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Abstract

We feature results on global survival and extinction of an infection in a multi-layer net-
work of mobile agents. Expanding on a model first presented in Cali et al. (2022), we
consider an urban environment, represented by line segments in the plane, in which
agents move according to a random waypoint model based on a Poisson point process.
Whenever two agents are at sufficiently close proximity for a sufficiently long time the
infection can be transmitted and then propagates into the system according to the same
rule starting from a typical device. Inspired by wireless network architectures, the net-
work is additionally equipped with a second class of agents able to transmit a patch
to neighboring infected agents that in turn can further distribute the patch, leading to
chase–escape dynamics. We give conditions for parameter configurations that guarantee
existence and absence of global survival as well as an in-and-out of the survival regime,
depending on the speed of the devices. We also provide complementary results for the
setting in which the chase–escape dynamics is defined as an independent process on the
connectivity graph. The proofs mainly rest on percolation arguments via discretization
and multiscale analysis.

Keywords: Random segment process; Poisson point process; Cox point process; random
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dynamics
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1. Introduction and setting

In recent decades we have seen a tremendous increase in demand for data exchange on
a global scale, creating significant pressure on network operators to maintain a good quality
of service. One particularly interesting concept in this development is device-to-device (D2D)
communications. The idea is that network components can exchange data in a peer-to-peer
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fashion over a wireless channel and thereby constitute a decentralized ad hoc network. Among
the many potential benefits of these networks, such as robustness, communication speed, cost
efficiency, etc., one of the key challenges is their high complexity and unpredictability.

In order to cope with these challenges, since the early 1960s probabilistic modeling and
analysis has been developed and employed to provide qualitative and quantitative insights for
D2D networks; see, for example, [2, 3, 16, 20] and many more. In this context, one of the most
fruitful approaches is based on stochastic geometry, where network components are conceived
as point processes in space [10, 26]. Such a random point cloud is then often seen as the vertex
set of a random spatial graph in which edges are drawn according to some rule that reflects the
peer-to-peer communication paradigm. In its purest form this is the classical Poisson–Gilbert
graph [18], which serves as a prototypical model for the spatial clustering behavior of a D2D
network in a non-dynamical setting. In particular, we can already observe in this model the
celebrated phase transition of percolation in the following sense. Let λ> 0 be the intensity of
the underlying homogeneous Poisson point process X, and r> 0 the connectivity threshold,
i.e. the Poisson–Gilbert graph has vertex set X and any pair of vertices is connected by an edge
if and only if their Euclidean distance is less than r. Then, there exists a finite and positive
λc = λc(r) such that for λ> λc the graph does not contain any infinite connected component
almost surely, and for λ> λc such an infinite connected component exists with probability 1.
In the context of D2D networks, the parameter regime in which an infinite component exists,
the so-called percolation regime, is a regime in which data can in principle be transmitted over
long (infinite) distances via multiple hops.

In the past 60 years since the first proof of continuum percolation in the Poisson–Gilbert
graph, this field has expanded tremendously and the presence as well as absence of percola-
tion has been established in a great variety of static spatial models that extend the classical
setting in various ways. Keeping the application area of D2D communication systems in
mind, we highlight percolation results in so-called signal-to-interference-to-noise-ratio graphs
[14, 28, 40] (SINR graphs), where the existence of an edge not only depends on the mutual
distance but also on the density of other devices in the vicinity. Notably, in SINR graphs we
can observe an in-and-out of percolation in the intensity parameter, since for large intensities
the interference reduces the connectivity. On the other hand, let us mention Cox-percolation
results [24, 25, 29], where the underlying point cloud is a Poisson point process with a random
intensity measure that can, for example, be used to model urban environments such as street
systems. Going further in this direction, in [11] sub- and supercritical regimes of percolation
are established in a static spatial random graph model where the edge-drawing mechanism is
designed to reflect realistic features of a connectivity network of moving devices in an urban
environment. In brief, any pair of devices given by a Cox point process in which the environ-
ment is a planar random segment process is connected by an edge if and only if, on their path
through the environment, they spend enough time on the same segment in sufficiently close
proximity. A variety of phase transitions in the different parameters can be observed, where
again the speed parameter for the device movement, in certain settings, features an in-and-out
of percolation.

Going beyond the setting of static random graphs and their percolation behavior, the next
natural step is to investigate data transmission on random graphs. Here, the starting point is to
consider growth processes in which a message is present at an initial time at some (typical)
vertex and then crosses the edges of the graph according to some passage times. This is the
setting of first-passage percolation (FPP) [1, 30] and results often concern the speed of the data
transmission over large (Euclidean) distances and the associated (asymptotic) shape of the set
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of vertices that have received the message up to some fixed time. In [12], such a shape theorem
is presented for FPP on the supercritical Poisson–Gilbert graph. Conceiving the message as
some infection, these growth models are often presented in the context of spatial probabilistic
epidemiology, and then it is natural to generalize the pure growth process of FPP to processes
in which infected devices can also spontaneously heal (or messages can be dropped), giving
rise to contact processes on random graphs [32, 33]. In this setting the main concern usually
becomes showing the survival and extinction of the infection, and results are also available for
contact processes on random graphs in the continuum [9, 35, 36]. In the context of D2D net-
works, however, another antagonist of the pure growth mechanism is important. Regarding the
infection as some malware, there can be special devices in the network that have the property
of removing the malware from infected devices, but are otherwise indistinguishable from the
infected or susceptible devices. This gives rise to chase–escape processes [4, 7, 15, 21, 39]
in which malware is transmitted from infected to susceptible devices and infected devices
are patched. Again, the main results are concerned with exhibiting regimes of survival and
extinction of the malware in the system, and such regimes have also been established in the
continuum [22, 23].

We present two sets of results for chase–escape dynamics on supercritical percolation mod-
els in the continuum. In the first set of results we use the construction of [11], as mentioned
above, and consider a system of moving particles in an environment of line segments in R

2.
However, we now go substantially beyond the setup in [11] and not only consider the result-
ing connectivity graph but introduce a chase–escape dynamics that respects the mobility and
connectivity behavior of the network components; see Section 1.1 for further discussions.
Controlling the long-range dependencies, we prove results on survival and extinction of mal-
ware in certain parameter regimes, and in particular again feature a phenomenon of in-and-out
of survival with respect to the speed parameter. In the second set of results we complement
these findings and present similar results in hybrid models in which the infection and patch-
ing processes are defined as an independent process on top of the (static) percolation model
from [11].

The paper is organized as follows. In the remainder of this section we reproduce and extend
our connectivity model from [11], starting with a dedicated comparison in Section 1.1. In
Section 1.2 we construct a random street system as the first network layer via a stationary
segment process that features decaying spatial correlations in the sense of stabilization plus
good connectivity properties, and give examples. In Section 1.3, we place devices on the streets
and describe the system of initial device positions. We then introduce the paradigmatic mobility
model for the devices given by the random waypoint model, where devices individually pick a
destination and velocity and commute back and forth on the shortest route on the street system.
We also give the example of a uniformly chosen destination in a ball. Next, in Section 1.4, we
establish our notion of connectivity where devices have to spend a sufficient amount of time
in close proximity on the same street. Under these definitions, in Section 1.5 we establish
the property of local connectedness in the sense that almost surely all devices have a finite
degree. This concludes the construction of the connectivity network. Further, in Section 2 we
introduce the chase–escape dynamics as a model for the spread of infections in the presence
of a decentralized countermeasure respecting the dynamics in the connectivity model. For this
system we exhibit our main results for global survival and absence of global survival of the
malware, plus a statement on the in-and-out of survival with respect to the velocity parameter.
Next, Section 3 features a hybrid model where the chase–escape dynamics is defined as an
independent process on the connectivity graph, and we present statements about global survival
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and absence of global survival under a variety of parameter regimes. Finally, in Section 4 we
present the proofs.

1.1. Percolation and chase escape

Percolation analysis, in the context of random graphs modeling communication systems,
can be considered a first and fundamental step towards an understanding of the possibility of
transmitting data over long distances in a multi-hop fashion. In that sense [11] provides initial
statements for the absence and presence of percolation in a simplified version of the model
presented in this manuscript. Let us highlight that in [11] only a static graph is analyzed,
where, however, the edge-drawing mechanism is based on the underlying dynamic system
that we pick up here as well. The first generalization of the model presented here is that we
use random transition times, independent and identically distributed (i.i.d.) for each pair of
devices, instead of a globally fixed transition time, reflecting fluctuation in the individual pair-
connectivity. The key innovation, however, is that we now introduce a second type of device
with patching capability and that we now trace the set of susceptible, infected, and patched
devices over time in a non-trivial manner, leading to notions of local and global survival of
the infection. Interestingly, also in the presence of the chase–escape dynamics, some of the
phase transitions in the percolation analysis in [11] have a reincarnation in terms of transition
of global survival and extinction, most noteworthy with respect to the velocity parameter.

On the technical side, the refined dynamical analysis makes it necessary to impose certain
stronger conditions on the connectivity graph, such as exponential moments or reachability
properties of the street system as well as the waypoint kernel, and to provide corresponding
non-trivial proofs for the implied local connectedness and large-time connectedness results.
Here, the large-time connectedness is the crucial ingredient for the proofs for global survival,
which also leverage discretization and comparison arguments for the local percolation of areas
that support the spread of the infection, already partially present in [11]. On the other hand, the
local connectedness is crucial for the proofs of absence of global survival, which leverage mul-
tiscale arguments first presented in the context of the heavy-tailed Boolean model in [19]. The
main innovations of the arguments presented in this manuscript are due to the incorporation of
the mentioned random transition times between pairs of devices in the context of geostatistical
markings. Finally, let us mention that our arguments for survival of the infection in the setting
of chase–escape on the connectivity graph are entirely new.

1.2. Street systems

As a first layer of the system, we consider a stationary random planar segment process
S =⋃

i∈I{Si} ⊂R
2 where each Si is a line segment in R

2 of finite length. We say that a process
is stationary if its distribution is translation invariant. The line segments may intersect, and we
call each maximal unintersected interval in S a street. The endpoints of each street are called
crossings (even if they are dead-ends). In order to have something specific in mind, S can be,
for example, some planar tessellation process like the Poisson–Voronoi tessellation (PVT) or
the Poisson–Delaunay tessellation (PDT); see Figure 1 for an illustration.

We think of S as an urban street system and note that, for example, the PVT indeed shares
some common characteristics with medieval city topologies; see [13].

In order to control spatial dependencies in S, we will almost exclusively work with sys-
tems that satisfy a quantitative mixing property called stabilization [31, 37, 38]. Additionally,
we will assume that the system is connected in large regions with high probability and call
this asymptotic essential connectedness [24, 29]. More precisely, let us define the square with
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FIGURE 1. Realization of a street system given by a Poisson–Voronoi tessellation.

side length n ≥ 1 centered at x ∈R
2 by Qn(x) = x + [− n/2, n/2]2, abbreviate Qn = Qn(o), and

denote by Sdist(ϕ, ψ) = inf{|x − y| : x ∈ ϕ, y ∈ψ} the distance between sets ϕ, ψ ⊂R
2.

Definition 1. (Stabilization and asymptotic essential connectedness.) A stationary random
segment process S is called stabilizing if there exists a random field of stabilization radii
R = {Rx}x∈R2 that is measurable with respect to S, and (S, R) is jointly stationary. Moreover,
for R(Qn) = supy∈Qn∩Q2 Ry we have limn↑∞ P(R(Qn)< n) = 1 and, for all n ≥ 1, the ran-
dom variables

{
f (S ∩ Qn(x))1{R(Qn(x))< n}}x∈ϕ are independent for all non-negative bounded

measurable functions f and finite ϕ ⊂R
2 with Sdist(x, ϕ \ {x})> 3n for all x ∈ ϕ. Furthermore,

S is called asymptotically essentially connected if it is stabilizing and, for all sufficiently
large n ≥ 1, whenever R(Q2n)< n/2, we have |S ∩ Qn|> 0 and S ∩ Qn is contained in one
of the connected components of S ∩ Q2n. Here, | · | represents the total edge length, i.e. the
one-dimensional Hausdorff measure.

We note that PVTs and PDTs are stabilizing [24] but Manhattan grids or (rectangular) Poisson-
line tessellations are not stabilizing.

Finally, in what follows we will always assume that the expected number of streets and the
expected number of crossings in the unit square is finite, and that the intensity of the street
system is normalized, i.e. E[|S ∩ Q1|] = 1.

1.3. Mobile devices

As a second layer of our model we represent initial positions of devices via Cox point
processes Xλ = {Xi}i≥1. That is, Xλ is a Poisson point process with a random intensity mea-
sure �S(A) = λ|S ∩ A|, A ⊂R

2 measurable, where λ≥ 0 is a parameter that represents the
expected number of devices per unit of street length; see Figure 2. Note that if S is stationary, so
is Xλ.

Having defined the initial positions of the devices via a Cox point process on the street sys-
tem, we now introduce the random waypoint model as our destination-driven mobility scheme.
Each device independently picks its destination and commutes back and forth on a shortest
path.
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FIGURE 2. Realization of initial device positions confined to a street system given by a Poisson–Voronoi
tessellation.

We start by considering the probability kernel κS(x, dy), x ∈ S, as a probability measure on
S, and assume that the support of κS(x, dy), defined via

supp
(
κS(x, dy)

)= {
y ∈ S : κS(x, Bε(y))> 0 for all ε > 0

}
,

is contained in S for any x ∈ S, where Bε(y) denotes the disk with radius ε > 0 centered
on y. We say that κ has (uniformly) bounded support if there exists K > 0 such that
|supp(κS(x, dy))|<K for almost all S. Moreover, we will always assume that κ is transla-
tion covariant, i.e. κS(x, A) = κS−x(o, A − x) for almost all S, measurable A ⊂R

2, and x ∈R
2.

The kernel κS(x, dy) serves as a waypoint kernel [8]. Furthermore, we require that the kernel
is finitely dependent, i.e. that there is a constant H > 0 such that, for almost all S and x ∈ S,
κS(x, dy) = κS′

(x, dy) for all S′ with S ∩ BH(x) = S′ ∩ BH(x).
It will become useful to consider waypoint kernels that allow for very small displacements.

In order to formalize this, we call the kernel c-well-behaved if Bc(x) ∩ S ⊂ supp(κS(x, dy))
for almost all S, x ∈ S, where κS(x, y) is the density, and say that it is well-behaved if it is
c-well-behaved for some c> 0. An example that fulfills all those conditions is given by

κS(x, dy) = ∣∣S ∩ BL(x)
∣∣−1∣∣dy ∩ S ∩ BL(x)

∣∣,
the uniform distribution on S ∩ BL(x) for some L> 0; see also [11].

Then, each device Xi ∈ Xλ independently picks a target location Yi ∈ S according to
κS(Xi, dy). Further, we equip each device Xi ∈ Xλ with an i.i.d. velocity Vi, drawn from the dis-
tributionμ, for which we assume that 0< vmin ≤ vmax <∞, where vmin := sup{v : μ([v,∞)) =
1 and vmax := inf{v : μ([0, v]) = 1}. Then, the path of the device Xi is defined iteratively as fol-
lows. Xi moves with speed Vi to Yi along the shortest route in S that connects Xi and Yi. If
there are multiple shortest routes, the device chooses one such route independently and uni-
formly at random. It then immediately returns to its starting position with the same velocity
along the same shortest path. This procedure is then repeated indefinitely; see Figure 3 for an
illustration.
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FIGURE 3. Realization of initial device positions (dotted) confined to a street system given by a Poisson–
Voronoi tessellation and their respective positions at a fixed positive time (filled), with arrows indicating

the corresponding displacement.

1.4. Connectivity of mobile devices

By a slight abuse of notation, we also denote by Xi = (Xi,t)t≥0 the trajectory of device Xi

in S. For any pair of devices Xi and Xj, we then consider the set of contact times

Z(Xi, Xj) = {
t ≥ 0: |Xi,t − Xj,t|< r and Xi,t, Xj,t are on the same street

}
as the times where the devices are on the same street and r-close together, where r> 0 is
another parameter in the model, the connectivity threshold. Let us note that the constraint that
contact times require the devices to be on the same street can be seen as a very strict shadowing
assumption [17].

Next, we assume that any pair of devices Xi and Xj has an i.i.d. infection time ρ(Xi, Xj),
drawn from the distribution 	 on (0,∞). Then, we say that a transmission from Xi to Xj is
possible at time t ≥ 0 if [t − ρ(Xi, Xj), t] ⊂ Z(Xi, Xj); see Figure 4 for an illustration of the
resulting space–time connectivity network.

Let us note that the introduction of random transition times is a substantial generalization
compared to the setup in [11], where only the case 	= δρ is considered for some fixed ρ ≥ 0.

1.5. Degree of devices

In order to avoid scenarios in which a single device can transmit to infinitely many devices
in the infinite time horizon that we consider, let us finally introduce a convenient condition for
the local connectedness of the connectivity graph. For this, let �S(x, y) ⊂R

2 be the shortest
path between x and y on S, and write

�S(x) = sup
{|�S(x, y)| : y ∈ supp

(
κS(x, dy)

)}+ r/2

for the length of the shortest path starting in x towards any reachable target on S plus half
the connectivity range. Then, consider the following Cox–Boolean model with geostatistical
markings in which Xi, Xj ∈ Xλ are connected whenever |Xi − Xj| ≤ �S(Xi) + �S(Xj), and note
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FIGURE 4. Realization of initial device positions (gray) on a street system given by a Poisson–Voronoi
tessellation (only drawn in the initial picture, visually suppressed otherwise). Between two devices Xi

and Xj an edge is drawn if t ∈ Z(Xi, Xj) for t = 0, 1, . . . , 5. We highlight that the total number of edges in
this sequence of realizations stays roughly constant; however, the edges become longer. This is because
we plot the initial positions, but the devices move and hence, over time, connect to more distant devices.

that this can be seen as a Boolean model in which the (random) disks associated to each Cox
point depend on the underlying environment S. In particular, if Xi can transmit to Xj, there also
exists an (undirected) edge between Xi and Xj in the Cox–Boolean model with geostatistical
markings. Using this, for Xi ∈ Xλ, we define its degree,

deg (Xi) = #
{
Xj ∈ Xλ \ Xi : |Xi − Xj| ≤ �S(Xi) + �S(Xj)

}
,

which serves as an upper bound for the degree of Xi in the original model. Now, we call the
model locally connected if

P
(
there exists Xi ∈ Xλ such that deg (Xi) = ∞)= 0,

and we will always assume that our system is locally connected. Let us also mention that, in
order to ease notation, we use generic symbols P and E for the distribution and expectation of
our model, even under changing parameters.

The following proposition establishes a condition under which the network is locally
connected.

Proposition 1. (Local connectedness.) If κ has bounded support, S is exponentially stabilizing,
and |S ∩ Q1| has exponential moments, then the network is locally connected.

The proof rests on a contradiction that follows from a first-moment method for the expected
degree of a typical point using the good control on stabilization and moment properties of
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the street system. We present the details in Section 4.1. Let us note that the conditions are
satisfied for our standard examples for street systems given by PVT and PDT, since they are
exponentially stabilizing [24] and have exponential moments; see [27]. Also, as can be seen
from the proof, the moment condition can be substantially relaxed.

Having now defined our system of moving devices in an urban street system and their
connectivity relations, in the following section we introduce malware into the network that
propagates like an infection starting from a single typical device.

2. Chase–escape on the dynamic graph

In the final model layer we introduce an infection into the system, which is carried by one
device Xo that is chosen at random and will be referred to in the sequel as the typical device.
The remaining devices are, at time zero, susceptible to the infection. As a counter measure
we introduce an independent (Cox) point process of so-called white knights, which is, at time
zero, a homogeneous Poisson point process YλW with linear intensity λW ≥ 0 conditioned on
S and following the same mobility scheme as devices in Xλ. From a modeling perspective,
we are guided here by the idea that white knights are also regular devices and their general
behavior is indistinguishable from other devices. However, white knights are not susceptible to
the infection. Moreover, each white knight carries patching software that allows it to remove
the infection from any device that wants to infect it with malware and update the defensive
mechanism on the attacking device. Additionally to purging the infection, the attacking device
obtains all the capabilities of a white knight. Let us highlight that although there is no inter-
action between susceptible devices and white knights, their mere presence offers additional
protection in the case of an infection.

Moreover, the process of susceptible devices is decreasing and the process of white knights
is increasing, while the process of infected devices is non-monotone. More formally, let us
introduce the Palm version of susceptible devices via

E
∗[f (Xλ, YλW

)]= 1

λ
E

[ ∑
Xi∈Xλ∩Q1

f
(
Xλ − Xi, YλW − Xi

)]
(1)

for bounded, measurable test functions f , and note that under P∗ there exists a device at the
origin with probability 1. We call this the typical device Xo and assume that it is infected at
time zero.

In order to describe the infection and patching mechanism, instead of a single infection
time distribution 	, we consider two distributions 	I, respectively 	W, for the infection times,
respectively the patching times, and assume that they both have a density with respect to the
Lebesgue measure on (0,∞). We denote by

	I,min = inf
{
x ≥ 0: x ∈ supp(	I)

}
the minimal infection time, and analogously by 	W,min the minimal patching time. Now, the
infection will be transmitted from an infected device Xi to a susceptible device Xj after com-
pletion of the first infection time ρI(Xi, Xj), drawn from 	I. Analogously, the patch will be
transmitted from a white knight device Xi to an infected device Xj after completion of the first
infection time ρW(Xi, Xj), drawn from 	W. In order to formalize the whole process, let St, It,
and Wt denote the sets of susceptible, infected, and white knight devices at time t ≥ 0, where
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FIGURE 5. Propagation of infected devices (black) on a street system given by a Poisson–Voronoi tessel-
lation. In the initial state (left) there is exactly one infected device present in the center and the remaining
devices are either susceptible (gray) or white knights (white). At some small positive time (middle) fur-
ther devices in the vicinity of the initially infected device have become infected and have started to make
contact with white knights. At some later time (right) infected devices are only present along the boundary

of the set of white knights in the center region.

S0 = Xλ \ Xo, I0 = Xo, and W0 = YλW . In particular,
(
(Is)0≤s<t, (Ws)0≤s<t

)
fully describes the

state of the system up to time t. Then, at time t, we add new infected devices,

It \
⋃

0≤s<t

Is =
{

Xi ∈
⋃

0≤s<t

Ss : there exists Xj ∈
⋂

s∈[t−ρI(Xj,Xi),t)

Is

such that [t − ρI(Xj, Xi), t) ⊂ Z(Xj, Xi)

}
,

and then add also new white knights,

Wt \
⋃

0≤s<t

Ws =
{

Xi ∈ Xλ : there exists Xj ∈ Wt−ρW(Xj,Xi) such that

[t − ρW(Xj, Xi), t) ⊂ Z(Xj, Xi) and Xi ∈ It−ρW(Xi,Xj) \
⋃

0≤s<t

Ws

}
.

With this construction the process is well-defined since 	I and 	W put no mass on zero and
the number of devices that are infected is finite for any finite time by the local connectedness
condition. Note that we have indirectly implemented a tie-breaker rule that favors the infection.
This can be seen by considering a situation where a device Xj becomes a white knight at time
t; however, it can still finish a transmission of the infection at time t. We present a realization
of the chase–escape dynamics in Figure 5.

We say that the infection survives locally if |It|> 0 for all t ≥ 0, it survives globally if |It|> 0
for all t ≥ 0 and

∣∣ ⋃
t≥0 It

∣∣= ∞, and the infection goes extinct if |It| = 0 for some t ≥ 0. Note
that, even if the street system is connected with positive probability, there can be isolated sets
of devices that are not able to form connections to the rest of the devices. If the typical device
Xo is contained in such a cluster and the cluster contains no white knight, the infection survives
indefinitely, but no global outbreak can be observed.
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Our goal is to isolate regimes of global survival and extinction of the infection using the
transmission mechanism we just described. Let us start with regimes that ensure global survival
of the infection even in the presence of white knights. For this, we guarantee the existence
of a sequence of streets on which the infection can be transmitted to infinity with positive
probability.

Note that, due to the transmission mechanism, streets need a certain minimal length in order
to be useful for transmissions. We thus define a thinned system Sa = {s ∈ S : |s| ≥ a} that only
contains streets of length greater or equal than a ≥ 0. Let us further denote by Ra

x the distance
of the furthest point from x ∈R

2 that is reachable without crossing Sa, i.e. we define the cell of
x by

Ca
x = sup

{
y ∈R

2 : there exists a continuous function

f : [0, 1] �→R
2 \ Sa with f (0) = x, f (1) = y

}
and define Ra

x = sup{|y − x| : y ∈ Ca
x }. We say that the thinned graph is Ra-connected if

limn↑∞ P
(

supx∈Qn∩Q2 Ra
x < n

)= 1, and define

ac := sup
{
a> 0: Sa is Ra-connected

}
. (2)

In words, for a< ac the thinned street system satisfies a slightly stronger version of asymptoti-
cally essentially connectedness, and we have some control over the cell sizes. Note that ac > 0
for asymptotically connected street systems; see [11, Theorem 2.8].

In order to exhibit a regime of global survival, we will furthermore require a slightly stronger
version of well-behavedness. We say that a kernel κ is c-continuous if, for almost-all S and
x ∈ S, the uniquely defined absolutely continuous part of κS(x, dy) is non-trivial and its density
κS(x, y) with respect to the Lebesgue measure on S satisfies infy∈Bc(x) κ

S(x, y)> 0. Note that
c-continuous implies c-well-behaved.

Using these definitions, we can state our first main result on global survival of the infection.

Theorem 1. (Global survival.) Let κ be c-continuous for some c> 0 and 	W,min >	I,min > 0.
Then, for all sufficiently small vmin such that min (ac/2, r, c/2)> vmin	I,min > 0, there exists
λc such that, for all λ> λc and all λW ≥ 0, P(infection survives globally)> 0.

The punchline of the preceding statement is the fact that the critical device intensity is
independent of the white knight intensity. In other words, no matter how densely we can pack
white knights into the system, survival is guaranteed as long as we have sufficiently many
devices in the system. Roughly, the reason for this phenomenon is that the white knights simply
act too slowly since 	W,min >	I,min > 0 when there are sufficiently many devices that can
transmit the infection to their neighbors before white knights are able to eliminate it. The idea
of the proof is to establish an infinite cluster of good streets that have the property that, if the
malware enters the street on one side, it must also exit the street on the other side. We present
the details in Section 4.2.

Next, we present our result on the extinction of the infection in infinite components.

Theorem 2. (Extinction.) Consider a street system given by a Poisson–Voronoi or Poisson–
Delaunay tessellation. Let κ be well-behaved with bounded support, and assume that r>
vmax	W,min and 	I,min >	W,min > 0. Then, for all λ≥ 0, there exists λW,c such that, for all
λW >λW,c, P(infection survives globally) = 0.

The proof rests on a multi-scale argument and will be given in Section 4.3.
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Finally, we present a result that features the remarkable non-monotone behavior of our
model with respect to the speed parameter. More precisely, the following result states that both
too-high and too-low velocities are detrimental to the propagation of the infection. We state
the result only for fixed velocities and infection and patch times, and note that a corresponding
result for general μv, 	I, and 	W also holds.

Theorem 3. (Speed-dependent survival and extinction.) Consider a street system given by a
Poisson–Voronoi or Poisson–Delaunay tessellation. Let κ have bounded support and be c-
well-behaved for some c> 0. Assume further that 	W = δρW and 	I = δρI with ρW >ρI, and
let 0< vo <min (ac/2, r, c/2)/ρI. Then, there exist λc > 0 and λW,c > 0 (independent of λc
and vo) such that, for all λ> λc and all λW >λW,c,

(i) there exists vo > vc(λ, λW)> 0 such that, for all μ= δv with v< vc(λ, λW),
P(infection survives globally) = 0;

(ii) for μ= δvo , P(infection survives globally)> 0; and

(iii) there exists ∞> vc > vo (independent of λ and λW) such that, for all v> vc,
P(infection survives globally) = 0.

In words, the choice λ> λc puts us in a parameter regime in which survival of the infection
is possible, as described in Theorem 1. However, in the presence of sufficiently many white
knights and sufficiently large or small velocity we are again in regimes of extinction. One
important aspect here is that sufficiently small velocities and large white knight intensities also
lead to absence of global survival in the case where the infection is faster than the patching.
We present the proof in Section 4.4.

3. Chase–escape on the connectivity graph

In Section 2 we exhibited rigorous results for chase–escape on the dynamic graph. One
important feature here is that device mobility is intimately linked to the transmission mech-
anism, both of the infection and the patching, leading to a highly correlated non-Markovian
space–time process. As a consequence, it currently seems out of reach to derive approximate
values for the various critical parameters predicted by our rigorous analysis in ways other than
computer simulations as presented, for example, in [5, 6]. As it turns out, a major part of the
computational effort has to go into simulating the movement of the devices in the environment.
In an effort to produce large numbers of sample paths of the chase–escape dynamics it is there-
fore desirable to uncouple the connectivity graph and the epidemiological process and derive
corresponding results in this mean-field type setting. This is our primary goal in this section.

To start, recall the connectivity rule, introduced in Section 1.4, where for every pair of
devices Xi, Xj the set of connection times is denoted Z(Xi, Xj). Now, we want to fix the infec-
tion time ρ ≥ 0, i.e. assume that 	= δρ and define the connectivity graph gρ,r(S, Xλ ∪ YλW ),
in which any two vertices Xi, Xj ∈ Xλ ∪ YλW are connected by an edge if there exists a t ≥ 0
such that [t, t + ρ] ⊂ Z(Xi, Xj). Let us highlight that this connectivity graph is static even
though the edge-drawing mechanism is based on an underlying space–time process. The
main computational advantage of this connectivity graph lies in the fact that the connections
can be determined purely from the device trajectories and speeds without the need to simu-
late in which connection interval the connection is realized. This avoids the computationally
expensive collective movement of the devices.
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Now, we consider the chase–escape model as an independent space–time process on real-
izations of the connectivity graph. This also brings us much closer to the existing literature on
chase–escape dynamics on fixed and random graphs; see, for example, [4, 7, 15, 21–23, 39],
as chase–escape has not been studied on a dynamic graph so far. More precisely, we con-
sider gρ,r(S, Xλ ∪ YλW ) under the Palm distribution with respect to the Xλ described in (1)
and let N(Xi) denote the set of direct neighbors of vertex Xi. Further, we consider two gen-
eral transmission-time distributions 	I and 	W on (0,∞) that govern the i.i.d. times ρI(Xi, Xj),
respectively ρW(Xi, Xj), needed to pass an infection, respectively a patch, from device Xi to
Xj. Then, at time zero, the set of infected devices I0 is given by the typical device Xo, which
is positioned at the origin o ∈R

2 with probability 1, i.e. I0 = {Xo}. For the initial set of white
knights we have W0 = YλW . Then, as in Section 2, we define the process iteratively by consid-
ering the system

(
(Is)0≤s<t, (Ws)0≤s<t

)
up to time t> 0 and then defining the newly infected

devices at time t by

It \
⋃

0≤s<t

Is =
{

Xi ∈
⋃

0≤s<t

Ss : N(Xi) ∩
⋂

s∈[t−ρW(Xj,Xi),t)

Is �= ∅
}
,

where Ss = Xλ \ Is, and the newly patched devices at time t by

Wt \
⋃

0≤s<t

Ws =
{

Xi ∈ Xλ : there exists Xj ∈ Wt−ρW(Xi,Xj) ∩ N(Xi),

Xi ∈ It−ρW(Xi,Xj) \
⋃

0≤s<t

Ws

}
.

Let us comment on the construction. As mentioned above, the model can be seen as an
approximation of chase–escape on the dynamical graph where we associate to every edge an
independent random time that represents the time that it takes to transmit the infection. The
distribution of this transfer time can be, for example, sampled by considering the transmissions
of a typical device towards its neighbors in an independent simulation step. In other words, we
insert information about the typical transmission behavior and apply it independently to every
edge of the static graph. Let us mention that this approach is not unlike the approach used in
[6, Section V], where the spatial graph was replaced by a sequence of edges which had the
length distribution of a typical edge in the PVT.

We are again interested in the conditions under which global survival is possible or impos-
sible. Let us start with the preliminary observation in the case where the transmission times
are fixed, i.e. 	I = δTI and 	W = δTW for some TW, TI > 0. In this case, survival and extinction
essentially depend on the ordering of TW and TI. We say that the graph gρ,r(S, Xλ) is in the
supercritical percolation regime if there is an unbounded connected component, and we note
that [11] exhibits non-trivial criteria that guarantee the existence of a supercritical percola-
tion regime. We first formulate a result for constant transmission times. Extended results with
respect to general 	I and 	W are presented in Theorems 4, 5, and 6.

Proposition 2. Assume that gρ,r(S, Xλ) is in the supercritical percolation regime. Then,

P(infection survives globally)

{
> 0 for TI ≤ TW, λW ≥ 0,

= 0 for TI > TW, λW > 0.
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The proof is based on a robust descending-chain argument that in fact generalizes to arbitrary
supercritical graphs, and is presented in Section 4.5.

Let us now present our main results for general 	I and 	W. In order to prove global survival
of the infection we need to require stronger notions of percolation of the connectivity graph.
We present two alternative conditions in Theorems 4 and 5. First, in Theorem 4 we require a
parameter regime for the street system and waypoint kernel that guarantee a strongly perco-
lating structure similar to Theorem 1. Recall the definition of ac from (2), and let us denote,
for any b> 0, by 	b

I the shifted version of 	I defined via
∫

f (x/b)	b
I (dx) = ∫

f (x)	I(dx) for all
measurable functions with bounded support f .

Theorem 4. (Mean-field survival I.) Let κ be c-well-behaved for some c> 0, and assume that
vmin satisfies 0< vminρ <min (ac/2, r, c/2) and that 	W,min > 0. Then, there exists λc <∞
such that, for all λ> λc and λW ≥ 0, there exists bc <∞ such that, for 	b

I with b> bc,
P(infection survives globally)> 0.

The proof rests on percolation arguments similar to the ones used for the proof of
Theorem 1. The details are presented in Section 4.6.

Next, we present an alternative result for global survival which requires that a subgraph of
the connectivity graph is in the supercritical percolation regime. More precisely, we define
the random subgraph gM,p

ρ,r (S, Xλ) ⊂ gρ,r(S, Xλ) via the following thinning procedure. Let
(Berp(Xi))Xi∈Xλ be an i.i.d. field of Bernoulli random variables with parameter p, and define

the vertex set of gM,p
ρ,r (S, Xλ) by

VM,p = {
Xi ∈ Xλ : N(Xi) ≤ M and Berp(Xi) = 1

}
,

where N(Xi) denotes the number of neighbors in the graph gρ,r(S, Xλ, YλW ) that also includes
the white knights. In words, vertices with more than M neighbors are eliminated, and addi-
tionally each of the remaining vertices is kept independently with probability p. The edge set
of gM,p

ρ,r (S, Xλ) is then inherited from the edge set of gρ,r(S, Xλ), but only those that connect
Xi, Xj ∈ VM,p. It is not hard to see that

lim
M↑∞,p↑1

gM,p
ρ,r (S, Xλ) = gρ,r(S, Xλ)

weakly; however, for global observables such as percolation this is non-trivial. We have the
following result.

Theorem 5. (Mean-field survival II.) Assume that there exist M > 0 and p> 0 such that
gM,p
ρ,r (S, Xλ) is in the supercritical percolation regime. Then, for all λW ≥ 0, there exists bc <∞

such that, for all 	b
I with b> bc, P(infection survives globally)> 0.

The proof rests on the idea that, for a sufficiently fast infection rate, the process of nodes
with maximal degree, which also transmit the infection faster than being patched, is already
in the supercritical percolation regime. A motivation for this thinning lies in an application
of the SINR: In this connection model, communication is only possible if the incoming signal
strength is high enough compared to the total interference. If too many devices are transmitting
simultaneously in a small area, communication is not possible due to background noise. We
present the details in Section 4.7.

We conclude this section with our result on the absence of global survival.
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Theorem 6. (Mean-field extinction.) Consider a street system given by a Poisson–Voronoi or
Poisson–Delaunay tessellation and assume that 	I,min >	W,min. Then, there exists λW,c <∞
such that, for all λW >λW,c, P(infection survives globally) = 0.

The proof is based on the idea that, for a sufficiently large intensity of white knights, any
connection between susceptible devices is accompanied by many white knight connections. In
this case, it becomes highly unlikely that the infection is passed on before being eliminated
by the white knights. In order to make this precise, we have to leverage local independence
properties of the propagation model. We present the details in Section 4.8.

4. Proofs

4.1. Proof Proposition 1

Proof Proposition 1. First, let us assume that P(there exists Xi ∈ Xλ such that deg (Xi) =
∞)> 0. Then, by continuity of measures, there exists R> 0 such that P(there exists Xi ∈
Xλ ∩ QR such that deg (Xi) = ∞)> 0 and hence, by translation invariance, also P(there
exists Xi ∈ Xλ ∩ Q1 such that deg(Xi) = ∞)> 0. But the last inequality implies that
E
[∑

Xi∈Xλ∩Q1
deg(Xi)

]= ∞. However, in order to derive a contradiction, we can use the
Mecke–Slivnyak theorem twice to see that

E

[ ∑
Xi∈Xλ∩Q1

deg(Xi)

]
≤E

[ ∑
Xi∈Xλ∩Q1

∑
Xj∈Xλ\Xi

1
{|Xi − Xj| ≤ �S(Xi) + �S(Xj)

}]

= λ2
E

[ ∫
S∩Q1

dx
∫

S
dy 1

{|x − y| ≤ �S(x) + �S(y)
}]

.

Next, we bound the maximal reach �S by the street length in a stabilized region. For this, let
K := sup{|x − y| : x ∈ S, y ∈ supp(κS(x, dy))}<∞ denote the maximal reach of the kernel κ ,
which exists due to the assumption of a uniformly bounded support of κ . Using this, we can
bound the length of any shortest path starting in x ∈ S to any y ∈ S ∩ BK(x) by the total street
length of the box in which there is a connection between x and y, due to asymptotic essential
connectedness. More precisely, note that if R(Q2n(x))< n/2 then �S(x) ≤ |S ∩ Q2n(x)| + r/2,
for any n> 2K, and we can define

N(x) := min
n∈N,n>K

R(Q2n+1(x))< n/2.

In particular, for all y ∈ Q1(z) we have �S(y) ≤ |S ∩ Q2N(z)+1(z)| + r/2, and hence

E

[ ∫
S∩Q1

dx
∫

S
dy 1

{|x − y| ≤ �S(x) + �S(y)
}]

≤E

[∑
n>K

1{N(o) = n}|S ∩ Q1|
∫

S
dy 1

{|y| ≤ �S(y) + 1/2 + r/2 + |S ∩ Q2n+1|
}]

≤E

[∑
n>K

∑
m>K

∑
z∈Z2

1{N(o) = n}1{N(z) = m}|S ∩ Q1|
∫

S∩Q1(z)
dy 1

{|y| ≤ �(y) + 1/2 + r/2 + |S ∩ Q2n+1|
}]
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≤
∑
n>K

∑
m>K

∑
z∈Z2

E
[
1{N(o) = n}1{N(z) = m}

|S ∩ Q1||S ∩ Q1(z)|1{|z| ≤ |S ∩ Q2m+1(z)| + 1 + r + |S ∩ Q2n+1|
}]
,

where we used |y| ≤ |z| + 1/2 for y ∈ Q1(z) in order to eliminate the dependence of the integrals
on x and y respectively and thus derive a uniform bound for the integrals. It remains to show
that this bound is integrable. By Hölder’s inequality we can bound each summand by

P(N(o) = n)1/5
P(N(o) = m)1/5

E
[|S ∩ Q1|5

]2/5
P
(|z| ≤ |S ∩ Q2m+1(z)| + 1 + r + |S ∩ Q2n+1|

)1/5
≤ C1 exp(− c1(n + m))P(|z| ≤ |S ∩ Q2m+1(z)| + 1 + r + |S ∩ Q2n+1|)1/5

for some constants C1, c1 > 0 due to the existence of exponential moments for |S ∩ Q1| as well
as the assumption of exponential stabilization. Now, the last factor can be further bounded by
Markov’s inequality as

P
(|z| ≤ |S ∩ Q2m+1(z)| + 1 + r + |S ∩ Q2n+1|

)1/5
≤ |z|−3

E
[
(|S ∩ Q2m+1(z)| + 1 + r + |S ∩ Q2n+1|)15]1/5

≤ |z|−3(
E
[
(3|S ∩ Q2m+1|)15] + (3 + 3r)15 +E

[
(3|S ∩ Q2n+1|)15])1/5

≤ |z|−3((3(2m + 1)2 + 3(2n + 1)2)15
E
[
(|S ∩ Q1|)15] + (3 + 3r)15)1/5

≤ C2(mn)c2 |z|−3,

for some constants C2, c2 > 0. Finally, we can use |z|> |z|∞, where | · |∞ denotes the �∞-
norm, combined with the fact that for k ∈N0 we have

∑
z∈Z 1{|z|∞ = k} ≤ 4k + 1, to see that∑

n>K

∑
m>K

∑
k∈N0

(4k + 1)C2(mn)c2 C1 exp(− c1(n + m))k−3 <∞,

and hence the proof is finished. �

4.2. Proof of Theorem 1

Proof of Theorem 1. For simplicity we only prove the case where μ= δv. The general case
can be verified using a thinning argument where we ignore all devices that have a speed greater
than vmin + ε for an arbitrarily small ε, only leading to a potentially larger value of λc.

First note that the assumption that κ is translation covariant and c-well-behaved for some
c> 2	I,minv ensures that it is possible for the kernel to generate a shortest path from one street
to an adjacent street while spending a sufficient amount of time on both streets to allow an
infection to be passed on to another device. Further, the requirement that r>	I,minv ensures
that the communication radius is large enough such that an infection transmission can happen
between devices with initial and target locations in the vicinity of the crossing. Also recall that
we require that the streets of length larger than 2v	I,min percolate with positive probability.

Since we assume λW to be arbitrary, in spirit, we think of white knights being everywhere.
We consider open streets as well as open crossings. Let us start with the streets. Let 0< ε <
min(r/4, v(	I,min − 	W,min)/2) and define n(s) = �|s|/(2r)�, which will represent the number
of devices on the street s on which the infection will be propagated. We call a street s = (c1, c2)
open if there are devices Xs

0, . . . , Xs
n(s) such that:
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(S1) |s|> v	I,min + ε;

(S2) for all t, Xs
i,t ∈ Bε

(
c1 + ri

2

c2 − c1

|c2 − c1|
)

for all i ∈ {1, . . . , n(s)};

(S3) ρI
(
Xs

i , Xs
i+1

)
<	W,min for all i ∈ {1, . . . , n(s) − 1}; and

(S4) ρI
(
Xs

i , Xs
i−1

)
<	W,min for all i ∈ {2, . . . , n(s)}.

In words, a street is open if, by Condition (S1), the street is long enough that an infection
transmission is possible. By Condition (S2), there is a chain of devices reaching from the
crossing c1 to the crossing c2 such that each pair of neighboring devices has distance less
than r. In particular, if device Xs

0 is infected, Condition (S3) ensures that the infection cannot
be stopped by white knights as they are too slow and hence the infection propagates from Xs

0
to Xs

n(s). Similarly, Condition (S4) ensures that an infection also propagates from Xs
n(s) to Xs

0.
Let us call Xs

c1
= Xs

1 and Xs
c2

= Xs
n(s) the boundary devices of an open street s = (c1, c2).

Next, for a street s = (c1, c2), denote by [a, b]s,c1 the segment

{
x ∈ s : x = c1 + d

c2 − c1

|c2 − c1| for some d ∈ [a, b]

}

on s such that {0}s,c1 is identified with the crossing c1. Consider again 0< ε <
min (r/4, v(	I,min − 	W,min)/2) to be small enough that vmin	I,min + ε < c/2. We call a cross-
ing c open at time t if, for any ordered pair of open streets s1, s2 that share the crossing c, there
exists a bridging device Xs1,s2 such that:

(C1) Xs1,s2
0 ∈ As1 = [v	I,min/2 + ε/2, v	I,min/2 + ε]s1,c;

(C2) Xs1,s2 has its target location in Bs2 = [v	I,min/2, v	I,min/2 + ε]s2,c;

(C3) Xs1,s2
t ∈ Js1 = [0, ε/2]s1,c and is on its way back to its starting location;

(C4) ρI
(
Xs1,s2 , Xs1

c
)
<	I,min + ε/(2v); and

(C5) ρI
(
Xs1,s2 , Xs2

c
)
<	I,min + ε/v.

These conditions roughly guarantee that, for sufficiently long streets, the bridging device
Xs1,s2 propagates the infection from s1 to s2. The time the bridging device stays on each of the
streets is insufficiently long to allow patching by white knights. This is ensured by Conditions
(C1) and (C2), as the distance the devices travel on each street before entering the crossing is
at most v	I,min + 2ε < v	W,min, since ε is sufficiently small. Together then, since s2 is open,
due to the configuration of the devices on the open street and the fact that r> v	I,min, Xs1,s2

will pass the infection on to the boundary device Xs2
c of the chain of transmitting devices on

s2. This is ensured by Condition (C5). Finally, Conditions (C3) and (C4) ensure that Xs1,s2

becomes infected if Xs1
c becomes infected at time t, as it is on its way back to its starting

location and will spend at least a time of 	W,min + ε/(2v) in the vicinity of Xs1
c .

The following statement guarantees that there exists a uniform bound for the probability
that a given crossing is open for all sufficiently large times. In particular, this bound converges
to 1 as λ tends to infinity. Recall that we denoted by H the range of dependence of κ , and define
L = H + v	I,min/2 + ε.
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Lemma 1. For almost all S we have that ({c is open at time t})c∈S is an independent family
of events, conditioned on S. Further, there exists T0 > 0 such that, for almost all S and all
crossings c ∈ S, there exists a constant Cc = Cc(S ∩ BL(c), T) such that P(c is open at time
t | S) ≥ 1 − exp(− λCc) for all t ≥ T0.

We present the proof of the lemma later in this section.
Consider τs1,c, the time that a boundary device associated with the crossing c is infected;

then, for τs1,c > T0 and conditioned on S, we can couple the event that c is open at time τs1,c to
a Bernoulli random variable Bc with parameter 1 − exp(− λCc), and note that the Bc are inde-
pendent conditioned on S and only depend on S in the region S ∩ BL(c). For τs1,c = ∞, i.e. if
the boundary device never becomes infected, we assume that the crossing is open nonetheless.
We say that a crossing is open if Bc = 1. In order to make use of this observation, we need
to ensure that the infection survives up until time T0. However, note that survival for long but
finite times has a positive probability and can be constructed locally by an appropriate isolation
procedure for the typical device.

Now we consider the model at time t ≥ T and show that the graph of open streets and open
crossings percolates with positive probability via stabilization arguments. For this, let us fix
an a such that 	I,min < a/2< ac/2 and recall that we have the random field of stabilizing radii
{Rx}x∈R2 for the street system at our disposal, in addition to the random field {Ra

x}x∈R2 that
acts as a replacement for the asymptotically essentially connectedness of the thinned graph Sa.
Then, we say that z ∈Z

2 is n-open if

(a) R(Q3n(nz))< n;

(b) Ra(Qn(nz))< n/2;

(c) every street fully contained in Q3n(nz) ∩ Sa is open; and

(d) every crossing in Q3n(nz) is open.

Condition (b) limits the size of cells of points in Qn(nz) to a diameter of at most n/2 with
respect to Sa. Further, under the condition, there exists a unique giant component in Qn(nz) ∩
Sa, built by the boundaries of the cells, that is connected in Q3n(nz). If, now, adjacent sites z1
and z2 both satisfy Condition (b), they form a joint connected component, since there exist cells
that are simultaneously in Qn(nz1) and in Qn(nz2). Due to Conditions (c) and (d), the infection
is able to propagate through open streets and open crossings unpatched.

Now, we can use the domination by product measures theorem [34, Theorem 0.0] to
establish Bernoulli site percolation of n-open sites on Z

2 since Condition (a) guarantees
7-dependence of Sa, and under Condition (a) Conditions (b) and (c) can also be decided
within the 7-dependent region. By choosing n> L, the crossing-dependent constant Cc from
Lemma 1 is also 7-dependent like the street system. Hence, using translation invariance, it
suffices to show that

lim inf
n↑∞ lim inf

λ↑∞ P(o is n-open) = 1.

To show this, we denote by A(n), B(n), C(n, λ), and D(n, λ) the events that Conditions
(a), (b), (c), and (d) are not satisfied for z = o. Then, P(o is n-open) ≥ 1 − P(A(n) ∪ B(n)) −
P(C(n, λ)) − P(D(n, λ)). By assumption, lim supn↑∞ P(A(n) ∪ B(n)) = 0 independently of λ.
For fixed n, using Markov inequality and dominated convergence, we now also have
lim supλ↑∞ (P(C(n, λ)) + P(D(n, λ))) = 0, as λ increases, where we used that the expected
number of streets and crossings is finite.
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Finally, due to the translation invariance of the model, the existence of an infinite cluster of
open sites implies that an infinite cluster of good streets and good crossings exists, and, thus,
there is a positive probability that the typical device transmits the infection to infinity. �

Proof of Lemma 1. First note that the conditions are only dependent on the bridging
devices, which have their initial positions and their destinations close to the crossing and move
over the crossing, and are therefore independent for distinct crossings. This guarantees the
independence of the events.

In order to bound the probability of openness at late times, we compute the intensity of
devices that satisfy Conditions (C1), (C2), and (C3) at time t and then show that, as t tends to
infinity, this intensity converges to a positive crossing-dependent value. In turn, the probability
that no such devices exist can be seen as a Poisson void probability.

Let us start by deriving expressions for the intensity of devices at time t in the desired
interval, i.e. devices that start on s1 in the interval As1 and have a target location in Bs2 , on
s2. Recall that the streets s1 and s2 have a joint crossing c. Note that, by the displacement
theorem for Poisson point processes, the number of devices that satisfy the conditions is a
Poisson-distributed random variable and its parameter is given by λpS(s1, s2), where

pS(s1, s2) =
∫

As1

dx
∫

Bs2

κS(x, dz) 1
{
0 ≤ rt(|x, z|S) − |z, c|S ≤ ε/2},

where |z, x|S denotes the shortest distance between x and z on S, and rt(|z, x|S) is uniquely
defined as vt = |z, x|Snt + rt(|z, x|S) with nt the largest odd number such that 0 ≤ rt(|z, x|S) ≤
2|z, x|S. In words, nt(|z, x|S) denotes the number of times that the device has traveled from x
to z and back, and since we want the device to be on the way back, we require nt(|z, x|S) to be
odd. Then, rt(|z, x|S) is the distance from z on the way back. Subtracting the distance from z
to the joint crossing c, we obtain the traveled distance on s1, which has to lie in the interval
(0, ε)s1,c.

We will show that there is a time T0 such that, for all t ≥ T0, we can bound pS(s1, s2) from
below by a constant that only depends on S ∩ BL(c).

Let us define for x ∈ As1 by

0<ηx = ηx
(
s1, s2, S ∩ BL(x), κS(x, dy)

)= inf
y∈Bs2

κS(x, y)

the minimal density for the kernel, starting in x and having a destination in Bs2 . This value ηx is
positive as the kernel is c-continuous, Bs2 ⊂ Bc(x), and we use our assumption that 2v	I,min +
2ε < c.

In order to simplify the notation for As1 and Bs2 let us abbreviate b = v	W,min/2 and asso-
ciate bijectively the interval A = [b + ε/2, b + ε] to As1 such that x �→ xs1,c. We associate
B = [b, b + ε] in a similar way to Bs2 . Then,

pS(s1, s2) ≥
∫

A
dx ηx

∫
B

dz 1
{
0 ≤ rt(x + z) − z ≤ ε/2},

where we also dropped the singular part in κS(x, dy). Now, let us define by

φx(s) = lim
a↓0

1

a

∫
B

dz 1
{
0 ≤ rs(x + z) − z ≤ a

}
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the density of points started at x that are on their way back from their target location, and
that are at time s precisely at the origin. Note that a device satisfies Condition (C3) at time
t if and only if it passes the crossing on its way to its starting location in the time interval
[t − ε(2v)−1, t]. Therefore, we can rewrite∫

A
dx ηx

∫
B

dz 1
{
0 ≤ rt(x + z) − z ≤ ε/2}=

∫ t

t−ε/(2v)
ds
∫

A
dx ηxφx(s), (3)

and we will prove that, P-almost surely, conditioned on S, there exist constants T0 and C that
depend on v, 	I,min, and ε but not on S, x, or κS, such that inft≥T0 φx(t)>C> 0. In order to
derive this statement, the main tool is the following identity for φx(t):

φx(t) =
∞∑

n=1

1

2εn
1
{
x + 2b + (n − 1)2(b + x) ≤ vt< x + 2b + 2ε+ (n − 1)2(x + b + ε)

}
.

Let us explain this formula. Here, n represents the number of times that a device started at
x reaches its destination, which is uniformly distributed in B. With every reflection in B, the
density is distributed to an interval of length 2εn, where ε is the length of B, again uniformly
at random. Now, x + 2b, respectively x + 2b + 2ε, are the shortest, respectively the longest,
distance that a device started at x travels before it revisits the crossing c for the first time. For
each consecutive visit to the origin an additional length of 2(b + x), respectively 2(x + b + ε),
has to be added as the length of a complete cycle from the origin to its destination and back.

In other words, each indicator becomes non-zero in x + 2b + (n − 1)2(x + b) and adds a
mass of (2εn)−1 over a length of 2nε. For n< (x + b)/ε the indicator functions are disjoined,
i.e. for vt< x + 2b + ((x + b)/ε− 1)2(x + b) there is at most one indicator function that is non-
zero. Now, for n> (x + b)/ε, the interval for vt in which the indicator function is non-negative
is longer than the minimal cycle length. In other words, it is possible that at least two indicator
functions are non-negative.

Now, for (x + b)/ε < n< 2(x + b)/ε the indicator functions contribute for more than the
length of a full cycle 2(x + b) and less than twice that length. Therefore, for each vt ∈ [x + 2b +
(n1 − 1)2(b + x), x + 2b + (n2 − 1)2(b + x)] there are either exactly one or two non-negative
indicators, where ni = �i(x + b)/ε�. As each indicator has a weight of at least (4ε(x + b)/ε)−1

we can bound φx(t)> (4ε(x + b)/ε)−1.
More generally, in the interval vt ∈ [x + 2b + (nm − 1)2(b + x), x + 2b + (nm+1 − 1)2(b +

x)] there are either m or m + 1 overlapping indicator functions whose contributions can each
be bounded by (2nm+1ε)−1. Therefore, we can bound

φx(t)>
m

2(nm+1)ε
= m

2ε�(m + 1)(x + b)/ε� ≥ 1

2ε�2(x + b)/ε� ≥ 1

4(2b + ε)
= C> 0,

where we used that the bound monotonically increases in m and x ≤ b + ε. Therefore, for
T0 = (x + 2b + (n1 − 1)2(b + x))v−1 the desired bound is realized and integration of (3) yields

pS(s1, s2) ≥ ε(2v)−1(8b + 4ε)−1
∫

A
dx ηx = p̃S(s1, s2)> 0.

Noting that the requirements in Conditions (C4) and (C5) can be considered independently,
respectively with probability p4 = 	I([	I,min, 	I,min + ε/2]) and p5 = 	I([	I,min, 	I,min + ε]),
the number of devices that satisfy the criterion of a bridging device Xs1,s2 can be bounded from

https://doi.org/10.1017/jpr.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.47


Chase–escape in dynamic D2D networks 331

below by a Poisson-distributed random variable with expectation p̃S(s1, s2)p4p5. As c is open
if there is at least one bridging device for each combination of open adjacent streets, we can
bound

P(c is open at time t | S) ≥
∏

i �=j,si,sj open
c∈si,c∈sj

(
1 − exp(− λp̃(si, sj)p4p5)

)
for all t ≥ T,

which proves the lemma. �

4.3. Proof of Theorem 2

For the proof we adopt a multiscale argument in the spirit of the proof of existence of
subcritical regimes for the Poisson–Boolean model with random radii in [19]. We note that
this approach has also been applied in the setting of Cox–Boolean models with random radii in
[29]. More specifically, we adapt the arguments for absence of percolation in the connectivity
graph for sufficiently large velocities presented in [11]. Roughly speaking, we prove that a
Cox–Boolean model in which any two devices that could transmit the infection somewhere
on their path and are sufficiently close are connected, becomes subcritical if the white knight
intensity is sufficiently large.

First, we call a street s = (c1, c2) blocked for (device) x if either |s|< vmin	I,min/2 or there
exist two white knights Y1, Y2 ∈ YλW such that for i ∈ {1, 2} we have 	I,min >ρW(Yi, x), Yi,t ∈ s,
and |ci − Yi,t|< r for all t ≥ 0. Otherwise we call s unblocked for x. Then, we consider the
thinned process

Xλ,th = {
Xi ∈ Xλ : there exists y ∈ supp

(
κS(Xi, dy)

)
and s ∈ �S(Xi, y) such that s is unblocked for Xi

}
.

In words, for devices in Xλ \ Xλ,th every possible path only contains streets that are either
too short to perform any transmission of the infection or contain a white knight that patches
the device before it can transmit the infection on the street. Let us note that here we use that
r> vmax	W,min is large enough to allow a successful patch. Using these definitions, we note
that, if the infection survives globally, then this implies that the geostatistical Cox–Boolean
model C =⋃

Xi∈Xλ,th B�S(Xi)(Xi) contains an unbounded component. Hence, in order to prove
absence of global survival, it suffices to prove the absence of percolation in this Cox–Boolean
model, which is also well-defined by the local connectedness assumption. Let Cx(V) denote the
connected component containing x of the geostatistical Cox–Boolean model, based on points
in V ⊂R

2. Then, we define, for any x ∈R
2 and α > 0, the event

G(x, α) = {Cx(B10α(x)) �⊂ B8α(x)
}

that the cluster containing x, formed by disks whose centers lie in B10α(x), reaches beyond
B8α(x). Consider the set of α-local points AS(α) = {x ∈ S : �S(x)<α}, let S∗ denote the Palm
version of S, and recall the stabilization radii Ry of the street system. Recall that R(V) =
supy∈V∩Q2 Ry for any V ⊂R

2. Then, we can employ the following key lemma that establishes
a scaling relation in the model.

Lemma 2. ([11, Lemma III.1].) Consider the geostatistical Cox–Boolean model. There exists
a constant c> 0 such that, for all α > 0,

P(G(o, 10α)) ≤ cP(G(o, α))2 + cα2
P
(
o ∈ Ac

S∗(α)
)+ cP(R(Q10α) ≥ α).
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In the next lemma we deviate from [11, Proof of Theorem II.3]. We show that the local
percolation probability becomes zero for large white knight intensities.

Lemma 3. There exists c> 0 such that

P(G(o, α)) ≤ cα2
P
(
there exists y ∈ supp

(
κS∗

(o, dy)
)

and at least one unblocked s ∈ �S∗(o, y)
)
,

and P
(
there exists y ∈ supp

(
κS∗

(o, dy)
)

and at least one unblocked s ∈ �S∗(o, y)
)

tends to zero
as λW tends to infinity.

Proof of Lemma 3. Note that

P(G(o, α)) ≤ P
(
Xλ,th(B10α)> 0

)≤E
[
Xλ,th(B10α)

]
≤ λE

[ ∫
S∩B10α

dx P
(
there exists y ∈ supp

(
κS(x, dy)

)
and s ∈ �S(x, y)

such that s is unblocked for x
)]

≤ λ102α2
P
(
there exists y ∈ supp

(
κS∗

(o, dy)
)

and s ∈ �S∗(o, y)

such that s is unblocked for o
)
.

But, by dominated convergence,

P
(
there exists y ∈ supp

(
κS∗

(o, dy)
)

and s ∈ �S∗(o, y) such that s is unblocked for o
)

tends to zero as λW tends to infinity, and hence we arrive at the desired result. �

As a final input for the proof, we recall the following essential result about convergence
properties of functions satisfying some scaling inequality.

Lemma 4. ([19, Lemma 3.7].) Let f and g be two bounded measurable functions from [1,∞]
to [0,∞). Additionally, let f be bounded by 1/2 on [1, 10], g be bounded by 1/4 on [1,∞],
and assume that f (α) ≤ f (α/10)2 + g(α) for all α ≥ 10. Then, limα↑∞ g(α) = 0 implies that
limα↑∞ f (α) = 0.

Now we are in the position to prove the theorem.

Proof of Theorem 2. Recall that S is assumed to be a PVT or PDT. In order to prove
that λW,c <∞, it suffices to show that limα↑∞ P

(
Xλ,th(Co(R2))> Xλ,th(B8α)

)= 0 for all suf-
ficiently large λW. But this is true if limα↑∞ P(G(0, α)) = 0 since, by [11][Lemma III.4 and
III.5],

P
(
Xλ,th

(Co
(
R

2))> Xλ,th(B8α)
)≤ P(G(o, α)) + λE

[ ∫
S

dx 1
{
10α ≤ |x| ≤ 9α + �S(x)

}]
,

where E
[ ∫

S dx 1{10α ≤ |x| ≤ 9α + �S(x)}] tends to zero as α tends to infinity. Now, in order to
show that limα↑∞ P(G(0, α)) = 0 we apply Lemmas 2, 3, and 4 for proper choices of f and g.

For this, note that, in Lemma 2, since we assume stabilization, P(R(Q10α) ≥ α) tends to zero
as α tends to infinity, and the same is true for α2

P(o ∈ Ac
S∗(α)) by [11, Lemma III.2]. Hence,

we can define
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α1 := inf
{

s ≥ 1: φ1(α) = α2
P
(
o ∈ Ac

S∗
)
<
(
8c2)−1 for all α ≥ s

}
,

α2 := inf
{
s ≥ 1: φ2(α) = P(R(Q10α) ≥ α)<

(
8c2)−1 for all α ≥ s

}
,

set αc = α1 ∨ α2, and note that αc <∞. Further, we let

λW,c = inf
{
λW ≥ 1: P

(
there exists y ∈ supp

(
κS∗

(o, dy)
)

and at least one unblocked s ∈ �S∗(o, y)
)
< 1

2 (100cαc)−2
}
,

where λW,c <∞ by Lemma 3. Then, we write f (α) = cP(G(o, 10αcα)) and g(α) =
c2(φ1(αcα) + φ2(αcα)) and hence, again using Lemma 3, we have f (α) ≤ 1

2 for all 1 ≤ α ≤ 10
and λW >λW,c, and, by definition, g(α) ≤ 1

4 for all 1 ≤ α. Finally, using Lemma 2,

f (α) ≤ c2(P(G(o, αcα))2 + φ1(αcα) + φ2(αcα)) = f (α/10)2 + g(α) for all α ≥ 10.

Hence, since limα↑∞ g(α) = 0, an application of Lemma 4 gives the result. �

4.4. Proof of Theorem 3

We prove the theorem in two parts.

Proof of Theorem 3 parts (ii) and (iii). Note that part (ii) is the statement of Theorem 1 which
puts no restrictions on the white knight intensity. Further, part (iii) follows from [11][Theorem
3.3] where a subcritical percolation regime is established for sufficiently fast speeds, indepen-
dent of the device intensities. This in particular implies that global survival is possible only
with probability 0. �

Hence, it only remains to prove part (i). The main idea is that small velocities make it
impossible to transmit the infection through crossings if sufficiently many white knights are
available. We say that a street s = (c1, c2) is closed if:

(A) |s|> 2vρW;

(B) there exist white knights Ys ⊂ YλW such that, for all t ≥ 0 and x ∈ s, |x − Yi,t|< r/2 for
some Yi ∈ Ys; and

(C) if, at time t ≥ 0, there exists an infected Xi ∈ Xλ with Xi,t = c1 (respectively Xi,t = c2),
then {Xj ∈ Xλ ∩ s : |Xj,u − c2| ≤ vρW for some u ∈ τ (t)} = ∅ (respectively {Xj ∈ Xλ ∩
s : |Xj,u − c1| ≤ vρW for some u ∈ τ (t)} = ∅). Here, τ (t) is the time interval in which the
infection reaches s ∩ BvρW+r(c2) (respectively s ∩ BvρW+r(c1)).

A street is called open if it is not closed. The key idea is that a closed street cannot be
used for the transmission of the infection. Indeed, Condition (A) guarantees that the street is
sufficiently long to allow the white knights to patch, and the probability that the condition is
satisfied tends to 1 as v tends to 0. Further, Condition (B) guarantees the existence of white
knights at all times close to every point on the street, and in particular close to the crossings.
These white knights help to patch any incoming infected device, and the condition becomes
likely to be satisfied for large white knight intensities. Now, for Condition (C), note first that a
large device intensity λ makes it probable that an infection travels through a street unpatched
since we assume that ρW >ρI. Also, due to the continuous movement of the devices, it is
unavoidable that an infected device enters the street at some time. However, in order for an
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infected device to leave the street unpatched, it needs to receive the infection at the oppo-
site end of the street, sufficiently close to the crossing, i.e. in s ∩ BvρW+r(c2) (respectively
s ∩ BvρW+r(c1)). Only in this case can it exit the street unpatched from the blocking white
knight that is positioned there. Very roughly, then, again for small v, Condition (C) becomes
likely.

What makes the probability that Condition (C) is satisfied challenging to control is the
fact that, in principle, a street at any given time could host devices from distant spatial areas.
In order to cope with this we again employ a multi-scale argument very similar to the one
presented in Section 4.3. Using the definitions for �S from there, we now consider the thinned
point cloud

Xλ,th = {
Xi ∈ Xλ : there exists y ∈ supp

(
κS(Xi, dy)

)
and s ∈ �S(Xi, y) such that s is open

}
.

Again, the idea is that any device that is not in Xλ,th only finds closed streets on any possible
path and hence cannot contribute to the spread of the infection. Thus, it suffices to show subcrit-
icality in the associated geostatistical Cox–Boolean model C =⋃

Xi∈Xλ,th B�S(Xi)(Xi). However,
the situation is more complicated compared to the proof of Theorem 2 since the thinning pro-
cedure depends on the entire point cloud. Still, we can employ Lemmas 2 and 4, and only need
to replace Lemma 3 with the following, which is presented in terms of P∗, the Palm version
of P.

Lemma 5. There exists c> 0 such that

P(G(o, α)) ≤ cα2
P

∗(there exists y ∈ supp
(
κS(o, dy)

)
and s ∈ �S(o, y) such that s is open

)
and

lim sup
λW↑∞

lim sup
v↓0

P
∗(there exists y ∈ supp

(
κS(o, dy)

)
and s ∈ �S(o, y) such that s is open

)= 0.

Proof of Lemma 5. First note that we can use the Slivnyak–Mecke formula and translation
invariance to estimate

P(G(o, α)) ≤ P
(
Xλ,th(B10α)> 0

)≤E
[
Xλ,th(B10α)

]
≤ λ102α2

P
∗(there exists y ∈ supp

(
κS(o, dy)

)
and s ∈ �S(o, y) such that s is open

)
.

We highlight here that, differently to Lemma 3, the probability also extends to the devices Xλ

since openness is defined not only with respect to white knights and the street system.
In order to show the second statement of the lemma, we employ stabilization based on the

stabilizing random field {Rx}x∈R2 . For all sufficiently large n, we have, for ε′ > 0,

P
∗(there exists y ∈ supp

(
κS(o, dy)

)
and s ∈ �S(o, y) such that s is open

)
≤ P

∗(R(Q2n)< n/2, there exists y ∈ supp
(
κS(o, dy)

)
and s ∈ �S(o, y) such that s is open

)+ ε′

≤ P
∗(there exists an open s ∈ Q2n) + ε′,

where we used that P(R(Q2n) ≥ n/2) tends to zero as n tends to infinity, as well as the fact that
under the event R(Q2n)< n/2 any shortest path starting in o must be contained in Q2n. Now,
by the Markov inequality,

P
∗(there exists an open s ∈ Q2n) ≤E

∗
[ ∑

s∈S∩Q2n

P
∗(s is open | S)

]
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and, using dominated convergence and the fact that E∗[#{s ∈ S ∩ Q2n}]<∞ for PVT and PDT,
it suffices to show that, for all s ∈ S ∩ Q2n, lim supλW↑∞ lim supv↓0 P

∗(s is open | S) = 0 almost
surely with respect to S. In view of the definition of closed streets, let C(v) denote the event that
Condition (A) is satisfied for s, and similarly D(λW) and E(v, λ, λW) for the events associated
with Conditions (B) and (C). Then,

P
∗(s is open | S) ≤ P(Cc(v) | S) + P(Dc(λW) | S) + P(Ec(v, λ, λW) | S),

where the first and third summands tend to zero as v tends to zero, and then the second
summand also tends to zero as λW tends to infinity. This completes the proof. �

Proof of Theorem 3 part (i). For the proof we can follow the same line of argument as
used for the proof of Theorem 2, replacing Lemma 3 with Lemma 5 and adjusting the subse-
quent arguments. We need to prove existence of λW,c <∞ such that, for all λW >λW,c, there
exists vc(λ, λW) such that limα↑∞ P(Xλ,th(Co(R2))> Xλ,th(B8α)) = 0 for all v< vc(λ, λW).
Referencing [11][Lemmas III.2, III.4, and III.5], as well as Lemma 2 and the initial argu-
ment presented in Theorem 2, it suffices to note that, with the help of Lemma 5, there exists
λW,c <∞ such that, for all λW >λW,c, there exists vc(λ, λW) such that, for all v< vc(λ, λW),

P
∗(there exists y ∈ supp

(
κS(o, dy)

)
and s ∈ �S(o, y) such that s is open

)
< 1

2 (100cαc)−2,

where αc is defined as in the proof of Theorem 2. Then, using the same definitions for f and g,
the result follows by an application of Lemma 4. �

4.5. Proof of Proposition 2

Proof of Proposition 2. First note that, by the assumption of supercriticality, there is a pos-
itive probability that the typical device is connected to infinity within gρ,r(S, Xλ) via at least
one path of susceptible devices, i.e. in the absence of white knights. However, in the case
that TI ≤ TW, any white knight that is connected to the path can only eliminate the infection
after the infected device has already passed the infection to the subsequent susceptible device,
leading to an unstoppable sequence of infections along the path, independent of the choice
of λW.

On the other hand, in the case TI > TW, it suffices to consider the model conditioned on the
event {Xo �∞} that Xo is in the infinite cluster of gρ,r(S, Xλ). Let us denote by D the graph
distance of Xo to the set of white knights, and note that D<∞ almost surely as λW > 0. Then,
the closest white knight Yi experiences an infection attempt at time DTI. Note that, at this time,
any infected device has a distance to Yi given by at most 2D. This comes from the fact that
the transmission times are deterministic and there is a one-to-one correspondence between the
graph distance to the typical device and elapsed time. However, there exists N ∈N such that
NTI > (N + 2D)TW, and therefore the infection can reach at most a graph distance of N + D.
Indeed, any device Xi at graph distance N + D from Xo is in contact with Yi via N + 2D edges
connecting infected or patched devices. But, since the patching is faster than the infection, for
this N, on the joint path between Xo, Yi, and Xi, the patch will have caught up with the infection
before time DTI + (2D + N)TW, which is strictly smaller than (N + D)TI. �

4.6. Proof of Theorem 4

Proof of Theorem 4. As 	W,min > 0, we can choose b large enough that 	b
I,min <	W,min.

Furthermore, we can choose μ′ with v′
min such that vminρ < v′

min	
b
I,min <min (ac/2, r, c/2).
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Now v′
min and 	b

I,min satisfy the conditions of Theorem 1. A close inspection of the proof of
Theorem 1 reveals that, under the conditions in this theorem, there exists an infinite sequence
of crossing devices, boundary devices, and devices connecting boundary devices {Xni}i∈N that
connect the typical device to infinity in the dynamical model considered in Theorem 1. Let us
argue that this given sequence is also connected in gρ,r(S, Xλ). Indeed, as the chain of devices
between boundary devices is strongly localized, they are connected for all t ≥ 0, especially
for a continuous time window of length ρ. Now, the crossing devices are localized in such
a way that they travel at least a distance of v′

min	
b
I,min on their respective streets. As vminρ <

v′
min	

b
I,min the bridging devices can connect to their respective boundary devices. Therefore, the

infection can propagate in gρ,r(S, Xλ) along the given sequence to infinity, which completes
the proof. �

4.7. Proof of Theorem 5

Proof of Theorem 5. Using similar arguments to the analysis of chase–escape dynamics on
the Gilbert graph in [23], we call a device Xi ∈ VM,p good if, in the case of an infection, the
infection is transmitted to all neighbors of Xi before any neighbor of Xi is able to patch it. If
there is an infinite path of good devices, every device on this path is guaranteed to become
infected and hence, if there exists an infinite component of good devices with positive proba-
bility, this implies survival of the infection also with positive probability. Now, if a device Xi

has at most M neighbors, the probability of being good is bounded by

P

(
min

Xj∈N(Xi)
ρW(Xj, Xi)> max

Xj∈Xλ∩N(Xi)
ρI(Xi, Xj)

)

≥ P

(
min

i∈{1,...,M} ρW,i > max
i∈{1,...,M} ρ

b
I,i

)
= P

(
min

i∈{1,...,M} ρW,i > b−1 max
i∈{1,...,M} ρI,i

)
, (4)

independently of Xi, where the ρb
I,i, and respectively the ρW,i, are i.i.d. random variables with

distribution 	b
I and 	W.

Now, by assumption, we can choose M and p such that gM,p
ρ,r (S, Xλ) percolates with positive

probability. Hence, as 	W had no atom at zero we can choose b = b(M) sufficiently large such
that the bound in (4) is larger than p.

Note that the bound is uniform over the devices, since the infection and patch times are
independent by definition, and therefore we can couple the connectivity graph to an indepen-
dent thinning with parameter p that dominates the process of good devices. As a consequence,
gM,p
ρ,r (S, Xλ) is a subgraph of the thinned graph of good devices with at most M neigh-

bors. Hence, we have established percolation of good devices with positive probability as
desired. �

4.8. Proof of Theorem 6

Proof of Theorem 6. Our strategy is again to employ the arguments from Sections 4.3 and
4.4. That is, we realize that it suffices to show absence of percolation in the geostatistical
Cox–Boolean model C =⋃

Xi∈Xλ,th B�S(Xi)(Xi), where

Xλ,th =
{

Xi ∈ Xλ : min
Xj∈Nλ(Xi)

ρI(Xi, Xj)< min
Xj∈NλW (Xi)

ρW(Xj, Xi)

}
,
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with Nλ(Xi) the set of neighbors of Xi in gρ,r(S, Xλ) and NλW (Xi) the set of neighbors of Xi

in gρ,r(S, Xi ∪ YλW ). Indeed, devices in Xλ \ Xλ,th are patched before they can transmit the
infection and can therefore not contribute to the dissipation of the infection.

Again, the thinning procedure depends on the entire point cloud, but we can still employ
Lemmas 2 and 4 and only need to replace Lemma 3 by the following, which is presented in
terms of P∗, the Palm version of P.

Lemma 6. There exists c> 0 such that

P(G(o, α)) ≤ cα2
P

∗
(

min
Xj∈Nλ(o)

ρI(o, Xj)< min
Xj∈NλW (o)

ρW(Xj, o)

)

and

lim sup
λW↑∞

P
∗
(

min
Xj∈Nλ(o)

ρI(o, Xj)< min
Xj∈NλW (o)

ρW(Xj, o)

)
= 0.

Proof of Lemma 6. Again, by the Slivnyak–Mecke formula and translation invariance we
can estimate

P(G(o, α)) ≤ P(Xλ,th(B10α)> 0) ≤E[Xλ,th(B10α)]

≤ λ102α2
P

∗
(

min
Xj∈Nλ(o)

ρI(o, Xj)< min
Xj∈NλW (o)

ρW(Xj, o)

)
.

Now,

P
∗
(

min
Xj∈Nλ(o)

ρI(o, Xj)< min
Xj∈NλW (o)

ρW(Xj, o)

)
≤E

∗[
P(ρW >	I,min)NλW (o)], (5)

where ρW is a random variable distributed according to 	W. Note that P(ρW >	I,min)< 1 by
our assumptions on 	W,min. Further, the expression on the right-hand side of (5) can be further
bounded from above by considering only those white knights that mimic the behavior of the
typical device at the origin in the sense that they start close to the origin and have a target
location close to the target location of the typical device. Then, by dominated convergence, the
right-hand side of (5) tends to zero as λW tends to infinity, and this completes the proof. �

As the lemma is now proved, this concludes the proof of Theorem 6. �

Proof of Theorem 3 part (i). We can follow the same line of argument as used for the
proof of Theorem 2, replacing Lemma 3 by Lemma 5 and adjusting the subsequent argu-
ments. We need to prove the existence of λW,c <∞ such that, for all λW >λW,c, there
exists vc(λ, λW) such that limα↑∞ P

(
Xλ,th(Co(R2))> Xλ,th(B8α)

)= 0 for all v< vc(λ, λW).
Referencing [11][Lemmas III.2, III.4, and III.5], as well as Lemma 2 and the initial argu-
ment presented in Theorem 2, it suffices to note that, with the help of Lemma 5, there exists
λW,c <∞ such that, for all λW >λW,c, there exists vc(λ, λW) such that, for all v< vc(λ, λW),

P
∗(there exists y ∈ supp

(
κS(o, dy)

)
and s ∈ �S(o, y) such that s is open

)
< 1

2 (100cαc)−2,

where αc is defined as in the proof of Theorem 2. Then, using the same definitions for f and g,
the result follows by an application of Lemma 4. �
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