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We theoretically and experimentally study gravity currents of a Newtonian fluid advancing
in a two-dimensional, infinite and saturated porous domain over a horizontal impermeable
bed. The driving force is due to the density difference between the denser flowing fluid and
the lighter, immobile ambient fluid. The current is taken to be in the Darcy–Forchheimer
regime, where a term quadratic in the seepage velocity accounts for inertial contributions
to the resistance. The volume of fluid of the current varies as a function of time as
∼ Tγ , where the exponent parameterizes the case of constant volume subject to dam
break (γ = 0), of constant (γ = 1), waning (γ < 1) and waxing inflow rate (γ > 1). The
nonlinear governing equations, developed within the lubrication theory, admit self-similar
solutions for some combinations of the parameters involved and for two limiting conditions
of low and high local Forchheimer number, a dimensionless quantity involving the local
slope of the current profile. Another parameter N expresses the relative importance of the
nonlinear term in Darcy–Forchheimer’s law; values of N in practical applications may vary
in a large interval around unity, e.g. N ∈ [10−5, 102]; in our experiments, N ∈ [2.8, 64].
Sixteen experiments with three different grain sizes of the porous medium and different
inflow rates corroborate the theory: the experimental nose speed and current profiles are
in good agreement with the theory. Moreover, the asymptotic behaviour of the self-similar
solutions is in excellent agreement with the numerical results of the direct integration of
the full problem, confirming the validity of a relatively simple one-dimensional model.
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1. Introduction

Gravity currents (GCs) are generated by density differences and appear when a fluid of
given density ρ advances into an ambient fluid of different density ρ ± �ρ, and the flow
is primarily horizontal (Simpson 1997).

The phenomenon of GCs, ubiquitous in nature and industrial processes, has generated a
large body of literature, very difficult to fully review; examples of partial reviews, geared
towards specific topics, are Huppert (1998), Griffiths (2000), Moodie (2002), Huppert
(2006), Chowdhury & Testik (2014), Riaz & Cinar (2014), Lauriola et al. (2018), Ungarish
(2018) and Lube et al. (2020).

In particular, gravity-driven flows in porous media, well summarized in the book
by Woods (Woods 2015), attract interest given the wealth of associated energy and
environmental applications, such as CO2 sequestration (Huppert & Neufeld 2014),
reservoir (oil and gas) engineering (De Loubens & Ramakrishnan 2011), underground
hydrogen storage (Sheikhi, Sahu & Flynn 2023), geothermal power production (Woods
1999) and the transport of pollutants such as non-aqueous phase liquids (Schneider et al.
2015) in the subsurface environment generated by the chemical, mining (drilling fluids,
see Li et al. 2005) or nuclear industry.

Gravity currents in porous media are viscosity/buoyancy-dominated and typically
propagate over (or below) an impermeable bottom (or top) layer, depending whether
the intruding current is heavier or lighter than the ambient fluid. Alternatively, the
bottom or top limiting layer can be leaky, due to its permeable nature or to one or
more draining fracture(s). The ambient fluid is mostly taken to be homogeneous (for the
case of ambient stratifications, see Pegler, Huppert & Neufeld (2016)) and often to be
immobile, i.e. neglecting return flows (see e.g. Matson & Hogg 2012); this assumption
is typically acceptable in the unconfined schematization, with a current depth much less
than the thickness of the host layer. The reference frame is usually non-rotating; the base
geometry of the flow can be axisymmetric or plane, the former associated with a line
of injecting wells, the latter to a single injection well. For these two base flows, simple
similarity solutions by Huppert & Woods (1995) and Lyle et al. (2005) are available to
describe the intermediate-time behaviour of the current. When the geometry becomes
more complicated, the influence of boundaries (Zheng & Stone 2022) or topographic
controls (Pegler, Huppert & Neufeld 2013) may be incorporated into the conceptual
scheme, leading to semianalytical or numerical solutions of the one-dimensional (1-D)
transient propagation.

The search for realism in the conceptualization of GCs in porous media has directed
researchers also to consider variants to the flow law commonly adopted, i.e. Darcy’s
law. On one hand, non-Newtonian behaviour of the intruding fluid was considered,
and a corresponding extension to Darcy’s law adopted, first upon extending the base
solution for plane geometry and Newtonian flow first reported in Huppert & Woods (1995)
to power-law rheological behaviour (Di Federico, Archetti & Longo 2012), then upon
developing solutions for more complex geometries, boundary conditions and types of flow
(Longo et al. (2021) and references therein). On the other hand, flow in the vicinity of
pumping/injecting wells or in coarse porous media is often best described by a nonlinear
equation usually known as Darcy–Forchheimer, where an additional term quadratic in the
seepage velocity appears in addition to the linear forcing term incorporating permeability.
The term was added empirically by Forchheimer (1901), while theoretical derivations of
Darcy, and Darcy–Forchheimer equations from first principles, are reported in Neuman
(1977) and Whitaker (1996), respectively.
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The Darcy–Forchheimer regime is characteristic, in nature, of conglomerate-confined
aquifers, composed of conglomerate, coarse sandstone, as happens in the area of the
Ordos Basin (Zhang et al. 2011, 2018). Further, non-Darcy flow represents a significant
challenge to the productivity of hydraulically fractured reservoirs, including those
containing shale gas, tight oil and geothermal water formations (Barree & Conway 2004).
Darcy–Forchheimer flow is also relevant in the screening and selection of sites for CO2
sequestration (Mathias et al. 2009a), and can be also observed in open-graded asphalt
pavements; these provide rapid runoff of rainwater, thereby enhancing safety and visibility
(Autelitano et al. 2022). In all these examples, an injected fluid may displace an ambient
fluid and advance into the porous medium (also) by virtue of density differences. It seems
therefore both of practical and of general interest to extend the study of the propagation of
GCs in porous media to the Darcy–Forchheimer regime. Here we focus on a sharp interface
schematization of the GC, and derive a semianalytical model considering the influence
of Forchheimer effects on the propagation of plane GCs in an infinite domain. To the
best of our knowledge, the only works on GCs incorporating Darcy–Forchheimer flow are
Mathias et al. (2009b) and the aforementioned study by Mathias et al. (2009a), simulating
CO2 injection and heat transport in a porous domain of infinite cylindrical geometry and
finite height, and taking into account the fluid compressibility; the scheme was modified
by Mathias et al. (2011) and Mathias, McElwaine & Gluyas (2014) to account for a finite
rather than infinite domain. In all these cases, the flow law is used in a purely numerical
context, so none of these studies undermines the novelty of the present manuscript. In
fact, three important differences are considered here: (i) the geometry is plane rather
than radial, as in the former case the high seepage velocities necessary to invoke the
Forchheimer correction are more likely to be reached in the whole flow domain than in
the latter case; (ii) the aquifer subject to injection is of infinite height, hence the flow
is free-surface throughout the entire flow domain, as in the two earliest seminal studies
on porous GC (Huppert & Woods 1995; Lyle et al. 2005) – this restricts the solution’s
applicability but renders more plausible the no-flow assumption within the ambient fluid;
(iii) no compressibility effects are considered (partially a consequence of the previous
assumption), and the emphasis is on the difference with the classical approach using
Darcy’s law in the first study on porous GCs in plane geometry (Huppert & Woods 1995).

The adoption of the Darcy–Forchheimer expression in lieu of Darcy’s entails the
presence of a second source of nonlinearity in the approach, other than that associated
with free-surface flow. The nonlinear flow law is then approximated in two limit
cases, corresponding to a local Forchheimer number much lower or larger than unity,
respectively; in the former case, the flow law is also linearized. Both cases allow the
reduction of the partial differential equation (PDE) governing the 1-D transient flow of the
GC to an ordinary differential equation (ODE) and are thus amenable to classical, late-time
similarity solutions when coupled with the integral boundary condition describing the
increase of the volume of the current as a power of time of exponent γ . Results stemming
from the solution of these ODEs compare favourably with those deriving from the
numerical integration of the original PDEs.

The paper is organized as follows. In § 2, the fundamentals of Darcy–Forchheimer flow
are revised, and the GC problem is formulated in plane geometry. In § 3, the problem
is solved in semianalytical form with said approximations for γ /= 2, while § 4 presents
fully analytical results for γ = 2. The approximate solutions are corroborated with full
numerical results in § 5. Section 6 describes the experiments conducted to check our
theoretical models. We draw conclusions and provide indications for future work in § 7.
Appendix A provides details on the structure and typical ranges of the dimensionless
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parameter summarizing problem parameters and governing the formulation, Appendix B
presents an alternative expression for the average slope of the current, while Appendix C
illustrates the derivation of the self-similar solution for low local Forchheimer number in
a more general context.

2. Materials and methods

2.1. Darcy–Forchheimer flow in porous media
High-velocity filtration flow, termed also inertial in the literature (and having nothing
to do with inertial GCs), in isotropic porous media is usually described by the
Darcy–Forchheimer equation, reading in vectorial form (Forchheimer 1901)

∇p − ρg = −
(μ

k
+ ρβ |u|

)
u = − (α + ρβ |u|) u, (2.1)

where p is the pressure, g ≡ (0, 0, −g) is the gravity, u is the Darcy velocity of modulus
|u| = √

u · u, ρ and μ are the fluid density and dynamic viscosity, k ([k] = [L2]) is the
medium permeability, α = μ/k and β ([β] = [L−1]) is the Forchheimer or inertial factor,
having an empirical nature. Literature methods for determining β are either based on direct
experimental measurement, or assume a direct correlation between β and other intrinsic
properties of the porous medium, such as porosity and permeability (Lenci, Zeighami &
Di Federico 2022). On the basis of dimensional analysis, it can be proven that (Autelitano
et al. 2022)

β = CD

(
ρg
μK

)1/2

≡ CD

k1/2 , (2.2)

being K = (ρgk)/μ = gk/ν ([K] = [LT−1]) the hydraulic conductivity, ν = μ/ρ the
kinematic viscosity and CD the form-drag dimensionless coefficient. More general forms
of (2.1) describe flow in anisotropic media (Whitaker 1996; Garibotti & Pészynska 2009);
see also Lasseux & Valdés-Parada (2017) for a review of historical developments aimed at
representing nonlinear effects in porous media flow.

Equation (2.1) can be formulated in terms of hydraulic head h = z + p/(ρg) as

∇h = −
(

1
K

+ β

g
|u|
)

u. (2.3)

When β = 0, (2.1) and (2.3) revert to Darcy’s law, governing the purely viscous regime
in porous media flow. In practice, the transition between the viscous and the inertial
regime is governed by the Forchheimer number Fo = (kβρ|u|)/μ, equal to the ratio of
liquid–solid interaction to viscous resistance (Ruth & Ma 1992); values of Fo of order
0.11 entail an error of ignoring non-Darcy behaviour of 10 % according to Zheng & Grigg
(2006). Note that k in (2.2) is the Forchheimer permeability kF, which is close, but not
the same as, the Darcy permeability kD appearing in the isotropic form of Darcy’s law
∇p − ρg = −(μ/kD)u (Muljadi et al. 2017; El-Zehairi et al. 2019). Henceforth and in
the previous relationships, this difference is neglected on grounds of the smallness of
the difference kF − kD and assume kD = kF = k is assumed. Analogously, we neglect a
possible influence of the weak inertia regime, which would imply a cubic term in (2.1)
in lieu of the quadratic one; we do so on the basis of the narrowness of the transition zone
between the viscous and inertial regime governed by (2.1) (Fourar et al. 2004). The Darcy
velocity is derived as a function of the pressure gradient upon inverting (2.1). First, (2.1)
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is rewritten as (Auriault, Geindreau & Orgéas 2007)

−G = −∇( p + ρgz) ≡ (α + ρβ |u|) u. (2.4)

Taking the absolute value of (2.4) yields a second-order algebraic equation in |u|, with
a single positive root (the negative root is non-physical as the absolute value cannot be
negative, note the typo in equation (8) of Auriault et al. (2007)); this expression of |u| is
back substituted in (2.4) and the expression for u is then derived, yielding

u = − 2G

α

(√
1 + 4ρβ|G|

α2 + 1

) . (2.5)

Equation (2.5) is pseudolinear in the gradient G of the generalized pressure p + ρgz, but
with a constant of proportionality inversely dependent upon the square root of |G|: hence,
as |G| increases, |u| increases in a less than linear fashion; also, an apparent Forchheimer
permeability kAF = kAF(|G|) can be defined to give back the pseudo-Darcy formulation
u = −(kAF/μ)G.

The 1-D version of (2.5), written along the horizontal x axis, reads

u = − 2G

α

(√
1 − 4ρβG

α2 + 1

) ≡ α

2ρβ

(√
1 − 4ρβG

α2 − 1

)
, G = ∂p

∂x
. (2.6)

The limit of (2.6) for β → 0+ leads back to Darcy’s law by virtue of l’Hôpital’s rule.

2.2. Formulation of the problem
We consider a GC of a fluid advancing on a horizontal, rigid, impermeable plane in
a saturated porous domain, as shown in figure 1. The motion is driven by the density
difference �ρ between the lighter fluid saturating the porous medium and the heavier
intruding fluid. The volume per unit width of the intruding fluid is usually expressed as
qtγ , where q and γ are constant; γ = 0 and γ = 1 correspond to a constant volume and a
constant flow rate, respectively, and 0 < γ < 1, γ > 1 represent a waning/waxing inflow
rate. Throughout our derivations, we postulate the existence of a representative elementary
volume within the porous medium, on the basis of the fact that the average thickness of
the current is decidedly larger than the grain size, an assumption that may become critical
near the nose of the current, especially for coarse media requiring the adoption of the
Darcy–Forchheimer law.

Conventionally, in the study of GCs, capillary forces and surface tension are neglected.
Thus, it is assumed that there is no viscous fingering effect and a sharp interface between
the two fluids is formed. At high velocity, the mixing between the GC fluid and the ambient
fluid can be significant, and at late times this could render the assumption of a sharp
interface invalid. Also, lubrication theory is used as a fundamental assumption, stating
that the length of the current in one direction is much greater than its extension in other
directions.

With these approximations, the current may be described by the horizontal velocity
component only, i.e. u ≡ (u, 0, 0), and by its height h(x, t), while the vertical velocity is
negligible. It is usually assumed that the ambient fluid is at rest. Pressure within the current
may be approximated by a hydrostatic distribution, expressed for z ≤ h0 as p(x, z, t) =
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0
0

h(x, t)

h0

p = p0

x

z

ρ

Ambient fluid

in porous medium

Intruding fluid

Impermeable bottom

ρ – Δρ

uN (t)
xN (t)

Figure 1. Sketch of a two-dimensional GC intruding into a saturated porous medium.

p0 − �ρ g(h0 − h(x, t)) + ρ g(h0 − z), where p0 = p(z = h0) is a constant and h(x, t) (�
h0) is the thickness of the ambient fluid. Hence, the pressure and the current height are
related via

∂p
∂x

= �ρ g
∂h
∂x

, (2.7)

and substituting (2.7) into (2.6) gives for the horizontal velocity u

u = α

2ρβ

(√
1 − 4ρ�ρgβ

α2
∂h
∂x

− 1

)
. (2.8)

For such 1-D transient flow under the additional assumption of homogeneous porosity,
the local mass balance equation linking the velocity to the height of the current reads

∂(uh)

∂x
= −φ

∂h
∂t

, (2.9)

and the governing equations are completed by the global mass balance per unit width and
the boundary condition at the current nose, i.e.

φ

∫ xN(t)

0
h dx = qtγ , h(xN(t), t) = 0, (2.10a,b)

where xN(t) is the position of the current nose; φ is the porosity, q a factor of dimensions
[q] = [L2T−γ ] and γ a non-negative real number. The dimensionless form of the variables
is T = t/t0, X = x/x0, XN = xN/x0, H = h/x0, U = u/u0, where the velocity, time and
space scales u0, t0, x0 are

u0 = α

ρβφ
, t0 =

(
q

φu2
0

)1/(2−γ )

, x0 = u0t0, (2.11a–c)

for γ /= 2 and β /= 0. Other choices of scales are possible, see for example Ciriello et al.
(2013); the velocity scale u0 arises naturally as being proportional to the ratio between the
Darcy and the inertial effect in terms of generalized pressure gradient, this can be seen by
writing u0 = (u∗/φ)[(μu∗)/k]/(ρβu2∗), with u∗ a generic reference velocity.
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The velocity (2.8) becomes in dimensionless form

U = φ

2

(√
1 − 4N

∂H
∂X

− 1

)
, (2.12)

and substituting (2.12) into the dimensionless version of (2.9) gives

∂H
∂T

= −1
2

∂

∂X

[
H

(√
1 − 4N

∂H
∂X

− 1

)]
, (2.13)

with (2.10a,b) becoming ∫ XN

0
H dX = Tγ , H(XN(T), T) = 0. (2.14a,b)

The dimensionless parameter

N = ρ�ρgβ

α2 ≡ ρ�ρgβk2

μ2 ≡ �ρ

ρ

gβk2

ν2 (2.15)

expresses the relative importance of the nonlinear term within the PDE (2.13) and recovers
the Darcy flow if it tends to zero as a consequence of β → 0+. Here N is a combination
of canonical pure numbers in fluid mechanics, as detailed in Appendix A. A similar
dimensionless quantity appears in equations (12) and (13) of Auriault et al. (2007) except
for the relative density difference �ρ/ρ; there, gβk2/ν2 is taken to be of order unity to
discuss the upscaling of the Darcy–Forchheimer law. A similar quantity is also defined in
Vilarrasa et al. (2010) and termed ‘gravity number’. The realistic range of variation of N
is discussed in Appendix A and spans several orders of magnitude, roughly in the range
N ∈ [10−5, 102].

3. Solution for γ /= 2

The system of dimensionless governing equations (2.13)–(2.14a,b) valid for γ /= 2 is in
general amenable to a full numerical solution for a given initial condition, see Zeighami,
Lenci & Di Federico (2022) for details. Such a solution is pursued in § 5, while the present
Section is devoted to deriving approximate solutions in semianalytical form.

We first seek an approximate similarity solution valid as an intermediate asymptotic
(Barenblatt 1952) based on an approximation of the seepage velocity in (2.12) when the
dimensionless parameter

ζ = 4N
∣∣∣∣∂H
∂X

∣∣∣∣ (3.1)

becomes both small and large with respect to unity, following Moutsopoulos & Tsihrintzis
(2005). Note that ζ has the physical meaning of a local Forchheimer number (Lenci et al.
2022) and its magnitude depends on both the N value, which is fixed for a given problem,
and the local slope of the GC profile, which varies depending on the location. In particular,
for ζ � 1, where ζ is small, but not so small that inertial effects on the flow can be
disregarded, the quantity

√
1 + ζ is approximated by its second-order Taylor’s expansion√

1 + ζ ≈ 1 + ζ/2 − ζ 2/8. When, on the other hand, ζ � 1, we can either: (i) assume at
leading order

√
1 + ζ − 1 ≈ √

ζ and hence U ∝ √|∂H/∂X| (Fourar et al. 2005; Auriault
et al. 2007), i.e. the Forchheimer term in (2.6) and (2.12) is dominant with respect to
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the Darcy one; or (ii) use a higher-order approximation – the latter option is not pursued
here. The correctness of the results deriving from the assumptions on the ζ values can
be verified by comparing the approximate results with a full numerical simulation of the
problem expressed by (2.13)–(2.14a,b).

3.1. Low local Forchheimer number (ζ � 1)
Substituting

√
1 + ζ ≈ 1 + ζ/2 − ζ 2/8 in (2.12) and (2.13) yields at first order

U = −φN
∂H
∂X

, (3.2)

∂H
∂T

= N
∂

∂X

(
H

∂H
∂X

)
(3.3)

and the mass balance (3.3) takes the classical monomial form of the dimensionless porous
medium equation (Vázquez 2007) albeit with the right-hand side modified by the factor
N. The mathematical problem given by (3.3) together with (2.14a,b) is amenable to a
self-similar solution according to the methodology outlined in Di Federico et al. (2012),
where their exponent n is equal to unity and their exponent α is our exponent γ . See also
the theoretical general procedure detailed in Appendix C.

In order to find similarity solutions, we note that (2.14a,b) and (3.3) provide scaling
relationships

HX ∼ Tγ , H ∼ X2T−1. (3.4a,b)

Eliminating H or X from (3.4a,b), the scalings for the current length and height result in

X ∼ T(γ+1)/3, H ∼ T(2γ−1)/3. (3.5a,b)

We therefore introduce the similarity variable and the similarity scaling for the current
profile as

ξ = XT−(γ+1)/3, H(X, T) = N−1ξ2
NT(2γ−1)/3Φ(χ), (3.6a,b)

where ξN is the unknown value of ξ at the current nose, Φ(χ) is the shape function
or thickness profile, χ = ξ/ξN is a rescaled similarity variable. From (3.6a,b) the
dimensionless length of the current and the speed of propagation of the nose (uN being
its dimensional counterpart) are given by

XN(T) = ξNT(γ+1)/3, UN = γ + 1
3

ξNT(γ−2)/3, (3.7a,b)

i.e. the current decelerates if γ < γc = 2 and accelerates if γ > γc = 2, with γc being the
critical threshold value of the time exponent γ . Substituting (3.6a,b) in (3.3) and (2.14a,b)
yields, respectively, (

ΦΦ ′)′ + γ + 1
3

χΦ ′ − 2γ − 1
3

Φ = 0, (3.8)

ξN =
(

1
N

∫ 1

0
Φ dχ

)−1/3

, Φ(1) = 0, (3.9)

where the prime indicates the ordinary derivative with respect to χ . Note that for N = 1 the
analytical model ((3.8)–(3.9)) for a Forchheimer GC seems identical to the one derived for
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Figure 2. Self-similar solution for low local Forchheimer number, first-order approximation. Shape function Φ

as a function of scaled similarity variable χ . Curves represent numerical solutions of (3.8)–(3.9) for γ ranging
between 0 and 2.5; open circles represent the analytical solution (3.10) for γ = 0, the dash dotted straight line
is the solution for γ = 2. The inset shows the value of the prefactor ξN/N1/3, where N = 1 corresponds to the
solution by Huppert & Woods (1995).

a Darcy one by Huppert & Woods (1995), see also Ciriello et al. (2013) when their ω = 1,
but this is a coincidence as the velocity and spatial scales are different, and so are the
respective dimensionless forms.

Equation (3.8) with constraints (3.9) can be exactly integrated for the case γ = 0,

Φ(χ) = 1
6

(
1 − χ2

)
, ξN = (9N)1/3 , (3.10)

again reducing to the result by Huppert & Woods (1995) and Pattle (1959) for N = 1.
For γ /= 0, numerical methods must be employed to solve (3.8)–(3.9). A second

boundary condition near the nose of the current is introduced for this purpose by expanding
(3.8) in Taylor series about χ = 1, finding to first order

Φ = γ + 1
3

(1 − χ), (3.11)

and

Φ ′(1) = −γ + 1
3

. (3.12)

More terms could be added to the expansion, but a numerical solution for Φ(χ) is more
convenient.

Figure 2 shows the shape function and the prefactor for different values of γ and for
N = 1, 2, 5, computed in Mathematica 13.2. While the function near the origin increases
with γ , the prefactor decreases with γ and N, with an overall combination that collapses
to the analytical solution available for γ = 0.
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For the general case γ /= 0, the aspect ratio of the current (the ratio between its average
thickness H̄ and extent XN) and its average slope are, respectively (see Lauriola et al. 2018)

S ≡ H̄
XN

= 1
N

ξNT(γ−2)/3Φ̄,

∣∣∣∣∂H
∂X

∣∣∣∣ = 1
N

ξNT(γ−2)/3
(

dΦ

dχ

)
, (3.13a,b)

where the overline indicates the average value. Both said quantities are functions of the
dimensionless parameter N also via the prefactor ξN . In order to dispense with the average
value of (dΦ/dχ), a different (crude) approximation for the average slope is reported in
Appendix B.

Appendix C details the approach for deriving higher-order approximations of the
similarity solution.

3.1.1. The solution for γ → 2 in the low-Forchheimer-number limit (ζ � 1)
An immediate result from (3.8) is that Φ = (1 − χ) with constant Φ ′ = −1. The slope S
and the speed UN become

S = (ξN/N)T(γ−2)/3, UN = ξNT(γ−2)/3, ξN = (2N)1/3, (3.14a–c)

with S and UN that are time independent when γ → 2.
These results appear unphysical if we simply set Tγ−2 = 1, since S and UN are constant,

as expected, but do not depend on q, whereas we expect that a larger q generates a faster
current with higher slope. However, expressing the limit for Tγ−2 for γ → 2 in terms of
dimensional variables, yields

lim
γ→2

Tγ−2 = lim
γ→2

tγ−2tγ−2
0 = q

φu2
0

≡ δ−2, (3.15)

where δ = u0/(q/φ)1/2. Hence, (3.14a–c) for γ → 2 become

S = (ξN/N)δ−2/3, UN = ξNδ−2/3, ξN = (2N)1/3, for ζ � 1. (3.16)

With this new formulation, larger values of q mean lower values of δ, and a faster current
of higher slope for increasing q results.

3.2. High local Forchheimer number (ζ � 1 or ζ ′ � 1)
We rewrite the velocity expression (2.12) as

U = φ

2

√
ζ
(√

1 + ζ ′ −
√

ζ ′
)

, ζ ′ = 1
ζ

, (3.17)

and substituting
√

1 + ζ ′ ≈ 1 + ζ ′/2 − ζ ′2/8 in (3.17) we obtain

U = φ

2

√
ζ

(
1 −

√
ζ ′ + ζ ′

2
− ζ ′2

8

)
, (3.18)

which includes the zeroth-, half-, first- and second-order approximations. Substituting
(3.18) into the dimensionless version of (2.9) produces the approximate counterpart to
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(2.13). At zero order, the velocity and the mass balance equations are given by

U =
√

Nφ

√
−∂H

∂X
, (3.19)

∂H
∂T

= −
√

N
∂

∂X

[
H

√
−∂H

∂X

]
. (3.20)

The mathematical problem given by (3.20) together with (2.14a,b) is amenable to a
self-similar solution according to the methodology outlined in Di Federico et al. (2012),
where their exponent n is equal to 2 and their exponent α is our exponent γ .

In order to find similarity solutions, we note that (2.14a,b) and (3.20) provide scaling
relationships

HX ∼ Tγ , H ∼ X3T−2. (3.21a,b)

Eliminating H or X from (3.21a,b), the scaling for the current length and height results in

X ∼ T(γ+1)/3, H ∼ T(2γ−1)/3. (3.22a,b)

We therefore introduce the similarity variable and the similarity scaling for the current
profile as

ξ = XT−(γ+2)/4, H(X, T) = N−1ξ3
NT(3γ−2)/4Φ(χ), (3.23a,b)

where ξN is the unknown value of ξ at the current nose, Φ(χ) is the shape function or
thickness profile, χ = ξ/ξN is a rescaled similarity variable. From (3.23a,b) the length of
the current and the speed of propagation of the nose are given by

XN(T) = ξNT(γ+2)/4, UN = γ + 2
4

ξNT(γ−2)/4, (3.24a,b)

i.e. the current decelerates if γ < γc = 2 and accelerates if γ > γc = 2. Substituting
(3.23a,b) in (3.20) and (2.14a,b) yields, respectively,(

Φ
(−Φ ′)1/2

)′ − γ + 2
4

χΦ ′ + 3γ − 2
4

Φ = 0, (3.25)

ξN =
(

1
N

∫ 1

0
Φ dχ

)−1/4

, Φ(1) = 0, (3.26)

where the prime indicates the ordinary derivative with respect to χ .
This analytical model for a Forchheimer GC seems identical, for N = 1, to that derived

for a shear-thickening GC with rheological index n = 2 by Di Federico et al. (2012),
but again this has no physical implications as the velocity and spatial scales adopted for
non-dimensionalization in the two cases are different.

Equation (3.25) with constraints (3.26) can be exactly integrated for the case γ = 0,
obtaining

Φ(χ) = 1
12

(
1 − χ3

)
, ξN = 2N1/4. (3.27)

For γ /= 0, numerical methods must be employed to solve (3.25)–(3.26). A second
boundary condition near the nose of the current is introduced for this purpose; in
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Figure 3. Self-similar solution for high local Forchheimer number, first-order approximation. For caption see
figure 2. Open circles represent the analytical solution (3.27) for γ = 0.

particular, the shape factor is expanded in Taylor series about χ = 1, finding

Φ =
(

γ + 2
4

)2

(1 − χ), (3.28)

hence

Φ ′(1) = −
(

γ + 2
4

)2

. (3.29)

Figure 3 shows the shape function and the prefactor for different values of γ and N. The
behaviour is quite similar to the functions shown in figure 2 for the low local Forchheimer
number case.

For the general case γ /= 0, the aspect ratio of the current (the ratio between its average
thickness H̄ and extent XN) and its average slope are, respectively, (see Lauriola et al.
2018)

S ≡ H̄
XN

= 1
N

ξ2
NT(γ−2)/2Φ̄,

∣∣∣∣∂H
∂X

∣∣∣∣ = 1
N

ξ2
NT(γ−2)/2

(
dΦ

dχ

)
, (3.30a,b)

where the overline indicates the average value. Both quantities are functions of N via
ξN and φ. In order to dispense with the average value of (dΦ/dχ), a different (crude)
approximation for the average slope is reported in Appendix B, while Appendix C details
the approach for deriving higher-order approximations of the similarity solution.

3.2.1. The solution for γ → 2 in the high-Forchheimer-number limit (ζ � 1)
With the same reasoning adopted in § 3.1.1, for ζ � 1 the slope S and the speed UN
become

S = (ξ2
N/N)δ−1, UN = ξNδ−1/2, ξN = (2N)1/4, for ζ � 1. (3.31)
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Again, larger values of q mean lower values of δ, resulting in a faster current of higher
constant slope for increasing q.

3.3. Values of local Forchheimer number
Both local approximations examined, ζ = 4N|∂H/∂X| � 1 or ζ = 4N|∂H/∂X| � 1, may
be appropriate for laboratory or field applications, depending on the fluids involved (�ρ,
ρ), the values of the porous medium properties (k, β) and the dimensionless head gradient,
which varies over time. Typically, N ∈ [10−5, 102] as shown in Appendix A, while the
order of magnitude of the average aspect ratio and average slope of the current may
be deducted from (3.13a,b) or (3.30a,b) for low and high local Forchheimer number,
respectively. Noteworthy, average aspect ratio and average slope differ only by a prefactor.
If one considers values of average slope of order ε or less as required by the thin current
approximation, (3.13a,b) and (3.30a,b), or their counterpart as reported in Appendix B,
can be used to infer the time limit for the thin current approximation to be valid as a
function of ε.

For γ < 2, the aspect ratio and the average slope decay with time, which means that
the model of a thin long current is correct and that whatever the value of N, the local
Forchheimer number ζ becomes asymptotically small, guaranteeing that the solution of
the governing equations represented by (3.8)–(3.9) is the correct one in the long run.

For γ > 2, the ζ � 1 hypothesis is certainly satisfied in the long run, since the average
current slope increases over time. However, this may invalidate the thin current hypothesis.
Therefore, only large values of N guarantee the validity of the results obtained by solving
the governing equations ((3.25)–(3.26)) for a limited time interval, when the current slope
is still modest and the local Forchheimer number is already high.

4. Solutions for γ = 2

This case has some practical interest as it corresponds to a linearly increasing flow rate. It is
seen that for γ = 2, the time scale t0 is no longer valid and this case can be treated defining
an arbitrary time scale t̃0 and a new space scale x̃0 = (q/φ)1/2 t̃0, which arises from the
integral constraint in (2.14a,b). In the following, a justification of an arbitrary time scale is
given. Dimensionless variables thus become X̃ = x/x̃0, X̃N = xN/x̃0, T̃ = t/t̃0, H̃ = h/x̃0.
In the new dimensionless variables the governing equations become

∂H̃

∂T̃
= −δ

2
∂

∂X̃

⎡⎣H̃

⎛⎝√1 − 4N
∂H̃

∂X̃
− 1

⎞⎠⎤⎦ , (4.1)

∫ X̃N

0
H̃ dX̃ = T̃2, H̃(X̃N(T̃), T̃) = 0, (4.2)

where

δ = u0 t̃0
x̃0

≡ u0

(q/φ)1/2 ≡ ν

kβ(qφ)1/2 . (4.3)

We seek a self-similar solution of the form H̃ = N−1T̃Φ(ξ̃), where ξ̃ = X̃/T̃ .
Substituting into (4.1)–(4.2) yields

δ

2

[
Φ
(√

1 − 4Φ ′ − 1
)]′ − ξ̃Φ ′ + Φ = 0, (4.4)
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1
N

∫ ξ̃N

0
Φ(ξ̃) dξ̃ = 1, Φ(ξ̃N) = 0. (4.5)

A simple solution to the above problem is a linear profile with Φ(ξ̃) = A(ξ̃N − ξ̃ ) where
A > 0 and ξ̃N > 0 are constants that can be computed by substitution into (4.4)–(4.5),
obtaining the nonlinear system of equations

ξ̃N = δ

2

(√
1 + 4A − 1

)
, ξ̃N =

√
2N
A

(4.6)

in the unknowns ξ̃N and A.
The solution reads

H̃(X̃, T̃) = A
N

ξ̃NT̃

(
1 − X̃

ξ̃NT̃

)
, (4.7)

with the nose position X̃N = ξ̃NT̃ and with a constant uniform slope equal to S =
|∂H̃/∂X̃| ≡ A/N.

The existence of this particular self-similar solution can be predicted according to the
reasoning reported in Appendix C.

A simpler reasoning indicates that the predicted GC is a wedge of constant slope
S (see also Moutsopoulos 2009), with the nose propagating with constant speed UN ,
both functions of N and δ only. Since the shape of the current and the speed are time
independent, our selection of an arbitrary time scale is justified. In fact, in dimensional
variables, the volume of fluid stored in the wedge is

1
2
φx2

NS = qt2. (4.8)

Since the speed is constant, it follows xN = uNt, hence
1
2

u2
NS = q

φ
, (4.9)

or

U2
NS = 2

(
q

φu2
0

)
≡ 2

δ2 → UN = 1
δ

√
2
S

≡ 1
δ

√
2N
A

, (4.10)

where UN is scaled with u0.
Figure 4 shows the slope of the current for γ = 2 and the constant speed UN for

increasing N (corresponding to increasing ζ ). The red and blue curves, corresponding to
δ = 1, 2, respectively, reach the theoretical limits for low and high Forchheimer number,
as computed in § 4.1 and in § 4.2, respectively.

4.1. Low local Forchheimer number (ζ � 1)
For the low local Forchheimer number case (ζ � 1), it results in (

√
1 − 4Φ ′ − 1) ≈ −2Φ ′

and (4.4) becomes
δ
(
ΦΦ ′)′ + ξ̃Φ ′ − Φ = 0. (4.11)

Equation (4.11) with the constraints (4.5) admits the following linear profile of the function
Φ:

Φ = 2N

ξ̃2
N

(
ξ̃N − ξ̃

)
, ξ̃N = (2Nδ)1/3, (4.12)
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Figure 4. Analytical solution for γ = 2. (a) The uniform slope of the current S and (b) the nose speed UN ,

for δ = 1, 2. The dashed lines refer to the asymptotic values for low and large ζ .

and

H̃(X̃, T̃) = 2

ξ̃2
N

T̃

(
ξ̃N − X̃

T̃

)
, with X̃N = ξ̃NT̃. (4.13)

The uniform slope S and speed UN are

S = 2
(2Nδ)2/3 ∝ N−2/3, UN ≡ 1

δ

√
2
S

= (2N)1/3δ−2/3 ∝ N1/3, (4.14)

corresponding to the results in (3.16).

4.2. High local Forchheimer number (ζ � 1)
For the high local Forchheimer number case (ζ � 1), it results (

√
1 − 4Φ ′ − 1) ≈

2
√−Φ ′ and (4.4) becomes

δ
(
Φ
(−Φ ′)1/2

)′ − ξ̃Φ ′ + Φ = 0. (4.15)

The solution is the following linear profile of the function φ:

φ = ξ̃2
N

δ2

(
ξ̃N − ξ̃

)
, ξ̃N = (2Nδ2)1/4, (4.16)
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and

H̃(X̃, T̃) = 2

ξ̃2
N

T̃

(
ξ̃N − X̃

T̃

)
, with X̃N = ξ̃NT̃. (4.17)

The uniform slope S and speed UN are

S = 2
(2Nδ2)1/2 ∝ N−1/2, UN ≡ 1

δ

√
2
S

= (2N)1/4δ−1/2 ∝ N1/4, (4.18a,b)

corresponding to the results in (3.31).

5. Validation of approximate solutions with full numerical results

The numerical integration of (2.13) with constraints represented by (2.14a,b) is performed
with a second-order two-stage explicit Runge–Kutta scheme, the improved Euler one (see
e.g. Fletcher 1998). Variables are allocated at the knots of a uniform grid, staggering first
derivatives in the midpoints. The initial condition is

H(X, 0) = a
(

XN0 − X
XN0

)s

for �X < X < XN0, (5.1)

where the coefficient a and the exponent s are dimensionless and XN0 is the initial nose
position. The boundary condition at the origin represents the inflow rate per unit width,
and reads

H(0, T)U(0, T) = γ Tγ−1, (5.2)

or

Hφ

2

(
−1 +

√
1 + 4N

∣∣∣∣∂H
∂X

∣∣∣∣
)

= γ Tγ−1. (5.3)

This condition is implemented in the predictor–corrector scheme by solving the nonlinear
equation

(H1 + H2)φ

4

(
−1 +

√
1 + 4N

∣∣∣∣H2 − H1

�X

∣∣∣∣
)

= γ Tγ−1, (5.4)

where the unknown is H1 ≡ H(0, T) and H2 ≡ H(�X, T − �t). Grid-independent results
were obtained with �X = 0.05 and an initial �T = 10−6. For a smooth start of the
integration process and to avoid numerical instabilities of the algorithm, it is convenient
to select the parameters in (5.1) in order to approximately satisfy (5.4) with T = �T .
For most numerical simulations, the initial nose position is XN0 = 0.05, the exponent is
s = 0.3 and the coefficient is a = 0.5.

Figure 5(a–c) show the computed profiles for γ = 0 and N = 0.2, 5, 50, also amenable
to the analytical solution, representing a family of parabola. Figure 5(d–f ) show the
computed profiles for N = 5 and for increasing γ , with a waning, a constant and a waxing
inflow rate, characterized by decreasing average slope of the profile and a constant uniform
slope for γ = 2. The case γ > 2 (not shown) refers to time increasing average slope of the
profile and accelerating nose speed.

Figures 6 and 7 show the nose position of the GC as a function of time. The two
asymptotic values for low/high local Forchheimer numbers are also depicted. We notice
that the condition γ < 2 leads to a more physically based GC, since the average slope
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Figure 5. Numerical results for the time evolution of the profile of the GC with different values of the
parameters N and γ , with φ = 0.3. (a–c) Constant volume of fluid with increasing value of N; (d) waning
current γ = 0.5; (e) constant inflow rate γ = 1; ( f ) waxing current with γ = 2, requiring a different scaling of
the variables, computed for δ = 1, also amenable to an analytical solution. Symbols are the analytical solution.
For large values of γ the thin layer approximation is violated for extended periods of time.

of the profile decreases with time, preserving the shallow GC structure, as predicted by
(3.13a,b), and sooner or later, also depending on the value of N, the local Forchheimer
number becomes small. When γ > 2, the lower limit XN ∼ T(γ+1)/3 predicts a faster nose
than the upper limit XN ∼ T(γ+2)/4, both with an accelerating nose speed; when γ < 2, the
opposite is true, with a decelerating nose speed. For γ = 2, the two limits collapse, with
a nose of the current advancing at constant speed. In contrast, the γ > 2 condition should
drive the current towards the high local Forchheimer number limit, with XN ∼ T(γ+2)/4,
but with a progressive increase in the mean slope of the current profile that eventually
undermines the thin GC model.

6. Experiments

6.1. Experimental apparatus and protocol
We performed multiple sets of experiments to corroborate our theoretical results. The
main experiments were carried out in a polymethylmethacrylate-walled channel 6 cm wide
and 150 cm long, filled with materials of a different nature to reproduce a wide range
of porous media, see the schematic in figure 8. The inlet flows were injected by a vane
pump with an electric motor having a speed controllable by an inverter, with the control
signal generated by a personal computer through a data acquisition board; the same data
acquisition board directly acquired the flow rate measured by a turbine transducer with
a range of 0–250 ml s−1 and an accuracy of ±0.4 % full scale. The maximum inflow
rate was equal to 150 ml s−1. The injected fluid was tap water with food colour added
for a more effective visualization. The current profile was detected by a fixed video
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Figure 6. Time evolution of the nose position for GCs with different values of the parameter N and for γ =
0, φ = 0.3, low local Forchheimer number. Symbols are the results of the numerical integration, the blue
continuous lines are the interpolation of the late time nose coordinates, the dash–dotted black lines are the
low local Forchheimer number asymptotes as provided by the self-similar solution (3.7a,b). The value of ζ̄ is
averaged on the whole length of the GC and data are translated vertically for easier visualization.
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Figure 7. Time evolution of the nose position for GCs with different values of the parameter N and of the
exponent γ , φ = 0.3, high local Forchheimer number. Symbols are the results of the numerical integration,
the blue continuous lines are the interpolation of the late time nose coordinates, the dashed red lines are the
high local Forchheimer number asymptotes as provided by the self-similar solution (3.24a,b). The value of ζ̄

is averaged on the whole length of the GC and data are translated vertically for easier visualization.
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0
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Videocamera

Flowmeter

Figure 8. Schematic of the channel filled with porous medium and of the instruments for injection and
control of the flow rate.

camera at 3840 × 2160 pixels at 30 frames per second and by a similar mobile camera
with close-up shots of the flow nose by a mobile operator. The geometric reference
was provided by a transparent grid superimposed on the transparent vertical wall of the
channel.

As a first step, we determined the two parameters α and β performing preliminary
experiments using two additional experimental devices, identical in principle to the main
one but having a different size in order to limit the boundary effects if large glass
beads are used. A schematic of the two devices is shown in figure 9. Both are circular
pipes filled with the porous medium and having an internal diameter Dint of 46 ± 1 mm
or 102 ± 2 mm; the larger diameter was used when larger particles were employed for
the porous medium. The pipe is fed by a controlled flow, with two pressure ports l =
250–350 ± 5 mm apart connected to a differential piezometer. In such a system, the head
gradient is equal to �h/l and the Darcian velocity is equal to 4Q/(πD2

int), where �h is the
head difference between the ports and Q the flow rate. Data were acquired with different Q
values, with an overall accuracy of 4 % in the net pressure gradient �p/l = ρg�h/l and of
3 % in the Darcian velocity estimates. Figure 10 shows results, with the 95 % confidence
limits, of the experimental evaluation of α and β for glass beads of uniform size having
different diameters and for gravel. The confidence limits were computed by assuming a
normal distribution of the experimental data and performing a Monte Carlo simulation
with 10 000 data sets.

Sixteen experiments were performed with three different materials, i.e. glass spheres
of diameter d = 4.0 ± 0.1 mm, glass spheres of diameter d = 15.5 ± 0.3 mm and natural
marble gravel with particles in the range 7–15 mm. The time exponent γ is variable in the
range 0.5–2.5, with only one superwaxing current test with γ = 5.2. Each experiment
lasts between 20 and 35 s, depending on the input condition (exponent γ ) and the
hydraulic permeability of the porous medium. We deliberately discarded performing the
constant volume tests (γ = 0) because the current would have decayed very quickly in
a Darcy regime, even before settling into the Forchheimer self-similarity regime. The
experiments were planned with various combinations of porous media and γ values;
table 1 summarizes experiments and corresponding parameters. Sample snapshots of the
current profile for Exp. 13 are shown in figure 11.
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Figure 9. Experimental device for estimating the Forchheimer’s parameters α and β.
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Figure 10. Experimental evaluation of the parameters α and β. (a) Glass beads d = 4 ± 0.1 mm, (b) natural
gravel 7–15 mm, (c) glass beads d = 15.5 ± 0.3 mm. Symbols are measurements with the error bars, the
continuous curves are the interpolating functions �p/l = αu + ρβu2 and the dashed curves are the 95 %
confidence limits computed with a Monte Carlo simulation.
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Exp. d φ γ q α β N
(mm) (%) (ml s−γ ) (Pa s m−2) (m−1)

(b)1 4.0 ± 0.1 38 ± 1 0.71 107.4 1.28 × 105 ± 20 % 4760 ± 13 % 2.8
(b)2 1.00 53.4
(b)3 1.00 59.6
(b)4 1.00 80.0
(b)5 2.00 0.69
(b)6 2.30 0.44
(B)7 15.5 ± 0.3 41 ± 1 0.50 233.3 9.48 × 103 ± 25 % 590 ± 11 % 64.0
(B)8 0.70 184.7
(B)9 1.00 138.3
(B)10 2.00 6.50
(B)11 2.50 2.24
(g)12 7–15 38 ± 1 0.70 197.5 3.89 × 104 ± 31 % 1370 ± 10 % 8.8
(g)13 1.00 109.0
(g)14 2.00 5.53
(g)15 2.00 6.89
(g)16 5.20 4.43 × 10−5

Table 1. List of the experiments: (b) indicates smaller glass beads with d = 4.0 ± 0.1 mm; (B) indicates
larger glass beads with d = 15.5 ± 0.3 mm; (g) indicates gravel with diameter d = 7–15 mm.

t = 4 s

8 s

12 s

16 s

20 s

0 20 40 60 80 100 120

x (cm)

0

10

Figure 11. Snapshots of the profiles of the current for Exp. 13. Constant inflow rate with the current
advancing in natural gravels.

6.2. Experimental results and discussion
Figure 12 shows the current profile for Exp. (b)5, with a linearly increasing inflow rate.
The straight dash–dotted lines are the theory, which is in very good agreement with the
experimental profiles. Similar good agreement is also found for other experiments (not
shown).

Results for the nose position of the currents are shown in figure 13(a,b) for all
experiments with a waxing or constant inflow rate (γ ≤ 1). The graphs show, on a
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t = 10 s
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t = 70 s
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Figure 12. Profiles of the current for Exp. (b)5, small glass beads with linearly increasing inflow rate, γ = 2
and XN ∝ T . The dash–dotted straight lines are the theoretical results.

bilogarithmic scale, the dependency on time of the experimental nose position compared
with its theoretical counterpart, calculated for the case of high/low local Forchheimer
number, depending on the regime asymptotically reached by the GC. In seven instances,
the current asymptotically reaches the high local Forchheimer regime, while for the
remaining two cases (Exp. (B)9 and Exp. (g)13), a progressive deceleration of the nose
is observed until the low local Forchheimer number regime is reached. It is seen that
the results of the theoretical models are in good agreement with the experiments, i.e.
the semianalytical predictions based on the approximation well predict the asymptotic
behaviour of the current nose.

Figure 14(a) shows the nose position for the experiments with γ = 2, corresponding
to a linearly increasing flow rate. In this case, the mathematical formulation admits an
analytical solution predicting a constant nose speed. For a better comparison, a linear scale
was used for both axes. After an initial adaptation, the self-similar regime clearly emerges,
with experimental points aligned on a straight line, indicating a good match with theory.
Figure 14(b), again using logarithmic scales, refers to waxing inflow rate tests with γ > 2.
For Exp. 6 and Exp. 11 the asymptotic high local Forchheimer number regime is well
reproduced, but for the superwaxing inflow rate Exp. 16 an evident acceleration of the nose
is not followed by the limit high regime, which would imply XN ∝ T1.8. This phenomenon
is due to the fact that the maximum flow rate of the pump was reached before self-similarity
was perfected. Noteworthy, this is a strongly accelerating flow: the GC has to travel a
reasonable distance from the origin before it converges to self-similarity, forgetting the
initial and boundary conditions. At the same time, when the inflow rate becomes constant
as the pump reaches its maximum flow rate, the profile evolves towards the characteristic
of γ = 1.

This analysis of the evolution of the regime of the current nose can be carried out by
calculating the value of the local time exponent ω (where XN ∝ Tω) as ω = TẊN/XN ,
interpolating the experimental data XN(T) with a polynomial and calculating the time
derivative ẊN . Figure 15 shows the time evolution of ω for Exp. 2 with a constant inflow
rate (γ = 1), with a lower/upper limit equal to 0.67/0.75, and for Exp. 16 in superwaxing
inflow rate (γ = 5.2). For Exp. 2, after an initial adjustment, ω reaches a plateau around
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Figure 13. Experimental nose position XN versus time T . (a) Waning inflow rate with different values of γ ,
and (b) constant inflow rate with γ = 1. The continuous black and dashed red lines refer to the high/low local
Forchheimer number regime, with a time exponent equal to (γ + 2)/4 (high) and (γ + 1)/3 (low), respectively.
Data are translated along the vertical for better visualization.

0.75, followed by a progressive decay towards the low limit regime ω = 0.67. For Exp. 16,
there is an evident acceleration with a maximum ω ≈ 1.28, followed by a decay when the
pump has reached the maximum inflow rate.

7. Summary and conclusions

The present study extends the well-known problem of GC propagation in porous media
to the Forchheimer regime. The starting assumptions are (i) plane GCs advancing in
homogeneous porous media over an impermeable bottom under the Darcy–Forchheimer
flow law; (ii) thin current warranting the lubrication approximation; (iii) lack of capillary
effects; (iv) existence of a representative elementary volume even in presence of coarse
media. Further, the model assumes that the fluid volume of the current varies with
time according to a power function of exponent γ , capable of simulating the dam-break
condition (γ = 0), constant, waxing and waning inflow rates.

The study adopts analytical, numerical and experimental approaches. Mathematically,
the resulting nonlinear, diffusion-like governing equations in H(X, T) requires, in general,
a numerical approach. However, it is possible to find certain self-similar solutions that
transform the PDE describing the propagation of the current into an easily solved ODE
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Figure 14. Experimental nose position XN versus time T . (a) Waxing inflow rate with γ = 2, and (b) waxing
inflow rate with γ > 2. Panel (a) axes are linear for stricter validation. For caption, see figure 13.
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Figure 15. Local time exponent ω of the nose position, with XN ∝ Tω. The dashed lines are the theoretical
values ω = 0.75 for ζ̄ � 1 (upper line) and ω = 0.67 for ζ̄ � 1 (lower line) and Exp. (b)2 with γ = 1. The
arrows indicate the axes for the two (upper and lower) lines, time increases from left to right.

in H(χ), where χ combines space X and time T , eliminating the initial condition and
transforming the boundary condition at the origin into an integral mass conservation of
the fluid over time. The ODE numerical solution is valid in the intermediate asymptotic
regime and does not require an initial condition, as a consequence of the reduction of the
number of the independent variables. Specifically, self-similar solutions are obtained in
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the limiting conditions of a local Forchheimer number very small/large at first/zero order,
respectively. As subcases, analytical solutions were obtained for γ = 0 and for γ = 2. This
last condition is obtained either with governing equations written with a different scaling
of the time, or as a limit for γ → 2 of the governing equations written with the standard
scaling adopted for γ /= 2. The results are obviously the same. Table 2 summarizes the
approaches adopted to solve the governing equations and some main results.

The asymptotic behaviour of the self-similar solutions has been numerically verified
by comparison with the numerical results of the direct integration of the full governing
equations. Although the robustness of the adopted schemes suggests that the proposed
solutions are capable of reproducing physical reality, experimental validation is essential.

A series of 16 experiments carried out in a channel filled with glass spheres of two
different diameters and natural marble gravel allowed the recording of the temporal
position of the nose and the profiles of the currents under waning, constant and waxing
inflow rate. The two coefficients α and β were estimated for the three different porous
media with a different experimental apparatus. The data analysis shows that within the
limits of the uncertainties the theoretical model is in good agreement with the experimental
evidence, and confirms the existence of self-similar regimes under Darcy–Forchheimer
flow.

Further conclusions specific to different values of γ are as follows.

(i) For γ < 1 (waning inflow rate) in the high-Forchheimer-number regime, the
local Forchheimer number decreases asymptotically as the average current
slope slows down as ∼ T(γ−2)/2. This means that flows initially in the
high-Forchheimer-number regime asymptotically reach the low-Forchheimer
number-regime. In particular, for the dam break case (γ = 0), the profile evolves
from a cubic to a quadratic parabola, and the nose propagation rate goes from
∼ T1/2 to ∼ T1/3. This behaviour also applies to GC in the waxing regime, but
with γ < 2, i.e. GCs with decelerating nose speed.

(ii) For γ = 2 (input flow rate increasing linearly with time), the problem admits a
self-similar solution with a linear profile and the nose advances at constant speed.
This solution is similar to that obtained for a GC of Herschel–Bulkley fluid by Di
Federico et al. (2017). The two low/high local Forchheimer number subcases fall
into the general case, with some simplifications. Note that the slope of the current
profile is both time-invariant and uniform, hence, the current will not change its
average local Forchheimer number over time. The current midplane section is a
triangle with homothetic transformation during time.

(iii) For γ > 2, even if the GC is initially in the low-Forchheimer-number regime, it
evolves towards the high-Forchheimer number-regime as the average slope of the
profile grows over time. However, before reaching this regime, the average slope
may assume such large values that the thin current model becomes inapplicable.
Hence, there is an intermediate interval when both events occur, rendering the
high-Forchheimer-number regime feasible.

Finally, the appendices illustrate specific aspects of the problem at hand. Appendix A
illustrates different possible expressions for the pure parameter N governing the
dimensionless formulations of the problem. Here N is shown to be proportional to
the intensity of the nonlinear Forchheimer correction and to the squared ratio between
buoyancy and viscous forces, akin to a Grashof number. Here N ranges normally between
10−5 and 102 and between 2.8 and 64 in our experiments.
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Appendix B presents a simple expression for the average slope of the current.
In Appendix C the self-similar solution approach is briefly derived and a self-similar

solution of the general case is sketched, with the expansion in series of functions where
the fundamental solution corresponds to the low local Forchheimer number case at first
order. The coefficients of the series are powers of time calculated to guarantee the
invariance of the additional terms in the same parameter of transformations that admits
the self-similarity of the fundamental solution. The convergence condition of the function
series indicates that, at each order, the solution is valid if T � Tc ≡ N3/(2−γ ) when γ < 2
and T � Tc when γ > 2. Tc is named critical time. For γ = 2 the value of Tc → ∞ and
this suggests that the self-similar solution is possible for the complete governing equations,
as actually verified.

Future developments include the extension of the Darcy–Forchheimer flow law to
infinite radial geometry, finite domains and non-Newtonian flows.
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Appendix A. The dimensionless parameter N

The pure number N may be expressed as a function of well-known dimensionless
parameters in fluid mechanics (see e.g. Massey 1971; Longo 2021a). Multiplying and
dividing (2.15) by u2

0d2, where u0 is the velocity scale defined in (2.11a–c) and d the
characteristic length (diameter) of the porous medium, yields

N = Re Fo Da

Fr2
d

, (A1)

where Re = (ρu0d)/μ is the classical pore-scale Reynolds number, equal to the ratio
between convective inertial forces and viscous forces, Fo = (ρβku0)/μ is the Forchheimer
number, a modified version of the Reynolds number expressing the ratio between nonlinear
effects associated with the Forchheimer correction to Darcy’s law and viscous effects,
Da = k/d2 is the Darcy number, representing the relative effect of the permeability
of the medium versus its cross-sectional area and Frd = u0/

√
(�ρ/ρ)gd a pore-scale

densimetric Froude number, equal to the square root of the ratio between convective inertia
and buoyancy.

Note that (A1) can be recast as

N = d2

h2
0

Re′ Fo Da

Fr′2
d

(A2)
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upon redefining the pore-scale Reynolds and densimetric Froude numbers via their
large-scale counterparts Re′ = (ρu0h0)/μ, Fr′

d = u0/
√

(�ρ/ρ)gh0, where the height of
the porous domain h0 is taken as the relevant length scale in lieu of the characteristic pore
diameter d.

A third, and more parsimonious, option to represent N is writing

N = Re
′′

Fo

Fr′′2
d

, (A3)

where the alternative definitions of the Reynolds number Re
′′ = (ρu0

√
k)/μ and

densimetric Froude number Fr
′′
d = u0/

√
(�ρ/ρ)g

√
k incorporate

√
k as the relevant

length scale.
Finally, an alternative expression of (A3) that dispenses with the Forchheimer number

is

N = CD
Re

′′2

Fr′′2
d

∝
(

buoyancy forces
viscous forces

)2

, (A4)

where CD is the dimensionless form-drag coefficient defined in (2.2). Equation (A4)
demonstrates that essentially N is a Grashof number modulated by the dimensionless factor
CD expressing the intensity of the Forchheimer nonlinear correction to Darcy’s law. In fact,
the Grashof number is usually expressed as

Gr = �ρ

ρ

gl3

ν2 , (A5)

where l is a length scale. Here, the density variations are not linked to temperature effects
as usual, but to the presence of two fluids, the intruding and the ambient, having a density
difference �ρ. When l is taken to be equal to

√
k and using (2.2), it is seen that N = CDGr.

To derive values of N typical of laboratory or field applications, consider first a
�ρ/ρ in the range 0.1 − 0.9, the two bounds being representative of the Boussinesq or
non-Boussinesq regime, respectively. Then, one can typically take for the fluid properties
those of water at 10 ◦C, ρ = 999.7 kg m−3 and μ = 1.337 × 10−3 Pa s. As β and k are
correlated (Lenci et al. 2022), ranges of values of k and β are conveniently deduced from
Sidiropoulou, Moutsopoulos & Tsihrintzis (2007), who report k and b pairs (β = b/g) as
a consequence of (2.1) and (2.3) measured in different experiments. There, we select the
experiment on sand media with the lowest k and that on gravel media with the highest k as
ideally representative of the two approximate regimes of low and high local Forchheimer
number. The corresponding parameter values are k = 2.1 × 10−10 m2, β = 759 m−1 for
sand (their data set #77), and k = 2.04 × 10−6 m2, β = 50 m−1 for gravel (their data
set #72). These two pairs yield N = 1.84 × 10−5 or N = 1.65 × 10−4 for sand and
N = 3.49 or N = 31.4 for gravel, depending whether �ρ/ρ = 0.1 or �ρ/ρ = 0.9. Hence
the potential range of N is very large, i.e. approximately N ∈ [10−5, 102] for fluids with
a kinematic viscosity close to water, and includes the case N = 1 entailing roughly a
balance between buoyancy and viscous forces. Most fluids have a kinematic viscosity
higher than water, so in these cases the lower limit decreases below 10−5; it can (modestly)
increase above 102 for those few fluids having kinematic viscosity lower than water. In the
experiments described in § 6, the value of N ranges between 2.8 and 64.
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Appendix B. An alternative expression for the average slope of the current

An alternative, approximate expression for the slope of the GC is derived here, to dispense
with the evaluation of the average value of the first derivative of the shape function,
dΦ/dχ , in (3.13a,b) and (3.30a,b). Approximating the current with a prism of longitudinal
triangular cross-section of length xN and height xN tan ϕ, where tan ϕ is the slope, the
current volume per unit width is 1

2 x2
N tan ϕ = qtγ /φ, or 1

2 X2
N tan ϕ = Tγ in dimensionless

form, yielding tan ϕ = |∂H/∂X| = (2Tγ )/X2
N . This gives for the slope of the current

S ≡
∣∣∣∣∂H
∂X

∣∣∣∣ = 2
ξ2

N
T(γ−2)/3, S ≡

∣∣∣∣∂H
∂X

∣∣∣∣ = 2
ξ2

N
T(γ−2)/2 (B1a,b)

for the low- and high-Forchheimer case, respectively.
The approximation is exact if γ = 2 and, in this case, the current profile is linear, but

the slope must be computed with the same approach adopted for (3.16)–(3.31).

Appendix C. The self-similar solution approach and the solution expanding in series
of functions

We first consider the reduced problem in the limit ζ � 1, see (3.3) with the constraints
(2.14a,b). The transformation group leaving the problem invariant can be obtained by
assuming a possible structure as X′ = aX, T ′ = bT, H′ = cH, where the prime refers to
the variable in a new space and a, b, c are real coefficients. Substituting into the governing
equations yields

∂H′

∂T ′ = N
∂

∂X′

(
H′ ∂H′

∂X′

)
→ c

b
∂H
∂T

= N
c2

b2
∂

∂X

(
H

∂H
∂X

)
, (C1)

and ∫ ∞

0
H′ dX′ = T ′γ → ac

∫ ∞

0
H dX = bγ Tγ . (C2)

The invariance requires that

c
b

= c2

b2 , ac = bγ , (C3)

which admits the solution

b = aF2, c = aF1, with F1 = 2γ − 1
γ + 1

, F2 = 2 − F1. (C4)

That means that the group of transformation for the single-parameter a reads

X′ = aX, T ′ = aF2T, H′ = aF1H. (C5a–c)

Assuming time as fundamental variable, the dimensions of X and H are X ∼ T−r

and H ∼ T−s with r = 1/F2 and s = F1/F2. According to the principle of covariance,
the solution of the governing equations can be expressed as f (HT−s, XT−r) = 0. For
progress, we can assume that H = Tsf (XT−r). This is the conceptualization that leads
to the governing equations represented by (3.8)–(3.9).
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Looking at the full governing equations ((2.13)–(2.14a,b)), it results that a self-similar
solution of the general case is possible only if within the same group (C5a–c) the term√

1 + N
∣∣∣∣∂H
∂X

∣∣∣∣, (C6)

is invariant, equivalent to saying that H and X must have the same time dependence
otherwise their ratio cannot match the units, already invariant under any transformation.
This holds true only for γ = 2 since

N′ ∂H′

∂X′ = N
aF1

a
∂H
∂X

→ N′ = N if F1 = 1. (C7)

The general case can be approached by assuming that N is a further variable, instead of
a parameter, and extending the group of transformations,

X′ = aX, T ′ = aF2T, H′ = aF1H, N′ = a1−F1N. (C8a–d)

Assuming again T as fundamental variable, we have now three invariants within the
transformation, namely XT−r, HT−s, NT−m, where m is computed imposing the invariance
of

N′

T ′m = a1−F1

amF2

N
T ,

→ m = 1 − F1

F2
≡ γ − 2

3
. (C9)

The formal solution of the governing equations can be now expressed as

H = Tsg(XT−r, NT−m) or H = Tsg(η, σ ), η = XT−r, σ = NT−m. (C10)

We do not have further information on the structure of the function g. For progress, we
can expand the function about σ = 0 for small values of σ ,

g(η, σ ) = g|(η,0) + ∂g
∂σ

∣∣∣∣
(η,0)

σ + O(σ 2). (C11)

Following the same procedure in Di Federico et al. (2017) as detailed in Longo (2021b),
we look for a perturbation of the fundamental first-order solution with an expansion in the
regime σ ≡ NT(γ−2)/3 � 1,

H(X, T) = ξ2
NT(2γ−1)/3[Φ0(χ) + σΦ1(χ) + · · · ], (C12)

X = ξT(γ+1)/3(1 + σX1 + · · · ), (C13)

where Φ0(χ) and ξN are given by the first-order solution, and X1 is a constant to be
evaluated. The condition σ � 1 requires that (i) for γ < 2, T � Tc ≡ N3/(2−γ ); and
(ii) for γ > 2, T � Tc, Tc being the critical time. For γ = 2 the critical time becomes
infinite and this corresponds to a self-similar solution for the full governing equations,
without need of approximations, but requiring a different scaling of the variables as
detailed in § 4.

Substituting (C12)–(C13) in (2.13)–(2.14a,b), at O(1) we recover the fundamental
solution, with Φ0 coincident with the solution of the governing equations (3.8) plus the
constraints. The result at O(σ ) is

N
(
Φ ′

1Φ0 + Φ1Φ
′
0
)′ + χΦ ′

1 − (γ − 1)Φ1 = 0, (C14)

which is a quasilinear ODE where Φ0 is a forcing term, and that can be integrated with
a further boundary condition at the nose of the current. The integral constraint (2.14a,b)
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becomes

ξN(1 + σX1 + . . .)

∫ 1+σX1+...

0
[φ0(χ) + σΦ1(χ) + . . .] dχ = 1, (C15)

which at O(σ ) yields

X1 = −
∫ 1

0 Φ1(χ) dχ∫ 1
0 Φ0(χ) dχ

. (C16)
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