
The Review of Symbolic Logic

Volume 17, Number 1, March 2024

IS CAUSAL REASONING HARDER THAN
PROBABILISTIC REASONING?

MILAN MOSSÉ
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Abstract. Many tasks in statistical and causal inference can be construed as problems of
entailment in a suitable formal language. We ask whether those problems are more difficult,
from a computational perspective, for causal probabilistic languages than for pure probabilistic
(or “associational”) languages. Despite several senses in which causal reasoning is indeed more
complex—both expressively and inferentially—we show that causal entailment (or satisfiability)
problems can be systematically and robustly reduced to purely probabilistic problems. Thus
there is no jump in computational complexity. Along the way we answer several open problems
concerning the complexity of well-known probability logics, in particular demonstrating the
∃R-completeness of a polynomial probability calculus, as well as a seemingly much simpler
system, the logic of comparative conditional probability.

§1. Motivation and preview. There is an uncontroversial sense in which causal
reasoning is more difficult than purely probabilistic or statistical reasoning. The
latter seems hard enough: estimating probabilities, predicting future events from past
observations, determining statistical significance, and adjudicating between statistical
hypotheses—these are already formidable tasks, long mired in controversy. No free
lunch theorems [6, 41] show that strong assumptions are necessary to gain any inductive
purchase on such problems, and there is considerable disagreement about what kinds
of assumptions are reasonable in different epistemic and practical circumstances [15].
Problems of causal inference only seem to make our tasks harder. Inferring causal
effects, predicting the outcomes of interventions, determining causal direction, and
learning a causal model—these problems typically demand statistical reasoning, but
they also demand more on the part of the investigator. They may require that we
actively interrogate the world through deliberate experimentation rather than passive
observation, or that we antecedently accept strong assumptions sufficient to justify
the causal conclusions we want to reach, or (very often) both. Indeed, statistical
indistinguishability is the norm in causal inference, even with substantive assumptions
[43]. As formalized in the causal hierarchy theorem of Bareinboim et al. [5] (see also
[26]), it is not only impossible to infer causal information from purely correlational
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(or “observational”) data, but also generically impossible to infer counterfactual or
explanatory information from purely experimental (or “interventional”) data. From
an inferential perspective, probabilistic information vastly underdetermines causal
information.

A feature common to both statistical inference and causal inference is that the most
prominent approaches to each can be understood, at least in part, as attempts to
turn an inductive problem into a deductive one. This is famously true of frequentist
methods in the tradition associated with Neyman and Pearson (see [31]), but is arguably
true of Bayesian approaches as well. As Gelman and Shalizi [20] suggest, “Statistical
models are tools that let us draw inductive inferences on a deductive background,”
rendering statistical inferences “deductively guaranteed by probabilistic assumptions”
(p. 27). Indeed, one of the benefits of specifying a Bayesian probability model is that
it provides an answer to virtually any question about the probability of a hypothesis
conditional on data. Given the model and the data, this answer follows as a matter of
logic.

Causal underdetermination is likewise confronted with methods for formulating
precise inductive assumptions, sometimes allowing answers to causal questions to be
derived by mere calculation.

Example 1.1 (Do-calculus). As one prominent example, the do-calculus of Pearl and
collaborators (see [33] and Chapter 3 of [34]) establishes systematic correspondences
between qualitative (“graphical”) properties of a causal scenario and certain conditional
independence statements involving causal quantities. A typical causal quantity of interest
is the (average) causal effect, e.g., how likely Y is to take on value y given an intervention
setting X to x. In a formal language (introduced in the sequel as Lcausal), we write this as
P([X = x]Y = y), or more briefly, P([x]y).

Absent assumptions, it is never possible to infer the value of P([x]y) from observational
data [5]. Suppose, however, that we could assume the causal structure has something like
the following shape (known in the literature as the front door graph):

X Z Y

U

For a standard example, we might assume that any causal effect of smoking (X) on
cancer (Y) will be mediated by tar deposited in the lungs (Z), and moreover that any
unknown sources of variation (U) on X or on Y (or on both), such as a person’s genotype,
do not directly influence Z. Under these circumstances, the do-calculus licenses several
substantive causal assumptions, which may be rendered precisely in Lcausal. Let Γ be the
set of equality statements below:

(i) P([x]z) = P(z|x),
(ii) P([z]x) = P(x),
(iii) P([x]y|[x]z) = P([x, z]y) = P([z]y),
(iv) P([z]y|[z]x) = P(y|x, z).
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For instance, (i) says that the causal effect of X = x on Z = z simply coincides with
the conditional probability P(Z = z|X = x). Appealing to a combination of laws of
probability and distinctively causal laws involving the “causal-conditional” statements
like [x]y, it is possible to show that the following equality is in fact entailed by the
statements Γ, that is, by (i)–(iv):

P([x]y) =
∑
z

P(z|x)
∑
x′

P(y|x′, z)P(x′). (1)

In other words, (1) shows that the causal effect of X = x on Y = y can simply be
calculated from suitable observational data involving the variables X,Y,Z.

Methods such as these extend beyond the specific problem of estimating causal
effects, to include estimation of counterfactual quantities as well. For instance, we may
want to determine—from experimental data and background assumptions—the joint
probability that an individual would survive if and only if they are assigned a certain
treatment, a quantity we would write as P([X = 1]Y = 1 ∧ [X = 0]Y = 0). Inferential
techniques similar to those in Example 1.1 have been employed in such settings, and
have even been automated (e.g., [14]).

More broadly, a number of different approaches to inductive inference, both
statistical and causal, can be assimilated to a regiment something like this:

Inductive Assumptions + Data |= Inferential Conclusion. (2)

In Example 1.1, Γ are the inductive assumptions, the data would be information about
P(X,Y,Z), and the conclusion would be an estimate of the causal effect of X = x on
Y = y. In a standard Bayesian analysis, the inductive assumption might be a prior
probability model for some latent variables (e.g., parameters for a class of probability
measures), while the data would be values of some observable variables, and the
conclusion might be the posterior values for the hidden variables, or perhaps posterior
predictive values for some yet-to-be-observed variables. A critical job of the statistician
or data scientist is to identify suitable inductive assumptions that a relevant party
judges reasonable (or, ideally if feasible, which are themselves empirically verifiable)
and that are sufficiently strong to license meaningful conclusions from the types of
data available.

From this vantage point our titular question takes on a new significance. Rather than
asking about the difficulty of an inference task in terms of the strength of assumptions
needed to justify the inference, we could instead ask how difficult it is in general,
computationally speaking, to reason from inductive assumptions (together with data)
to an inferential conclusion, in the strong sense of (2). In other words, we ask how
difficult questions like (2) could be across different logical languages for describing
relevant assumptions, data, and conclusions.

The contrast of interest in this article is between languages Lprob, suitable for
probabilistic reasoning, and languages Lcausal, which extend the corresponding
probabilistic languages to encompass causal reasoning in addition. In short, Lprob

encompasses “pure” probabilistic reasoning about some set of random variables. In
Lcausal we also reason about the probabilities of causal conditionals, the causal effect
P

(
[x]y

)
being a simple example. Such mixed reasoning is crucial for applications like

the do-calculus, where causal conclusions depend on distinctively causal assumptions
(such as (i)–(iv) in Example 1.1). Some of the emblematic principles of Lcausal reveal
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a subtle interplay between the probabilistic and causal-conditional components. For
example, the following formula states that if causal interventions which set the values
of the variable X thereby affect the values taken the variable Y, then the converse
cannot be true:

P
(
[x]y ∧ [x′]y′

)
> 0 → P

(
[y]x ∧ [y′]x′

)
= 0. (3)

This formula emerges as an instance of a more general scheme in a complete
axiomatization of Lcausal (see [25]), implying that X and Y cannot each causally affect
the other.

In light of the considerable empirical (and expressive) gulf between these two kinds
of languages, we might expect to see a parallel jump in computational complexity when
moving from Lprob to Lcausal. In a certain respect, Lcausal can be seen as a combination of
logics, embedding one modal system (a conditional logic) inside another (a probability
logic), with non-trivial interactions between the two (such as (3)). It is common
wisdom that such combinations may in general drive up complexity, in some cases
even resulting in undecidability (see, e.g., [28]). As a famous example, even seemingly
innocuous combinations of modalities for knowledge and time (each independently of
low complexity) can lead to Π1

1-hardness [21]. The present work introduces two main
results, which show that this does not happen here: causal reasoning and probabilistic
reasoning are, in a precise and robust sense, equally difficult.

The distinction between Lprob and Lcausal is orthogonal to another distinction,
namely how much arithmetic we admit in our formal language of probability over
a set of probability terms P(�). A wide range of probability logics have been studied
in the literature, from pure qualitative comparisons between probability terms (e.g.,
[19]) to richer fragments capable of reasoning about polynomials over such terms
(e.g., [40]). For any such choice Lprob of probabilistic language we can consider the
extension Lcausal to allow not only probability terms, but also causal-probability terms
like those introduced above. A strength of our analysis is that we provide a complexity-
reflecting reduction from Lcausal to Lprob in a way that is independent of our choice
of probabilistic primitives. Thus, across the landscape of probability logics, we see no
increase in complexity. Summarizing, our main result states:

Theorem 1.2 Probabilistic reasoning is no harder than causal reasoning. In particular:

1. Reasoning about (causal or non-causal ) probabilities is as hard as reasoning about
sums of (causal or non-causal ) probabilities; both are as hard as reasoning about
Boolean formulas, or about sums of real numbers.

2. Reasoning about (causal or non-causal ) conditional probabilities is as hard as
reasoning about arbitrary polynomials in (causal or non-causal ) probabilities;
both are as hard as reasoning about arbitrary polynomials in real numbers.

The above theorem is stated formally below as Theorem 3.3. While the relationship
between probabilistic and causal languages is our main focus, it is worth pointing
out that some of our results are of interest beyond the connection with causality.
In particular, we find that reasoning in the language of conditional comparative
probability is precisely as hard as reasoning in the full existential first-order theory of
real numbers (∃R), thus establishing another notable example of a problem complete
for this complexity class. It is also noteworthy that this expressively weak probabilistic
language is—from a computational perspective—as complex as the most expressive
causal languages we consider in the paper (namely, Lpoly

causal).
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110 MILAN MOSSÉ, DULIGUR IBELING, AND THOMAS ICARD

1.1. Relation to previous work. There is a long line of work on probability logic,
including a host of results about complexity [1, 18, 32, 42]. As just mentioned, our
contribution advances this literature. Concerning causal reasoning, there have been a
number of complexity studies for various non-probabilistic causal notions [4, 16]. Most
germane to the present study is Halpern’s [22] analysis of the satisfiability problem for
deterministic reasoning about causal models, which he shows to be NP-complete (the
same as propositional logical reasoning). Eiter and Lukasiewicz [16] studied numerous
model-checking queries in a probabilistic setting, including the problem of determining
the probability of a specific causal query. They show that this problem is complete for
the class #P, the “counting analogue” to NP which also characterizes the problem
of determining (approximations for) probabilities of (even very simple) propositional
expressions [35].

Our interest in the present contribution is the complexity of reasoning—viz. testing
for satisfiability, validity, or entailment, as portrayed in (2)—for probabilistic and
causal languages. While this angle has not yet been explored thoroughly in the
literature, our study is indebted to, and draws upon, much of this previous work.
Theorem 1.2 synthesizes as well as greatly extends a heretofore piecemeal line of
results [18, 24, 25]. Moreover, the results just mentioned by Halpern [22] and by Eiter
and Lukasiewicz [16]—see also [13]—could be said to lend further support to the claim
that causal reasoning is no more difficult (in the sense of computational complexity)
than purely probabilistic reasoning.

1.2. Overview of the paper. In the next two sections (Sections 2 and 3), we introduce
the languages and the notions from computational complexity needed to state Theorem
1.2 more formally. The proof of this main result appears in Section 4. Finally, in Section
5 we zoom out to consider what our results show about the relationship between
probabilistic and causal reasoning, as well as consider a number of outstanding
problems in this domain. In our presentation we assume no prior knowledge of
causal modeling, complexity theory, or probability logic. Only elementary logic and
probability are presupposed.

§2. Introducing causal and probabilistic languages. In this section, we introduce the
syntax and semantics for a series of probabilistic and causal languages. With a precise
syntax and semantics in hand, we illustrate that these languages form an expressive
hierarchy.

2.1. Syntax. Let V be a (possibly infinite) collection, representing the (endoge-
nous) random variables under consideration. Informally, these are the variables that
we may want to observe, change, query, or otherwise reason about explicitly.

For each variable V ∈ V, let Val(V ) denote the finite signature (range) of V. For
example, for two binary variables we have V = {X,Y}with Val(X ) = Val(Y ) = {0, 1}.
We introduce the following deterministic languages:

Lint := � | V = v | Lint ∧ Lint, V ∈ V, v ∈ Val(V ),

Lprop := V = v | ¬Lprop | Lprop ∧ Lprop, V ∈ V, v ∈ Val(V ),

Lfull := [Lint]Lprop | ¬Lfull | Lfull ∧ Lfull.

Choose either Lprop or Lfull as the base language L. The former is essentially a
propositional language with extended ranges, while the latter is a causal conditional
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language. The semantics of these formulas will be introduced in Section 2.2, but
intuitively we can interpret a formula of Lfull, such as [X = 1]Y = 0, as expressing
a subjunctive conditional: were X to take on value 1, then Y would come to have value
0. We understand the conditional causally, in a sense to be made precise below.

So-called terms over the base language are the main ingredient of our probabilistic
languages. The most basic term is P(�) for � ∈ L, representing the probability of �. By
varying the composite terms admitted, we can define polynomial, conditional, linear,
and comparative languages. Where �, �′ ∈ L are formulas of L:

Tpoly(L) is generated by the grammar t := P(�) | t + t′ | t · t′,
Tcond(L) is generated by the grammar t := P(� | �′),
Tlin(L) is generated by the grammar t := P(�) | t + t′,
Tcomp(L) is generated by the grammar t := P(�).

We define for each ∗ ∈ {comp, lin, cond, poly} the causal and purely probabilistic
languages:

L∗
prob := t ≥ t | ¬L∗

prob | L∗
prob ∧ L∗

prob, t ∈ T∗(Lprop),

L∗
causal := t ≥ t | ¬L∗

causal | L∗
causal ∧ L∗

causal, t ∈ T∗(Lfull).

Several of these probabilistic languages have appeared in the literature. For instance,
Lpoly

prob appeared already in early work by Scott and Krauss [40], while Llin
prob was

introduced explicitly by Fagin et al. [18]. The language Lpoly
causal was introduced and

studied recently in [25] (see also [5, 16]). Many of these languages, however, have not
yet received explicit treatment.

2.2. Semantics.

2.2.1. Structural causal models. The semantics for all of these languages will be
defined relative to structural causal models, which can be understood as a very general
framework for encoding data-generating processes. In addition to the endogenous
variables V, structural causal models also employ exogenous variables U as a source of
random variation among endogenous settings. For extended introductions, see, e.g.,
[5, 34].

Definition 2.1. A structural causal model (SCM) M is a tuple M = (F ,P,U,V), with:

(a) V a set of endogenous variables, with each V ∈ V taking on possible values
Val(V ),

(b) U a set of exogenous variables, with each U ∈ U taking on possible values
Val(U ),

(c) F = {fV }V∈V a set of structural functions, such thatfV determines the value of
V given the values of the exogenous variables U and those of the other endogenous
variables V ′ ∈ V, and

(d) P a probability measure on a �-algebra �(U) on U.

Here we will assume for convenience that Val(V ) and Val(U ) are all finite.

In addition, we adopt the common assumption that our SCMs are recursive:

Definition 2.2. An SCM M is recursive if there is a well-order ≺ on V such that F
respects ≺ in the following sense: for any V ∈ V, whenever v1, v2 : V 
→ Val(V ) have
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112 MILAN MOSSÉ, DULIGUR IBELING, AND THOMAS ICARD

the property that v1(V ′) = v2(V ′) for all V ′ ≺ V , we are guaranteed that fV (v1, u) =
fV (v2, u).

Intuitively, M is recursive if for allV ∈ V, the functionfV ensures that the value of V
is determined only by the exogenous random variablesU ∈ U and endogenous random
variables V ′ ∈ V for which V ′ ≺ V . Thus in a recursive model M, the probability
measure P on �(U) induces a joint probability distribution P(V) over values of the
variables V ∈ V.

Causal interventions represent the result of a manipulation to the causal system, and
are defined in the standard way (e.g., [34, 43]):

Definition 2.3. An intervention is a partial function i : V 
→ Val(V ). It specifies
variables dom(i) ⊆ V to be held fixed and the values to which they are fixed. An
intervention i induces a mapping, also denoted i, of systems of equations F = {fV }V∈V,
such that i(F) is identical to F , but with fV replaced by the constant function
fV (·) = i(V ) for each V ∈ dom(i). Similarly, where M is a model with equations F , we
write i(M) for the model which is identical to M but with the equations i(F) in place
of F .

In order to guarantee that interventions lead to a well-defined semantics, we work
with structural causal models which are measurable:

Definition 2.4. We say that M is measurable if under every finite intervention i, the
joint distribution P(V) associated with the model i(M) is well-defined.

For measurable models, one can define a notion of causal influence:

Definition 2.5. A model M induces the influence relation Vi � Vj when there exist
values v, v′ ∈ Val(Vj) and interventions α, α′ differing only in the value they impose upon
Vi for which1

M |= P
(
[α]Vj = v ∧ [α′]Vj = v′

)
> 0.

Given an enumeration of variables V1, ... , Vn compatible with a well-order ≺, the model
M is compatible with ≺ when it induces no instance Vi � Vj with i > j.

To illustrate the preceding definitions, we return to the front door graph shown in
Example 1.1, and demonstrate an example of an SCM that is compatible with this
graph:

Example 2.6. Consider the SCM M = (F ,P,U,V), with the exogenous U =
{U,UX ,UY ,UZ}, each of which has probability 1/2 of being 1 and probability 1/2 of being
0, and with three endogenous variables V = {X,Y,Z}. The equations F = {fV }V∈V are
given by

fX (UX ,U ) = U ∧UX ,
fZ(X,UZ) = X ∧UZ,

fY (Z,UY ,U ) = Z ∧U ∧UY .
We observe that M is measurable and recursive with the ordering ≺ given byX ≺ Z ≺ Y .
Further, X � Z and Z � Y , so that M indeed realizes the front door graph and is
compatible with ≺.

1 The truth definition for |= is introduced formally below in Section 2.2.2.
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2.2.2. Interpretations of terms and truth definitions. It suffices to give the semantics
for Lpoly

causal, since this language includes all of the other languages introduced above.
A model is a recursive and measurable SCM M = (F ,P,U,V). For each assignment
u : U 
→ Val(U ) of values to exogenous variables, each V ∈ V, and each v ∈ Val(V ),
we define F , u |= V = v if the equations F together with the assignment u assign the
value v to V. Conjunction and negation are defined in the usual way, giving semantics
for F , u |= � for any � ∈ Lprop. If F , u |= � holds for all u, then we simply write
F |= � . When the relation F , u |= � does not depend on u at all—that is, we have
F , u |= � iff F , u′ |= � for all u, u′ and all formulas �—we say that the equations F are
deterministic. For �, � ′ ∈ Lprop, we write � |= � ′ when F |= � → � ′ for all F , where
material implication is defined in the usual way.

For each intervention α ∈ Lint and each � ∈ Lprop, we define F , u |= [α]� iff
iα(F), u |= � , where iα is the intervention which effects the assignments described
by α. We also allow that α may be the trivial intervention �, in which case we simply
write � instead of [α]� . We define

�P(�)�M = P
(
{u : F , u |= �}

)
.

For conditional probability terms we define �P(�|�′)�M = 1 when �P(�′)�M = 0 and
using the above definition and the usual ratio definition otherwise. For two terms t1, t2,
we define M |= t1 ≥ t2 iff �t1�M ≥ �t2�M. The semantics for negation and conjunction
are defined in the usual way, giving a semantics for M |= ϕ for any ϕ ∈ Lpoly

causal.
With this semantics, probability behaves as expected. For example, we have the

following validity for any �1, �2:

Add. P(�1 ∧ �2) + P(�1 ∧ ¬�2) = P(�1).

Causal interventions behave as expected as well. Indeed, fix any model M with
equations F , any variable V ∈ V, and any assignment u of values to the exogenous
variables. Then V takes on at least and at most one value upon the intervention α: this
is trivial if α intervenes on V, and it otherwise follows immediately from the fact that
once u is fixed, the values of all variables are determined by the equations iα(F). In
other words, in the language L∗

causal for any ∗ ∈ {comp, lin, cond, poly}, we have the
validity for all M and u:

Def.
∧

v,v′∈Val(V )
v �=v′

¬[α](V = v ∧ V = v′) ∧
∨

v∈Val(V )

[α](V = v).

More generally, for each α ∈ Lint, the indexed box [α] can be thought of as a normal,
functional modal operator.

Having introduced the syntax and semantics for several languages and pointed to
some basic validities, we recall in the next subsection various results and examples that
illustrate the expressive relationships between these languages.

2.3. A two-dimensional expressive hierarchy.

Definition 2.7. For a formula ϕ in any of the languages just introduced, let Mod(ϕ) =
{M : M |= ϕ} be the class of its models. For two languages L1 and L2, we say that L2 is
at least as expressive as L1 if for every ϕ ∈ L1 there is some� ∈ L2 such that Mod(ϕ) =
Mod(�). We say L2 is strictly more expressive than L1 if L2 is at least as expressive as
L1 but not vice versa.
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In this section, mostly rehearsing familiar results and examples, we illustrate that the
expressivity of the languagesL∗ forL ∈ {Lprob,Lcausal} and ∗ ∈ {comp, lin, cond, poly}
form an expressive hierarchy along two axes. First, the purely probabilistic language
L∗

prob is always less expressive than the corresponding causal language L∗
causal. Second,

Lcomp is less expressive than both Llin and Lcond, both of which are less expressive than
the language Lpoly. Where each arrow indicates a strict increase in expressivity, the
hierarchy can be shown graphically:2

Lcomp
prob

Lcond
prob

Llin
prob

Lpoly
prob

Lcomp
causal

Lcond
causal

Llin
causal

Lpoly
causal

2.3.1. First axis: from probabilistic to causal. To illustrate the expressivity of causal
as opposed to purely probabilistic languages, we recall a variation by Bareinboim et al.
[5] on an example due to Pearl [34]:

Example 2.8 (Causation without correlation). Let M1 = (F ,P,U,V), where U
contains two binary variablesU1, U2 such that P(U1) = P(U2) = 1/2, and V contains two
variables V1, V2 such that fV1 = U1 and fV2 = U2. Then V1 and V2 are independent.
Having observed this, one could not conclude that V1 has no causal effect on V2; indeed,
consider the model M′, which is like M, except with the mechanisms:

fV1 = 1U1=U2 ,

fV2 = U1 + 1V1=1,U1=0,U2=1.

Here 1S is the indicator function for statement S, equal to 1 if S holds and 0 otherwise.
In this case PM(V1, V2) = PM′(V1, V2), so that the models are indistinguishable in any
of the probabilistic languages L∗

prob. However, the models are distinguishable in Lcomp
causal,

and so in all of the other causal languages. Indeed, note that PM
(
[V1 = 1]V2 = 1

)
= 1/2

while PM′
(
[V1 = 1]V2 = 1

)
= 3/4. Then, for instance, the following statement

P
(
[V1 = 1]V2 = 1

)
= P

(
[V1 = 1]V2 = 0

)

belongs to Lcomp
causal and distinguishes M from M′.

As shown in [5] (cf. also [45]), the pattern in Example 2.8 is universal: for any model
M it is always possible to find some M′ that agrees with M on all of Lpoly

prob but disagrees

on Lpoly
causal.

3

2 The arrow in the center of these squares is meant to indicate that L∗
prob is less expressive than

L∗
causal for any choice of ∗ ∈ {comp, lin, cond, poly}.

3 The Causal Hierarchy Theorem of Bareinboim et al. [5] (refer to [26] for a topological
version, enabling the relevant generalization to infinite V) involves an intermediate language
between Lpoly

prob and Lpoly
causal, capturing the type of causal information revealed by controlled

experiments. Even this three-tiered hierarchy is strict, and in fact one can go further to obtain
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Theorem 2.9. Lpoly
causal is more expressive than Lpoly

prob. What is stronger, no Lpoly
prob-theory

(i.e., maximally consistent set in this language) uniquely determines a Lpoly
causal-theory.

2.3.2. Second axis: from qualitative to quantitative. Focusing just on probabilistic
languages, we will show that Lcomp

prob is less expressive than both Llin
prob and Lcond

prob , and

that both of these are less expressive than the language Lpoly
prob. In each case, it suffices to

give two measures P1(V) and P2(V) which are indistinguishable in the less expressive
language but which can be distinguished by some statement in the more expressive one.

Comparative probability. First, we claim that Lcomp
prob is less expressive than Llin

prob.
Suppose we have just a single binary variable X, abbreviatingX = 1 by q andX = 0 by
¬q. Then let P1(q) = 2/3 so that P1(¬q) = 1/3, and let P2(q) = 3/5 so that P2(¬q) = 2/5.
The qualitative order on the four events q,¬q,�,⊥ is the same, but, for instance,
P1(q) = P1(¬q) + P1(¬q), while P2(q) = P2(¬q) + P2(¬q).

Next, we recall an example due to Luce [29], which shows thatLcomp
prob is less expressive

than Lcond
prob . Let p, q, r each be events corresponding to the three possible values taken

by a random variable. Consider the measures P1(p) = 5/9,P1(q) = 3/9,P1(r) = 1/9 and
P2(p) = 6/9,P2(q) = 2/9,P2(r) = 1/9. Then the two orders are the same, because for
i ∈ [2],

Pi(�) > Pi(p ∨ q) > Pi(p ∨ r) > Pi(p) > Pi(q ∨ r) > Pi(q) > Pi(r) > Pi(⊥).

However, the conditional probabilities differ:P1(r|q ∨ r) < P1(q|p ∨ q), whileP2(r|q ∨
r) > P2(q|p ∨ q). In other words, the measuresP1 andP2 are indistinguishable inLcomp

prob

but distinguishable in Lcond
prob .

Polynomials in probabilities. To show that Llin
prob is less expressive than Lpoly

prob, we

simply identify a formula ϕ ∈ Lpoly
prob such that there is no � ∈ Llin

prob with Mod(ϕ) =
Mod(�). For this we can take the example P(A ∧ B) = P(¬A ∨ ¬B) ∧ P(A|B) =
P(B). (This is in fact expressible already in Lcond

prob .) This enforces that P(B) = 1/
√

2,
while Ibeling et al. [27] show that every formula in Llin

prob has models in which every
probability is rational.

Finally, we give an example to show that Lcond
prob is less expressive than Lpoly

prob. As
above, let p, q, r be events corresponding to possible values taken by a random variable.
Define P1(p) = 3/20,P1(q) = 4/20, and P1(r) = 13/20, while P2(p) = 3/20 – .03,P2(q) =
4/20 – .01, and P2(r) = 13/20 + .04. One can verify by exhaustion that all comparisons of
conditional probabilities agree between P1 and P2, and thus they are indistinguishable
in Lcond

prob . At the same time, there are statements in Lpoly
prob in which the models differ.

For example, P1(r)P1(q) < P1(p), whereas P2(r)P2(q) > P2(p). This shows that Lcond
prob

is less expressive than Lpoly
prob. Further, we observe that P1,P2 can be distinguished in

an infinite hierarchy of increasingly expressive causal languages between Lpoly
prob and Lpoly

causal.
Because we are showing that there is a complexity collapse even from the most expressive to
the least expressive systems, we are not concerned in the present work with these intermediate
languages.
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Llin
prob: Pi(q) ≥ 0.2 for i = 1 but not for i = 2, and this statement is equivalent to the

statement in Llin
prob that

Pi(q) + ··· + Pi(q)︸ ︷︷ ︸
10 times

≥ Pi(�) + Pi(�).

Together, this observation and the earlier remark that P(A ∧ B) = P(¬A ∨ ¬B) ∧
P(A|B) = P(B) is expressible in Lcond

prob show that Llin and Lcond are incomparable
in expressivity.

Summarizing the results of this section:

Theorem 2.10. Llin and Lcond are incomparable in expressive power. Both are strictly
more expressive than Lcomp and strictly less expressive than Lpoly.

§3. Introducing computational complexity. In this section, we introduce the
ideas from complexity theory needed to state our main results. We denote by
SAT∗

prob,SAT
∗
causal the satisfiability problems for L∗

prob,L∗
causal, respectively, where

∗ ∈ {comp, lin, cond, poly}. There are two key definitions:

Definition 3.1. Say that a map ϕ 
→ � preserves and reflects satisfiability when ϕ is
satisfiable if and only if � is satisfiable. Such a map is called a many-one reduction of
ϕ to �. Such a map is said to run in polynomial time if it is computable by a Turing
machine in a number of time steps that is a polynomial function of the length |ϕ| of
the input formula. When the Turing machine is non-deterministic, the map is said to be
non-deterministic as well; in this case we say that the reduction is an NP-reduction.

Definition 3.2. A decision problem maps an input, represented as a binary string, to
an output “yes” or “no.” For example, SAT∗

prob maps a standard encoding of the formula
ϕ ∈ L∗

prob to “yes” if it is satisfiable and to “no” otherwise. When each member of a
collection C of decision problems can be reduced via some deterministic, polynomial-time
map to a particular decision problem c ∈ C, one says that the problem c is C-complete.
The class C of decision problems is called a complexity class.

When a problem c is complete for some complexity class, this means that the
complexity class C fully characterizes the difficulty of the problem: the problem c
is at least as “hard” as any of the problems in C, and it is itself in C. Thus any two
problems which are complete for a complexity class are equally hard, since each can
be reduced in deterministic polynomial time to the other. Complete problems facilitate
results relating complexity classes: to show that a class C is contained in another C′, it
suffices to give deterministic, polynomial-time, many-one reduction from a problem c
which is complete for C to any problem c′ ∈ C′.

Fagin et al. [18] showed that SATlin
prob is complete for the complexity class NP. That

SATcomp
prob is also NP-complete follows quickly from this result and the Cook–Levin

theorem [12], which says that Boolean satisfiability is NP-complete as well. For clarity,
we include these known results in the statement of our main result, which gives com-
pleteness results for all of the other probabilistic and causal languages defined above:

Theorem 3.3. We characterize two sets of tasks:

1. SATcomp
prob ,SAT

lin
prob,SAT

comp
causal,SAT

lin
causal are NP-complete.
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2. SATcond
prob ,SAT

poly
prob,SAT

cond
causal,SAT

poly
causal are ∃R-complete.

This is the more formal statement of Theorem 1.2.

Since problems that are complete for a class are all equally hard, our main results
imply that causal and probabilistic reasoning in these languages do not differ in
complexity. In the remainder of this section, we introduce the complexity classes
NP and ∃R. We note that the inclusions NP ⊆ ∃R ⊆ PSPACE are known [9], where
PSPACE is the set of problems solvable using polynomial space; it is an open problem
whether either inclusion is strict. Further, NP and PSPACE are closed under many-one
NP-reductions, and ten Cate et al. [11] show that ∃R is also closed under many-one
NP-reductions:

Definition 3.4. A complexity class C is closed under many-oneNP reductions if to show
that a problem is in C, it suffices to find a polynomial-time NP-reduction of the problem
to one that is known to be in C.

3.1. The class NP. The class NP contains any problem that can be solved by a
non-deterministic Turing machine in a number of steps that grows polynomially in
the input size. Equivalently, it contains any problem solvable by a polynomial-time
deterministic Turing machine, when the machine is provided with a polynomial-size
certificate, which we think of as providing the solution to the problem, or “lucky
guesses.” In this case we think of the deterministic Turing machine as a verifier, tasked
with ensuring that the certificate communicates a valid solution to the problem.

Hundreds of problems are known to be NP-complete. Among them are Boolean
satisfiability and the decision problems associated with several natural graph properties,
for example possession of a clique of a given size or possession of a Hamiltonian path.
See [36] for a survey of such problems and their relations.

3.2. The class ∃R. The Existential Theory of the Reals (ETR) contains all true
sentences of the form

there exist x1, ... , xn ∈ R satisfying S,
where S is a system of equalities and inequalities of arbitrary polynomials in the
variables x1, ... , xn. For example, one can state in ETR the existence of the golden
ratio, which is the only root of the polynomial f(x) = x2 – x – 1 greater than one, by
“there exists x > 1 satisfying f(x) = 0.” The decision problem of saying whether a
given formula ϕ ∈ ETR is complete (by definition) for the complexity class ∃R.

The class ∃R is the real analogue of NP, in two senses. Firstly, the satisfiability
problem that is complete for ∃R features real-valued variables, while the satisfiability
problems that are complete for NP typically feature integer- or Boolean-valued
variables. Secondly, and more strikingly, Erickson et al. [17] recently showed that while
NP is the class of decision problems with answers that can be verified in polynomial
time by machines with access to unlimited integer-valued memory, ∃R is the class of
decision problems with answers that can be verified in polynomial time by machines
with access to unlimited real-valued memory.

As with NP, a myriad of problems are known to be ∃R-complete. We include some
examples that illustrate the diversity of such problems:

• In graph theory, there is the ∃R-complete problem of deciding whether a given
graph can be realized by a straight line drawing [39].
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• In game theory, there is the ∃R-complete problem of deciding whether an (at
least) three-player game has a Nash equilibrium with no probability exceeding
a fixed threshold [7].

• In geometry, there is the ∃R-complete “art gallery” problem of finding the
smallest number of points from which all points of a given polygon are
visible [2].

• In machine learning, there is the ∃R-complete problem of finding weights for
a neural network trained on a given set of data such that the total error of the
network falls below a given threshold [3].

For discussions of further ∃R-complete problems, see [10, 38].

§4. Our results. In this section, we prove our main result (Theorem 1.2). To do
this, we first establish that one can reduce satisfiability problems for causal languages
to corresponding problems for purely probabilistic languages.

4.1. Reduction.

Definition 4.1. Fix a set OP of operations on R, and for a given placeholder set S, let
OP(S) be the set of terms generated by application of operations in OP to members of
S. Define

Lprob = t1 ≥ t2 | ¬Lprob | Lprob ∧ Lprob, ti ∈ OP
(
{P(�) : � ∈ Lprop}

)
,

Lcausal = t1 ≥ t2 | ¬Lcausal | Lcausal ∧ Lcausal, ti ∈ OP
(
{P(�) : � ∈ Lfull}

)
.

The semantics for these languages are restricted to recursive SEMs.

Proposition 4.2 (Reduction). There exists a many-one NP reduction from SATLcausal

to SATLprob .

We first give a prose overview of the main ideas underlying the reduction. Fix
ϕ ∈ Lcausal. The key observation is that the reduction is straightforward when every �
with P(�) mentioned in ϕ ∈ Lcausal is a complete state description, where a complete
state description says, for each possible intervention and each variable, what value that
variable takes upon that intervention. Indeed, complete state descriptions have three
nice properties:

1. Polynomial-time comparison to ordering. One can easily check whether a
complete state description implies influence relations conflicting with a given
order≺on the variables appearing in it. Indeed, one simply reads which variables
influence which variables of the intervention statements appearing in �.

2. Existence of model matching probabilities. If a collection of complete state
descriptions does not conflict with an order ≺, then any probability distribution
on the descriptions � has a recursive model that induces it; briefly, one can simply
take a distribution over deterministic models for the mutually unsatisfiable
descriptions �.

3. Small model property. At most |ϕ| complete state descriptions are mentioned
in ϕ, and so at most that many receive positive probability in any model
satisfying ϕ.

These properties will allow a reduction to go through. Indeed, fix ϕ ∈ Lcausal. Given
that ϕ is satisfiable, one can request as an NP certificate an ordering ≺ and (relying
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on #3) the small set of complete state descriptions receiving positive probability.
One then checks (relying on #1) that these descriptions do not conflict with ≺.
Since ϕ is satisfiable only if there exists a measure satisfying its inequalities, one can
safely translate those inequalities into the probabilistic language, giving a satisfiable
probabilistic formula �. If the probabilistic formula � is satisfiable via some measure,
one can (relying on #2) infer a corresponding recursive model for the causal formula
ϕ. Thus the map ϕ 
→ � preserves and reflects satisfiability.

As it turns out, the same reduction goes through in the general case, when the � for
which P(�) is mentioned in ϕ need not be complete state descriptions. Roughly, the
strategy is to simply replace every � such that P(�) is mentioned in ϕ ∈ Lcausal with an
equivalent disjunction of complete state descriptions. The primary complication with
this strategy is that there are too many possible interventions, variables, and values
those variables could take on; truly complete state descriptions are exponentially long,
making the reduction computationally intractable. To address this issue, we work with
a restricted class of state descriptions, which feature only the interventions, variables,
and values appearing in the input formula ϕ:

Definition 4.3. Fix a formula ϕ ∈ Lprop ∪ Lcausal. Let I contain all interventions
appearing in ϕ and let Vϕ denote all variables appearing in ϕ. For each variable V ∈ Vϕ ,
let Assignmentsϕ(V ) contain V = v whenever V = v or V = v appears in ϕ, and let
it also contain one assignment V = v∗ not satisfying either of these conditions. Let
Δϕ contain all possible interventions paired with all possible assignments, where the
possibilities are restricted to ϕ:

Δϕ =
{ ∧
α∈I

(
[α]

∧
V∈Vϕ

�αV

)
: �αV ∈ Assignmentsϕ(V ) for V ∈ Vϕ

}
.

Call
∧
V∈Vϕ �

α
V the results of the interventionα, and�αV the result for V of the intervention

α. We writeα ∈ � when � ∈ Δϕ as shorthand forα ∈ I. We writeV ∈ α whenα contains
some assignment V = v.

The following three lemmas confirm that even working with this restricted class
of state descriptions, (versions of) the three nice properties outlined above are
retained.

Definition 4.4. Fix a formula ϕ ∈ Lprop ∪ Lcausal and Δ′ ⊆ Δϕ . Fix a well-order ≺
on Vϕ . Enumerate the variables V1, ... , Vn in Vϕ in a way consistent with ≺. The
formula � ∈ Δ′ is compatible with ≺ when there exists a model M that assigns positive
probability to � and that is compatible with≺. Define Δ≺ to contain all � ∈ Δϕ compatible
with ≺.

Lemma 4.5 (Polytime comparison to ordering). Fix ϕ ∈ Lprop ∪ Lcausal. Given a set
Δ′ ≤ |ϕ|, one can check that Δ′ ⊆ Δϕ and that each � ∈ Δ′ is compatible with ≺ in time
polynomial in |ϕ|.

This lemma shows that given some statement ϕ and a set of formulas Δ′, one
can efficiently (i.e., in polynomial time) check that the formulas � ∈ Δ′ satisfy two
conditions. The first condition is that the formulas � describe, in the fullest terms
possible, the ways that ϕ could be true (i.e., Δ′ ⊆ Δϕ). The second is that the formulas
� do not rule out the causal influence relations specified by the order ≺, for example
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the relations X ≺ Z ≺ Y induced by the model of smoking’s effect on lung cancer
discussed in Examples 1.1 and 2.6.

Proof. Checking that Δ′ ⊆ Δϕ is fast, since one can simply scan ϕ to make sure that
ϕ mentions precisely interventions mentioned in all � ∈ Δ′; that ϕ mentions precisely
the variables V appearing in the results of every intervention in � ∈ Δ′; and that for
each such variable V, at most of one of its assignments V = v in Δ′ does not appear as
an assignment or a negated assignment in ϕ.

We now give an algorithm to check whether � ∈ Δ′ is compatible with ≺. We first
give prose and formal descriptions of the algorithm and then consider its runtime and
correctness.

Order the variables V1, ... , Vn in Vϕ in a way consistent with the well-order ≺. For
each variable Vi with i ∈ [n], do the following. First, for each intervention α in �
that mentions Vi , confirm that the intervention leads to satisfiable results: if � says
that upon the intervention α which sets Vi = v, the variable Vi takes a value v′ = v,
we reject �, which necessarily has probability 0. Next, for each pair of interventions
α, α′ in � which do not intervene on the value assigned to Vi , check whether both
interventions result in the same assignments to variables Vj for all j < i ; we say that
such interventions α, α′ have agreement on all Vj for j < i . If this is the case, and yet �
says that these two interventions result in different values for Vi , reject �; since Vi can
depend only on the values of Vj for j < i , when these values are constant, Vi must be
constant as well. Here is a formal description of the algorithm. We will write V ∈ α
to denote that the variable V appears (or is mentioned) in the intervention α, i.e., that
V = v is a conjunct in α for some value v.

Algorithm 1: Check that � ∈ Δ′ is compatible with ≺.
Order the variables V1, ... , Vn in Vϕ according to ≺
for i in 1,...,n do

for intervention α in � with Vi = v appearing in α do
if Vi = v′ with v = v′ appears in the conjunction of assignments

following α then
return � is unsatisfiable, and so incompatible with ≺

end
end
for interventions α, α′ in � agreeing on all Vj for j < i , and such that Vi /∈ α
and Vi /∈ α′ do

if α results in Vi = v and α′ results in Vi = v′ with v = v′ then
return � is incompatible with ≺

end
end

end
return � is compatible with ≺

Below, we show that the above algorithm indeed runs in time poly(|ϕ|) and is correct,
but for clarity, let us step through its execution on some examples. Consider the input
� := [V1 = 0]V1 = 1. Then, by the first “if” clause in the algorithm, � is rejected as
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unsatisfiable, since the intervention [V1 = 0] leads to impossible results. For another
example, let �′ be the formula

[V1 = 1 ∧ V4 = 1](V1 = 1 ∧ V2 = 0 ∧ V3 = 1 ∧ V4 = 1)

∧[V1 = 1 ∧ V4 = 0](V1 = 1 ∧ V2 = 0 ∧ V3 = 0 ∧ V4 = 0).

Then in the second “if” clause on the third iteration, �′ is rejected as incompatible
with ≺, because the interventions α = [V1 = 1 ∧ V4 = 1] and α′ = [V1 = 1 ∧ V4 = 0]
do not intervene on V3, result in the same values for V1 and V2, and do result in the
same value for V3, contradicting the fact that V3’s value must depend only on those
assigned to V1 and V2.

It is helpful in considering these examples and the runtime of the algorithm to
consider the following table of values:

Results of all interventions in the input formula �′

Intervention V1 V2 V3 V4

α = [V1 = 1 ∧ V4 = 1] V1 = 1 V2 = 0 V3 = 1 V4 = 1
α′ = [V1 = 1 ∧ V4 = 0] V1 = 1 V2 = 0 V3 = 0 V4 = 0

In effect, the second “for” loop over all interventions α, α′ constructs the above
table, starting with the leftmost column V1 and proceeding to the right. The algorithm
rejects �′ when two cells in the column Vi and rows α and α′ (with Vi /∈ α, α′) do not
assign the same value to Vi but agree on all columns Vj to the left. The restriction that
Vi does not appear in α or α′ must be included because distinct interventions α, α′

can disagree on the values they impose on Vi when intervening on it, regardless of the
values assigned to Vj with j < i ; such disagreement does not constitute a violation of
the ordering ≺.

Let us first confirm that this algorithm runs in time poly(|ϕ|) and then show its
correctness. We observe that max{|�|, n} = poly(|ϕ|). The algorithm contains anO(n)
loop over V1, ... , Vn and two O(|�|2) loops over interventions. The work performed
inside of these loops takes time O(n · |�|), since we are simply reading � and checking
values for the variables Vj for all j < i , which can be stored in a lookup table (like the
one above) of size O(n · |�|). Thus the runtime of the algorithm is indeed poly(|ϕ|).

Finally, we confirm that the algorithm is correct. Fix any � ∈ Δ′ and recall that � is
of the form ∧

α

(
[α]

∧
V∈Vϕ

�αV

)
,

where �αV ∈ Assignmentsϕ(V ). First, suppose that the above algorithm declares �
compatible with ≺. We will inductively construct a deterministic model of equations
F = {fVi }i∈[n] and show that F |= � and F is compatible with ≺. Define fV1 to
be the constant function sending all arguments to �V1 , where �V1 is the value of V1

upon any intervention α ∈ � with V1 ∈ α; the second “for” loop in the algorithm
ensures that there is at most one such value, and if there is no such value, �V1

can be chosen arbitrarily. Then fV1 |=
∧
α[α]�αV1

. Indeed, this holds by construction
for α with V1 ∈ α, and it holds trivially for α with V1 ∈ α, because, by the first
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122 MILAN MOSSÉ, DULIGUR IBELING, AND THOMAS ICARD

“for” loop, each α is compatible with its results. For the inductive step, define
fVi (V1 = �V1 , ... , Vi–1 = �Vi–1) = �Vi , where �Vi is the value of Vi upon any
interventionα ∈ � for whichVi ∈ α and �αVj = �Vj for all j < i ; by the same reasoning,
there is at most one such value, and if there is no such value, �Vi can be chosen
arbitrarily. Then by the same reasoning, fVi |=

∧
α[α]�αVi . Because this holds for all

i ∈ [n], we have F |= �. By construction, F is compatible with ≺, as desired.
Now, suppose that � is compatible with ≺, so that � is not self-contradictory and

there exists some F = {fVi }i∈[n] compatible with ≺ for which F |= �. We claim
that the above algorithm returns that � is indeed compatible with ≺ . Suppose for
a contradiction that on iteration i, the algorithm rejects � as incompatible with ≺.
Since � is not self-contradictory, it follows by the definition of the algorithm that for
some interventions α, α′ (with Vi ∈ α, α′) which agree on all Vj for j < i , we have
[α]Vi = v and [α′]Vi = v′ with v = v′. Let �j be the value such that the assignments
Vj = �j for j < i result from the interventions α and α′. Then

F |= [V1 = �1, ... , Vi–1 = �i–1](Vi = v ∧ Vi = v),
which is impossible.

Lemma 4.6 (Existence of model matching probabilities). Fixϕ ∈ Lprop ∪ Lcausal, and
suppose P is a measure on Δ≺ ⊆ Δϕ for some ≺. Then there is a model M inducing the
measure P on Δ≺, i.e., �P(�)�M = P(�) for all � ∈ Δ≺.

Proof. Let us first define the model M and then show that it is recursive. Let Vϕ
denote all variables appearing inϕ. We define M =

(
F ,PM, {U},Vϕ

)
, where Val(U ) =

Δϕ and PM(U = �) = P(�) for all � ∈ Δϕ . Enumerate the variables Vϕ = {V1, ... , Vn}
in a way consistent with ≺. Fix any � ∈ Δϕ . Recall that � is of the form

∧
α

(
[α]

∧
i∈[n]

�αVi

)
,

where �αVi ∈ Assignmentsϕ(Vi). If � is satisfiable, it has a model, i.e., a deterministic
system of equations F � = {f�Vi }i∈[n] such that F � |= �. Turning now to define the
equations F = {fVi }i∈[n], for any assignment v to the variables Vj for j < i , put

fVi (v, U = �) = f�Vi (v).

By the above equations and mutual unsatisfiability of � ∈ Δ≺, it follows that for all
such �

�P(�)�M = PM[U = �] = P(�),

as required.
It remains for us to confirm that M is recursive. We claim that the influence

relationships Vi � Vj induced by the model M are simply those induced by the
deterministic models4 F � . This would complete the proof, since by assumption we
have � ∈ Δ≺, so that F � is compatible with ≺, and therefore i < j. Suppose that
M induces the influence relation Vi � Vj . Then for some interventions α, α′ which

4 That is, according to Definition 2.5 when each deterministic model is thought of as a
probabilistic model in which its respective system of functions is selected with no uncertainty.
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disagree only on the value assigned to Vi , some assignment u to U, and some distinct
values v, v′ of Vj , we have

F , u |= [α]Vj = v ∧ [α′]Vj = v′.

Let � be the value that u assigns to U. We claim that

F � |= [α]Vj = v ∧ [α′]Vj = v′.

Indeed, this follows from the fact that fVi (v, U = �) = f�Vi (v) for all i ∈ [n].

Lemma 4.7 (Small model property). Fix ϕ ∈ Lprop ∪ Lcausal. If ϕ is satisfiable, then
ϕ has a small model, in the sense that the model assigns positive probability to at most
|ϕ| elements � ∈ Δϕ .

Proof. Since ϕ is satisfiable, it has a recursive model M with some order ≺. Given
the existence of M, we claim there exists a small model Msmall. Indeed, consider the
system of equations in the unknowns {P(�) : � ∈ Δ≺} given by

∑
�∈Δ≺

P(�) = 1,

∑
�∈Δ≺
�|=�

P(�) = PM(�), for each � such that P(�) is mentioned in ϕ.

There are at most |ϕ| equations, and since for each �, there exists some � ∈ Δ≺ for
which � |= �, the equations are non-trivial. Suppose for the moment that P = PM is a
solution. Then by a fact of linear algebra (see Lemma 4.8 of [18]), since the at most |ϕ|
linear equations have a solution, they have a solution P = Psmall in which at most |ϕ|
of the variables Psmall(�) are nonzero. By Lemma 4.6, we then infer from the existence
of Psmall that the desired model Msmall exists.

It remains to confirm that P = PM is indeed a solution to the above system of
equations. To show this, we must show that for � with P(�) mentioned in ϕ,

P(�) =
∑
�∈Δ≺
�|=�

P(�).

By our choice of ≺, we know that the recursive model M will assign probability 0
to all � ∈ Δ≺. It thus suffices to show that the above holds when Δ≺ is replaced with
the larger set Δϕ . To do this, we will put � into a more manageable form; afterwards,
establishing the above equality will be relatively straightforward.

If � mentions only one intervention α, we claim that |= � ↔ [α]� , where � is an
assignment of variables in ϕ to various values. Indeed, negation and conjunction
distribute over [α], in the sense that |= ¬[α]� ↔ [α]¬� and |= [α]� ∧ [α]� ′ ↔ [α](� ∧
� ′), so [α] can be assumed to appear on the outside. Further, since by the validity Def,
each variable takes one and only one value upon the intervention α, we can replace �
with a disjunction over all assignments to all variables in ϕ which agree with � . Let
us use vϕ to denote such an assignment

∧
V∈Vϕ �V where �V ∈ Assignments(V ), as

defined in Definition 4.3. Summing up:

|= � ↔ [α]
∨

vϕ |=�
vϕ.
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The exact same ideas apply when � mentions several interventions [αi ]�i for i ∈ [n], in
which case

|= � ↔
∧
i

[αi ]
∨

vϕ |=�i

vϕ ↔
∨

viϕ |=�i

∧
i

[αi ]viϕ.

Thus, since all interventions, variables, and assignments appearing in � are mentioned
by the � ∈ Δϕ , and one can always add trivial interventions [α]�, we see that it is a
validity that � is equivalent to a disjunction of formulas � ∈ Δϕ . Finally, we conclude
with the observation that since the � ∈ Δϕ are mutually unsatisfiable, additivity for
the measure P (according to which P(� ∨ �′) = P(�) + P(�′) for mutually unsatisfiable
�, �′) tells us that

P(�) =
∑
�∈Δϕ
�|=�

P(�),

as desired.

With the lemmas in hand, we now give the desired reduction:
Proof of Proposition 4.2. Fix a SATLcausal instance ϕ. We first describe the NP

certificate and many-one reduction and then prove soundness and completeness. The
NP certificate consists of an order ≺ on Vϕ and a set of Δ′ of size at most |ϕ|. The
reduction proceeds as follows.

1. Check that Δ′ ⊆ Δϕ and that each � ∈ Δ′ is compatible with ≺. We note that by
Lemma 4.5, this can be done in time polynomial in |ϕ|.

2. Replace P(�) appearing inϕ with P
( ∨

�∈Δ′
�|=�
f(�)

)
, where f is a bijection between

Δ′ and an arbitrary set of mutually unsatisfiable statements in Lprop. Call the
resulting Lprob formula ϕ(Δ′).

We note that checking � |= � can be done in polynomial time, since � is a
complete description of the results of all interventions.

First we show completeness. If ϕ is satisfiable, by Lemma 4.7 it has a small model
that assigns positive probability only to some Δ′ ⊆ Δ≺ for some ordering ≺, and the
probabilities given by this model also solve ϕ(Δ′). So the certificate exists and the
reduction succeeds in producing a satisfiable formula.

Now we show soundness. If ϕ(Δ′) is satisfiable, it is solved by some measure P. This
is a measure defined onf(Δ′), and so on Δ′ ⊆ Δ≺. Thus since each � ∈ Δ′ is compatible
with ≺, by Lemma 4.6 there exists a model M such that �P(�)�M = P(�) for � ∈ Δϕ .
This M is a model of the inequalities stated by ϕ and is recursive, so ϕ is satisfiable
as well. �

4.2. Characterization. Recall that Theorem 3.3 characterizes two sets of tasks:

We characterize two sets of tasks:

1. SATcomp
prob ,SAT

lin
prob,SAT

comp
causal, and SAT

lin
causal are NP-complete.

2. SATcond
prob ,SAT

poly
prob,SAT

cond
causal, and SAT

poly
causal are ∃R-complete.
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We can express these results in a diagram, which holds for ∗ ∈ {prob, causal} :

SATcomp
∗

SATcond
∗

SATlin
∗

SATpoly
∗

∃R

NP

The line separates ∃R-complete problems from NP-complete problems, and an arrow
from one satisfiability problem to another indicates that any instance of the former
problem is an instance of the latter.

We note that these results imply that there exists a many-one, polynomial-
time, deterministic many-one reduction from SAT∗

causal to SAT∗
prob, for any ∗ ∈

{comp, lin, cond, poly}, whereas Proposition 4.2 only gives a non-deterministic
reduction. To illustrate, recall the model of smoking’s effect on lung cancer discussed
in Examples 1.1 and 2.6. Consider again the task of determining whether smoking
makes one more likely to possess lung cancer, given one’s causal assumptions Γ and
one’s observation of statistical correlation between smoking, tar deposits in the lungs,
and lung cancer. In other words, the task is determine whether

Γ + Correlational data |= P
(
[X = 1]Y = 1

)
> P

(
[X = 0]Y = 1

)
, (4)

where the correlational data include statements such as P(Y = 1|X = 1) > P(Y =
1|X = 0) and 0.7 > P(Y = 1|X = 1) > 0.6. The above result implies that this task is
no more difficult than that of determining whether an analogous entailment

Γ′ + Correlational data |= Probabilistic conclusion (5)

holds, given purely probabilistic assumptions Γ′. Indeed, given Equation (4), one can
efficiently (i.e., in polynomial time) construct a probabilistic equation with the form of
Equation (5) such that both entailments have the same truth-value; the causal inference
goes through if and only if the purely probabilistic inference goes through.

To show the results in the second part of Theorem 1.2, we borrow the following
lemma from [2]:

Lemma 4.8. Fix variables x1, ... , xn, and set of equations of the form xi + xj = xk
or xixj = 1, for i, j, k ∈ [n]. Let ∃R-inverse be the problem of deciding whether there
exist reals x1, ... , xn satisfying the equations, subject to the restrictions xi ∈ [1/2, 2]. This
problem is ∃R-complete.

Here, for reasons of space we only outline the two steps in the proof of Lemma
4.8. First, one shows that finding a real root of a degree 4 polynomial with rational
coefficients is ∃R-complete, and then one repeatedly performs variable substitutions
to get the constraints xi + xj = xk and xixj = 1. Second, one shows that any such
polynomial has a root within a closed ball about the origin, and then one shifts and
scales this ball to contain exactly the range [1/2, 2].
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With the lemma in hand, we show the theorem:

Proof of Theorem 1.2. We begin with the first statement. Using the fact that
SATcomp

prob is NP-hard, it suffices to show that SATlin
causal is inside NP; indeed, since all of

the satisfiability problems mentioned in the first statement include SATcomp
prob and are

included by SATlin
causal, they would all then be NP-hard and inside NP, and so would

all be NP-complete. It is known both that SATlin
prob is inside NP and that NP is closed

under many-one NP reductions; by Proposition 4.2, this places SATlin
causal inside NP, as

desired.
We turn now to the second statement. By the same reasoning, it suffices to show

that SATcond
prob is ∃R-hard and that SATpoly

causal is inside ∃R. We claim that SATpoly
prob is inside

∃R; ∃R is closed under many-one NP reductions [11], so Proposition 4.2 will place
SATpoly

causal in ∃R immediately.
To show that SATpoly

prob is inside ∃R, we slightly extend a proof by [25] that the problem

is inPSPACE. Suppose thatϕ ∈ Lpoly
prob is satisfied by some modelP. Again using the fact

that ∃R is closed under NP-reductions, we will provide a reduction of ϕ to a formula
� ∈ ETR. Let E contain all � such that P(�) appears in ϕ. Then consider the formula

∑
�∈Δϕ

P(�) = 1,

∑
�∈Δϕ
�|=�

P(�) = P(�) for � ∈ E.

The measure P satisfies the above formula, so by Lemma 4.7, the above formula is
satisfied by some model Psmall assigning positive probability to a subset Δ+ ⊆ Δϕ of
size at most |E| ≤ |ϕ|. Thus adding to ϕ the constraint

∑
�∈Δ+ P(�) = 1 and replacing

each P(�) appearing in ϕ with
∑
�∈Δ+:�|=� P(�) gives a formula � belonging to ETR

which has a model, namely Psmall—and conversely, the mutual unsatisfiability of the
� ∈ Δ+, together with the fact that they sum to unity, ensures that any model of � is a
model of ϕ. Further, the size constraints on E and Δ+ ensure that � can be formed in
polynomial time.

Let us conclude the proof by showing thatSATcond
prob is∃R-hard. To do this, consider an

∃R-inverse problem instanceϕ with variables x1, ... , xn. It suffices to find in polynomial
time a SATcond

prob instance � preserving and reflecting satisfiability. We first describe the
reduction and then show that it preserves and reflects satisfiability.

Corresponding to the variables x1, ... , xn, let us define events �1, ... , �n, with an
additional event �n+1, and with the events �i ∈ Lprop mutually unsatisfiable. We
introduce further variables �i,j for i, j ∈ [n]. We must now translate into Lcond

prob the
constraints of the form (a) xi ∈ [1/2, 2], (b) xi + xj = xk , and (c) xixj = 1. At a
high level, the strategies are (a) to require that for any model P of �, we have
P(�i) ∈ [1/4n, 1/n], (b) to express constraints on sums using probabilities of disjoint
unions of events, and (c) to express constraints on products using conditional
probabilities. The reduction will proceed so that the map xi 
→ xi/2n sends solutions of
ϕ to solutions of� (and so that the map’s inverse sends solutions of� to solutions ofϕ).

For each i ∈ [n], we would like to require that 1/4n ≤ P(�i) ≤ 1/n, adding to these
the constraint P(�n+1) = P(¬

∨
i≤n �i); the former is analogous to the constraint that
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xi ∈ [1/2, 2], and the latter ensures that the probabilities P(�i) sum to 1. The only
obstacle to including the constraint 1/4n ≤ P(�i) ≤ 1/n is that Lcond

prob does not contain
constants for 1/4n and 1/n.

This obstacle can be addressed as follows. We replace all instances of 1/n with
P

( ∨
	∈[m]
b	=1
�i

)
, where:

• The variable b	 denotes the 	-th digit in the binary expansion b1 ... bm of 1/n.
• The events �	 ∈ Lprop for 	 ∈ [m] are mutually unsatisfiable and mention

neither any of the variables mentioned in the �i,j for i, j ∈ [n] nor any of the
variables mentioned by �k for k ∈ [n + 1].

• We impose the constraint P(�1) = P(¬�1) and, for each integer 	 between 2
and m, impose the two constraints P(�	) = P(�	,	–1 ∧ �	–1) and P(�	,	–1|�	–1) =
P(�	–1). Here, the events �	,	–1 mention none of the variables mentioned in �	′
for any 	 ′ ∈ [m], nor those mentioned in �i,j , �i for any i, j ∈ [n + 1].

These constraints ensure that for any solution P to �, we have P(�j) = 2–j , so that

(by mutual unsatisfiability) P

( ∨
	∈[m]
b	=1
�	

)
=

∑
	∈[m]
b	=1

P(�	) = 1/n. The same procedure

allows for the expression of arbitrary rational constants, for example 1/4n or 1/4n2.
Turning next to sums and products, we replace each constraint of the form

xi + xj = xk with P(�i ∨ �j) = P(�k), and we replace each constraint of the form
xixj = 1 with the two constraints P(�i,j |�i) = P(�j) and P(�i,j ∧ �i) = 1/4n2. The latter
two constraints are included in order to ensure that for any solution P to �, we have
P(�i) · P(�j) = 1/4n2, giving the desired multiplicative constraint. The events �i,j ∈ Lprop

for i, j ∈ [n] are to mention none of the variables mentioned in �k for any k ∈ [n + 1].
This completes our description of the reduction. The operations performed are very

simple, so to check the runtime of this reduction, it suffices to check the length of �.
The probabilistic equation corresponding to xi + xj = xk is of the same length and
introduces no new variables besides the original �i for i ∈ [n]. We next observe that
our substitution for the equation xixj = 1 introduces two new constraints, each with
length polynomial in |ϕ|. Finally, we observe that the constraints introduced in the
above itemized list number at most 2m, where m = �log 1/4n2�, each being of length
polynomial in m, which is in turn polynomial in |ϕ|.

Let us now show that the map ϕ 
→ � preserves satisfiability. Given a solution
x1, ... , xn to ϕ, we will construct a solution to �. Define P(�i) = xi/2n for i ∈ [n] and
P(�n+1) = 1 –

∑
i≤n P(�i). Then as 1/2 ≤ xi ≤ 2, we have 1/4n ≤ P(�i) ≤ 1/n, and the

probabilities P(�i) sum to 1, as required. Further, since x + xj = xk , we have (by
mutual unsatisfiability) P(�i ∨ �j) = P(�i) + P(�j) = P(�k), as required. Finally, let us
check that the constraints P(�i,j |�i) = P(�j) and P(�i,j ∧ �i) = 1/4n2 are satisfied. Using
the definition of conditional probability, these amount to the constraint that

1
4n2 = P(�i) · P(�j),

which is satisfied, since P(�i) = xi/2n, P(�j) = xj/2n, and xixj = 1. To prove thatϕ 
→ �
reflects satisfiability, we use the same reasoning, this time defining xi = 2n · P(�i).

§5. Conclusion and outlook. We have shown that questions posed in probabilistic
causal languages can be systematically reduced to purely probabilistic queries, showing
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that the former are—from a computational perspective—no more complex than the
latter. In fact, we demonstrated a kind of bifurcation between two classes of languages.
On the one hand, languages encompassing at most addition enjoy an NP-complete
satisfiability problem, whether the language is causal or not. However, as soon as
we admit even a modicum of multiplication into the language, causal and probabilistic
languages become hard for the class ∃R, and even the full language of polynomials over
(causal) probability terms is ∃R-complete. At the low end, this applies to a language
with no explicit addition or multiplication, but just inequalities between conditional
probability terms, or even simple independence statements for pairs of variables. As
clarified in the resulting landscape of formal systems, we have identified an important
sense in which causal reasoning is no more difficult than pure probabilistic reasoning.
The substantial empirical and expressive gulf between causation and “mere (statistical)
association” is evidently not reflected in a complexity gap.

It should be acknowledged that, from the standpoint of inferential practice,
questions of the form (2) constitute just one part of a larger methodological pipeline.
In some sense this is only a final stage in the process of going from an inductive problem
to a deductive conclusion. The formulation of reasonable inductive assumptions can
itself be an arduous task, as can translating those assumptions into a language like
Lprob or Lcausal (that is, into the set Γ). Take once again the example of do-calculus
(Example 1.1). The idea behind this method is that in many contexts investigators will
be in a position to make reasonable qualitative (viz. graphical) assumptions, perhaps
justified by expert knowledge, to the effect that some variables are not causally impacted
in a direct way by certain other variables. Even when this method involves nothing
more than assuming a specific causal (directed acyclic) graph, it may still take work
to determine which causal-probabilistic statements are licensed by the graph. Many
subtasks in this connection have been studied. For instance, determining whether three
sets of variables in a graph stand in the so-called d-separation relation (which in turn
guarantees conditional independence) is known to be very easy (it is linear time; see,
e.g., [37]). Nonetheless, there are certainly other questions related to complexity that
one might ask in this and other settings.

Moving beyond statistical and causal inference tasks narrowly construed, the results
in this article raise a number of further research questions, both technical and
conceptual. For instance, one can easily imagine versions of our causal languages
in a multi-agent setting, with a (causal) probability operator Pa for multiple agents
a. As has been widely recognized, strategic interaction routinely involves reasoning
about causality and counterfactuals (see, e.g., [44]). Existing formal proposals for
capturing these styles of reasoning have been largely qualitative, with counterfactual
patterns formalized using models of belief revision rather than structural causal
models (see, e.g., [8]). Whereas (“pure”) probability-logical languages have been
thoroughly explored in the game theory literature (e.g., [23]), the causal-probability-
logical languages studied here would be quite natural to investigate in that context.
Echoing our themes in the present article, what happens to computational complexity in
this multi-agent setting, and specifically would a reduction to pure (multi-)probability
would still be possible?

In a more technical vein, there are natural questions about further extensions to
even the most expressive languages we considered. To take just one example, much
of probabilistic and causal reasoning employs tools from information theory like
(conditional) entropy that in turn rely on logarithmic principles, or alternatively (via
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inversion), reasoning about exponentiation. A major open problem in logic—known as
Tarski’s exponential function problem—is to determine whether the first-order theory
of the reals with exponentiation is decidable. Short of that, one might hope to show
that some of the weaker (causal-)probability languages studied here remain decidable,
perhaps even of relatively low complexity, when exponentiation is added. However,
for the strongest languages, such as Lpoly

prob, this may prove difficult. As Macintyre and
Wilkie [30] have shown, decidability of the existential theory of the reals with the unary
function ex would already imply a positive answer to Tarski’s problem.

The reader will surely think of further questions and extensions pertaining to our
work in this article. We hope that the systems, results, and methods offered here will
be useful in these various directions moving forward, and more generally will help to
catalyze further research at the fruitful intersection of logic, probability, causality, and
complexity.
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[36] Ruiz-Vanoye, J. A., Pérez-Ortega, J., Pazos R., R. A., Dı́az-Parra, O.,

Frausto-Solı́s, J., Huacuja, H. J. F., Cruz-Reyes, L., & Martı́nez F., J. A. (2011).
Survey of polynomial transformations between NP-complete problems. Journal of
Computational and Applied Mathematics, 235(16), 4851–4865.

[37] Schachter, R. D. (1988). Probabilistic inference and influence diagrams.
Operations Research, 36, 589–605.

[38] Schaefer, M. (2009). Complexity of some geometric and topological problems.
In Eppstein, D., and Gansner, E. R., editors. International Symposium on Graph
Drawing. Berlin: Springer, pp. 334–344.

[39] ———. (2013). Realizability of graphs and linkages. In Pach, J., editor. Thirty
Essays on Geometric Graph Theory. New York: Springer, pp. 461–482.

[40] Scott, D., & Krauss, P. (1966). Assigning probabilities to logical formulas.
Studies in Logic and the Foundations of Mathematics, 43, 219–264.

[41] Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning:
From Theory to Algorithms. New York: Cambridge University Press.

[42] Speranski, S. O. (2017). Quantifying over events in probability logic: An
introduction. Mathematical Structures in Computer Science, 27(8), 1581–1600.

[43] Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Causation, Prediction, and
Search. Cambridge, MA: MIT Press.

[44] Stalnaker, R. C. (1996). Knowledge, belief and counterfactual reasoning in
games. Economics and Philosophy, 12, 133–163.

[45] Suppes, P., & Zanotti, M. (1981). When are probabilistic explanations possible?
Synthese, 48, 191–199.

UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CA 94720-2390, USA

E-mail: milan mosse@berkeley.edu

STANFORD UNIVERSITY
STANFORD, CA 94305, USA

E-mail: duligur@stanford.edu
E-mail: icard@stanford.edu

https://doi.org/10.1017/S1755020322000211 Published online by Cambridge University Press

mailto:milan_mosse@berkeley.edu
mailto:duligur@stanford.edu
mailto:icard@stanford.edu
https://doi.org/10.1017/S1755020322000211

	1 Motivation and preview
	1.1 Relation to previous work
	1.2 Overview of the paper

	2 Introducing causal and probabilistic languages
	2.1 Syntax
	2.2 Semantics
	2.2.1 Structural causal models
	2.2.2 Interpretations of terms and truth definitions

	2.3 A two-dimensional expressive hierarchy
	2.3.1 First axis: from probabilistic to causal
	2.3.2 Second axis: from qualitative to quantitative
	Comparative probability.



	3 Introducing computational complexity
	3.1 The class NP
	3.2 The class R

	4 Our results
	4.1 Reduction
	4.2 Characterization

	5 Conclusion and outlook

