposed algorithm, gener-
alizes to situations with noisy observations, multiple uncontrollable variables, and uncontrollable
variables with different levels of fluctuation and variability.

To illustrate the value of this approach to the field of engineering, a wind farm simulator is considered
to maximize the annual power generation by finding optimal positions for four wind turbines. The wind
direction affects the power generation significantly and is assumed to vary randomly in these simulations.
Thus, the wind direction represents an influential environmental condition. Results show that ENVBO
outperforms two other optimization algorithms used as benchmarks in all but one case. It has the
additional benefits of using fewer function evaluations than the benchmarks and can predict wind turbine
positions for any possible wind direction within the investigated range. Similar results from the
benchmarks could only be achieved by repeating simulation campaigns many times for different wind
speeds—an expensive, if not infeasible, task. Thus, the proposed algorithm is sample-efficient and cost-
effective and effectively addresses the main problem of expensive black-box function optimization. An
off-the-shelf open-source version of ENVBO is available via the NUBO Python package (Diessner et al.
2023) at www.nubopy.com.

This research article is structured as follows. Section 2 gives an overview of related literature and
highlights differences to the work in this article. Section 3 introduces Bayesian optimization, including
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surrogate modeling and acquisition functions, and extends it to allow optimization with changing environ-
mental conditions. Section 4 validates the method on two synthetic test functions—the two-dimensional
Levy function and the six-dimensional Hartmann function—and introduces a way of simulating randomly
changing environmental conditions via random walks. Section 5 investigates the five properties of the
proposed method: noise, number of uncontrollable variables, parameter fluctuation, parameter variability,
and effective domain size (i.e., the actual searched space given by the environmental conditions). Section 6
considers a nine-dimensional wind farm simulator with eight controllable and one uncontrollable variable.
Section 7 discusses the results of the empirical investigation and the application to the simple wind farm
simulator and highlights limitations and implications. Finally, a conclusion is drawn in Section 8.

2. Related work

Themethodology in this article is in the area of Bayesian optimization, whose origin can be traced back to
the early 1960swhenKushner (1962) andKushner (1964) introduced an optimization algorithm on a one-
dimensional noisy function using a Gaussian process as a surrogate model and sampling heuristics that
later evolved into the upper confidence bound (UCB) and probability of improvement acquisition
functions. Research from 1971 onward linked Bayesian optimization predominantly to the optimization
of expensive multimodal functions and introduced new heuristics—notably expected improvement (EI;
Šaltenis 1971) and knowledge gradient (Močkus 1972, 1974, 1989). Limitations in computational
capabilities at the time resulted in using cheaper models, such as Wiener and Ornstein–Uhlenbeck
processes, for which both heuristics collapse onto each other (Garnett 2023). The evolution of technology
allowed computationally expensivemodels such asGaussian processes to be used in the late 1990s, which
incentivized reevaluation of the methods proposed two decades earlier. Schonlau (1997) and Jones et al.
(1998) introduced their efficient global optimization (EGO) algorithm and studied EI in a deterministic
setting. Auer (2003) and Srinivas et al. (2010) reexamined UCB and studied its theoretical regret for the
first time, while Frazier and Powell (2007) and Scott et al. (2011) studied the knowledge gradient for
discrete and continuous input spaces, respectively. Villemonteix et al. (2006) introduced an information-
based strategy into the Bayesian optimization framework that was later studied and further developed into
entropy search (Hennig and Schuler 2011), predictive entropy search (Hernández-Lobato et al. 2014), and
max-value entropy search (Wang and Jegelka 2017). Comprehensive surveys are available from Brochu
et al. (2010), Shahriari et al. (2015) and Frazier (2018). Closely related to Bayesian optimization is the
work on multiarmed bandits investigating a similar problem but in a discrete parameter space (Garnett
2023; Berry and Fristedt 1985; Lattimore and Szepesvári 2020).

Bayesian optimization has been applied to many scientific fields, predominantly in the science,
technology, engineering, and mathematics areas. Applications include fields such as material science
(Frazier and Wang 2015; Packwood 2017) and drug discovery (Negoescu et al. 2011) in chemistry,
physics (Duris et al. 2019), and biology (Li et al. 2018). In engineering, it has been used in civil
engineering (Gramacy et al. 2016; Garnett et al. 2010), electrical engineering (Lyu et al. 2018),
mechanical engineering (Sterling et al. 2015), and robotics (Martinez-Cantin et al. 2009; Calandra
et al. 2015). Furthermore, Bayesian optimization is often used in machine learning and artificial
intelligence, for example, to configure algorithms (Hutter et al. 2011) and to tune hyperparameters
(Snoek et al. 2012). Garnett (2023) provides a thorough list of applications.

This article focuses on a particular case of Bayesian optimization (Frazier 2018) that is referred to as
random environmental conditions (Chang et al. 2001), multitask optimization (Swersky et al. 2013), and
contextual optimization (Krause and Ong 2011).Methods differ by the type of input parameters (discrete or
continuous), the number of allowed contexts (finite or infinite), and the overall goal of the optimization (one
optimal solution for all contexts or one optimal solution for each context). When the number of contexts is
infinite, finding one optimal solution for each context corresponds to finding a function that returns optimal
inputs based on the context. This is the main objective of this article. Gaussian process-based methods
aiming to optimize problemswith different contexts—that is, with controllable and environmental variables
—considered in the past can be classified primarily into two types based on their optimization goal.
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The first type aims to find one solution that yields the best result for all tasks/contexts. It is assumed
that environmental variables take values according to a probability distribution. For example, if the
environment is defined by its temperature, the current temperature will follow a distribution. Opti-
mization aims to find the optimizer that maximizes the objective function, taking into account the
likelihood of the different environments. Different approaches assume the distribution of the environ-
mental variables to be discrete (Williams et al. 2000; Swersky et al. 2013), continuous (Groot et al.
2010; Xie et al. 2012), or both (Toscano-Palmerin and Frazier 2018). These methods assume that
parameters and contexts can be selected during optimization, and many use a sequential approach,
where parameters for the next candidate are selected before the context is chosen. Only Toscano-
Palmerin and Frazier (2018) present a method that chooses parameters and contexts jointly and can
optimize problems where contexts are uncontrollable and given randomly. Chang et al. (1999) and
Chang et al. (2001) use this type of method to design a femoral component for hip replacements
conditional on joint force orientation and cancellous bone properties. The aim is to find one optimal
design for a wide demographic with varying characteristics.

The second type of method aims to find one solution for each context. Thus, interest lies not in finding
one global optimum but multiple optima, one for each combination of environmental conditions. Pearce
and Branke (2017), Char et al. (2019), and Chung et al. (2020) consider multiple discrete tasks, while
Ginsbourger et al. (2014) and Pearce and Branke (2018) consider continuous environmental variables.
These methods are closely related to the objective of this article. However, they have one important
distinction. While the environmental values are given externally in real-world applications, it is assumed
that they can be set to any desired values in the experiments and simulations above. This deviates from our
problem formulation, where we explicitly regard problems with uncontrollable environmental variables
—in experiments, simulations, and the real world.

The research in this article is closely related to Krause and Ong (2011), who modified UCB (Srinivas
et al. 2010) to be suited to optimization with externally given environmental conditions and derived
theoretical bounds for its contextual regret. In contrast to Krause and Ong (2011), this article considers
improvement-based acquisition functions, that is, EI (Jones et al. 1998) and log EI (LogEI; Ament et al.
2023), gives a detailed description of the practical implementation of Bayesian optimization with
environmental conditions and provides all code at https://github.com/mikediessner/environmental-con
ditions-BO. In addition, the reported approach makes fewer assumptions than Krause and Ong (2011),
who focus on a linear and additive covariance structure for the environmental variables. These assump-
tions can be restrictive as no information about the objective function might be available—as is often the
case with expensive, derivative-free black-box optimization. Thus, a widely applicable strategy is
required that this article aims to provide.

The area of multitask optimization is also related to multi-objective optimization. In multi-objective
optimization, the aim is no longer to optimize one single objective function but rather multiple objective
functions simultaneously. A global optimum for all objective functions is only possible if it happens to be
at the same values for all inputs for all functions. Thus, the main goal is to find the best trade-off between
the objective functions (Garnett 2023; Frazier 2018). This is related to the first problem above, which aims
to find a trade-off between all contexts. However, objective functions in multi-objective optimization are
generally assumed not to be correlated, while correlations are leveraged for contexts. Acquisition
functions such as EI (Emmerich et al. 2006; Ponweiser et al. 2008; Yang et al. 2019b; Yang et al.
2019a), predictive entropy search (Hernández-Lobato et al. 2015) and max-value entropy search
(Belakaria et al. 2020; Fernández-Sánchez et al. 2023) have been extended to allow multi-objective
optimization.

3. Methodology

This section provides a brief overview of the fundamentals of Bayesian optimization, particularly the
surrogatemodeling via Gaussian processes and the acquisition functions used to guide the optimization. It
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then introduces the novel conditional Bayesian optimization algorithm that enables optimization with
uncontrollable environmental variables.

3.1. Bayesian optimization

Consider the d-dimensional maximization problem

x∗ ¼ argmax
x∈X

f xð Þ, (1)

where X is a continuous input space that is bounded by a hyper-rectangle such that X ∈ a,b½ �d with
a,b∈ℝ. The objective function f xð Þ typically has three properties. First, it is a black-box function that
can be provided with an input vector xi and allows the observation of the scalar output yi. Beyond this,
no other information can be inferred from the function. Second, the function is expensive to evaluate,
and significant time, resources, and money costs are generated at each evaluation. Third, the function
typically lacks a derivative or is too expensive to compute (Frazier 2018). Any noise ϵ introduced
during the evaluation of the objective function f xð Þ is assumed to be independent and identically
distributed Gaussian noise ϵ�N 0,σ2ð Þ such that an observation can be defined as yi ¼ f xið Þþ ϵ.
Multiple observation pairs consisting of inputs and outputs are defined as Dn ¼ xi,yið Þf gni¼1. In this
article, Xn ¼ xif gni¼1 and yn ¼ yif gni¼1 are used to describe all training inputs and their corresponding
outputs.

Bayesian optimization (Močkus 1974, 1989; Žilinskas 1975Jones et al. 1998; Srinivas et al. 2010;
Snoek et al. 2012; Shahriari et al. 2015; Frazier 2018; Gramacy 2020) is an optimization algorithm
based on surrogate modeling to solve expensive problem (1) in a minimum number of function
evaluations. The expensive and opaque nature of these problems requires a sample-efficient optimiza-
tion algorithm that keeps costs low to make the optimization feasible. Bayesian optimization has
emerged as a prime candidate using a surrogate modelM to represent the unknown objective function
f xð Þ. The mean of the surrogate model’s predictive distribution is then used to compute an acquisition
criterion α �ð Þ that guides the optimization process by proposing new input points to be evaluated by the
objective function. Bayesian optimization is a sequential optimization algorithm performed in a
feedback loop, as illustrated in Algorithm 1. This loop consists of three steps. First, the surrogate
model is fitted to the training dataDn. Second, the next candidate point xnþ1 is computed bymaximizing
the acquisition criterion α. Third, the objective function evaluates the new candidate point, and its
output ynþ1 is observed. The loop then starts again, adding this newly observed candidate point to the
training set. Thus, Bayesian optimization gathers more information sequentially with each loop. The
algorithm stops when a predefined evaluation budget N is exhausted and returns the data pair with the
highest observation as its solution.

Algorithm 1 Basic Bayesian optimization algorithm.

Require:Evaluation budgetN, number of initial points n0, surrogate modelM, and acquisition function α.
Sample n0 initial training data points X0 via a space-filling design (McKay et al. 1979) and gather
observations y0.
Set n¼ 0.
while n≤N�n0 do.

Fit surrogate model M to training data Dn ¼ Xn,ynf g.
Find xnþ1 that maximizes an acquisition criterion α based on modelM, that is, solve argmaxxα xð Þ.
Evaluate xnþ1, observingynþ1.
Increment n.

end while.
return Point x∗ with the highest observation y∗.
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Algorithm 1 is illustrated in Figure 1. The objective function (dashed line) is a simple one-dimensional
function with one local optimum and one global optimum at x¼ 8. The algorithm is initialized with three
observations (dark blue dots), and the surrogate model is fitted, providing its prediction (red line) and the
corresponding uncertainty (blue area) in the form of 95% confidence intervals around the prediction. This
model is used to compute the acquisition criterion (orange area)—in this case, EI (see Section 3.1.2)—
that, when maximized, provides the next candidate point (dashed red line) to be evaluated from the
objective function. Bayesian optimization is run for eight iterations, and the surrogate model is updated
with each newly evaluated candidate point until the algorithm finds the optimum at iteration six.

3.1.1. Gaussian process
Different methods, such as random forest regression (Hutter et al. 2011; Lindauer et al. 2022), density
ratio estimation (Bergstra et al. 2011; Tiao et al. 2021), and neural networks (Snoek et al. 2015;
Springenberg et al. 2016; Maraval et al. 2022) have been considered for surrogate modeling in Bayesian
optimization. However, Gaussian process regression (Rasmussen andWilliams 2006; Gramacy 2020) has
seen the widest adaption for the surrogate modelM and has been researched extensively since the 1970s
(Brochu et al. 2010). The four main reasons for this adaption are: first, Gaussian processes are a flexible
modeling strategy, capable of representing a wide range of possible continuous objective functions f xð Þ
(Brochu et al. 2010; Frazier 2018; Gramacy 2020; Garnett 2023). Second, they allow incorporating prior
knowledge about the objective function by choosing the prior mean function and the prior covariance
kernel (Brochu et al. 2010; Frazier 2018; Gramacy 2020). The latter is particularly important as it controls
the smoothness of the possible representations of the objective function. Third, they return a prediction
with corresponding uncertainty, both required for computing acquisition functions (Garnett 2023;
Gramacy 2020). Fourth, they are appropriate for continuous objective functions, which are the main
focus of Bayesian optimization, and work well with the limited amounts of data available in expensive
black-box optimization (see Section 3.1). Due to these advantages, Gaussian processes are typically used
in Bayesian optimization; thus, this article considers Bayesian optimization based on Gaussian process
regression. Rasmussen and Williams (2006) provide a comprehensive overview of Gaussian process
regression and its implementation.

AGaussian process is a nonparametric regressionmodel that returns a prediction and its corresponding
uncertainty for an unobserved point and can be described as a distribution of possible objective functions.
Mathematically, it is a finite collection of random variables that have a joint Gaussian distribution. A
Gaussian process only requires a prior mean function μ0 xð Þ :X ↦ℝ and a prior covariance kernel
Σ0 x,x0ð Þ :X ×X ↦ℝ to be fully defined. The mean vector m Xnð Þ≔ μ0 Xnð Þ and the n× n covariance
matrix K Xn,Xnð Þ≔ Σ0 Xn,Xnð Þ specify the multivariate normal distribution, also called the prior distri-
bution, as

f Xnð Þ�N m Xnð Þ,K Xn,Xnð Þð Þ: (2)

This study follows Snoek et al. (2012) and chooses the constant mean function given in Equation (3) as
the prior mean function μ0 �ð Þ and the Matérn 5/2 kernel presented in Equation (4) as the prior covariance
function Σ0 �, �ð Þ. Snoek et al. (2012) argue that theMatérn 5/2 kernel is better suited for the optimization of
realistic black-box problems than the often-used radial basis function kernel (Equation (5)) because the
latter assumes the objective function to be very smooth. This assumption might be too strong for many
problems, making the Matérn kernel a good alternative. However, the main advantage of using Gaussian
processes as the surrogatemodel is the ability to incorporate prior knowledge about the objective function.
Thus, the choice of the covariance kernel should always be informed by the available information about
the given problem. For cases where information about the smoothness of the objective function is
unavailable—which might be common for black-box problems—, Snoek et al. (2012) make a case in
favor of the Matérn 5/2 kernel over the radial basis function kernel as a default.

TheMatérn 5/2 kernel uses the distance between inputs r¼ ∣x�x0∣ to compute the uncertainty around
its prediction. The kernel uses the output scale σ2f to scale the covariance, where smaller values correspond
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Figure 1. Bayesian optimization is applied to a one-dimensional function with one local and one global
maximum. EI is used as the acquisition function. The input space is bounded by 0,10½ �.
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to a smaller deviation from itsmean. The characteristic length scale l quantifies the extent towhich outputs
are correlated when moving along an input axis. Smaller length scales lmean shorter correlation lengths
andmore variable functions, while larger length scales l correspond to longer correlation lengths andmore
constant functions (Gramacy 2020; Rasmussen and Williams 2006).

μ xð Þ¼ c (3)

ΣMate0rn x,x0ð Þ ¼ σ2f 1þ
ffiffiffi
5

p
r

l
þ5r2

3l2

 !
exp �

ffiffiffi
5

p
r

l

 !
(4)

The radial basis function kernel given in Equation (5) is another popular alternative for the covariance
function. It is much smoother than the Matérn kernel and thus is only suited for Bayesian optimization
when it can be assumed that the underlying objective function is necessarily smooth (Snoek et al. 2012).

ΣRBF x,x0ð Þ ¼ σ2f exp � r2

2l2

� �
(5)

Covariance kernels can use one characteristic length scale l for all input dimensions d or d length scales
l¼ lif gdi¼1, one for each input dimension d. While the former has less computational overhead due to only
requiring one length scale for all dimensions, it is less flexible as it assigns the same correlation to each
dimension. The latter considers each dimension individually and assigns an individual length scale to each
dimension. This is known as automatic relevance determination (Neal 1996) as the Gaussian process
assigns larger length scales to more constant dimensions, making them less influential in the computation
of the covariance matrix. In contrast, inputs that are variable and change quickly are assigned smaller
length scales, increasing their importance when computing the covariance kernel, as changes in these
inputs generally affect the prediction significantly. Generally, the inverse of the length scales l indicates
the relevance of the corresponding input (Rasmussen and Williams 2006).

The Gaussian process described above has some hyperparameters θ that can be estimated from the
training data by maximizing the log-marginal likelihood in Equation (6) via maximum likelihood
estimation (Rasmussen and Williams 2006).

logp ynjXnð Þ¼�1
2
yn�m Xnð Þð Þ⊤ K Xn,Xnð Þþσ2yI

h i�1
yn�m Xnð Þð Þ

�1
2
log∣K Xn,Xnð Þþσ2y I∣�

n
2
log2π

(6)

Besides the constant c in the mean function, the signal variance σ2f and characteristic length scales l in
the covariance kernel, there is the noise variance σ2y that reflects the noise level ε that is introduced

independent of the objective function f xð Þ, such that θ¼ c,σ2f , l,σ
2
y

n o
.

The Gaussian process can be used to make predictions along with corresponding uncertainty quan-
tification by computing the posterior predictive distribution (7). For n∗ test pointsX∗, it can be computed
as the multivariate normal distribution conditional on the training data Dn

f X∗ð Þ ∣Dn,X∗ �N μn X∗ð Þ,σ2n X∗ð Þ� �
(7)

μn X∗ð Þ¼K X∗,Xnð Þ K Xn,Xnð Þþσ2yI
h i�1

y�m Xnð Þð Þþm X∗ð Þ (8)

σ2n X∗ð Þ¼K X∗,X∗ð Þ�K X∗,Xnð Þ K Xn,Xnð Þþσ2yI
h i�1

K Xn,X∗ð Þ, (9)

are the covariance matrices of sizes n∗ × n, n × n∗, and n∗ × n∗ between the training inputs Xn and the test
inputs X∗, respectively.
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3.1.2. Acquisition functions
Acquisition functions guide the sequential selection of candidate points by quantifying if a particular input
point is likely to be a good new candidate point and thus should be evaluated by the objective function
f xð Þ. This is achieved by computing and maximizing an acquisition criterion α �ð Þ based on the posterior
distribution of the Gaussian process and the available training dataDn. The criterion’s exact form depends
on the individual acquisition function; however, most acquisition functions have one property in common
—the exploration-exploitation trade-off (Shahriari et al. 2015; Frazier 2018). Exploration can be defined
as choosing candidate points from areas with high uncertainty, where no training data points were
observed, and thus, little information is available. Conversely, exploitation is defined as selecting
candidate points from areas with a high predictive mean, that is, points that are close to high training
data points. To understand the importance of balancing exploration and exploitation, consider the extreme
cases of pure exploration and pure exploitation. For the former, only points with the highest uncertainty
would be selected. While this minimizes the uncertainty of the Gaussian process, it is not a sample-
efficient approach as information about high predictive means is disregarded, and areas with the best-
observed outputs are avoided. For the latter, the algorithm will blindly follow the best-performing points
and never explore other areas. The algorithm will probably converge toward the first optimum it
discovers, making it prone to getting stuck in a local optimum. Thus, a hybrid solution that combines
exploration and exploitation is beneficial.

While related work (Krause and Ong 2011) focuses on a theoretical investigation of UCB (Srinivas
et al. 2010), this study empirically investigates EI (Jones et al. 1998) and shows its superior performance
on two test functions. One of the main advantages of EI over UCB is that it does not require the choice of a
value for the trade-off parameter that balances exploration and exploitation. Finding optimal values for
this parameter that perform well for specific problems is not trivial, although theoretical guarantees have
been derived (Srinivas et al. 2010). EI has been investigated empirically (Jones et al. 1998; Jones 2001;
Brochu et al. 2010), its convergence has been studied (Bull 2011), and it has shown efficiently in practice
(Snoek et al. 2012). Although improvement-based methods are among the most popular and well-studied
acquisition functions (Ament et al. 2023), other acquisition functions, such as knowledge gradient
(Frazier et al. 2009; Frazier 2018) and information-based approaches, such as entropy search
(Villemonteix et al. 2006; Hennig and Schuler 2011), predictive entropy search (Hernández-Lobato
et al. 2015), and max-value entropy search (Wang and Jegelka 2017), are also available. While we focus
on EI and UCB here, our method could be used with any choice of acquisition function.

EI (Jones et al. 1998) is an improvement-based acquisition function that aims to find candidates that
perform better than a defined target, typically the best available training data point. EI is defined as

αEI X∗ð Þ¼ μn X∗ð Þ� ybest
� �

Φ zð Þþσn X∗ð Þϕ zð Þ if σn X∗ð Þ> 0
0 if σn X∗ð Þ¼ 0

�
, (10)

where z¼ μn X∗ð Þ�ybest

σn X∗ð Þ , μn �ð Þ and σn �ð Þ are the mean and the standard deviation of the Gaussian processes’

posterior predictive distribution (7), ybest is the current best observation, and Φ �ð Þ and ϕ �ð Þ are the
cumulative distribution function and probability density function of the standard normal distribution
N 0,1ð Þ.

Although EI can never be nonpositivemathematically, it can become zero numerically when computed
due to the floating-point precision of the programming language. This results in flat areas where the EI is
zero and cannot be optimized correctly. To prevent numerically vanishing values, LogEI was proposed by
Ament et al. (2023) as

αLogEI X∗ð Þ¼ logh
μn X∗ð Þ� ybest

σn X∗ð Þ
� �

þ log σn X∗ð Þð Þ if σn X∗ð Þ> 0
0 if σn X∗ð Þ¼ 0

8<
: , (11)

where
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logh zð Þ¼
log ϕ zð Þþ zΦ zð Þð Þ if z> �1

�z2=2� c1þ log1mexp log erfcx �z=
ffiffiffi
2

p� �jzj� �þ c2
� �

if �1=
ffiffi
ϵ

p
< z≤ �1

�z2=2� c1�2 log jzjð Þ if z≤ �1=
ffiffi
ϵ

p

8><
>: , (12)

where c1 ¼ log 2πð Þ=2, c2 ¼ log π=2ð Þ=2, ϵ is the numerical precision, and log1mexp and erfcx are stable
implementations of log 1� exp zð Þð Þ and exp z2ð Þerfc zð Þ, respectively, where erfc is the complementary
error function.

The UCB (Srinivas et al. 2010) is an optimistic acquisition function and assumes the uncertainty of the
posterior Gaussian process to be true to a predefined level. It can be computed as

αUCB X∗ð Þ¼ μn X∗ð Þþ
ffiffiffi
β

p
σn X∗ð Þ, (13)

where β is a predefined trade-off parameter that can be set for each iteration of the Bayesian optimization
algorithm, it can be kept constant for the full optimization campaign or be varied at each iteration (Srinivas
et al. 2010). Srinivas et al. (2010) investigated some theoretical properties of β, while Diessner et al.
(2022) investigated how different values for β affect the optimization. As the acquisition functions in this
study are deterministic, they can be maximized with a deterministic optimizer, such as L-BFGS-B (Zhu
et al. 1997).

3.2. Changing environmental conditions

The Bayesian optimization algorithm in Algorithm 1 assumes that all parameters influencing the output
can be controlled. However, in many cases, when optimizing physical experiments, variables will be
present that influence the output but cannot be controlled. This article refers to these uncontrollable
variables as environmental variables as they are externally given within the ambient environment of the
experiment. Examples of such uncontrollable variables are temperature, humidity and wind speed. This
section presents an extension to Algorithm 1 that allows the inclusion of uncontrollable environmental
variables in the optimization process. The extension can be broken down into three parts as highlighted in
Algorithm 2.

The main modification to Algorithm 1 concerns the surrogate modeling. The basic Bayesian opti-
mization algorithm fits a surrogate model over all controllable variables. Environmental variables are not
included and are assumed to be fixed over the full optimization process or are irrelevant to the output.
Algorithm 2 does not make this assumption and includes all controllable parameters xC and environ-
mental variables xE in its surrogate model. The inputs Xn of the training dataDn ¼ Xn,ynf g are extended
from Xn ¼ Xn,Cf g to Xn ¼ Xn,E,Xn,Cf g.

The second extension regards the computation of the next candidate point, specifically, the maxi-
mization of the acquisition function. While in Algorithm 1 all parameters are assumed to be controllable
and the acquisition function can be maximized over all parameters maxxCα xCð Þ, Algorithm 2 must
differentiate between the controllable parameters xC and environmental variables xE. The uncontrollable
variables are given by the environment and can only be measured but not manipulated. Hence, the
maximization of the acquisition function is broken down into two steps. First, the environmental variables
are measured. This gives values for the uncontrollable inputs for the next candidate point xnþ1,E. Second,
the acquisition function is maximized conditional on these values for the environmental inputs
maxxC ∣xEα xCð Þ resulting in the controllable inputs for the next candidate point xnþ1,C. Conditional
maximization essentially means that the environmental variables xE are treated as fixed for the maxi-
mization of the acquisition function for one iteration. This assumes that the environmental variables do not
change significantly from the time of measuring until the evaluation of the new candidate point xnþ1. This
assumption should be realistic for most experiments, as one iteration of the Bayesian optimization loop—
that is, measuring the environmental variables, fitting a Gaussian process and optimizing the acquisition
function conditional on the measurements—takes only a few seconds (see Diessner et al. (2023) for
runtimes of different Bayesian optimization packages). However, issues could arise when working with
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environmental variables that change rapidly. Thus, Section 5 investigates the influence of different
fluctuation rates. The new candidate point xnþ1 is then defined as a combination of the measurements
for the environmental variables xnþ1,E and the results of the maximization of the acquisition function
xnþ1,C.

The last adjustment to Algorithm 1 focuses on generating the training data. Usually, training data are
produced using a space-filling design, such as a Latin hypercube (McKay et al. 1979). Under the
assumption that all parameters can be controlled, the experiment can be repeated for each training data
point to observe its output. However, the modified Bayesian optimization algorithm includes uncontrol-
lable variables in its computation. Thus, it is impossible to evaluate any arbitrary combination of inputs as
it is limited by the current measurement of the environmental variables. To resolve this issue, Algorithm 2
uses one training data point x0 instead of multiple points generated from a space-filling design. The initial
training data are restricted to a single point, while the second data point is already computed via Bayesian
optimization. The first data point is generated by taking measurements for the environmental variables
x0,E and randomly selecting values for the controllable parameter x0,C. These inputs are then evaluated,
resulting in a complete training inputs-output pair D0 ¼ x0,y0f g, followed by the first Bayesian opti-
mization loop.

Algorithm 2 Modified Bayesian optimization algorithm with environmental conditions.

Require: Evaluation budget N, surrogate model M, acquisition function α.
Sample an initial training data point x0 ¼ x0,E,x0,Cf g where environmental parameters x0,E
are measured and controllable parameters x0,C are randomly sampled and gather observation y0.
Set n¼ 0.
while n≤N�n0 do.

Fit surrogate model M to training data Dn ¼ Xn,ynf g, where Xn ¼ Xn,E,Xn,Cf g.
Measure environmental variables xnþ1,E.
Find values for the controllable parameters xnþ1,C that maximize the acquisition function α
conditionally on the measurements xnþ1,E such that xnþ1 ¼ xnþ1,E,xnþ1,Cf g, that is, solve
argmaxxC ∣xEα xCð Þ.
Evaluate xnþ1 by observingynþ1.
Increment n.

end while.
return Point x∗ with the highest observation y∗.

In contrast to Krause and Ong (2011), the proposed approach does not assume different covariance
structures for controllable and environmental variables. When working with experiments and simulators,
the underlying objective function is generally unknown or too complex to compute directly. Even with
expert knowledge, there might be insufficient information about these black boxes to confidently assume
a linear or additive structure for the environmental variable (Frazier 2018). Hence, providing the surrogate
model with enough flexibility to estimate the covariance structure is essential. This can be achieved using
the Matérn kernel for controllable and environmental variables—or the radial basis function kernel for
very smooth objective functions.

Figure 2 illustrates the conditional variable optimization on a two-dimensional problem with one
uncontrollable variable x1 and one controllable parameter x2. The upper-left plot shows the true output of
the objective function, where yellow areas indicate high function values and blue areas indicate low
function values. The goal is to find the optimal value for the controllable parameter (y-axis) that
maximizes the output for any uncontrollable variable (x-axis) value. The upper-right plot shows the
predictive mean of a Gaussian process fitted to 20 training data points (black crosses). Following
Algorithm 2, a measurement (red dashed line) of the uncontrollable variable results in x1 ¼�0:5. The
next iteration of the optimization loop is performed conditional on this measurement. The lower-left plot
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shows the predictive mean of the Gaussian process for x1 ¼�0:5. The conditional optimization takes a
slice from the full surrogate model. It reduces the two-dimensional optimization problem to a one-
dimensional problem for each optimization step, where only the controllable parameters are considered.
However, the information gained from the data is shared between each iteration. Notice that no training
points lie on the measurement line; however, the model uses the available training points to inform its
prediction. If Algorithm 1 were used, the uncontrollable input would be assumed to be fixed for the entire
optimization loop, and the optimization process would need repeating for each value of x1. The lower-
right plot extends the lower-left plot by adding the uncertainty from the Gaussian process and the
acquisition function. The optimal value of the controllable input x2 is found bymaximizing the acquisition
function, and the new candidate point is a combination of this maximum and the measurement taken for
the uncontrollable variable x1. The candidate point is observed and added to the training data to be used in
the next iteration of the optimization loop.

4. Simulations

This section introduces two synthetic test functions1—the Levy function and the Hartmann function—
and applies the Bayesian optimization algorithm with environmental conditions presented in Section 3.2.

Figure 2. Maximization of a two-dimensional problem with one environmental variable x1 and one
controllable variable x2. Yellow areas indicate high outputs, and dark blue areas indicate low outputs.
Upper-left: True objective function. Upper-right: Prediction of a Gaussian process with a measurement

taken for the following conditional optimization step. Lower-left: Gaussian process prediction for
optimization conditional on the measurement. Lower-right: Bayesian optimization step conditional on

the measurement.

1 See https://www.sfu.ca/ssurjano/optimization.html for further details on the synthetic test functions.
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Simulations for both problems are run for 100 evaluations and are repeated 30 times2 to validate the
robustness of Algorithm 2. This decreases the risk that results are influenced by the method’s inherent
randomness, for example, the randomly sampled training points that initialize the algorithm. Both
problems assume one uncontrollable variable whose value is provided by a randomwalk at each iteration.
In the simulations, each step of the random walk adds a sample from a uniform distribution U to the
previous value of the uncontrollable variable, such that

xn,E ¼ xn�1,EþU �a,a½ �, (14)

where a is a vector of small predefined constants that provide the minimal and maximal change of the
environmental variables from one iteration to the next. This uniform assumption represents the natural
fluctuation of the uncontrollable variables encountered in a real-world application, for example, changes
in temperature, humidity, and wind speed. It further allows the investigation of uncontrollable variables
with different fluctuation levels by increasing or decreasing the constants in a as discussed in Section 5.
Assuming another distribution for the constants in a, such as a Normal distribution, is an alternative to this
approach.

Subsequent sections analyze the performance of Algorithm 2 by comparing predictions from the
Gaussian process models μn xð Þ to the actual optimal values f xð Þ. In both cases, results are obtained by
maximizing the Gaussian process prediction and the true objective function conditional on identical
test values x0E for the uncontrollable variable. These test values are sampled from a maximin Latin
hypercube design (McKay et al. 1979) within the observed domain of the uncontrollable variable
min xN,Eð Þ,max xN,Eð Þ½ � considered by the algorithm. We also call this observed domain the effective
domain. This ensures a fair comparison by avoiding predictions outside the effective domain requiring
extrapolation. Extrapolation with Gaussian processes generally means that predictions default to the
prior mean function. In cases where extrapolation cannot be avoided, making the prior mean
function as informative as possible—for example, by going beyond zero and constant mean
functions with polynomial and trigonometric mean functions—can improve results significantly
(Planas et al. 2020). To score the performance of the algorithm, the mean absolute percentage error

MAPE μn X0
i

� �
, f X0

i

� �� �¼ 1
m

Pm
i¼1∣

μn x0ið Þ�f x0ið Þð
f x0ið Þ ∣ between the Gaussian process’ predictions and the truths

are computed for all m test points X0.
The acquisition criterion conditional on values of the uncontrollable variables xn,E is maximized with

the SLSQP algorithm (Kraft 1994) using multiple starts. For this strategy, 100 points are sampled from a
maximin Latin hypercube design (McKay et al. 1979) and evaluated by the acquisition criterion. The best
20 points are then used to initialize the SLSQP algorithm, and only the best result is used as the solution for
the optimization problem. Themultiple starts aim to reduce the risk of converging toward a local optimum
instead of the desired global optimum of the acquisition function.

4.1. The two-dimensional Levy function

The Levy function

f xð Þ¼ sin2 πw1ð Þþ w1�1ð Þ2 1þ10sin2 πw1þ1ð Þ� 	þ w2�1ð Þ2 1þ sin2 2πw2ð Þ� 	
,

where wi ¼ 1þ xi�1
4 , for i¼ 1,2, is a two-dimensional function with two input parameters x1 and x2.

Although often used as aminimization problem to find the global minimum f x∗ð Þ¼ 0 at x∗ ¼ 1,1ð Þ for the
input space �10,10½ �2, we choose the bounds of the parameters as �7:5,7:5½ � and �10,10½ �, respectively
to create a maximization problem that is better suited for testing Algorithm 2. The controllable parameter
is restricted from its usual range of �10,10½ � to �7:5,7:5½ � to avoid the steep ridges of the Levy function at
x1 ¼�10 and x1 ¼ 10 that push the optima toward the outer bounds of the parameter space. The function
given in Figure 3 shows a clear ridge at values of about x1 ¼�6 for the controllable parameter x2 for all

2 Runs, replications, and repeats are used interchangeably in this article.
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values of the uncontrollable variable x1. The simulations use a¼ 1:5 as the uniform distribution constant
of the randomwalk for the uncontrollable variable x2. For this relatively simple two-dimensional function,
the constant a was chosen to change by no more than 7.5% of the uncontrollable parameter’s range in
either direction per iteration. This assumes that the environmental conditions do not change too much
between iterations. However, the effect of setting a to different values is investigated and discussed in
Section 5.

The upper-left plot in Figure 4 shows the performance of Algorithm 2 as the mean absolute
percentage error between the maximum of the Gaussian process prediction and the maximum of the true
objective function conditional on 25 test values of the uncontrollable variable. Three alternatives for the
acquisition function—EI, LogEI, and UCB introduced in Section 3.1.2—are compared to a benchmark
where values for the controllable variable were selected randomly. Three different values (4, 8, 16) for the
trade-off parameter β of UCB are considered in Figure 5. While results for all parameter values are
comparable, UCB with trade-off parameter β¼ 8 performs slightly better in terms of mean performance
and variance between runs. Thus, comparisons with EI and LogEI use β¼ 8. The solid lines indicate the
mean performance, while the shaded areas indicate the 95% confidence interval over the 30 replications.
Each replication’s mean absolute percentage error is computed for every 10 evaluations for the same
25 test points X0

E of the environmental variable. The test values are sampled from a Latin hypercube
bounded by the minimal and maximal value of the uncontrollable variable after 100 function evaluations.
The mean absolute percentage error starts just below 0.8 for all alternatives. While the improvement-
based algorithms (EI and LogEI) performed better than the random benchmark, the algorithm using UCB
performs worse. After 100 function evaluations, EI and LogEI have a mean absolute percentage error of
0.08 and 0.06, respectively, and improve upon the random benchmark (0.17). UCB only achieves a mean

Figure 3. Two-dimensional negated Levy function with one controllable parameter x1 bounded by
�7:5,7:5½ � and one uncontrollable variable x2 bounded by �10,10½ �.
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Figure 4. Upper row: Means (lines) and 95% confidence intervals (shaded areas) of the mean absolute
percentage error between Gaussian process prediction and truth over 30 replications. Lower row:

Difference between algorithms and random benchmark after 100 function evaluations for each of the 30
replications. Two-dimensional Levy function with one uncontrollable parameter on the left and six-

dimensional Hartmann function with one uncontrollable parameter on the right.

Figure 5.Comparison of different trade-off parameters β for the UCB acquisition function. Means (lines)
and 95% confidence intervals (shaded areas) of the mean absolute percentage error between Gaussian
process prediction and truth over 30 replications. Two-dimensional Levy function with one uncontrol-
lable parameter on the left and six-dimensional Hartmann function with one uncontrollable parameter on

the right.
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absolute percentage error of 0.24. Moreover, the optimistic strategy shows large confidence intervals,
indicating that the method is not robust. Altering the trade-off parameter β did not improve this result, as
illustrated in the left plot in Figure 5.

The lower-left plot presents the difference between the mean absolute percentage error of the random
benchmark and the three alternative acquisition functions after 100 evaluations. This difference is
computed for each of the 30 replications, and distributions of the differences are plotted for the three
different acquisition functions. Negative values indicate replications where the benchmark resulted in
superior solutions, while positive values indicate that the given version of Algorithm 2 performed better
than the benchmark. Although no alternative is better than the benchmark for every single replication of
the 30 total replications, there is a clear difference between the improvement-based and the optimistic
acquisition functions. Indeed, themean ofUCB (displayed by the horizontal line toward the center of each
violin plot) is the only one worse than zero. This means that the random benchmark outperforms UCB on
average. Additionally, the plot mirrors the lack of robustness discovered earlier by the large spread in
differences. While the method performs better for some replications than the random benchmark, it
performs much worse for others. A Mann–Whitney U test was performed to determine what alternatives
perform differently from the random benchmark to a 1% significance level. The test returned a P-value of
0.0 for the improvement-based algorithms and 0.37 for the UCB. This rejects the hypothesis that methods
perform equally well for the improvement-based methods, reinforcing the results from the visual analysis
that EI and LogEI perform significantly better than the random benchmark. This cannot be said for the
optimistic method—the test cannot reject the null hypothesis, indicating that UCB does not perform
significantly differently from a random approach.

4.2. The six-dimensional Hartmann function

The negated3 Hartmann function

f xð Þ¼
X4
i¼1

αi exp �
X6
j¼1

Aij xj�Pij

� �2 !
,

where

α¼ 1:0,1:2,3:0,3:2ð ÞT ,

A¼

10:00 3:00 17:00 3:50 1:70 8:00

0:05 10:00 17:00 0:10 8:00 14:00

3:00 3:50 1:70 10:00 17:00 8:00

17:00 8:00 0:05 10:00 0:10 14:00

0
BBBBB@

1
CCCCCA,and

P¼ 10�4

1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

0
BBBBB@

1
CCCCCA,

is a six-dimensional function with six input parameters x1, x2, x3, x4, x5, and x6 that are evaluated on the
hypercube 0,1ð Þ6. It has six local maxima and one global maximum with f x∗ð Þ¼ 3:32 at
x∗ ¼ 0:20,0:15,0:48,0:28,0:31,0:66ð Þ. The simulations use a¼ 0:05 as the uniform distribution constant
of the random walk for the environmental variable x6. As this six-dimensional function is more complex
than the Levy function, the constant a was chosen to change by a maximum of 5% of the uncontrollable

3 Bayesian optimization problems are generally expressed as maximization problems as introduced in Section 3. The Hartmann
function is a minimization problem and is negated for the following simulations to keep in line with this convention.
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parameter’s range in either direction, that is, the environmental conditions do not change too much
between iterations. Section 5 sets a to 10%, 25%, 50%, and 100% and investigates their effect.

The upper-right plot in Figure 4 shows the performance of Algorithm 2 over the 30 repeats for the same
three acquisition function as for the Levy function and compares it to the random benchmark. The mean
absolute percentage error starts between 0.85 and 0.90 for all four algorithms. After 100 function
evaluations, the mean absolute percentage error between the prediction of the Gaussian process and
the true objective value for Algorithm 2 using EI and UCB with β¼ 8 are 0.07 and 0.06, respectively—
much better than the random benchmark with 0.24. However, the algorithm using LogEI with a mean
absolute percentage error of 0.18 after 100 evaluations performs only slightly better than the benchmark
and significantly worse than the other versions of Algorithm 2. The large 95% confidence intervals for
LogEI indicate that Algorithm 2 with LogEI is not robust in this case, making it less reliable than EI
and UCB.

The violin plots of the difference between themean absolute percentage error of the benchmark and the
three variations of Algorithm 2 for all 30 replications on the lower-right in Figure 4 indicate that EI
performs the best with almost all replications better than the randombenchmark. LogEI, on the other hand,
performs comparably to the benchmark on average but has a large spread, with some replication
performing much worse. UCB performs similarly to EI but has an outlier that performs much worse
than the random benchmark. Overall, EI is the most robust method and is not prone to outliers. Despite
these differences between algorithms, results after 100 evaluations for all three algorithms are signifi-
cantly different from the random results to a 1% significance level: the P-values from Mann–Whitney U
tests are 0.0 for the EI and the UCB version of Algorithm 2 and 0.007 LogEI. While this shows that the
results of all methods are significantly different from the benchmark, only EI andUCBperform better than
the benchmark indicated by the better average mean absolute percentage error.

Figure 5 shows the results for different values of the trade-off parameter β. While the average
performance is very similar after 100 evaluations, there is a difference in the 95% confidence intervals
for the Hartmann function. However, no clear correlation is noticeable as β¼ 8 performs better than β¼ 4
and β¼ 16, indicating no clear trend.

5. Empirical analysis of properties

Based on the investigations of Section 4, we define ENVBO as a version of Algorithm 2 that uses the EI
acquisition function. This section explores the effect of changes to five aspects of the underlying objective
function or environmental conditions on ENVBO using the negated Hartmann function. The effect of
adding different levels of random Gaussian noise to the function’s output, the influence of more than one
uncontrollable variable, the effect of the fluctuation level (i.e., the step size a of the random walk), the
impact of the variability in the uncontrollable variable, and the relationship between the algorithm
performance and the effective domain size of the uncontrollable variables are investigated. An off-the-
shelf version of ENVBO is available via the open-source Python package NUBO (Diessner et al. 2023).

Tomake the comparison fair, the 30 runs used the same 30 initial starting points and randomwalks. For
the random walks, this is achieved by sampling changes in percentages and scaling them by the maximal
step size a rather than sampling absolute values directly.

Most physical experiments in engineering can only be conducted by introducing some noise, such as
measurement uncertainty, that cannot be eliminated entirely. This section replicates this situation by
adding randomly generated noise ϵ to the Hartmann function. The noisy function can be defined as
g xð Þ¼ f xð Þþ ϵ, where f xð Þ is a deterministic negated Hartmann function from Section 4.2. The noise is
sampled from a Normal distribution centered around zero with a small standard deviation σ, such that
ε�N 0,σ2ð Þ. The simulations explore noise levels with σ¼ 0:00, σ¼ 0:025, σ¼ 0:050, and σ¼ 0:100.
Considering the range of the Hartmann function, this corresponds to standard deviations of 0.75%, 1.5%,
and 3.0% of the full output range, respectively. This means that for any of these three cases, 68.3% of the
added noise values will fall between ± 1σ, 95.5% fall between ± 2σ and 99.7% fall between ± 3σ. For

Data-Centric Engineering e45-17

https://doi.org/10.1017/dce.2024.40 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.40


σ¼ 0:100, this translates into noise values that decrease or increase the real output by up to 3.0% of the
output range 68.3% of the time, by 6.0% of the output range 95.5% of the time, and by 9.0% of the output
range 99.7% of the time. The plot in the upper-left of Figure 6 shows the performance of ENVBO for each
of these four noise levels. The results indicate no significant difference in the average performance or the
95% confidence intervals between the four cases. Overall, the proposed method is not sensitive to adding
modest noise levels.

For some experiments, there might be more than one influential uncontrollable variable. The upper-
right plot of Figure 6 provides results about the performance of ENVBO with one, two and three
uncontrollable variables. At the same time, the overall dimensionality of the problem stays the same at
n¼ 6. For nE ¼ 1, input six of the Hartmann function from Equation (4.2) is assumed uncontrollable,
while input one is added to the uncontrollable variables for nE ¼ 2, and input one and four are added for
nE ¼ 3. The number of test points used to evaluate the final Gaussian processmodel is increased from25 to
50 for nE ¼ 2 and 75 for nE ¼ 3. The results show that the mean absolute percentage error increases with
increasing numbers of environmental variables. Particularly, the 95% confidence intervals widen sig-
nificantly. This result is expected as the input space of the environmental variables grows exponentially
with nE and requires exponentially more training points to cover the input space equally well as lower nE.
Thus, more evaluations are required to achieve similar results.

Uncontrollable variables will fluctuate to different extents from one evaluation to the next, for example,
whenmeasured in physical experiments. Higher fluctuations cause big jumps in the uncontrollable variable

Figure 6. Means (lines) and 95% confidence intervals (shaded areas) of the mean absolute percentage
error between the predictive mean of the Gaussian process and the truth over 30 replications for the six-
dimensional Hartmann function. Upper-left: Comparison of randomly added noise levels, N 0,σ2ð Þ.

Upper-right: Comparison of different numbers of uncontrollable parameters nE. Lower-left: Comparison
of five different step sizes a for the randomwalkU �a,a½ � added to the previous uncontrollable value. Lower-

right: Comparison of uncontrollable variables with different parameter variability.
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values, while uncontrollable variables will be more stable for lower fluctuations. The lower-left plot of
Figure 6 shows the results for five different fluctuation levels implemented by varying parameter a of the
uniformdistribution inEquation (14)—the highera, the higher the fluctuation of the uncontrollable variable.
The results show that Algorithm 2 performs better for lower a, and the performance of the final Gaussian
process models decreases with increasing fluctuation.

Parameter variability indicates how much the output changes when moving along a parameter’s input
axis. Uncontrollable variables with a low variability will only change the output slightly, while variables
with a high variability will change the output considerably. The effect of value changes of two variables
could differ considerably if they have different levels of parameter variability. As a proxy for the
parameter variability, the length scales of a well-fitting Gaussian process over the full domain are
considered. The length scales quantify how long the outputs are correlated when moving along the input
axes (Gramacy 2020). Consider, for example, a parameter with a large length scale. When this parameter
value is changed by a certain amount, a relatively small change is expected in the output—provided
everything else stays the same. The change in the output is expected to be more significant for a parameter
with a small length scale. AGaussian process is fitted to 2000 data points sampled from a Latin hypercube
(McKay et al. 1979) to achieve a well-fitting model. The resulting length scales for all six parameters in
order are 1.30, 1.90, 4.81, 1.48, 1.51, and 1.47. The first input has the lowest length scale, suggesting that
outputs are only correlated for a short distance whenmoving along its axis. This means that the parameter
variability of the first input is high. In contrast, the third input has the highest length scale, indicating a low
parameter variability. Moving along its axis, less change is expected for the third input than for the first
input. The lower-right plot of Figure 6 compares the first (high), third (low), and sixth input (medium)
when chosen as the uncontrollable variable. Differences in the low and medium parameter variability are
minimal. At the same time, there is some difference compared to the parameter with a high variability: the
confidence interval is noticeably more significant, and the average of the mean absolute percentage error
is slightly worse, especially for evaluations 30–80.

Finally, the relationship between the size of the effective domain, that is, the actual searched input
space of the environmental variables, and the performance of the Gaussian process is investigated.
Figure 7 uses the same data as Figure 6 but plots the effective parameter domain against the mean absolute
percentage error, which provides a proxy for the performance of the Gaussian process. Each point reflects
one individual replication of the 30 performed replications. The trend lines in each plot show a positive
relationship between the effective domain and the mean absolute percentage error. Small effective
domains generally correspond to small mean absolute percentage errors, while large effective domains
generally correspond to large mean absolute percentage errors. Only the upper-right plot that plots the
effective domain for different numbers of uncontrollable parameters against themean absolute percentage
error shows almost no relationship.

6. Application to a wind farm simulator

The power generation of wind farms is highly dependent on the wind speed, the wind direction and the
placement of the individual wind turbines within a particular area or site (Grady et al. 2005; Qureshi and
Warudkar 2023).Most of the time, interest lies in finding the optimalwind turbine positions thatmaximize
the energy production conditional on either constant or variable wind speeds and directions (Mosetti et al.
1994; Chen et al. 2013; Parada et al. 2017). Optimization algorithms such as TOPFARM4 can be used
when function evaluations are cheap, while methods discussed in Section 2 (Williams et al. 2000;
Swersky et al. 2013; Toscano-Palmerin and Frazier 2018) present a cost-effective alternative when
function evaluations are expensive. However, these methods cannot find multiple solutions for different
environmental conditions within one optimization run, which is the objective of this section. Specifically,
this application aims to find the optimal wind turbine positions conditional on randomly changing wind

4 See https://topfarm.pages.windenergy.dtu.dk/TopFarm2/index.html for further details on TOPFARM.
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directions, resulting in one solution for each possible wind direction. While the wind speed is assumed to
be fixed in this application, it could also be randomly changing. The result would be solutions for all
combinations of wind direction and wind speed.

The first row of plots of Figure 8 shows the effect of the wind direction on the local wind speed for a
complex underlying terrain while the global wind speed is fixed at 6 m/s. The locations of the high local
wind speeds—necessary for high-energy production—shift significantly between a wind direction of
0 and 120 degrees.While there is a band of high local wind speeds down the center of theX location for the
latter, it roughly rotates 90 degrees for the former. The plots show that ideal wind turbine positions will
likely differ for the two wind directions. Another critical factor for maximizing energy production is
taking the wake of the wind turbines into account (lower row of Figure 8). While the wake of the wind
turbines located upstream does not affect wind turbines located downstream for a wind direction of
120, the wake of wind turbine 3 for a wind direction of 0 degrees heavily affects wind turbine 1. This
shows that although awind farm position can be ideal for onewind speed, it can be suboptimal for another.

In this section, a fictitious site is considered with complex terrain as shown in Figure 8 on which four
wind turbines have to be placed to maximize the annual energy production (AEP). The wind direction is
an environmental variable that varies according to a random walk as defined in Equation (14) where
90 and 135 degrees are the lower and upper bounds, respectively, and wind directions can change by ± 5
degrees from one iteration to the next. The global wind speed is fixed at 6 m/s. This results in a nine-
dimensional problem with eight controllable parameters—one X and one Y location for each of the four

Figure 7.Relationships between the actual effective domain of the uncontrollable variables and the mean
absolute percentage error of an individual run for the six-dimensional Hartmann function. Upper-left:
Comparison of randomly added noise levels,N 0,σ2ð Þ. Upper-right: Comparison of different numbers of
uncontrollable parameters nE. Lower-left: Comparison of five different step sizes a for the random walk
U �a,a½ � added to the previous uncontrollable value. Lower-right: Comparison of uncontrollable variables

with different parameter variability.
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wind turbines—and the wind direction as the only environmental variable. Additionally, the positioning
of the wind turbines is constrained such that wind turbines have to be at least 160 meters apart to prevent
the blades from colliding. Simulations are performed with PyWake (Pedersen et al. 2023) and use Vestas
V80 wind turbines that can produce 2 MWof energy and have a blade diameter of 80 meters. Simulating
the power generation of wind farms is a complex task that requires an expensive simulator that accounts
for many different parameters. However, the main objective of this example is to illustrate the perform-
ance of ENVBO and enable other researchers to replicate and validate this work. Thus, a relatively simple
simulator was chosen to make the results easily reproducible so that ENVBO can be used with confidence
on more expensive physical experiments and computer simulators.

ENVBO—a version of Algorithm 2with EI as its acquisition function—is run for a function evaluation
budget of 200 and benchmarked against regular Bayesian optimization (Algorithm 1) and the SLSQP
optimization algorithm (Kraft 1994). Regular Bayesian optimization, referred to as BO in the following
paragraphs, uses EI as its acquisition function to make comparisons fair. While ENVBO can return one
solution for each wind direction after one optimization run, BO and the SLSQP algorithmmust be run for
each possible wind direction. To compare the algorithms, four wind directions are chosen—90, 105, 120,
and 135 degrees—and BO is restricted to 50 function evaluations each to reach the same function
evaluation budget as ENVBO. The function evaluations of the SLSQP algorithm cannot be restricted, and
the algorithm is therefore run until convergence. BO and SLSQP are run for fixed wind directions, so
they do not use the random walk in contrast to ENVBO. This makes converging toward a solution
easier, as the algorithms can control all influential variables. ENVBO and BO were implemented via
the open-source package NUBO (Diessner et al. 2023), and an off-the-shelf version of ENVBO is
available at www.nubopy.com. The proposed SLSQP algorithm was implemented via the SciPy package

Figure 8. Wind farm simulator. Upper row: Local wind speed over the complex terrain for a wind
direction of 0 and 120 degrees. Lower row: Wake of four wind turbines for a wind direction of 0 and

120 degrees. Wind speed is fixed at 6 m/s.
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(Virtanen et al. 2020). Furthermore, all code for optimizing the wind farm simulator is available at https://
github.com/mikediessner/environmental-conditions-BO.

Figure 9 shows the results for all three algorithms and all four wind directions. The dashed circles
around the wind turbine positions indicated with crosses represent the placement constraint—no wind
turbine of one color can be placedwithin the dashed circle of another wind turbinewith the same color. For
a wind direction of 90 degrees, ENVBO performs best with an annual power production of 4.20 GWh,
followed by BO and SLSQP with 3.51 and 2.42 GWh, respectively. This is a 20% improvement over BO
and a 74% improvement over SLSQP. SLSQP performs much worse than ENVBO and places at least one
turbine in a subpar area with low local wind speeds, possibly due to converging toward a local maximum.
While BO places three turbines in areas with high local wind speeds, it places one within a suboptimal
area. For a wind direction of 105 degrees, ENVBOwith 4.70 GWh performs significantly better than BO
and SLSQP, achieving 0.91 and 1.86 GWh less power generation, respectively—a 24% and 65%
improvement. A similar result is achieved for a wind direction of 120 degrees. ENVBO outperforms
BO and SLSQP by 0.81 and 2.4 GWh or 19% and 88%, respectively. The results of the three strategies are
closest for a wind direction of 135 degrees. This is the only instance where a benchmark beats ENVBO—
in this case, BO with an AEP of 2.88 GWh. ENVBO achieves 0.29 GWh (10%) less AEP but still
outperforms SLSQP by 0.13 GWh (5%). However, the differences are much smaller than for any of the
first three wind directions. Considering Figure 9, ENVBO is the only strategy that consistently places all
four wind turbines in the band of high local wind speeds located down the center of theX location. At least
one turbine is placed off to one side of this band for all other methods.

Figure 9. Annual energy production and placement of four wind turbines with spacing constraints.
ENVBO (Algorithm 2) is benchmarked against SLSQP and BO (Algorithm 1).
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While the results in Figure 9 show that ENVBO outperforms BO and SLSQP in almost all instances,
they do not consider the different numbers of function evaluations required by each algorithm. Figure 10
plots the AEP and the number of function evaluations against the wind direction. The lower plot shows
that SLSQP uses themost function evaluations by far, with 323, 294, 324, and 301 evaluations for the four
wind directions—a total budget of 1152 function evaluations. In contrast, ENVBO and BO both use
200 function evaluations in total. BO divides this budget equally over the four wind directions, allocating
50 evaluations per wind direction, while they are distributed via a random walk for ENVBO. Each of
ENVBO’s bins of the lower plot only contains two to 24 function evaluations. Compared to SLSQP, both
Bayesian optimization algorithms are muchmore sample-efficient and use less than 20% of its evaluation
budget. ENVBO uses less than half the evaluation for the four wind directions compared to BO, but it
outperformsBO for three of the fourwind directions, as shown in the upper plot. This shows the advantage
of a global surrogate model that is fit to all controllable and environmental variables. The Gaussian
process uses all available information and can model the effect of the environmental conditions.

Although the improved performance of ENVBO compared to BO and SLSQP is already valuable, the
main advantage lies in ENVBO’s capability to predict a solution for each possible wind direction. This is
illustrated by the 51 solutions given for ENVBO in the upper plot of Figure 10. SLSQP and BO can only
give solutions for the specific wind direction for which they were run. To achieve similar results, SLSQP
and BO need to be rerun for each wind direction, which would multiply the required function evaluations
many times. ENVBO uses the available function evaluation budget much more effectively and is a more
sample-efficient and cost-effective approach.

Overall, ENVBO finds solutions over the whole range of the environmental variable, while in most
cases performing up to 88% better than algorithms that focus on one fixed environmental variable at a

Figure 10. Annual energy production and number of function evaluations conditional on the wind
direction. ENVBO (Algorithm 2) is benchmarked against SLSQP and BO (Algorithm 1).
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time. This is even true for ranges of the environmental variable that are only explored briefly as the
algorithm learns the effect of the environmental variable from adjacent areas. Furthermore, ENVBO
uses only a small fraction of the evaluation budget of the two benchmarks, making it particularly
beneficial for optimizing computer simulators and physical experiments that can be very expensive to
run in engineering.

7. Discussion

This section discusses the empirical results of Section 5 and the results of the application to a simple wind
farm simulator in Section 6 by interpreting the results, considering limitations and implications, and
highlighting the use for the scientific community.

The effective optimization of noisy objective functions in engineering applications has been con-
sidered from the earliest studies in Bayesian optimization by Kushner (1964) and later by Jones et al.
(1998) through their EGO algorithm, emphasizing the importance of optimizing noisy objective functions
in engineering. Indeed, most experiments cannot be conducted without noise, and many simulators are
stochastic. Gramacy and Lee (2010) argue that even deterministic simulators can be seen as noisy as they
are an approximation of the real world. Noise can be understood as the discrepancy between computer
code and reality. This makes investigating the robustness of a proposed approach to noise essential. The
empirical investigation in this article showed that no difference is noticeable between the average
performance of ENVBO for deterministic and stochastic objective functions. The results show that
ENVBO can optimize noisy objective functions, making it applicable to many experiments and simu-
lators prevalent in engineering. However, the noise added to the six-dimensional Hartmann function was
lower than 9% of the output variable range and assumed to be homoscedastic. Thus, one should be
cautious when applying ENVBO to experiments with very high or heteroscedasticity noise. A solution for
the latter case could be to use a heteroscedastic Gaussian process for the surrogate modeling, which uses a
second Gaussian process to model the noise (Goldberg et al. 1997).

The results regarding the number of uncontrollable parameters in Section 5 show that the performance
decreases with an increasing number of uncontrollable parameters. This decrease in performance is
reflected in higher mean absolute percentage errors and higher variability between replications. For
example, the mean absolute percentage error after 100 evaluations is 12.2% and 19.6% higher for nd ¼ 2
and nd ¼ 3, respectively, than for nd ¼ 1. These results are not surprising since the uncontrollable input
space grows exponentially with the number of environmental variables, making it more challenging to
achieve even coverage over the uncontrollable space due to the randomness of the environmental
variables. Furthermore, the problem of extrapolation with Gaussian processes increases with the growing
number of dimensions of the uncontrollable input space. The test points used to evaluate the final
prediction model given by ENVBO are generated with a Latin hypercube that uses the minimal and
maximal values of all environmental variables as their upper and lower bounds. With increasing numbers
of the environmental variables nE, it is very likely that while values for individual dimensions fall within
these bounds, the combination of values for different dimensions falls in areas not explored by the
optimization algorithm. The final Gaussian process model will extrapolate to predict outputs for these test
points. As Section 4 discusses, extrapolation with Gaussian processes generally means that predictions
default to the prior mean function. Gaussian processes with a more complex prior mean function can be
explored (Planas et al. 2020) to counteract this issue. Moreover, the empirical investigation in this article
assumes a single fluctuation level a for each environmental input. However, in a real-world application,
different combinations of fluctuation levels are more realistic, which might require more function
evaluations. In any case, the resulting prediction model must be carefully scrutinized to ensure a good
fit and minimal extrapolation.

This work assumes that the environmental variables cannot be controlled and are randomly selected
according to the uniform randomwalk in Equation (14). Thus, it is vital to scrutinize the performance of
ENVBO based on this assumption and to consider different levels of fluctuation and parameter
variability. Environmental variables are likely to fluctuate to different degrees. For example,
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temperature is likely to change more slowly than wind speed. Section 5 studies this by considering
different levels of fluctuation and parameter variability, which are both closely connected and might be
challenging to distinguish in practice. Fluctuation, in our case, is defined as the size of a, the constant of
the uniform random walk. Parameter variability is defined as the effect on the output for a given change
of the environmental variable. For higher fluctuations, there is more potential for larger effective
domains of the uncontrollable variable, that is, the range for which the environmental variables are
explored. This can be explained by considering the parameter a. For a¼ 1:00, any domain value can be
randomly selected at each optimization step, and the whole domain will likely be searched. For
a¼ 0:05, only values that differ by 0:05 from the previous evaluation can be randomly selected,
making it less likely that the whole domain will be searched before the evaluation budget is exhausted.
Suppose a Gaussian process is fitted to domains with different sizes, but the number of evaluations
remains the same. In that case, predictions will typically be better for smaller domains. For example, it is
plausible that a Gaussian process fitted to 10 data points within the domain 0,0:1½ �will reflect the truth in
this domain better than a Gaussian process fitted to 10 data points within the much larger domain 0,1½ �
assuming that everything else stays comparable. Similarly, a parameter with a small correlation length
when moving along its axis and for which small changes affect the output significantly will be much
more challenging to model than a parameter correlated for longer distances. This is intuitive as a longer
correlation length makes predicting the effect of changing the parameter easier. The results in Figure 6
show that the average performance and the variability in performance worsen with increasing fluctu-
ation and parameter variability levels. Thus, the prediction reliability depends on these levels; higher
levels require more function evaluations to perform similarly for environmental variables with less
fluctuation.While these results seem intuitive, some limitations and caveats should be considered. First,
the assumption that environmental variables change according to a uniform distribution will not
generally be true. The uniform assumption can thus only be viewed as a proxy for the underlying
distributions associated with arbitrary environmental variables. Second, as the environmental variables
are selected randomly, the distribution of observed points could be skewed such that some regions will
contain more observations than others. The final model will potentially be less accurate in regions with
fewer observations. Hence, it makes sense to consider not only the prediction but also the associated
uncertainty. If the uncertainty is considerable, we might not trust the prediction to the same extent.
Finally, the randomness in the environmental variables means there could be cases where the envir-
onmental variable is almost constant in the observed sample, and we cannot explore most of its range.
One must be cautious not to extrapolate in these instances.

The results of Figure 7 suggest an inverse relationship between the performance of ENVBO and the
size of the effective domain—that is, the explored space of the environmental variables—where ENVBO
performs better for smaller effective domains. Intuitively, this result makes sense as a Gaussian process
should have a better fit for a smaller space than a larger space when the number of data points and the
function in question stay the same. The results depicted in the lower-left plot reinforce the reasoning that
the larger the fluctuation parameter of the uniform distribution a, the more potential there is for a larger
parameter space to be explored. Thus, it is plausible that ENVBO performs better with smaller values of a
as the results of the lower-left plot of Figure 6 suggest. Generally, the size of the environmental variable
space grows exponentially with the number of environmental variables. Exponentially more evaluations
are required to achieve the same coverage for nE ¼ 3 as for nE ¼ 1. However, in this study, the evaluation
budget is fixed to 100 evaluations regardless of the number of environmental variables. Considering this,
an inverse effect of the number of environmental variables and the effective domain would be expected.
However, searched spaces for nE ¼ 1 are generally higher than for nE ¼ 3 but smaller than for nE ¼ 2. A
possible reason for this is that the first environmental variable uses a fluctuation parameter a¼ 0:05while
the second and third environmental variables use a¼ 0:1. A change from a¼ 0:05 to a¼ 0:1 can
significantly affect the domain size, as shown in the lower-left plot of Figure 7, and might be responsible
for the unusual order of effective domain sizes. In this investigation, results suggest that the size of the
effective domain can inform the number of function evaluations required, and larger effective domains
indicate that more function evaluations are necessary.
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While these results are from the six-dimensional Hartmann function and might not be generalizable to
all objective functions, the application of ENVBO to a simple wind farm simulator presented in Section 6
highlights the approach in an illustrative example. ENVBOoutperforms the SLSQP algorithm in all cases
and the standard Bayesian optimization algorithm in three out of four cases. ENVBO used fewer function
evaluations per wind speed than SLSQP and standardBayesian optimization and canmake predictions for
the full range of wind speeds compared to the benchmarks that can only make predictions for fixed wind
speeds. These results suggest that ENVBO successfully leverages the correlation within the environ-
mental variable, resulting in a superior and more sample-efficient algorithm. The reason standard
Bayesian optimization performs better than ENVBO for a single wind speed is likely that it is at the
upper limit of the environmental variable’s range, and ENVBO can only leverage correlation for smaller
wind speeds. Figure 10 shows that very few function evaluations were observed for this upper limit with
ENVBO, which was insufficient to yield a goodmodel fit. As discussed previously, a more complex prior
mean function could improve this result.

Although this wind farm simulator is a simple representation of a complex real-world problem, it has
characteristics of many engineering problems. Together with the potential to optimize noisy objective
functions, multiple environmental variables and different levels of parameter fluctuation and variability,
ENVBO is a valuable tool for the broader scientific community. It also does not require information about
the correlation structure that is leveraged by other methods (Krause and Ong 2011) and is available as an
off-the-shelf algorithm as part of the Python package NUBO (Diessner et al. 2023) that can conveniently
be run on cloud services such as Google Colaboratory without requiring a Python installation on a local
machine.

8. Conclusion

When optimizing physical experiments, often only some variables can be fully controlled, or interest lies
in finding not one global optimum but one optimum for each value of a particular variable—essentially a
function that maps environmental variable values to optimal values for the controllable parameters. In the
past, Bayesian optimization was used predominantly to find global optima. This study extends the
Bayesian optimization algorithm to situations with changing environmental conditions and makes the
following contributions:

1. Development of ENVBO, an algorithm for optimizing expensive black-box functions with
randomly changing environmental conditions that does not require any knowledge about the
objective function, particularly the environmental variables.

2. Analysis of ENVBO and its sensitivity to noisy objective functions, the number of environmental
variables and different levels of fluctuation and parameter variability.

3. Implementation of ENVBO as part of the Python package NUBO.
4. Illustration of ENVBO on a simple wind farm simulator and comparison to standard Bayesian

optimization and the SLSQP algorithm.

Compared to related research in this area and particularly the closest related work of Krause and Ong
(2011), this article investigates and gives firm proposals and justification for the implementation of the
algorithm and offers an easy-to-use implementation in Python. Furthermore, while Krause and Ong
(2011) show how known (linear or additive) structures can be exploited via composite kernels, ENVBO
can also be used where no information on the objective function and the environmental variables is
available. Finally, ENVBO uses EI as its acquisition function to guide the selection of candidate points.
Compared to UCB used in Krause and Ong (2011), EI has the advantage of not requiring the specification
of a trade-off parameter that balances exploitation and exploration and has the potential to influence the
effectiveness of the algorithm.

The proposed method fits a global surrogate model over all controllable and environmental variables
and uses measurements of the environmental variables to conditionally optimize the acquisition function
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with regard to the controllable parameters. This conditional optimization enables finding a model with a
posterior predictive mean that provides close to optimal values of the controllable parameters for any
values of the uncontrollable variables. The original Bayesian optimization algorithm assumes that the
uncontrollable variables are fixed or disregarded entirely. Achieving similar results requires repeating the
optimization process for various fixed values for the uncontrollable variables and interpolating between
the found optima. Thus, the proposed approach is more sample-efficient, using all available information
about the objective function in one optimization run.

For the proposed optimization strategy presented in Algorithm 2, three different acquisition functions
—EI, LogEI, and UCB with different trade-off parameters β—were considered, and their performance
compared on two synthetic test functions—the two-dimensional Levy function and the six-dimensional
Hartmann function. EI performed best across the two test functions andwas thus chosen as the acquisition
function for the proposed ENVBO algorithm for the case study. Furthermore, this study empirically
investigated the properties of ENVBO, showing that the algorithm is effective in the scenarios of added
noise and uncontrollable variables with high and low variability. When solving problems with more than
one environmental variable, it has to be ensured that the final Gaussian process model is not used for
extrapolation, as this will result in biased solutions. Additionally, it was found that uncontrollable
variables with large fluctuations require more function evaluations than uncontrollable variables that
fluctuate less. Higher fluctuation generally results in a larger effective parameter domain than lower
fluctuation. When modeling, it is intuitive that larger areas require more observations—and thus
information—than smaller areas to achieve identical results, assuming that all other properties are
comparable.

ENVBO—an implementation of the proposed algorithm within the Python package NUBO (Diessner
et al. 2023)—was applied to awind farm simulator with the objective to place four wind turbineswithin an
area with complex underlying terrain to find positions that maximize the annual power generation for
different wind directions. The results were compared to two benchmarks—regular Bayesian optimization
via NUBO and the SLSQP algorithm via the SciPy package (Virtanen et al. 2020)—showing up to 88%
better performance in all, but one case across the whole range of possible wind directions while keeping
function evaluations and thus costs low. ENVBO is a sample-efficient and cost-effective approach for
optimizing expensive experiments and simulators with uncontrollable environmental conditions.

In the future, we plan to apply ENVBO to more complex simulators and experiments and investigate
how more complex mean functions can be used in the prior distribution of the Gaussian process to better
represent areas of the input spacewhere only a small number of data points are available—and also to give
a better representation for areas toward the edges of the ranges of the environmental variables. Section 7
discussed another possible extension of ENVBO to allow optimizationwith heteroscedastic noise through
implementing heteroscedastic Gaussian processes (Goldberg et al. 1997). Furthermore, an interesting
research direction is finding a method to evaluate if ENVBO should observe a point from the objective
function for a given environmental variable value. There could be situations where enough data points
have already been collected for an environmental condition, andwe should refrain fromobserving another
data point as it would only add very limited additional information. It might be more sample-efficient to
wait for an environmental condition that has not been explored. Finally, we implicitly assume that the best
observation of all previous training data points is a good target for the EI function in Equation (10).
However, improving upon the best-observed output for any given environmental condition might not be
possible. Consider the case where the single global optimum has been found, but we are still looking for
local optima for different environmental conditions. No improvement would be possible in this case, and
the acquisition function would suggest nonoptimal candidates. A possible solution is to use the maximum
posterior prediction for the given environmental condition as the target. This is similar to what Picheny
et al. (2013) and Gramacy (2020) propose in the presence of noise.

Data availability statement. Replication data and code can be found in the GitHub repository at https://github.com/mikediessner/
environmental-conditions-BO and https://doi.org/10.5281/zenodo.10619544.
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