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Abstract
Hyperelliptic mapping class groups are defined either as the centralizers of hyperelliptic involutions inside mapping
class groups of oriented surfaces of finite type or as the inverse images of these centralizers by the natural epimor-
phisms between mapping class groups of surfaces with marked points. We study these groups in a systematic way.
An application of this theory is a counterexample to the genus 2 case of a conjecture by Putman and Wieland on
virtual linear representations of mapping class groups. In the last section, we study profinite completions of hyper-
elliptic mapping class groups: we extend the congruence subgroup property to the general class of hyperelliptic
mapping class groups introduced above and then determine the centralizers of multitwists and of open subgroups
in their profinite completions.

1. Introduction

A hyperelliptic surface is a connected orientable differentiable surface of finite type S endowed with
a hyperelliptic involution, that is to say an automorphism υ of order 2 such that the quotient of S by
the action of this automorphism has genus 0. The hyperelliptic mapping class group ϒ(S) of (S, υ) is
the centralizer of υ in the mapping class group �(S) of the surface S. For a finite set of points P on S,
the hyperelliptic mapping class group ϒ(S, P) of the marked hyperelliptic surface (S, υ, P) is defined
to be the inverse image of ϒ(S) via the natural epimorphism from the mapping class group �(S, P) of
(S, P) to �(S).

Note that, in the above definition of ϒ(S, P), the marked pointsP have no relation with the hyperellip-
tic involution υ while, by definition, the sets of punctures and boundary components of S are preserved
by the action of υ. In particular, for P �= ∅, the hyperelliptic mapping class group ϒ(S, P) is not the
centralizer in �(S, P) of some hyperelliptic involution. This makes these objects more intractable than
the hyperelliptic mapping class groups usually considered in the literature where Birman-Hilden theory
allows to reduce most problems about them to the genus 0 case.

More precisely, Birman-Hilden theory relates the hyperelliptic mapping class group of a hyperelliptic
surface (S, υ) (without marked points) to the mapping class group of the quotient surface S/υ := S/〈υ〉
through the natural exact sequence (cf. [3, 4, 26]):

1→〈υ〉→ϒ(S)→ �(S/υ �Bυ),

where Bυ is the branch locus of the orbit map S→ S/υ and the image of ϒ(S) in �(S/υ �Bυ) is a finite
index subgroup which can be explicitly (and easily) described. This often reduces problems about the
hyperelliptic mapping class group ϒ(S) to problems about the genus 0 mapping class group �(S/υ �Bυ).

A primary source of interest for these groups is the fact that a closed genus 2 surface and a 1-
punctured, genus 1 surface support, modulo isotopy, a unique hyperelliptic involution υ, so that, for
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S of one of these types, we have �(S)=ϒ(S). This possibly explains why hyperelliptic mapping class
groups are usually considered for S a closed surface or a surface with a single boundary component.
However, it turns out that, for many questions, this approach is not sufficient.

Consider for instance the subgroup ϒ(S)γ of elements of ϒ(S) which preserve the isotopy class of a
symmetric (i.e. invariant under the action of the hyperelliptic involution υ) nonseparating simple closed
curve γ on S. Similarly to what happens for the mapping class group of S, this group can be described
in terms of the hyperelliptic mapping class groups of the hyperelliptic surface (S � γ , υ), but this is of
neither of the two types above.

In this paper, we describe the stabilizers of symmetric multicurves for hyperelliptic mapping class
groups in full generality (cf. Section 2.11). Contrary to what happens for mapping class groups, the
description of these stabilizers in terms of simpler mapping class groups is not straightforward. The
problem is that the standard Birman short exact sequence, which describes the mapping class group of
a surface with punctures in terms of the mapping class group of a surface with one less puncture, is
not available here. In fact, the description of the hyperelliptic mapping class group of a hyperelliptic
surface (S, υ) endowed with a pair of symmetric punctures is rather subtle and more so for a marked
hyperelliptic surface (S, υ, P). In the (unmarked) closed surface case, this problem was addressed by
Brendle and Margalit in Section 3 of [14] (cf. Theorem 3.2 ibid.).

In Section 3.8, we present two Birman short exact sequences for hyperelliptic mapping class groups
of surfaces endowed with a pair of symmetric punctures.

For a marked hyperelliptic surface (S, υ, P), where S is hyperbolic and without boundary, let Q ∈
S �P be such that Q �= υ(Q) and let S◦ := S � {Q, υ(Q)}. Let then ϒ(S◦, P)◦ be the index 2 subgroup
of ϒ(S◦, P) consisting of those elements which do not swap the two punctures on S◦ obtained remov-
ing Q and υ(Q). The main result of Section 3.8, and one of the main results of the paper, then is (cf.
Theorem 3.1 for a more general result):

Theorem A. With the above notations, there is a natural short exact sequence:

1→N◦ →ϒ(S◦, P)◦ →ϒ(S, P , Q)→ 1,

where N◦ is the normal subgroup generated by the Dehn twists about symmetric separating simple closed
curves on S◦ bounding a disc which contains no marked points and only the two punctures obtained
removing Q and υ(Q).

We do not know whether a proof of this theorem can be obtained by standard mapping class group
methods. We were only able to find a correct statement and a proof thanks to the geometric interpretation
of hyperelliptic mapping class groups as fundamental groups of moduli stacks of hyperelliptic curves
(cf. Section 3).

Theorem A is the version of Birman short exact sequence which turns out to be more useful for
the applications considered in the rest of the paper. A simpler result holds for unmarked surfaces
(cf. Theorem 3.2). This is a somewhat more geometric version of Theorem 3.2 in [14], where we also
deal with non-closed surfaces.

In Section 4.6, we describe generating sets for full and pure (see Definition 2.1) hyperelliptic mapping
class groups, thus generalizing some classical results by Birman, Hilden, and Humphries (cf. [3, 24]).

In Section 5, we study in more detail the complexes of symmetric curves introduced in Section 2.11.
The main result is that, for a marked hyperelliptic surface (S, υ, P) of genus at least 2, the hyperelliptic
nonseparating curve complex Cns(S, υ, P) (cf. Definition 2.7) is homotopic to a wedge of spheres of
dimension g− 1, as in the classical case.

In Section 6, we provide counterexamples to a hyperelliptic analogue (cf. Section 6.2) of a conjec-
ture by Putman and Wieland (cf. Conjecture 1.2 in [30] and Section 6.1). Let (S, υ, P) be a marked
hyperelliptic closed surface and fix a point Q ∈ S �P . The point pushing map identifies the funda-
mental group π1(S �P , Q) with a subgroup of the hyperelliptic mapping class group ϒ(S, P , Q). For
a finite index subgroup ϒλ of ϒ(S, P , Q), let �λ := π1(S �P , Q)∩ϒλ and let Sλ→ S be the, possibly
ramified, covering of closed surfaces which compactifies the covering (S �P)λ→ S �P associated
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with �λ. Restriction of inner automorphisms induces a linear representation ϒλ→ Sp (H1(Sλ, Q)). We
then prove (cf. Corollary 6.9):

Theorem B. For g(S)≥ 2 and 	P ≥ 4, there is a finite index subgroup ϒλ of ϒ(S, P , Q) such that the
associated linear representation ϒλ→ Sp (H1(Sλ, Q)) has a finite nontrivial orbit.

Since, for g(S)= 2, the hyperelliptic mapping class group ϒ(S, P , Q) identifies with the mapping
class group of the marked surface (S, P , Q), in particular, we get a counterexample in genus 2 to the
conjecture by Putman and Wieland mentioned above. This fills a gap, pointed out to me by Aaron
Landesman and Daniel Litt, in the proof of Theorem 3.13 in the, now-retracted, paper [13].

In Section 7, we study the profinite completions of the class of hyperelliptic mapping class groups
introduced above. For a hyperbolic marked hyperelliptic surface (S, υ, P), there is a natural faithful
outer representation ρ(S,P) : ϒ(S, P) ↪→Out (π1(S �P)) which, by the universal property of profinite
completions, induces a continuous outer representation:

ρ̂(S,P) : ϒ̂(S, P)→Out (π̂1(S �P)).

The congruence subgroup problem for hyperelliptic mapping class groups asks whether this repre-
sentation is faithful as well. In [6] and [11], this question was answered positively for S a closed surface of
genus≥ 1. In this paper, we extend the latter result to arbitrary hyperbolic marked hyperelliptic surfaces
(cf. Theorem 7.2):

Theorem C. Let (S, υ, P) be a hyperbolic marked hyperelliptic surface. Then, the congruence subgroup
property holds for the associated hyperelliptic mapping class group, that is to say, the representation
ρ̂(S,P) is faithful.

This is the first of a series of foundational results for profinite hyperelliptic mapping class groups
which includes a proof that hyperelliptic mapping class groups are “good” in the sense of a definition
by Serre (cf. Theorem 7.4) and the computation of the centralizers of multitwists and of open subgroups
of profinite hyperelliptic mapping class groups (cf. Corollary 7.8, Corollary 7.12 and Theorem 7.13).
These latter results will play an important role in a forthcoming paper on higher genus Grothendieck-
Teichmüller theory.

2. Hyperelliptic mapping class groups
2.1. Surfaces

Unless otherwise stated, in this paper, a surface S= Sk
g,n is a closed connected oriented differentiable

surface of genus g(S)= g from which n(S)= n points and k(S)= k open discs have been removed. A
surface S is hyperbolic if its Euler characteristic χ (S) is negative. For k= 0 (resp. n= 0), we let Sg,n :=
S0

g,n (resp. Sk
g := Sk

g,0). Also, we let Sg := Sg,0. The boundary of S is denoted by ∂S and let S
◦

:= S � ∂S,
so that S

◦ ∼= Sg,n+k. We let S be the closed surface obtained from S filling in the punctures and glueing a
closed disc to each boundary component, so that S∼= Sg.

A marked surface (S, P) is a surface S endowed with a set P of distinct marked points. The marked
surface (S, P) is hyperbolic if S �P has negative Euler characteristic. We denote by 
P the set P with
an order fixed on it. We then denote by P◦ the set of punctures of S and by P∂ the set of connected
components of ∂S.

2.2. Mapping class groups

For a surface S= Sk
g,n, we let �(S) and P�(S) be respectively the mapping class group and the pure

mapping class group associated with S. Note that the inclusion S
◦
↪→ S induces, by restriction, a natural
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homomorphism �(S) ↪→ �(S
◦
) whose image is the stabilizer of the partition of the punctures of S

◦
into

those which have a boundary in S and those which do not.
The mapping class group �(S, P) of the marked surface (S, P) is the group of relative, with respect to

the subset of points P , isotopy classes of orientation preserving diffeomorphisms of S. When isotopies
are further required to preserve an order on the set P , we denote the corresponding mapping class
group by �(S, 
P). The pure mapping class group P�(S, P) is the kernel of the natural homomorphism
�(S, P)→�P ×�P◦ ×�P∂

, where �P , �P◦ , and �P∂
are, respectively, the permutation groups on the

sets P , P◦, and P∂ . There is then a natural isomorphism P�(S, P)∼= P�(S
◦
�P).

2.3. Mapping class groups of disconnected surfaces

For some applications, it is useful to consider the mapping class group �(S, P) of a marked oriented dif-
ferentiable disconnected surface (S, P). This group can be easily described in terms of the mapping class
groups of the connected components of (S, P). Let S=∐h

i=1 Si be the decomposition in connected com-
ponents and let P i := P ∩ Si, for i= 1, . . . , h. Let us fix a set of representatives (Si1 , P i1 ), . . . , (Sik , P ik )
for the orbits of the action of �(S, P) on the set of marked connected components of S. Of course, two
marked connected components are in the same orbit, if and only if, they are diffeomorphic and sup-
port the same number of marked points. Let us denote by ni the cardinality of the �(S, P)-orbit of the
component (Si, P i) of (S, P), for i= 1, . . . , h. There is then an isomorphism:

�(S, P)∼=
k∏

j=1

(
�(Sij , P ij ) ��nij

)
, (1)

where �(Sij , P ij ) ��nij
denotes the wreath product of the mapping class group with the symmetric group

on nij letters.
A similar description holds for the mapping class group �(S, 
P) after replacing the �(S, P)-orbits of

the marked connected components of (S, P) with their �(S, 
P)-orbits. Note that a connected component
with a nontrivial marking has a trivial �(S, 
P)-orbit.

By definition, the pure mapping class group of (S, P) is instead just the direct product:

P�(S, P)∼=
h∏

i=1

P�(Si, P i). (2)

2.4. Relative mapping class groups

For a marked hyperbolic surface (S= Sk
g,n, P), we let �(S, P , ∂S) be the relative mapping class group

of the marked surface with boundary (S, P , ∂S), that is to say the group of relative, with respect to the
subspace P ∪ ∂S, isotopy classes of orientation preserving diffeomorphisms of S. Let δ1, . . . , δk be the
connected components of the boundary ∂S. Then, for a hyperbolic marked surface (S, P), the group
�(S, P , ∂S) is described by the natural short exact sequence:

1→
k∏

i=1

τZ

δi
→ �(S, P , ∂S)→ �(S, P)→ 1.

The relative pure mapping class group P�(S, P , ∂S) is the subgroup of �(S, P , ∂S) consisting of
those elements which admit representatives fixing pointwise the sets of marked points, punctures and
boundary components of S. For a hyperbolic marked surface (S, P), it is described by the short exact
sequence:

1→ P�(S, P , ∂S)→ �(S, P , ∂S)→�P ×�n ×�k→ 1.
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2.5. Hyperelliptic surfaces

A hyperelliptic surface (S, υ) is the data consisting of a surface S (cf. Section 2.1) together with a
hyperelliptic involution υ on S (i.e. a self-diffeomorphism υ of S such that υ2 = idS and the quotient
surface S/〈υ〉 has genus 0). A Weierstrass point, resp. puncture, resp. boundary component of (S, υ) is
a point, resp. puncture, resp. boundary component, which is preserved by the hyperelliptic involution
υ. We then denote by WP (S), resp. W◦(S), resp. W∂(S), the set of Weierstrass points, resp. punctures,
resp. boundary components on (S, υ). A marked hyperelliptic surface (S, υ, P) is a hyperelliptic surface
(S, υ) endowed with a set P of distinct marked points.

2.6. Hyperelliptic mapping class groups

For a hyperelliptic surface (S, υ), let us also denote by υ the image of the involution υ in the mapping
class group �(S) (note that this image is trivial if and only if g(S)= 0 and S is not hyperbolic). The
hyperelliptic mapping class group ϒ(S) of (S, υ) is then defined to be the centralizer of υ in �(S).

Let S/υ := S/〈υ〉 be the quotient surface, pυ : S→ S/υ be the orbit map and denote byBυ = pυ(WP (S))
the branch locus of pυ . Let then �(S/υ , Bυ)pυ

be the subgroup of the mapping class group �(S/υ , Bυ) con-
sisting of those elements which preserve the partitions of the sets of punctures and boundary components
of S/υ into those which are in the image of W◦(S) and W∂(S) by pυ and those who are not.

For a hyperbolic hyperelliptic surface (S, υ), there is then a natural short exact sequence (cf.
Corollary 12 in [26] and Proposition 3.1 in [27]):

1→〈υ〉→ϒ(S)→ �(S/υ , Bυ)pυ
→ 1, (3)

and a natural surjective representation:

ρW(S) : ϒ(S)→�WP (S) ×�W◦(S) ×�W∂ (S), (4)

where �WP (S), �W◦(S) and �W∂ (S) are, respectively, the symmetric groups on the sets WP (S), W◦(S) and
W∂(S).

Definition 2.1. The pure hyperelliptic mapping class group of a hyperbolic hyperelliptic surface (S, υ)
is defined to be the intersection inside the mapping class group �(S):

Pϒ(S) := ker ρW(S)∩ P�(S).

Remark 2.2. Note that, with this definition, Pϒ(S) � �(S) even for S= S2 and S= S1,1.

The short exact sequence (3) takes a simpler form for the pure hyperelliptic mapping class group (this
in part motivated the definition):

1→〈υ〉 ∩ Pϒ(S)→ Pϒ(S)→ P�(S/υ , Bυ)→ 1. (5)

Observe that P�(S/υ , Bυ)∼= P�(S/υ �Bυ). In particular, if S contains at least two symmetric punctures
or boundary components, then 〈υ〉 ∩ Pϒ(S)= {1} and there is a series of natural isomorphisms:

Pϒ(S)∼= P�(S/υ , Bυ)∼= P�(S/υ �Bυ).

Remark 2.3. Given a hyperbolic hyperelliptic surface (S, υ), let (S̃, υ) be the hyperelliptic surface
obtained removing from S all Weierstrass points and all Weierstrass boundary components. There
is then a natural injective homomorphism ϒ(S)→ϒ(S̃), induced by restriction of diffeomorphisms,
whose image is the stabilizer, under the representation ρW(S̃) : ϒ(S̃)→�W◦(S̃), of the partition of
W◦(S̃) induced by the natural embedding S̃ ↪→ S. In particular, for (S, υ) a hyperelliptic surface with
W◦(S)=W∂(S)=∅, restriction of diffeomorphisms induces a natural isomorphism ϒ(S)∼=ϒ(S̃).
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2.7. Hyperelliptic mapping class groups of a marked hyperelliptic surface

The hyperelliptic mapping class groups ϒ(S, P) and ϒ(S, 
P) of the marked hyperelliptic surface
(S, υ, P) are defined to be, respectively, the inverse images of ϒ(S) by the natural epimorphisms
�(S, P)→ �(S) and �(S, 
P)→ �(S).

The pure hyperelliptic mapping class group Pϒ(S, P) is the inverse image of Pϒ(S) by the natural
epimorphism P�(S, P)→ P�(S).

For a hyperbolic marked hyperelliptic surface (S, υ, P), with these definitions, for a point Q ∈ S �P ,
we get, by restriction of the usual Birman short exact sequence for the mapping class group of the marked
surface (S, P ∪ {Q}), the short exact sequences:

1→ π1(S �P , Q)→ Pϒ(S, P ∪ {Q})→ Pϒ(S, P)→ 1,

1→ π1(S �P , Q)→ϒ(S,
−−−−→P ∪ {Q})→ϒ(S, 
P)→ 1

and
1→ π1(S �P , Q)→ϒ(S, P , Q)→ϒ(S, P)→ 1,

(6)

where we let ϒ(S, P , Q) be the stabilizer of the point Q for the action of the hyperelliptic mapping class
group ϒ(S, P ∪ {Q}) on the set of marked points P ∪ {Q}.

Remark 2.4. Note that, if the set of points P is preserved by the hyperelliptic involution υ, then (S �
P , υ) is a hyperelliptic surface. However, unlike the case of mapping class groups, for P �= ∅ and (S, P)
hyperbolic, we have:

ϒ(S, P) �ϒ(S �P) and Pϒ(S, P) � Pϒ(S �P).

In fact, by definition, ϒ(S �P) and Pϒ(S �P) are contained in the centralizer of the hyperelliptic
involution υ in �(S �P) while both ϒ(S, P) and Pϒ(S, P) contain the kernel of the epimorphism
P�(S, P)∼= P�(S �P)→ P�(S) which does not commute with υ.

For m≥ 2, there is a natural representation ρ[m] : ϒ(S, P)→ Sp (H1(S, Z/m)) whose kernel we denote
by ϒ(S, P)[m] and call the abelian level of order m of ϒ(S, P). The pure hyperelliptic mapping class
group has then the following characterization:

Proposition 2.5. For S a closed surface of genus ≥ 2 or S= S1,1, we have:

Pϒ(S, P)=ϒ(S, 
P)[2].

Proof. Proposition 3.3 and Remark 3.4 in [6] imply that, for an unmarked hyperelliptic surface (S, υ)
as in the hypothesis, since both subgroups Pϒ(S) and ϒ(S)[2] of ϒ(S) contain the hyperelliptic involution
υ, there holds Pϒ(S)=ϒ(S)[2].

For the marked case, let π 
P : ϒ(S, 
P)→ϒ(S) be the natural epimorphism. Then, we have that
Pϒ(S, P)= π−1


P (Pϒ(S)) and ϒ(S, 
P)[2] = π−1

P (ϒ(S)[2]). Hence, the conclusion follows also in this

case.

2.8. Hyperelliptic mapping class groups of disconnected surfaces

A disconnected hyperelliptic surface (S, υ) is an oriented differentiable surface S endowed with an invo-
lution υ such that all connected components of S/υ := S/〈υ〉 have genus 0. We say that S is hyperbolic
if all its connected components are hyperbolic. The sets WP (S), W◦(S), and W∂(S) of Weierstrass points,
punctures, and boundary components of (S, υ) are defined as in Section 2.6.

The hyperelliptic mapping class group ϒ(S) of the disconnected surface (S, υ) is then defined to be
the centralizer of υ in the mapping class group �(S) (cf. Section 2.3).
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Let us observe that the hyperelliptic involution υ acts on the set of connected components of S and
that, if a component is not fixed by this action, it has genus 0. As in Section 2.3, let S=∐h

i=1 Si be the
decomposition in connected components and let Si1 , . . . , Sik be a set of representatives for their �(S)-
orbits. Let us further assume that υ(Sij )= Sij , for j= 1, . . . , t, and υ(Sij ) �= Sij , for j= t+ 1, . . . k. From
the isomorphism (1), it immediately follows that there is an isomorphism:

ϒ(S)∼=
t∏

j=1

(
ϒ(Sij ) ��nij

)
×

k∏
j=t+1

(
�(Sij ) ��nij /2

)
. (7)

For a hyperbolic disconnected hyperelliptic surface (S, υ), the hyperelliptic mapping class group ϒ(S)
then also fits in the natural short exact sequence:

1→〈υ〉→ϒ(S)→ �(S/υ , Bυ)pυ
→ 1,

where pυ : S→ Sυ is the natural map, Bυ its branch locus and the subgroup �(S/υ , Bυ)pυ
of �(S/υ , Bυ)

is defined in the same way as in Section 2.6. It follows that there is also a natural surjective
representation:

ρW(S) : ϒ(S)→�WP (S) ×�W◦(S) ×�W∂ (S).

The pure hyperelliptic mapping class group of a disconnected hyperbolic hyperelliptic surface (S, υ)
is then defined to be the intersection in the mapping class group �(S):

Pϒ(S) := ker ρW(S)∩ P�(S).

There is a natural short exact sequence:

1→〈υ〉 ∩ Pϒ(S)→ Pϒ(S)→ P�(S/υ , Bυ)→ 1.

In order to obtain an explicit description of Pϒ(S), let us put the decomposition of S in connected
components in the form:

S=
(

l∐
i=1

Si

)∐(
r∐

i=l+1

Si

)∐(
r∐

i=l+1

υ(Si)

)
, (8)

where υ(Si)= Si if and only if 1≤ i≤ l and r := h+l
2

. There is then an isomorphism:

Pϒ(S)∼=
l∏

i=1

Pϒ(Si)×
r∏

i=l+1

P�(Si). (9)

2.9. Hyperelliptic mapping class groups of marked disconnected surfaces

As in Section 2.6, for a marked disconnected hyperelliptic surface (S, υ, P), the hyperelliptic map-
ping class groups ϒ(S, P), ϒ(S, 
P) and Pϒ(S, P) are defined to be the inverse images of ϒ(S) and
Pϒ(S) under the natural homomorphisms �(S, P)→ �(S), �(S, 
P)→ �(S) and P�(S, P)→ P�(S),
respectively.

An explicit description of the hyperelliptic mapping class groups associated with a marked discon-
nected surface is, in general, complicated, but it is simple in the following case:

Proposition 2.6. Let us assume that all connected components of S are fixed by the hyperelliptic
involution υ. With the notations of Section 2.3, there is then an isomorphism:

ϒ(S, P)∼=
k∏

j=1

(
ϒ(Sij , P ij ) ��nij

)
, (10)

a similar one for ϒ(S, 
P) and an isomorphism:
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Pϒ(S, P)∼=
h∏

i=1

Pϒ(Si, P i). (11)

Proof. This is an easy consequence of the isomorphisms (7) and (9) and the Birman exact
sequences (6).

2.10. Relative hyperelliptic mapping class groups

The relative hyperelliptic mapping class group ϒ(S, ∂S) of the hyperelliptic surface with boundary
(S, υ, ∂S) is the centralizer of the hyperelliptic involution υ in the relative mapping class group �(S, ∂S).
For (S, υ) hyperbolic, there is also a natural surjective representation:

ρW(S) : ϒ(S)→�WP (S) ×�W◦(S) ×�W∂ (S).

The relative pure hyperelliptic mapping class group of the hyperbolic hyperelliptic surface (S, υ) is then
the intersection:

P�(S, ∂S) := ker ρW(S)∩ P�(S, ∂S).

Let δ1, . . . , δh be the connected components of the boundary ∂S which are fixed by υ. The remaining
boundary components can then be divided into pairs δh+1, υ(δh+1), . . . δk, υ(δk). The groups ϒ(S, ∂S) and
Pϒ(S, ∂S) are described by the natural short exact sequences:

1→∏k
i=1 Z→ϒ(S, ∂S)→ϒ(S)→ 1

and
1→∏k

i=1 Z→ Pϒ(S, ∂S)→ Pϒ(S)→ 1,

where the left hand maps send the i-th standard basis vector of
∏k

i=1 Z to the Dehn twist τδi , for 1≤ i≤ h,
and to the product of Dehn twists τδi · τυ(δi), for h+ 1≤ i≤ k.

The relative hyperelliptic mapping class group ϒ(S, P , ∂S) and relative pure hyperelliptic map-
ping class group Pϒ(S, P , ∂S) of a marked hyperelliptic surface (S, υ, P) are defined to be the inverse
images of ϒ(S, ∂S) and Pϒ(S, ∂S), respectively, via the natural epimorphisms �(S, P , ∂S)→ �(S, ∂S)
and P�(S, P , ∂S)→ P�(S, ∂S).

2.11. The complex of symmetric curves on (S, υ)

For a hyperbolic surface S, the complex of curves C(S) is defined to be the (abstract) simplicial complex
whose k-simplices consist of unordered (k+ 1)-tuples {[γ0], . . . , [γk]} of distinct isotopy classes of pair-
wise disjoint nonperipheral simple closed curves on S. For a hyperelliptic surface (S, υ), we then define
the complex of symmetric curves C(S, υ) to be the subcomplex of C(S) consisting of simplices fixed by
the hyperelliptic involution υ. More intrinsically and more generally, this can be defined as follows:

Definition 2.7.

• A multicurve is a set σ = {γ0, . . . , γk} of mutually disjoint simple closed curves on S. A multi-
curve σ on S is essential if its elements are in distinct isotopy classes and no element of σ is
peripheral. We say that a multicurve σ on a hyperelliptic surface (S, υ) is symmetric if υ(σ ) is
isotopic to σ .

• The complex of symmetric curves C(S, υ, P) of the marked hyperelliptic surface (S, υ, P) is
defined to be the (abstract) simplicial complex whose simplices are isotopy classes of essential
multicurves on S �P such that their image on S is symmetric. The complex of symmetric
nonseparating curves Cns(S, υ, P) is then the subcomplex consisting of those simplices σ ∈
C(S, υ, P) such that S � σ is connected.
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Remark 2.8. Note that any essential multicurve on S �P which becomes null-homotopic on S is, in
particular, (trivially) symmetric.

There is a natural action of the mapping class group �(S, P) of a marked hyperbolic surface (S, P)
on the curve complex C(S �P). The stabilizer �(S, P)σ of the simplex σ is described by the exact
sequence:

1→
∏
γ∈σ

τZ

γ
→ �(S, P)σ→ �(S � σ , P),

where the mapping class group �(S � σ , P) of the marked (possibly) disconnected surface (S � σ , P)
is described by the isomorphism (1) and the image of �(S, P)σ in this group has finite index. In fact,
it consists of those elements of �(S � σ , P) which preserve the gluing data on S � σ induced by its
embedding in S as encoded in the dual graph associated with σ (the finite connected graph obtained
collapsing to a point each connected component of the complement of a tubular neighborhood of σ in
S and then collapsing to a segment each connected component of the tubular neighborhood).

Let us denote by 
σ the simplex σ endowed with an order and an orientation on each of its elements.
The stabilizer P�(S, P)σ of a simplex σ ∈C(S �P) for the action of the pure mapping class group
P�(S, P) is then described by the short exact sequences:

1→ P�(S, P)
σ→ P�(S, P)σ→�σ±

and
1→∏

γ∈σ τZ

γ
→ P�(S, P)
σ→ P�(S � σ , P)→ 1,

(12)

where �σ± is the symmetric group on the set of oriented simple closed curves σ± := σ+ ∪ σ− and the
group P�(S � σ , P) is described by the isomorphism (2).

From these descriptions, we deduce a similar description for the stabilizers of the action of the hyper-
elliptic mapping class groups ϒ(S, P) and Pϒ(S, P) on the complex of symmetric curves C(S, υ, P) of
a marked hyperelliptic surface (S, υ, P).

Let us observe that, for σ ∈C(S, υ, P), we can choose a set of disjoint representatives on S �P ,
which we also denote by σ , such that there holds υ(σ )= σ , so that (S � σ , υ) is a, possibly disconnected,
hyperelliptic surface. The stabilizer ϒ(S, P)σ of a simplex σ ∈C(S, υ, P) is then described by the exact
sequence:

1→
∏
γ∈σ

τZ

γ
→ϒ(S, P)σ→ϒ(S � σ , P), (13)

where the hyperelliptic mapping class group ϒ(S � σ , P) of the marked, possibly disconnected, hyperel-
liptic surface (S � σ , υ, P) is described in Sections 2.8 and 2.9 and the image of ϒ(S, P)σ in ϒ(S � σ , P)
has finite index.

If σ = {γ } is a 0-simplex, let us denote by Q+, Q− the pair of punctures on S � γ bounded by γ and
by ϒ(S � γ , P){Q+ ,Q−} the stabilizer of this pair of punctures for the action of the hyperelliptic mapping
class group ϒ(S � γ , P) on the set of punctures of S � γ . Then, there is a short exact sequence:

1→ τ Z

γ
→ϒ(S, P)σ→ϒ(S � γ , P){Q+ ,Q−} → 1. (14)

Let σns and σs be the subsets of σ consisting, respectively, of nonseparating and of separating curves.
Then, the stabilizer Pϒ(S, P)σ is described by the exact sequences:

1→ Pϒ(S, P)
σ→ Pϒ(S, P)σ→�σ±

and
1→∏

γ∈σns
τ 2Z

γ
×∏

γ∈σs
τZ

γ
→ Pϒ(S, P)
σ→ Pϒ(S � σ , P)→ 1,

(15)

where the pure hyperelliptic mapping class group Pϒ(S � σ , P) of the marked, possibly disconnected,
hyperelliptic surface (S � σ , υ, P) above is described in Sections 2.8 and 2.9.
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3. Geometric interpretation of hyperelliptic mapping class groups
3.1. Moduli stacks of complex curves of a fixed topological type

Let S= Sg,n be a hyperbolic surface without boundary. We can then associate with S the moduli stack
M(S) of n-punctured, genus g smooth curves. The stack M(S) represents the functor of smooth curves
C→ X such that each geometric fiber of the family has a complex model homeomorphic to the surface
S. This is a smooth, irreducible, Deligne-Mumford (briefly DM) stack over Spec Z. Fixing an order on
the set of punctures of the geometric fibers of the curves C→ X defines an étale Galois covering of DM
stacks PM(S)→M(S).

The moduli stack M(S) admits a natural compactification M(S), called the DM compactification.
This is the stack which represents n-punctured, genus g stable curves, that is to say, flat nodal curves
C→ X such that each geometric fiber of the family has a complex model homeomorphic to the, possi-
bly singular, topological surface obtained from S collapsing to points the connected components of a,
possibly empty, essential multicurve.

The stack M(S) is a smooth, proper DM stack also defined over Spec Z and, fixing an order on the
set of punctures of the fibers of the relative curves C→ X, defines an étale Galois covering of DM stacks
PM(S)→M(S).

In this paper, we are essentially interested in the complex theory of these objects. Therefore, with-
out further specification, from now on, we will denote by M(S), PM(S), M(S) and PM(S) the
corresponding complex DM stacks.

The mapping class groups of the surface S which we introduced in Section 2.2 have a natural interpre-
tation as the topological fundamental groups of the above complex DM stacks. Indeed, a marking S→C
of an n-punctured, genus g complex smooth curve determines isomorphisms �(S)∼= π1(M(S), [C]) and
P�(S)∼= π1(PM(S), [C]).

3.2. Moduli stacks of marked complex curves

For a marked hyperbolic surface (S, P), let M(S, P) be the moduli stack which represents the functor
of smooth curves C→ X, endowed with sections sQ : X→C, labeled by the points Q ∈P , such that,
for every geometric point x ∈ X, the fiber (Cx, {sQ(x)}Q∈P ) has a complex model homeomorphic to the
marked surface (S, P). The moduli stack M(S, 
P) is defined by fixing an order on P (and then on
the set of sections). These are smooth, irreducible, DM stacks over Spec Z. There is a natural smooth
morphism M(S, P)→M(S) (resp. M(S, 
P)→M(S)) whose fiber M(S, P)[C] (resp. M(S, 
P)[C]), for
a geometric point [C] ∈M(S), identifies with the configuration spaces of n distinct (resp. distinct and
ordered) points on C.

Let then PM(S, P) be the fibered product of PM(S) and M(S, 
P) over M(S). There is a natural
isomorphism of DM stacks PM(S, P)∼= PM(S �P).

The DM compactificationM(S, P) is the moduli stack of flat nodal curves C→ X, endowed with dis-
joint sections sQ : X→C, for Q ∈P , such that, for every geometric point x ∈ X, the fiber Cx � {sQ(x)}Q∈P
has a complex model homeomorphic to the surface obtained from S �P collapsing to points the con-
nected components of a, possibly empty, essential multicurve. The DM stacks M(S, 
P) and PM(S, P)
are then defined similarly.

As above, we are interested in the complex theory of these objects and we will maintain the
same notation for the corresponding complex DM stacks. A marking φ : S→C then determines the
isomorphisms:

�(S, P)∼= π1(M(S, P), [C, φ(P)]), �(S, 
P)∼= π1(M(S, 
P), [C, φ(P)])
and

P�(S, P)∼= π1(PM(S, P), [C, φ(P)]).
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3.3. Moduli stacks of hyperelliptic curves of a fixed topological type

Let (S, υ) be a hyperbolic hyperelliptic surface without boundary. Then, a hyperelliptic complex curve
(C, ι) of topological type (S, υ) is a smooth complex curve C together with a hyperelliptic involution
ι ∈Aut (C) such that there exists an orientation preserving homeomorphism f : C→ S with the property
that f ◦ ι ◦ f −1 = υ.

Hyperelliptic complex curves of topological type (S, υ) are parameterized by a closed smooth irre-
ducible substack M(S, υ) of the DM stack M(S) and an orientation preserving homeomorphism
f : C→ S determines an isomorphism (cf. Proposition 1 in [19]):

ϒ(S)∼= π1(M(S, υ), [C, ι]).

We let PM(S, υ)→M(S, υ) be the étale Galois covering associated with the normal finite index
subgroup Pϒ(S) of ϒ(S). In particular, by definition, there is an isomorphism:

Pϒ(S)∼= π1(PM(S, υ), [C, ι]).

The assignment (C, ι) �→ (C/ι, Bι), where Bι is the branch locus of the natural morphism C→C/ι,
defines natural morphisms of DM stacks:

M(S, υ)→M(S/υ , Bυ) and PM(S, υ)→ PM(S/υ , Bυ), (16)

where, as we observed above, there holds PM(S/υ , Bυ)∼= PM(S/υ �Bυ). These morphisms are, respec-
tively, a 〈υ〉-gerbe and a (〈υ〉 ∩ Pϒ(S))-gerbe over their base and induce on fundamental groups
the maps ϒ(S)→ �(S/υ , Bυ) and Pϒ(S)→ P�(S/υ , Bυ) which appear in the short exact sequences
(3) and (5), respectively. In particular, if S has at least two symmetric punctures, there are natural
isomorphisms:

PM(S, υ)∼= PM(S/υ , Bυ)∼= PM(S/υ �Bυ).

The DM compactification M(S, υ) is the closure of M(S, υ) in the proper DM stack M(S). The DM
compactification PM(S, υ) is then the normalization of the DM stack M(S, υ) in PM(S, υ).

3.4. Moduli stacks of marked hyperelliptic curves

To a marked hyperelliptic surface (S, υ, P), we can associate the DM stacks M(S, υ, P), M(S, υ, 
P)
and PM(S, υ, P). These are just the inverse images ofM(S, υ) and PM(S, υ) via the natural morphisms
M(S, P)→M(S), M(S, 
P)→M(S) and PM(S, P)→ PM(S), respectively.

As above, a marking φ : (S, υ)→ (C, ι) determines isomorphisms:

ϒ(S, P)∼= π1(M(S, υ, P), [C, ι, φ(P)]), ϒ(S, 
P)∼= π1(M(S, υ, 
P), [C, ι, φ(P)])
and

Pϒ(S, P)∼= π1(PM(S, υ, P), [C, ι, φ(P)]).

Let Q ∈ S �P . The Birman short exact sequences (6) are then induced by the following smooth
families of curves (with fibers homeomorphic to S �P):

PM(S, υ, P ∪ {Q})→ PM(S, υ, P), M(S, υ,
−−−−→P ∪ {Q})→M(S, υ, 
P)

and
M(S, υ, P , Q)→M(S, υ, P).

where M(S, υ, P , Q)→M(S, υ, P ∪ {Q}) is the étale covering associated with the subgroup
ϒ(S, P , Q) of ϒ(S, P ∪ {Q}) or, equivalently, M(S, υ, P , Q) parameterizes curves marked by the set
P plus a distinguished marked point Q.
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3.5. The DM boundary of moduli stacks of stable curves

A classical result by Knudsen (cf. [25]) describes the DM boundary of the moduli stack PM(S, P)
associated with a hyperbolic marked surface (S, P). From our perspective and with our notation, we can
formulate this result as follows.

Let us denote by S/σ the singular topological surface obtained collapsing on S a multicurve, sup-
ported on S �P , in the isotopy class of σ . We associate with a simplex σ ∈C(S �P) the closed
boundary stratum δσ of PM(S, P) whose generic point parameterizes marked stable complex curves
of topological type (S/σ , P). We then let δ̇σ be the open substack of δσ whose points parameterize
stable complex curves of topological type (S/σ , P).

Let S � σ =∐h
i=1 Si be the decomposition in connected components and let P i := P ∩ Si, for i=

1, . . . , h. There is then a natural finite unramified morphism of DM stacks:

bσ :
h∏

i=1

PM(Si, P i)→ PM(S, P),

with image the closed boundary stratum δσ and whose restriction to
∏h

i=1 PM(Si, P i) is étale onto δ̇σ .
Moreover, if we denote by δ̃σ the normalization of δσ , the morphism bs factors through a Galois finite
étale covering:

b̃σ :
h∏

i=1

PM(Si, P i)→ δ̃σ ,

whose Galois group identifies with the image of the stabilizer P�(S, P)σ in the symmetric group �σ±

(cf. the upper exact sequence (12)).

3.6. The DM boundary of moduli stacks of hyperelliptic stable curves

A similar result holds for moduli stacks of hyperelliptic curves. As we observed in Section 2.11, for
σ ∈C(S, υ, P), there is a set of disjoint representatives on S �P , which we also denote by σ , such that
there holds υ(σ )= σ and (S � σ , u) is a, possibly disconnected, hyperelliptic topological surface. We
then associate with σ the closed boundary stratum δυ

σ
(resp. the open stratum δ̇υ

σ
) of PM(S, υ, P) whose

generic point (resp. points) parameterizes marked stable complex hyperelliptic curves of topological
type (S/σ , υ, P).

For P =∅, we can describe explicitly the strata δυ
σ

and δ̇υ
σ

in the following way. As in Section 2.8,
let us put the decomposition of S in connected components in the form (8) and let us denote by υi the
restriction of the hyperelliptic involution υ to Si for i= 1, . . . , l. There is then a natural finite unramified
morphism of DM stacks:

bυ

σ
:

l∏
i=1

PM(Si, υi)×
r∏

i=l+1

PM(Si)→ PM(S, υ), (17)

with image δυ
σ

and whose restriction to
∏l

i=1 PM(Si, υi)×∏r
i=l+1 PM(Si) is étale onto δ̇υ

σ
. Moreover, if

we let δ̃υ
σ

be the normalization of δυ
σ
, the morphism bυ

s factors through a finite étale Galois covering:

b̃υ

σ
:

l∏
i=1

PM(Si, υi)×
r∏

i=l+1

PM(Si)→ δ̃υ

σ
,

whose Galois group identifies with the image of the stabilizer Pϒ(S)σ in the symmetric group �σ± (cf.
the upper exact sequence (15)).

For P �= ∅, we can describe explicitly these strata only under the further assumption that υ preserves
all connected components of S � σ . With the notations of Section 3.5, let us also denote by υi the
restriction of the hyperelliptic involution υ to Si for i= 1, . . . , h. There is then a natural finite unramified
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morphism of DM stacks:

bυ

σ
:

h∏
i=1

PM(Si, υi, P i)→ PM(S, υ, P),

with image the closed boundary stratum δυ
σ

and whose restriction to
∏h

i=1 PM(Si, υi, P i) is étale onto δ̇υ
σ
.

As above, if we denote by δ̃υ
σ

the normalization of δυ
σ
, the morphism bυ

s factors through a Galois finite
étale covering:

b̃υ

σ
:

h∏
i=1

PM(Si, υi, P i)→ δ̃σ ,

whose Galois group identifies with the image of the stabilizer Pϒ(S, P)σ in the symmetric group �σ±

(cf. the exact sequence (15)).

3.7. Levels and level structures

A level �λ is a normal finite index subgroup of the mapping class group �(S, P). The level structure
M(S, P)λ is the finite étale Galois covering of the moduli stack M(S, P) associated with this subgroup.

The abelian level �(S, P)[m] (or simply �[m]) of order m, for an integer m≥ 2, is the kernel of the nat-
ural representation ρ[m] : �(S, P)→ Sp (H1(S, Z/m). We denote by M(S, P)[m] the associated abelian
level structure.

For �λ a level of �(S, P), the DM compactification M(S, P)λ of the level structure M(S, P)λ is
defined to be the normalization of the moduli stack M(S, P) in M(S, P)λ.

Similarly, a level ϒλ of the hyperelliptic mapping class group is a normal finite index subgroup of
ϒ(S, P) and the associated finite étale Galois covering of the moduli stack M(S, υ, P) is denoted by
M(S, υ, P)λ and also called a level structure.

As above, to an integer m≥ 2, we associate the abelian level of order m defined by ϒ(S, P)[m] :=
ϒ(S, P)∩ �(S, P)[m] and the abelian level structure M(S, υ, P)[m]. We also let Pϒ(S, P)[m] :=
Pϒ(S, P)∩ �(S, P)[m] and Pϒ(S, 
P)[m] := Pϒ(S, 
P)∩ �(S, P)[m].

For ϒλ a level of ϒ(S, P), the DM compactification M(S, υ, P)λ of the level structure M(S, υ, P)λ

is defined to be the normalization of the moduli stack M(S, υ, P) in M(S, υ, P)λ.

3.8. The hyperelliptic Birman exact sequence

Besides the Birman short exact sequences (6), which are a consequence of the standard one for the
mapping class group, there are short exact sequences which are peculiar to the hyperelliptic mapping
class group.

For a hyperbolic hyperelliptic surface without boundary (S, υ), let Q ∈ S �WP (S) and R := υ(Q).
Let then S◦ := S � {Q, R} and label by Q (resp. R) the puncture obtained by removing Q (resp. R) from
S. For a marking (S◦, P), let ϒ(S◦, P)◦ and ϒ(S◦, 
P)◦ be the index 2 subgroups of ϒ(S◦, P) and ϒ(S◦, 
P),
respectively, consisting of those elements which do not swap the two punctures labeled by Q and R. We
then have:

Theorem 3.1. With the above notations, there are natural short exact sequences:

1→N◦ →ϒ(S◦, P)◦ →ϒ(S, P , Q)→ 1,

1→N◦ →ϒ(S◦, 
P)◦ →ϒ(S,
−−−−→P ∪ {Q})→ 1

and
1→N◦ → Pϒ(S◦, P)→ Pϒ(S, P ∪ {Q})→ 1,

(18)
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where N◦ is the normal subgroup generated by the Dehn twists about symmetric separating simple closed
curves on S◦ bounding a disc which contains no marked points and only the two punctures labeled by Q
and R.

Proof. Let M(S◦, υ, P)◦ →M(S◦, υ, P) be the étale covering associated with the subgroup
ϒ(S◦, P)◦ of ϒ(S◦, P), so that M(S◦, υ, P)◦ parameterizes marked complex hyperelliptic curves with
an order on the set of punctures labeled by Q and R.

Let M(S, υ, P , Q)W be the open substack of M(S, υ, P , Q) which parameterizes marked complex
hyperelliptic curves [C, ι, P , Q] such that the distinguished point labeled by Q is not a Weierstrass point
of the curve C.

Note that the complement ∂W := M(S, υ, P , Q) �M(S, υ, P , Q)W is a smooth irreducible divi-
sor of M(S, υ, P , Q) and that the assignment [C, ι, P , Q] �→ [C � {Q, ι(Q)}, ι, P] defines a natural
isomorphism of moduli stacks:

M(S, υ, P , Q)W ∼→M(S◦, υ, P)◦.

Let M(S, P , Q, R) be the étale covering of M(S, P ∪ {Q, R}) defined by taking Q and R as distin-
guished and ordered marked points. The assignment [C, ι, P , Q] �→ [C, P , Q, ι(Q)] then defines a natu-
ral embedding M(S, υ, P , Q)W ↪→M(S, P , Q, R). This extends to an embedding M(S, υ, P , Q) ↪→
M(S, P , Q, R) which maps the divisor ∂W to the irreducible component of the DM boundary of
M(S, P , Q, R) parameterizing stable curves with a rational tail marked by Q and R.

Therefore, an element of the fundamental group π1(M(S, υ, P , Q)W), which can be represented by a
small loop around the divisor ∂W, corresponds in the hyperelliptic mapping class group ϒ(S◦, υ, P)◦ <
�(S◦, P)◦ = �(S, P , Q, R) to a Dehn twist about a symmetric simple closed curve on S◦ bounding a disc
which contains no marked points and only the punctures labeled by Q and R.

The embedding M(S, υ, P , Q)W ⊂M(S, υ, P , Q) induces an epimorphism on fundamental groups
with kernel generated by small loops around the divisor ∂W. This clearly implies all the claims of the
theorem.

There is a natural epimorphism p◦ : ϒ(S◦, P)→ϒ(S, P) induced by filling back with Q and R the
two symmetric punctures of S◦. For P =∅, from the short exact sequence (3) and the standard genus 0
Birman short exact sequence (6), it follows that the kernel of this epimorphism is naturally isomorphic
to the fundamental group π1(S/υ �Bυ , pυ(Q)), where a simple loop around a puncture of S/υ �Bυ is
sent to a half twist about a symmetric simple closed curve of S◦ bounding a disc which only contains
the punctures labeled by Q and R. Therefore, we get the hyperelliptic Birman short exact sequence (cf.
Theorem 3.2 in [14] for the case in which S is a closed surface):

1→ π1(S/υ �Bυ , pυ(Q))→ϒ(S◦)
p◦→ϒ(S)→ 1. (19)

Let us then consider the epimorphism ϒ(S◦, P)◦ →ϒ(S, P) obtained by restriction of p◦ to the index
2 subgroup ϒ(S◦, P)◦ of ϒ(S◦, P). This epimorphism factors through the epimorphism ϒ(S◦, P)◦ →
ϒ(S, P , Q) of Theorem 3.1 and the natural epimorphism ϒ(S, P , Q)→ϒ(S, P) of the Birman short
exact sequence (6).

The epimorphism ϒ(S◦, P)◦ →ϒ(S, P) is induced by the natural morphism of moduli stacks
M(S, υ, P , Q)W→M(S, υ, P) (defined by forgetting the marked point Q).

If P =∅, this morphism is a smooth curve over M(S, υ) with fibers homeomorphic to the surface
S �WP (S). Since, as a topological stack, M(S, υ) is a K(π , 1), from the associated long exact sequence
of homotopy groups, it then follows:

Theorem 3.2 (The hyperelliptic Birman short exact sequence). There are natural short exact
sequences:
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1→ π1(S �WP (S), Q)→ϒ(S◦)◦ →ϒ(S)→ 1
and

1→ π1(S �WP (S), Q)→ Pϒ(S◦)→ Pϒ(S)→ 1.
(20)

Moreover, the subgroup N◦, defined in Theorem 3.1, identifies with the kernel of the natural epimor-
phism of fundamental groups π1(S �WP (S), Q)→ π1(S, Q). In particular, N◦ is a free group of infinite
rank.

1. Note that the fundamental group π1(S �WP (S), Q) identifies with the index 2 subgroup of
π1(S/υ �Bυ , pυ(Q)) associated with the unramified double covering pυ : S �WP (S)→ S/υ �
Bυ .

2. As we already observed, there is a natural isomorphism Pϒ(S◦)∼= P�(S◦
/υ
�Bυ). Thus, for

S= Sg, we get the isomorphism Pϒ(S◦)∼= P�(S0,2g+3). The natural epimorphism P�(S0,2g+3)→
P�(S0,2g+2), induced by filling in a puncture of S0,2g+3, then factors through the epimorphism
P�(S0,2g+3)→ Pϒ(Sg) of Theorem 3.2 and the epimorphism Pϒ(Sg)→ P�(S0,2g+2) provided by
Birman-Hilden theory.

4. Generators for hyperelliptic mapping class groups
4.1. Generators for the pure hyperelliptic mapping class group

For genus ≥ 2, there is a simple generating set for the pure hyperelliptic mapping class group.
Let us consider first the case P =∅ and S either a closed surface of genus≥ 2 or S= S1,1. The follow-

ing analogue for hyperelliptic mapping class groups of a result by Humphries for mapping class groups
(cf. Proposition 2.1 in [24]) then holds:

Proposition 4.1. For (S, υ) a hyperelliptic surface of genus ≥ 1, let Q(S, υ) be the subgroup of ϒ(S)
generated by squares of nonseparating symmetric Dehn twists.

1. For S a closed surface of genus ≥ 2, we have Pϒ(S)=Q(S, υ).
2. For S= S1,1, we have that υ /∈Q(S, υ) and Pϒ(S)= 〈υ〉 ·Q(S, υ). In particular, the nat-

ural epimorphism Pϒ(S)→ P�(S/υ , Bυ) induces an isomorphism Q(S, υ)∼= P�(S/υ , Bυ)=
P�(S0,4).

Proof. Let (Ŝ, υ) be a hyperelliptic surface of genus g= g(S) with a single boundary component γ ,
fixed by υ, and no punctures. The relative hyperelliptic mapping class group ϒ(Ŝ, ∂ Ŝ) is described by
the Birman-Hilden isomorphism (cf. Theorem 9.2 in [16]):

ϒ(Ŝ, ∂ Ŝ)∼= �(Ŝ/υ , Bυ , ∂ Ŝ/υ)=B2g+1,

where B2g+1 is the braid group in 2g+ 1 strands and the isomorphism sends the Dehn twist τγ ∈ϒ(Ŝ, ∂ Ŝ)
to the square of a generator of the center of B2g+1.

(i): By Proposition 2.5, we have Pϒ(S)=ϒ(S)[2]. Hence, the abelian level ϒ(S)[2] and Q(S, υ)
both have for image under the natural epimorphism ϒ(S)→ �(S/υ , B) the pure mapping class group
P�(S/υ , B)∼= P�(S0,2g+2). Therefore, ϒ(S)[2] = 〈υ〉 ·Q(S, υ). Hence, in order to prove the first item of
the proposition, it is enough to show that υ ∈Q(S, υ). We borrow here an argument from the proof of
Proposition 2.1 in [24].

An identity, due to Birman and Hilden (cf. Section 4.4 in [2]), implies that υ ∈Q(S, υ). More pre-
cisely, let γ1, . . . , γ2g+1 be a maximal chain of symmetric nonseparating simple closed curves on S. Then,
we have:

υ = τγ1τγ2 · . . . · τγ2gτ
2
γ2g+1

τγ2g · . . . · τγ2τγ1 .
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The above identity easily implies that υ is the identity element modulo the normal subgroup Q(S, υ)
and so that υ ∈Q(S, υ).

(ii): For S= S1,1, the relative hyperelliptic mapping class group ϒ(Ŝ, ∂ Ŝ) is the universal central
extension of the mapping class groups �(S):

1→ τZ

γ
→ϒ(Ŝ, ∂ Ŝ)→ �(S)→ 1.

The Birman-Hilden isomorphism ϒ(Ŝ, ∂ Ŝ)∼= B3 then identifies �(S) with the quotient of the braid group
B3 by the square of its center, so that a generator of the center of B3 descends to the hyperelliptic
involution υ of �(S).

The pure braid group PBn contains the center of Bn, splits over it, and there is a natural isomorphism
PBn
∼=Z× P�(S0,n+1) (cf. Section 9.3 in [16]). By means of the Birman-Hilden isomorphism above, the

pure hyperelliptic mapping class group Pϒ(S) is then identified with the quotient of PB3 by the square of
its center and so there is a natural isomorphism Pϒ(S)∼=Z/2× P�(S0,4) which sends the hyperelliptic
involution to the factor Z/2.

The Dehn twists about essential simple closed curves in S0,4 naturally lift to squares of nonseparating
Dehn twists in Pϒ(S) and these generate a subgroup Q(S, υ) isomorphic to P�(S0,4). This completes the
proof of the second item of the proposition.

For the general case, we need to introduce some notation. We say that a Dehn twist about a symmetric,
resp. nonseparating, resp. separating simple closed curve on S is symmetric, resp. nonseparating, resp.
separating. A symmetric bitwist is the product of two Dehn twists about a symmetric pair of simple
closed curves. A symmetric bounding pair map is a bounding pair map about a symmetric pair of simple
closed curves. We then have:

Theorem 4.2. Let (S, υ, P) be a marked hyperelliptic surface:

1. For g(S)≥ 2, the pure hyperelliptic mapping class group Pϒ(S, P) is generated by squares
of nonseparating symmetric Dehn twists, by Dehn twists about symmetric separating simple
closed curves bounding unmarked discs (with punctures) and by symmetric bitwists about pairs
of simple closed curves which bound unpunctured annuli.

2. For g(S)= 1 and 	W◦(S)≥ 1, the group Pϒ(S, P) is generated by the elements mentioned above
together with a hyperelliptic involution υ̃ ∈ Pϒ(S, P) which lifts the hyperelliptic involution
υ ∈ Pϒ(S).

Proof. Since there is a natural isomorphism Pϒ(S, P)∼= Pϒ(S
◦
, P), it is not restrictive to assume that

∂S=∅. For a similar reason, we may also assume that, for g(S)≥ 2, we have W◦(S)=∅ and, for g(S)= 1,
we have 	W◦(S)= 1.

If S has n pairs of symmetric punctures, by Theorem 3.1 and a simple induction, there is a natural
epimorphism Pϒ(S, P)→ Pϒ(S, P ∪ {Q1, . . . , Qn}) whose kernel is generated by Dehn twists about
symmetric separating simple closed curves on S bounding discs which contain no marked points and at
least a pair of symmetric punctures. Thus, we are reduced to prove Theorem 4.2 for S a closed surface
of genus ≥ 2 and for S= S1,1.

A bounding pair map τγ0τ
−1
γ1

about a symmetric pair γ0, γ1 of simple closed curves which bound a
marked but unpunctured annulus is the product of the symmetric bitwist τγ0τγ1 with the inverse of τ 2

γ1
and

these are both part of our generating set. Since the kernel of the natural epimorphism P�(S, P)→ P�(S)
is generated by bounding pair maps about symmetric pairs of simple closed curves which bound a
marked unpunctured annulus, the theorem is reduced to the case P =∅. The conclusion then follows
from Proposition 4.1.
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Corollary 4.3. Let (S, υ, P) be a marked hyperelliptic surface:

1. For g(S)≥ 2, there holds π1(PM(S, υ, P))= {1}.
2. For g(S)= 1 and 	W◦(S)≥ 1, there holds π1(PM(S, υ, P))∼=Z/2.

Proof. This follows from the geometric interpretation of the generators of the fundamental group of
PM(S, υ, P) as loops about the irreducible components of its DM boundary and Theorem 4.2.

We can determine the gerbe structure of the moduli stacks considered above:

Proposition 4.4. Let (S, υ) be a hyperelliptic surface:

1. For S= S1,1, the DM compactification M(S)[2] of the abelian level structure M(S)[2] is a trivial
Z/2-gerbe over the moduli stack PM(S/υ , Bυ).

2. For S closed of genus ≥ 2, the abelian level structure M(S, υ)[2] is a trivial Z/2-gerbe over the
moduli stack PM(S/υ , Bυ).

3. For S closed of genus ≥ 2, the DM compactification M(S, υ)[2] of M(S, υ)[2] is not a trivial
Z/2-gerbe over the moduli stack PM(S/υ , Bυ).

Proof. (i): This is well known (see, for instance, item (h) of Theorem 1.4 in [18]) but also an almost
immediate consequence of item (i) of Proposition 4.1.

(ii): Assigning to a smooth projective genus 0 curve C endowed with an ordered set of marked
points Bυ , the hyperelliptic curve C′ such that C′/〈υ〉 ∼=C with branch locus Bυ , defines a morphism
s̄ : PM(S/υ , Bυ)→M(S, υ) (cf. item (h) of Theorem 1.4 in [18]), which, composed with the natural
morphism M(S, υ)→M(S/υ , Bυ), is just the natural morphism PM(S/υ , Bυ)→M(S/υ , Bυ).

Since M(S)[2] ∼=M(S, υ)×M(S/υ ,Bυ ) PM(S/υ , Bυ), the morphism s̄ lifts to an étale morphism
s : PM(S/υ , Bυ)→M(S)[2] which is a section of M(S, υ)[2]→ PM(S/υ , Bυ) and so trivializes this
Z/2-gerbe.

(iii): Let us assume, by contradiction, that the gerbe M(S, υ)[2]→ PM(S/υ , Bυ) is trivial. A splitting
of this gerbe is a (representable) morphism ι : PM(S/υ , Bυ)→M(S, υ)[2] which composed with the
latter is the identity and so is étale. By (i) of Corollary 4.3, the stack M(S, υ)[2] is simply connected
which implies that ῑ and then ι is an isomorphism which gives a contradiction.

4.2. Generators for the full hyperelliptic mapping class group

We have the following generalizations of a well-known result by Birman and Hilden (cf. [3]):

Proposition 4.5. Let (S, υ, P) be a marked hyperelliptic surface of genus≥ 1 such that W◦(S)=W∂(S)=
∅. Then, the hyperelliptic mapping class group ϒ(S, P) is generated by nonseparating symmetric Dehn
twists and by half twists about simple closed curves which bound a disc containing only: either a pair
of marked points, a pair of symmetric punctures, or a pair of symmetric boundary components.

Proof. The kernel of the natural epimorphism ϒ(S, P)→ϒ(S) identifies with the fundamental group
of the configuration space of 	P points on the surface S, and it is well known that this group is generated
by bounding pair maps and half twists about simple closed curves which bound a disc containing a pair
of marked points. We are then reduced to prove the proposition for the hyperelliptic mapping class group
ϒ(S).

It is easy to reduce to the case when ∂S=∅. By the hyperelliptic Birman short exact sequence (19),
we can then reduce further to the case when S is a closed surface, that is to say to the case treated by
Birman and Hilden.
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Proposition 4.6. Let (S, υ, P) be either a marked hyperelliptic closed surface of genus≥ 2 or a marked
1-punctured surface of genus 1. Then, the hyperelliptic mapping class group ϒ(S, 
P) is generated by
nonseparating symmetric Dehn twists.

Proof. This is essentially the same proof as that of Proposition 4.5. We only need to observe that
the kernel of the natural epimorphism ϒ(S, 
P)→ϒ(S) identifies with the fundamental group of the
configuration space of 	P ordered points on the surface S. The latter, for g(S)≥ 1, is generated by
bounding pair maps which are products of powers of nonseparating symmetric Dehn twists.

5. Homotopy type of the complex of symmetric nonseparating curves

Let (S, υ, P) be a marked hyperelliptic surface without boundary and Weierstrass punctures. In
Section 2.11, we defined a version of the nonseparating curve complex for the hyperelliptic mapping
class group ϒ(S, P) of (S, υ, P). Let us recall that the latter, denoted by Cns(S �P), is the simplicial
complex whose k-simplices consist of unordered (k+ 1)-tuples {γ0, . . . , γk} of distinct isotopy classes
of pairwise disjoint simple closed curves on S �P such that S � {γ0, . . . , γk} is connected and that the
complex of symmetric nonseparating curves Cns(S, υ, P) is then defined to be the full subcomplex of
Cns(S �P) generated by isotopy classes of symmetric nonseparating simple closed curves.

Let us observe that filling in a puncture induces surjective maps Cns(S � (P ∪ {Q}))→Cns(S �P)
and Cns(S, υ, P ∪ {Q})→Cns(S, υ, P). Both maps, or, better, their geometric realizations, are homotopy
equivalences. For the first map, this follows from Harer’s results (cf. Theorem 1.1 in [21]) but we want
to give here a more direct proof which can be easily adapted to the hyperelliptic case:

Proposition 5.1. There is a natural surjective map Cns(Sg,n+1)→Cns(Sg,n) induced by filling in the last
puncture, which is a homotopy equivalence, in the sense that the geometric realization of this map is a
homotopy equivalence. In particular, the homotopy type of Cns(Sg,n) is independent of n.

Proof. Let T (Sg,n) be the Teichmüller space associated with the surface Sg,n and let T̂ (Sg,n) be
the Harvey cuspidal bordification of T (Sg,n) (cf. [22]) which can be explicitly described as follows.
Let M̂(Sg,n) be the real oriented blowup of the DM compactification M(Sg,n) of the stack M(Sg,n)
along its DM boundary. This is a real analytic DM stack with corners whose boundary ∂M̂(Sg,n) :=
M̂(Sg,n) �M(Sg,n) is homotopic to a deleted tubular neighborhood of the DM boundary of M(Sg,n).
For an intrinsic construction of M̂(Sg,n), we apply Weil restriction of scalars ResC/R to the complex DM
stack M(Sg,n) and blow up ResC/R M(Sg,n) along the codimension two substack ResC/R ∂M(Sg,n). The
real oriented blowup M̂(Sg,n) is obtained taking the set of real points of this blowup and cutting along
the exceptional divisor (which has codimension 1). The natural projection M̂(Sg,n)→M(Sg,n) restricts
over each codimension k stratum to a bundle in k-dimensional tori.

The Harvey cuspidal bordification T̂ (Sg,n) is then the universal cover of the real analytic stack
M̂(Sg,n). It can be shown that T̂ (Sg,n) is representable and thus a real analytic manifold with corners (cf.
Section 4 in [11]). The inclusion M(Sg,n) ↪→ M̂(Sg,n) is a homotopy equivalence and then induces an
inclusion of the respective universal covers T (Sg,n) ↪→ T̂ (Sg,n), which is also a homotopy equivalence.
The ideal boundary of the Teichmüller space T (Sg,n)is defined to be ∂ T̂ (Sg,n) := T̂ (Sg,n) � T (Sg,n).

The Harvey cuspidal bordification T̂ (Sg,n) is endowed with a natural action of the mapping class
group �(Sg,n) and has the property that the nerve of the cover of the ideal boundary ∂ T̂ (Sg,n) by (analyt-
ically) irreducible components is described by the curve complex C(Sg,n) (cf. [22] or [11] for more
details). Since such irreducible components are all contractible, there is a �(Sg,n)-equivariant weak
homotopy equivalence between ∂ T̂ (Sg,n) and the geometric realization of C(Sg,n) (cf. Theorem 2 in
[22]).
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Let ∂nsT̂ (Sg,n) be the locus of the ideal boundary which parameterizes irreducible nodal Riemann
surfaces, that is to say ∂nsT̂ (Sg,n) is the inverse image in T̂ (Sg,n), via the natural map T̂ (Sg,n)→M(Sg,n),
of the locus in ∂M(Sg,n) which parameterizes irreducible nodal complex algebraic curves. Then, the
nonseparating curve complex Cns(Sg,n) naturally identifies with the nerve of the covering of ∂nsT̂ (Sg,n) by
irreducible components, which are also contractible.

The natural map M̂(Sg,n+1)→ M̂(Sg,n), induced by filling in the last puncture, lifts to a map of uni-
versal covers T̂ (Sg,n+1)→ T̂ (Sg,n) whose restriction ∂nsT̂ (Sg,n+1)→ ∂nsT̂ (Sg,n) is homotopy equivalent to
the geometric realization of the map Cns(Sg,n+1)→Cns(Sg,n).

The fibers of the map M̂(Sg,n+1)→ M̂(Sg,n) are homeomorphic to the compact surface with bound-
ary Ŝg,n obtained from Sg,n replacing punctures with circles. The boundary of a fiber of the map
M̂(Sg,n+1)→ M̂(Sg,n) is in ∂M̂(Sg,n+1) and parameterizes nodal reducible curves. It follows that the map
∂nsT̂ (Sg,n+1)→ ∂nsT̂ (Sg,n) is a Serre fibration with fibers consisting of Poincaré discs (without boundary)
and, in particular, is a homotopy equivalence. Hence, the proposition follows.

Remark 5.2. Let C(Sg,n) (resp. Cnb(Sg,n)) be the simplicial complex whose k-simplices consist of
unordered (k+ 1)-tuples {γ0, . . . , γk} of distinct isotopy classes of pairwise disjoint nonperipheral sim-
ple closed curves on Sg,n (resp. and which, moreover, do not bound a 2-punctured disc). A statement
similar to Proposition 5.1 then also holds for the simplicial sets Cnb(Sg,n+1)• and C(Sg,n)• associated,
respectively, to Cnb(Sg,n+1) and C(Sg,n). There is still indeed a natural map Cnb(Sg,n+1)• →C(Sg,n)•, induced
by filling in the last puncture (but observe that this is not anymore true, for n≥ 1, if we replace Cnb(Sg,n+1)
with the full curve complex C(Sg,n+1)) and essentially the same argument of Proposition 5.1 applies. In
particular, this implies the well-known fact that C(Sg,1) and C(Sg) have the same homotopy type.

Proposition 5.3. The geometric realization of the map Cns(S, υ, P ∪ {Q})→Cns(S, υ, P), induced for-
getting the point Q, is a homotopy equivalence. In particular, the homotopy type of Cns(S, υ, P) is
independent of 	P .

Proof. The fixed point set T (S)υ of the hyperelliptic involution υ is contractible and identifies with
the universal cover of the moduli stack of hyperelliptic curves M(S, υ) and the fixed point set T̂ (S)υ

is a bordification of T (S)υ . For n≥ 1, we then let T (S, P)υ and T̂ (S, P)υ be, respectively, the inverse
images of T (S)υ and T̂ (S)υ via the natural map T̂ (S, P)→ T̂ (S). Clearly, T̂ (S, P)υ is a bordification of
T (S, P)υ for n≥ 1 as well.

Let then ∂ T̂ (S, P)υ := T̂ (S, P)υ � T (S, P)υ and let ∂nsT̂ (S, P)υ be the portion of ∂ T̂ (S, P)υ which
parameterizes irreducible nodal Riemann surfaces. The hyperelliptic nonseparating curve complex
Cns(S, υ, P) naturally identifies with the nerve of the covering of ∂nsT̂ (S, P)υ by irreducible components,
which are contractible. Therefore, the geometric realization of the natural map Cns(S, υ, P ∪ {Q})→
Cns(S, υ, P) is homotopy equivalent to the natural map ∂nsT̂ (S, P ∪ {Q})υ→ ∂nsT̂ (S, P)υ . In the proof
of Proposition 5.1, we saw that the latter map is a Serre fibration with fibers consisting of Poincaré discs
and, in particular, is a homotopy equivalence. Hence, the proposition follows.

With the notations of Section 3.8, there is also a natural map Cns(S◦, υ)→Cns(S, υ). As we observed
there, the corresponding morphism M(S◦, υ)◦ →M(S, υ) is a smooth curve with fibers homeomorphic
to the surface S �WP (S). By the same argument of Proposition 5.3, we then have:

Proposition 5.4. The geometric realization of the map Cns(S◦, υ)→Cns(S, υ), induced filling in the
punctures Q and R, is a homotopy equivalence.

For n≥ 4, let us define the full subcomplex Cb(S0,n) of the complex of curves C(S0,n) generated by the
vertices corresponding to simple closed curves on S0,n which bound a 2-punctured disc.
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Theorem 5.5. For n≥ 5, the curve complex Cb(S0,n) is of dimension [n/2]− 1 and for n≥ 4, is ([(n+
1)/2]− 3)-connected (here [_] denotes the integral part).

Proof. The 0-connectivity of the curve complex Cb(S0,n), for n≥ 5, can be proved by the same argu-
ment which proves the connectivity of standard curve complexes (see, for instance, Sections 4.1.1 and
4.1.2 in [16]).

The ([(n+ 1)/2]− 3)-connectivity of Cb(S0,n), for n≥ 4, is derived from the fact that C(S0,n), for
n≥ 4, is (n− 5)-connected (cf. Theorem 1.2 in [21]) and the same argument used in the proof of
Theorem 1.1 [21]. Let us observe first that the curve complex Cb(S0,n), for n= 4, 5, coincides with C(S0,n)
and thus is (n− 5)-connected. The case n= 6 of the theorem is then also clear. Let us proceed by induc-
tion on n. So let us assume that the theorem holds for all k such that 6≤ k < n and let us prove it for
k= n.

We almost follow word by word Harer’s argument in the proof of Theorem 1.1 [21]. Let Sm be an m-
dimensional piecewise linear simplicial sphere, for m < [(n+ 1)/2]− 3, and f : Sm→Cb(S0,n)⊆C(S0,n)
be a simplicial map. Since C(S0,n) is (n− 5)-connected and m < n− 5, there is an (m+ 1)-dimensional
piecewise linear simplicial disc B such that ∂B= Sm and a simplicial map f̂ : B→C(S0,n) which
extends f .

We say that a simplex σ of B is pure if f̄ (σ )= {γ0, . . . , γs}, where no γi bounds a disc with two
punctures, and define the complexity c(f̄ ) of f̄ to be the largest k for which some k-simplex of B is pure.

Let then σ be a pure c-simplex of B with c := c(f̄ ), and let f̄ (σ )= {γ0, . . . , γh}, with h≤ c≤
[n+ 1/2]− 2. Let S1, . . . , Sh+1 be the connected components of S0,n � {γ0, . . . , γh}. The join �σ =
Cb(S1) ∗ . . . ∗Cb(Sh+1) identifies with a subcomplex of Cb(S0,n) and, by hypothesis, f̄ (LinkB(σ )) lies in
�σ . Moreover, if Si has ni punctures, there holds

∑h+1
i=1 ni = n+ 2h+ 2.

By the induction hypotheses, the connectivity of �σ is described by the following formula. The join
�σ is μ-connected, where:

μ: =∑h+1
i=1

([
ni + 1

2

]
− 3

)
+ h+ 1=∑h+1

i=1

[
ni + 1

2

]
− 2h− 2≥

≥
[

n+ 2h+ 2

2

]
− 2h− 2=

[n

2

]
− h− 1≥

[
n+ 1

2

]
− 2− h≥

[
n+ 1

2

]
− 2− c.

Then, the rest of the argument proceeds exactly as in the last two paragraphs of the proof of Theorem
1.1 in [21].

The quotient map Sg→ Sg/υ = S0,2g+2 identifies Cns(Sg, υ) with the curve complex Cb(S0,2g+2). By
Proposition 5.3, Proposition 5.4, and Theorem 5.5, we then have:

Corollary 5.6. For g(S)≥ 2, the hyperelliptic nonseparating curve complex Cns(S, υ, P) is spherical of
dimension g− 1.

In Section 6, we will need the following result:

Proposition 5.7. Let α and β be nonseparating symmetric simple closed curves on a marked hyper-
elliptic surface (S, υ, P), with g(S)≥ 2. There is then a chain of symmetric simple closed curves
γ0, . . . , γk on S �P such that γ0 = α, γk = β and γi intersects γi+1 transversally in a single point, for
i= 0, . . . , k− 1.

Proof. It is easy to see that, for two disjoint nonseparating symmetric simple closed curves α and β

on S �P , there is a symmetric simple closed curve γ which intersects both α and β transversally in a
single point. The claim of the proposition then follows from the connectedness of the curve complex
Cns(S, υ, P) (cf. Corollary 5.6 above).
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6. Linear representations of hyperelliptic mapping class groups
6.1. The Putman-Wieland conjecture

In [30], Putman and Wieland made a conjecture about virtual linear representations of mapping class
groups which we present here in a slightly different but equivalent formulation. Let (S, P) be a hyperbolic
marked closed surface and let Q ∈ S �P . We then have the Birman exact sequence:

1→ π1(S �P , Q)→ �(S, P , Q)
pQ→ �(S, P)→ 1.

For a finite index subgroup �λ of �(S, P , Q), let �λ := π1(S �P , Q)∩ϒ . By restriction, we then get a
short exact sequence:

1→�λ→ �λ→ pQ(�λ)→ 1.

Let (S �P)λ→ S �P be the unramified covering associated with the subgroup �λ of π1(S �P , Q)
and let Sλ→ S be the (possibly ramified) covering obtained from this filling in all punctures. The outer
representation associated with the above short exact sequence induces a linear representation: pQ(�λ)→
Sp (H1(Sλ, Q)). The Putman-Wieland conjecture states that, for g(S)≥ 2, all nontrivial orbits of this
representation are infinite.

6.2. The hyperelliptic Putman-Wieland problem

From now to the end of Section 6, we assume that (S, υ, P) is a hyperbolic marked hyperelliptic closed
surface. Let us consider the Birman exact sequence (6):

1→ π1(S �P , Q)→ϒ(S, P , Q)
fQ→ϒ(S, P)→ 1.

For a finite index subgroup ϒλ of ϒ(S, P , Q), let �λ := π1(S �P , Q)∩ϒλ. There is then a short exact
sequence:

1→�λ→ϒλ→ fQ(ϒλ)→ 1 (21)

and an associated representation ρλ : fQ(ϒλ)→Out (�λ).
Let (S �P)λ→ S �P be the unramified covering associated with the subgroup �λ of π1(S �P , Q)

and let Sλ→ S be the (possibly ramified) covering obtained from this filling in all punctures. The
representation ρλ then induces a linear representation:

Lρλ : fQ(ϒλ)→ Sp (H1(Sλ, Q)). (22)

The hyperelliptic Putman-Wieland problem asks whether, for every finite index subgroup ϒλ of
ϒ(S, P , Q), all nontrivial orbits of Lρλ are infinite.

In Corollary 6.9, we will show that the answer is no for g(S)≥ 2 and 	P ≥ 4. In particular, since
for g(S)= 2, there holds ϒ(S, P , Q)= �(S, P , Q), this will also provide a counterexample to Putman-
Wieland conjecture in genus 2.

6.3. Geometric interpretation of the hyperelliptic Putman-Wieland problem

The hyperelliptic Putman-Wieland problem can be reformulated as follows.
Let M(S, υ, P , Q)λ→M(S, υ, P , Q) be the finite étale covering associated with the subgroup ϒλ

of ϒ(S, υ, P , Q). For simplicity, let us denote by M(S, υ, P)fQ(λ)→M(S, υ, P) the finite étale covering
associated with the subgroup fQ(ϒλ) of ϒ(S, υ, P). This coincides with the normalization ofM(S, υ, P)
in M(S, υ, P , Q)λ. The natural morphism φQ : M(S, υ, P , Q)λ→M(S, υ, P)fQ(λ) is then a connected
smooth curve with fibers homeomorphic to the surface (S �P)λ.

Extending the morphism φQ to DM compactifications, we obtain a projective flat morphism
φ̄Q : M(S, υ, P , Q)λ→M(S, υ, P)fQ(λ), with fibers semistable curves, such that its restriction

https://doi.org/10.1017/S0017089523000381 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000381


Glasgow Mathematical Journal 147

over M(S, υ, P)fQ(λ):

φ̃Q : Cλ→M(S, υ, P)fQ(λ) (23)

is a smooth proper curve with fibers homeomorphic to the surface Sλ defined above. The representation
(22) Lρλ : fQ(ϒλ)→ Sp (H1(Sλ, Q)) is then the monodromy representation associated with the proper
smooth curve (23).

This interpretation is important because it allows to implement Hodge theoretic techniques. Indeed,
since moduli stacks of (hyperelliptic) curves are K(π , 1)-spaces, the homology and cohomology of
(hyperelliptic) mapping class groups with rational coefficients identify with the singular homology and
cohomology of smooth DM stacks, as such they are endowed with a natural mixed Hodge structure.
The same holds for finite index subgroups of (hyperelliptic) mapping class groups. A first interesting
consequence is the following lemma:

Lemma 6.1. Let (S, υ, P) be a hyperbolic marked hyperelliptic closed surface and ϒλ a finite index sub-
group of Pϒ(S, P ∪ {Q}). Associated with the short exact sequence (21), there is a short exact sequence
of polarized Hodge structures of weight one:

0→W1H1(fQ(ϒλ), Q)→W1H
1(ϒλ, Q)→H1(Sλ, Q))fQ(ϒλ)→ 0. (24)

Proof. By a theorem of Deligne (cf. [15]), the associated Leray spectral sequence associated with the
proper curve φ̃Q : Cλ→M(S, υ, P)fQ(λ) degenerates at the E2 level and there is a short exact sequence:

0→H1(M(S, υ, P)fQ(λ), Q)
f∗→H1(Cλ, Q)→H0(M(S, υ, P)fQ(λ), R1φ̃Q∗Q)→ 0,

where the space H0(M(S, υ, P)fQ(λ), R1φ̃Q∗Q) identifies with the space of monodromy invariants
H1(φ̃−1

Q (z), Q)fQ(ϒλ), for all z ∈M(S, υ, P)fQ(λ).
It follows that, after identifying H1(φ̃−1

Q (z), Q)fQ(ϒλ) with H1(Sλ, Q))fQ(ϒλ), there is a short exact
sequence:

0→H1(M(S, υ, P)fQ(λ), Q)
φ̃∗Q→H1(Cλ, Q)→H1(Sλ, Q))fQ(ϒλ)→ 0.

This sequence remains exact passing to its weight 1 part:

0→W1H1(M(S, υ, P)fQ(λ), Q)
φ̃∗Q→W1H1(Cλ, Q)→H1(Sλ, Q))fQ(ϒλ)→ 0.

The conclusion of the lemma then follows observing that we have:
H1(M(S, υ, P)fQ(λ), Q)=H1(fQ(ϒλ), Q)

and
W1H1(Cλ, Q)=W1H1(M(S, υ, P , Q)λ, Q)=W1H1(ϒλ, Q).

6.4. The pure cohomology of hyperelliptic mapping class groups

In this subsection, we collect more Hodge theoretic results. Some are of independent interest and some
we will need later.

Proposition 6.2. For (S, υ, P), a marked hyperelliptic surface of genus ≥ 2, there holds
W1H1(Pϒ(S, P), Q)= {0}. In particular, W1H1(ϒ(S, P), Q)=W1H1(ϒ(S, 
P), Q)= {0}.

Proof. By the first item of Corollary 4.3, we have that H1(PM(S, υ, P), Q)= {0} and, since
PM(S, υ, P) is a smooth compactification of PM(S, υ, P), there is an isomorphism:

H1(PM(S, υ, P), Q)∼=W1H1(PM(S, υ, P), Q).
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Proposition 6.3. For g(S)≥ 1, the hyperelliptic mapping class group ϒ(S, P) contains a normal finite
index subgroup ϒλ such that W1H1(ϒλ) �= {0}.

Proof. It is enough to prove the proposition for g(S)= 1, n(S)= 1, and g(S)≥ 2 and n(S)= 0, since,
if p : ϒ(S, P)→ϒ(S) is the natural epimorphism, then, for a finite index subgroup ϒλ of ϒ(S, P), the
natural homomorphism p∗ : W1H1(p(ϒλ))→W1H1(ϒλ) is injective.

For �(S1,1)= SL2 (Z), the claim is well-known since W1H1(ϒλ) is just the first cohomology group of
the projective modular curve associated with ϒλ.

Let us assume then n(S)= 0 and g(S)≥ 2. Let T (S, υ) be the universal cover of the moduli stack
of hyperelliptic curves M(S, υ). For g(S)= 2, this is just the ordinary genus 2 Teichmüller space T (S)
associated with S, while, for g(S)≥ 3, it can be identified with a closed contractible submanifold of the
Teichmüller space T (S). Since there is a natural étale covering M(S, υ)→M(S0,2g+2), we have a natural
isomorphism T (S, υ)∼= T (S0,2g+2). There is also a natural epimorphism p : P�(S0,2g+2)→ P�(S0,4) and
a corresponding p-equivariant surjective map φ : T (S0,2g+2)→ T (S0,4).

Let us assume that ϒλ is contained in the abelian level ϒ(S)[2]. By Proposition 3.3 in [6], there
is a natural epimorphism r : ϒ(S)[2]→ P�(S0,2g+2). It follows that the map φ induces a surjective map
T (S, υ)/ϒλ→ T (S0,4)/p(r(ϒλ)), which induces an epimorphism on fundamental groups. Therefore, we
have a natural injective map:

W1H
1(T (S0,4)/p(r(ϒλ))) ↪→W1H

1(T (S, υ)/ϒλ)=W1H1(ϒλ).

Since PM(S0,4)∼= P1 � {0, 1,∞}, there is a normal finite index subgroup N of P�(S0,4) such that the
associated covering of PM(S0,4) has genus ≥ 1.

For ϒλ any normal finite index subgroup of ϒ(S, P) which is contained in r−1(p−1(N)), we then have
W1H1(T (S0,4)/p(r(ϒλ))) �= {0} and the claim of the proposition follows.

A consequence of independent interest of Proposition 6.3 is a slight improvement of Corollary 1.1
in [32] (cf. [17] and [29] for the mapping class group version of this result):

Corollary 6.4. For every even integer m and for k� 0, the normal subgroup of the hyperelliptic
mapping class group ϒ(S, P) generated by the mk-powers of symmetric multitwists is of infinite index.

Proof. There is a normal subgroup N of P�(S0,4) of index a power (m/2)k such that the associated
covering of PM(S0,4) has genus ≥ 1. Then, ϒλ := r−1(p−1(N)) is a normal finite index subgroup of
ϒ(S)[2] of index (m/2)k. Since ϒ(S)[2] contains all squares of symmetric multitwists, it follows that all mk-
powers of symmetric multitwists belong to ϒλ. Let us denote by K the normal subgroup of ϒλ generated
by these elements and let M(S, υ, P)λ be the DM compactification of the level structure M(S, υ, P)λ

over M(S, υ, P) associated with ϒλ. There is an epimorphism ϒλ/K � H1(M(S, υ, P)λ, Z), and, as we
showed in the proof of Proposition 6.3, there holds H1(M(S, υ, P)λ, Z)⊗Q∼=W1H1(ϒλ) �= {0}.

For σ ∈C(S, υ, P), where S is a closed surface, the stabilizer Pϒ(S, P)
σ of the oriented simplex 
σ
for the action of Pϒ(S, P) is described by the short exact sequence (15):

1→
∏
γ∈σns

τ 2Z
γ
×
∏
γ∈σs

τZ

γ
→ Pϒ(S, P)
σ

qσ→ Pϒ(S � σ , P)→ 1.

Since powers of Dehn twists have weight −2 in homology, we then have:

Lemma 6.5. For a finite index subgroup ϒλ

σ of Pϒ(S, P)
σ , the restriction map:

W1H
1(qσ (ϒλ


σ ), Q)
q∗σ→W1H

1(ϒλ


σ , Q) (25)

is an isomorphism.
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6.5. A counterexample to the hyperelliptic Putman-Wieland problem

Let us fix some notation. For γ a nonseparating simple closed curve on S, let Sγ := S � γ , let Sγ be the
closed surface obtained from Sγ filling in the punctures and put {Q, R} := Sγ � Sγ .

We then denote by ϒ
λ


γ the image of ϒλ ∩ Pϒ(S, P) 
γ in Pϒ(Sγ , P ∪ {Q}) by the composition of the
natural epimorphism qγ : Pϒ(S, P) 
γ → Pϒ(Sγ , P) (cf. the short exact sequence (15)) with the natural
epimorphism Pϒ(Sγ , P)→ Pϒ(Sγ , P ∪ {Q}) (cf. the last one of the short exact sequences (18)). There
is a Birman short exact sequence:

1→ π1(Sγ �P , Q)→ Pϒ(Sγ , P ∪ {Q}) fQ→ Pϒ(Sγ , P)→ 1.

Let S
λ

γ
→ Sγ be the covering of closed surfaces obtained filling in the punctures of the unramified

covering (Sγ �P)λ→ Sγ �P associated with the subgroup π1(Sγ �P , Q)∩ϒ
λ


γ of π1(Sγ �P , Q). Let
then:

Lρλ

γ
: fQ(ϒ

λ


γ )→ Sp (H1(S
λ

γ
, Q))

be the corresponding linear representation.

Definition 6.6. Let D1(S, υ, P) be the normal subgroup of ϒ(S, P) generated by all Dehn twists about
separating curves bounding a genus 1 subsurface of S carrying no marked points.

We then have:

Theorem 6.7. For (S, υ, P) a marked hyperelliptic closed surface of genus g≥ 3, let ϒλ be a finite
index subgroup of Pϒ(S, P) which is normalized by ϒ(S, 
P), contains D1(S, υ, P) and is such that
W1H1(ϒλ, Q) �= 0. Then, for any nonseparating simple closed curve γ on S, the associated linear
representation Lρλ

γ
: fQ(ϒ

λ


γ )→ Sp (H1(S
λ

γ
, Q)) has a finite nontrivial orbit.

Proof. The proof is by contraposition. So let us assume that, for a given finite index subgroup ϒλ of
Pϒ(S, P), which satisfies the hypotheses of the theorem, and some nonseparating simple closed curve
γ on S, the linear representation Lρλ

γ
: fQ(ϒ

λ


γ )→ Sp (H1(S
λ

γ
, Q)) has only infinite nontrivial orbits. Note

that, since ϒλ is normal in ϒ(S, 
P) and nonseparating simple closed curve on S form a single orbit
under the latter group, this property then holds for all of them. We will show that this implies that
W1H1(ϒλ)= 0.

By Proposition 6.2, we have that W1H1(ϒλ, Q)ϒ(S, 
P) =W1H1(ϒ(S, 
P), Q)= 0. So it is enough to
prove that our hypothesis implies that ϒ(S, 
P) acts trivially on W1H1(ϒλ). Since, by Proposition 4.6,
the hyperelliptic mapping class group ϒ(S, 
P) is generated by symmetric nonseparating Dehn twists,
we just need to show that, for any symmetric nonseparating simple closed curve γ on S, the Dehn twist
τγ acts trivially on W1H1(ϒλ).

Note that Sγ := S � γ is homeomorphic to Sg−1,2 with the two symmetric punctures, labeled by
Q and R, which correspond to the two orientations of γ . The image qγ (ϒλ


γ ) of ϒλ

γ under the map

qγ : Pϒ(S, P) 
γ → Pϒ(Sγ , P) is a finite index subgroup and, by (25), there is an isomorphism:

q∗
γ

: W1H1(ϒλ


γ , Q)
∼→W1H

1(qγ (ϒλ


γ ), Q). (26)

The surface Sγ is obtained from Sγ by filling in the two punctures bounded by γ , so that Sγ
∼= Sg−1.

By the bottom short exact sequence (18), there is an epimorphism φγ : Pϒ(Sγ , P)→ Pϒ(Sγ , P ∪ {Q}),
with kernel Nγ the normal subgroup generated by the Dehn twists about symmetric separating simple
closed curves on Sγ bounding a disc which only contains the punctures labeled by Q and R and no
marked points.

https://doi.org/10.1017/S0017089523000381 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000381


150 Marco Boggi

Since Nγ is contained in qγ (Pϒ(S, P) 
γ ∩D1(S, υ, P)) and we assumed that D1(S, υ, P)⊂ϒλ, it
follows that Nγ is contained in qγ (ϒλ


γ ). There is then a short exact sequence:

1→Nγ → qγ (ϒλ


γ )
φγ→ϒ

λ


γ → 1.

Since the elements of Nγ map to elements of weight −2 in H1(qγ (ϒλ

γ ), Q), it follows that φγ induces an

isomorphism:

φ∗
γ

: W1H1(ϒ
λ


γ , Q)
∼→W1H1(qγ (ϒλ


γ ), Q). (27)

Let us now consider the short exact sequence:

1→ π1(Sγ �P , Q)→ Pϒ(Sγ , P ∪ {Q}) fQ→ Pϒ(Sγ , P)→ 1.

From the hypothesis that the linear representation Lρλ

γ
: fQ(ϒ

λ


γ )→ Sp (H1(S
λ

γ
, Q)) has only infinite

nontrivial orbits and the short exact sequence (24), it follows that the epimorphism fQ induces an
isomorphism:

f ∗Q : W1H
1(fQ(ϒ

λ


γ ), Q)
∼→W1H1(ϒ

λ


γ , Q). (28)

Since (ϒλ
γ
:ϒλ

γ )≤ 2, the inclusion ϒλ


γ ⊆ϒλ
γ

induces a monomorphism on cohomology
W1H1(ϒλ

γ
, Q) ↪→W1H1(ϒλ


γ , Q). Composing with the isomorphism (26) and the inverses of the
isomorphisms (27) and (28), we get a monomorphism:

W1H
1(ϒλ

γ
, Q) ↪→W1H

1(fQ(ϒ
λ


γ ), Q). (29)

Let δ be a simple closed curve on S with the property that it intersects γ transversally in a single
point and let α be the boundary of a tubular neighborhood of δ ∪ γ in S. Then, α is a separating simple
closed curve on S and we let Sα be the component of S � α of genus > 1. The natural embedding Sα ⊂ Sγ

is homotopic to the embedding Sα ⊂ Sα, where Sα is the closed surface obtained from Sα filling in the
hole bounded by α with a point. Therefore, we can identify Pϒ(Sα, P) with Pϒ(Sγ , P). Moreover, by
the definition of pure hyperelliptic mapping class group of a marked hyperbolic hyperelliptic surface,
the group Pϒ(Sα, P) identifies with the group Pϒ(Sα, P).

By the short exact sequence (15), there is a natural epimorphism onto Pϒ(Sα, P) from the stabilizer
Pϒ(S, P)α = Pϒ(S, P)
α of the isotopy class of α. Let then:

rα : Pϒ(S, P)α→ Pϒ(Sγ , P)

be the epimorphism obtained from this epimorphism and the identification of Pϒ(Sα, P) with Pϒ(Sα, P)
and of Pϒ(Sα, P) with Pϒ(Sγ , P). If ϒλ

α
is the stabilizer in ϒλ of the isotopy class of α, its image rα(ϒλ

α
)

is then a finite index subgroup of fQ(ϒ
λ


γ ) and restriction induces a monomorphism W1H1(fQ(ϒ
λ


γ ), Q) ↪→
W1H1(rα(ϒλ

α
), Q), which, composed with the monomorphism (29), gives the natural monomorphism:

W1H1(ϒλ

γ
, Q) ↪→W1H1(rα(ϒλ

α
), Q).

Since we may interchange γ and δ, we also obtain a natural monomorphism:

W1H1(ϒλ

δ
, Q) ↪→W1H1(rα(ϒλ

α
), Q).

The compositions

W1H1(ϒλ, Q)→W1H1(ϒλ
γ
, Q) ↪→W1H1(rα(ϒλ

α
), Q)

and
W1H1(ϒλ, Q)→W1H1(ϒλ

δ
, Q) ↪→W1H1(rα(ϒλ

α
), Q)

then define the same map. Therefore, W1H1(ϒλ, Q)→W1H1(ϒλ
γ
, Q) and W1H1(ϒλ, Q)→W1H1(ϒλ

δ
, Q)

have the same kernel. Since, by Proposition 5.7, any two symmetric nonseparating closed curves on S
can be connected by a sequence of such curves whose successive terms meet transversally in a single
point, we see that this kernel is independent of γ .

https://doi.org/10.1017/S0017089523000381 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000381


Glasgow Mathematical Journal 151

By Corollary 5.6, the geometric realization |Cns(S, υ, P)| of the complex of symmetric nonseparating
curves is connected. Hence, the low terms’ exact sequence associated with the first spectral sequence of
equivariant cohomology yields the exact sequence

0→H1(|Cns(S, υ, P)|/ϒλ, Q)→H1(ϒλ, Q)→
⊕

γ

H1(ϒλ

γ
, Q),

where γ runs over a set of representatives of the ϒλ-orbits of isotopy classes of nonseparating simple
closed curves.

Since the natural monomorphism H1(|Cns(S, υ, P)|/ϒλ, Q) ↪→H1(ϒλ, Q) has image contained in the
weight zero subspace of H1(ϒλ, Q), we then get the exact sequence:

0→W1H1(ϒλ, Q)→
⊕

γ

W1H
1(ϒλ

γ
, Q).

Above we proved that, for all symmetric nonseparating simple closed curves γ , the maps
W1H1(ϒλ, Q)→W1H1(ϒλ

γ
, Q) have the same kernel. It follows that W1H1(ϒλ, Q)→W1H1(ϒλ

γ
, Q) is

injective. Since the Dehn twist τγ centralizes the subgroup ϒλ
γ

of ϒ(S, P) and then acts trivially on
W1H1(ϒλ

γ
, Q), it does so on W1H1(ϒλ, Q) too, which completes the proof of the theorem.

The following result shows that, at least for 	P ≥ 4, Theorem 6.7 is not empty:

Theorem 6.8. For (S, υ, P) a marked hyperelliptic closed surface of genus g≥ 2 with 	P ≥ 4, there
is a finite index subgroup ϒλ of Pϒ(S, P) which is normalized by ϒ(S, 
P), contains D1(S, υ, P) and is
such that W1H1(ϒλ, Q) �= 0.

Proof. For P ⊂P ′, there is an epimorphism fP ′�P : Pϒ(S, P ′)→ Pϒ(S, P), induced by forgetting
the points P ′ �P , and so a monomorphism W1H1(ϒλ, Q) ↪→W1H1(f −1

P ′�P (ϒλ), Q). Therefore, it is not
restrictive to assume that 	P = 4.

Let then {Qi, Ri}, for i= 1, . . . , 4, be four distinct symmetric pairs of points on S, put
P := {Q1, . . . , Q4} and let S′ := S �∪4

i=1{Qi, Ri}. By Theorem 3.1, there is a natural short exact
sequence:

1→N◦ → Pϒ(S′)
f◦→ Pϒ(S, P)→ 1,

where N◦ is the normal subgroup generated by the Dehn twists about symmetric separating simple closed
curves on S′ bounding a disc which only contains the punctures labeled by a pair of points {Qi, Ri}, for
i= 1, . . . , 4.

By the short exact sequence (5), there is also a natural isomorphism:

Pϒ(S′)∼= P�(S′/υ , B′υ)∼= P�(S0,2g+6),

where B′υ is the branch locus of the quotient map S′ → S′
/υ

(consisting of 2g+ 2 points).
There is then a natural epimorphism (induced by forgetting the branch locus B′υ):

fB′υ : Pϒ(S′)→ P�(S′/υ)∼= P�(S0,4).

Note that the kernel of fB′υ contains N◦. In fact, the isomorphism Pϒ(S′)∼= P�(S′/υ , B′υ) maps a Dehn
twist about a symmetric separating simple closed curve on S′, bounding a disc which only contains
the punctures labeled by the pair {Qi, Ri} from S, to a Dehn twist about a simple closed curve on S′/υ
bounding a disc which only contains the puncture of S′/υ in the image of {Qi, Ri} and some point of the
branch locus B′υ .

Therefore, the epimorphism fB′υ factors through a natural epimorphism:

f̄B′υ : Pϒ(S, P)→ P�(S′/υ)∼= P�(S0,4).
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Note also that the above isomorphism Pϒ(S′)∼= P�(S′/υ , B′υ) maps a Dehn twist about a separating
simple closed curve bounding a genus 1 unpunctured subsurface of S′ to a Dehn twist about a sim-
ple closed curve on S′/υ bounding an unpunctured disc containing three points of the branch locus B′υ .
Therefore, the subgroup D1(S′, υ) is in the kernel of fB′υ which implies that D1(S, υ, P) is in the kernel
of f̄B′υ .

Let �λ be a subgroup of P�(S′/υ)∼= P�(S0,4) such that the associated level structure PM(S′/υ)λ is a
curve of genus ≥ 1 (so that W1H1(�λ, Q) �= 0). Since ϒ(S, 
P)∩ f̄ −1

B′υ (�λ) is a subgroup of finite index
in ϒ(S, 
P), it contains a subgroup ϒλ which is maximal for the property of being normal and of finite
index in ϒ(S, 
P). Since D1(S, υ, P) is a normal subgroup of ϒ(S, 
P) contained in f̄ −1

B′υ (�λ), the subgroup
ϒλ contains D1(S, υ, P).

As we observed in Section 3.3, the isomorphism Pϒ(S′)∼= P�(S′/υ , B′υ) is induced by an isomorphism
(16) M(S′, υ)∼=M(S′/υ , B′υ) of moduli stacks. Similarly, the epimorphism fB′υ is induced by the smooth
morphism with connected fibers M(S′/υ , B′υ)→M(S′/υ).

By the proof of Theorem 3.1, the epimorphism f◦ : f −1
◦ (ϒλ)→ϒλ is induced by an open embedding

of level structures M(S′, υ)λ′ ↪→M(S, υ, P)λ, where we put ϒλ′ := f −1
◦ (ϒλ). So, the epimorphism f◦

induces an isomorphism f ∗◦ : W1H1(ϒλ, Q)
∼→W1H1(f −1

◦ (ϒλ), Q). We conclude that there is a monomor-
phism (f ∗◦ )−1 ◦ f ∗B′υ : W1H1(�λ, Q) ↪→W1H1(ϒλ, Q) and, hence, W1H1(ϒλ, Q) �= 0.

Corollary 6.9. With the notations of Section 6.2, for (S, υ, P) a marked hyperelliptic closed surface
of genus g≥ 2 with 	P ≥ 4 and a point Q ∈ S �P , there is a finite index subgroup ϒλ of the hyperel-
liptic mapping class group ϒ(S, P , Q) such that the associated linear representation Lρλ : fQ(ϒλ)→
Sp (H1(Sλ, Q)) has a finite nontrivial orbit.

Remark 6.10. Based on local monodromy computations (cf. Theorem 2.2 in [7]), possible candidates for
ϒλ are the finite index subgroups defined by the intersection of Pϒ(S, P) with the finite index subgroups
�w(4,3) and �w(4,6) of P�(S, P) defined in Section 2 of [7].

6.6. A counterexample to the Putman-Wieland conjecture for g(S) = 2

In particular, we get a counterexample to the n-punctured (n≥ 4), genus 2 case of the Putman-Wieland
conjecture:1

Corollary 6.11. For (S, P) a marked closed surface of genus 2 with 	P ≥ 4 and Q ∈ S �P , there is
a finite index subgroup �λ of the mapping class group �(S �P , Q) such that the associated linear
representation Lρλ : fQ(�λ)→ Sp (H1(Sλ, Q)) has a finite nontrivial orbit.

7. Profinite hyperelliptic mapping class groups
7.1. Profinite and congruence topologies on mapping class groups

The profinite topology on a group G is defined taking for basis of open subsets the cosets of all normal
subgroups of finite index. In particular, every finite index subgroup H of G is an open subset for the profi-
nite topology and we write H <o G. The profinite completion Ĝ of G is the completion of G with respect
to the profinite topology. There is a natural isomorphism of topological groups Ĝ∼= lim←−N�oG

G/N, where
each finite quotient G/N is endowed with the discrete topology.

More generally, every cofiltered system {Nλ}λ∈� of normal finite index subgroups of G defines a
topology on G as above and the pro-� completion Ĝ� is naturally isomorphic to the inverse limit
lim←−λ∈� G/Nλ.

1After completing a draft of this paper, I learned that Marković (cf. [28]), with a different approach, found a counterexample to
the Putman-Wieland conjecture in genus 2 for 	P ≥ 0.
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For instance, on the mapping class group �(S, P), besides the profinite topology, a natural topology
is defined in the following way.

For a fixed Q ∈ S �P , there is a natural faithful representation:

�(S, P) ↪→Out (π1(S �P , Q)).

We then associate with every �(S, P , Q)-invariant finite index subgroup K of π1(S �P , Q) the kernel �K

of the induced representation �(S, P)→Out (π1(S �P , Q)/K). This is a normal finite index subgroup
of �(S, P) called the geometric level associated with K.

Since, in a finitely generated group, characteristic finite index subgroups are cofinal in the system
of all finite index subgroups, the set of all geometric levels {�K}, ordered by inclusion, is a cofiltered
system. The associated topology on the mapping class group �(S, P) is then called the congruence
topology and the associated completion �̌(S, P) the congruence completion or also the procongruence
mapping class group.

We define the congruence topology on a subgroup � of �(S, P) to be the topology induced by the
congruence topology of �(S, P). The completion �̌ with respect to this topology is the congruence com-
pletion of � and identifies with a subgroup of �̌(S, P). We call the congruence completions ϒ̌(S, P),
ϒ̌(S, 
P), and Pϒ̌(S, P) of ϒ(S, P), ϒ(S, 
P) and Pϒ(S, P) also procongruence (pure) hyperelliptic
mapping class groups.

7.2. The congruence subgroup problem

By a classical result of Grossman (cf. [20]), we know that the natural homomorphism �(S, P)→
Out (π̂1(S �P , Q)) is injective, so that the natural homomorphism with dense image �(S, P)→ �̌(S, P)
is also injective. A much more difficult question is whether the natural homomorphism

�̂(S, P)→Out (π̂1(S �P , Q))

is injective. This is known as the congruence subgroup problem for mapping class groups. A positive
answer is only known for g(S)≤ 2 (cf. [1], for g(S)= 1, and [6, 23, 11], for g(S)= 2). These are particular
cases of the more general result (cf. Theorem 1.4 in [11]):

Theorem 7.1. Let (S, υ, P) be a hyperbolic marked hyperelliptic closed surface. Then, the congruence
subgroup property holds for the associated hyperelliptic mapping class groups, that is to say, there is a
natural isomorphism ϒ̂(S, P)∼= ϒ̌(S, P).

7.3. The congruence subgroup property for hyperelliptic mapping class groups

Theorem 7.1 can be extended to an arbitrary hyperbolic marked hyperelliptic surface:

Theorem 7.2. Let (S, υ, P) be a hyperbolic marked hyperelliptic surface. Then, the congruence sub-
group property holds for the associated hyperelliptic mapping class group, that is to say, there is a
natural isomorphism ϒ̂(S, P)∼= ϒ̌(S, P).

Proof. Since ϒ(S, P) is a finite index subgroup of ϒ(S
◦
, P), it is not restrictive to assume that ∂S=∅.

Let us consider first the case when S is not hyperbolic, that is to say, either S is closed of genus 1 and
	P ≥ 1 or g(S)= 0 and n(S)≤ 2. The former case is already dealt by Theorem 7.1 and the latter easily
follows from it.

Let us then assume that S is hyperbolic. Since Pϒ(S, P) is a finite index subgroup of ϒ(S, P), it is
enough to prove the congruence subgroup property for Pϒ(S, P). By the Birman exact sequence for
procongruence mapping class groups (cf. Corollary 4.7 in [11]), a standard argument reduces the proof
to the case when S is hyperbolic and P =∅.
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Note that there is then a natural isomorphism Pϒ(S)∼= Pϒ(S �WP (S)) and the epimorphism
Pϒ̂(S)→ Pϒ̌(S) factors through the induced isomorphism Pϒ̂(S)∼= Pϒ̂(S �WP (S)) and the epimor-
phisms Pϒ̂(S �WP (S))→ Pϒ̌(S �WP (S)) and Pϒ̌(S �WP (S))→ Pϒ̌(S).

Therefore, the congruence subgroup property for Pϒ(S) implies that the congruence subgroup prop-
erty holds for Pϒ(S �WP (S)) as well. We can then also assume that W◦(S)=∅ and, in conclusion, that
(S, υ) is a hyperbolic surface without boundary, no Weierstrass punctures and at least two symmetric
punctures (since the closed surface case is already dealt by Theorem 7.1).

Lemma 7.3. For Q ∈ S �WP (S), the natural representation

Pϒ̂(S �WP (S))→Out (π̂1(S �WP (S), Q))

is faithful.

Proof. Since, by our hypothesis, S has at least two symmetric punctures, there is a natural isomor-
phism Pϒ̂(S �WP (S))∼= P�̂(S/υ �Bυ) (cf. the short exact sequence (5) and following remarks). So it
is enough to show that the representation:

P�̂(S/υ �Bυ)→Out (π̂1(S �WP (S), Q)), (30)

obtained composing this isomorphism with the given representation, is faithful. Let u ∈ π1(S �
WP (S), Q) be represented by a loop whose free isotopy class contains a simple closed curve about one
of the punctures obtained removing the Weierstrass points and let Autu (π̂1(S �WP (S), Q)) be the sub-
group of Aut (π̂1(S �WP (S), Q)) consisting of those automorphisms which fix the element u. There is
then a natural homomorphism:

�̂u : Autu (π̂1(S �WP (S), Q))
/

Inn (uẐ)→Out (π̂1(S �WP (S), Q))

which, by Lemma 2.2 in [11], is injective. Since the representation (30) factors through the homomor-
phism �̂u and a natural representation:

P�̂(S/υ �Bυ)→Autu (π̂1(S �WP (S), Q))
/

Inn (uẐ) , (31)

it is then enough to prove that the representation (31) is faithful.
Let us observe that the fundamental group π1(S �WP (S), Q) identifies with an index 2 subgroup of

π1(S/υ �Bυ , Q̄), where Q̄ is the image of the base point Q by the covering map S �WP (S)→ S/υ �Bυ .
Then, by Lemma 8 in [1], the natural representation:

Rυ : Aut	u (π̂1(S/υ �Bυ , Q̄))
/

Inn (uẐ)→Autu (π̂1(S �WP (S), Q))
/

Inn (uẐ)

is faithful, where we denote by Aut	u (π̂1(S/υ �Bυ , Q̄)) the subgroup of Autu (π̂1(S/υ �Bυ , Q̄)) consisting
of those elements which preserve the subgroup π̂1(S �WP (S), Q).

The representation (31) then factors through the representation Rυ and a natural representation:

P�̂(S/υ �Bυ)→Aut	u (π̂1(S/υ �Bυ , Q̄))
/

Inn (uẐ) .

Thus, it is enough to prove that this last representation is faithful, which follows by the ordinary case
of the congruence subgroup property for genus 0 pure mapping class groups (cf. Theorem 1 in [1]).

From the natural isomorphism Pϒ̂(S)∼= Pϒ̂(S �WP (S)) and Lemma 7.3, it follows that, for Q ∈
S �WP (S), there is a natural faithful representation:

Pϒ̂(S) ↪→Out (π̂1(S �WP (S), Q)).

In particular, the natural homomorphism Pϒ̂(S)→ P�̌(S �WP (S)) is injective. In order to prove
the theorem, we then have to show that its composition with the natural epimorphism fWP : P�̌(S �
WP (S))→ P�̌(S) is still injective.
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Let us denote by S(n) the configuration space of n distinct points on S, by �(n) its fundamental group,
and by �̂(n) the profinite completion of this group. From Theorem 1 in [1] and the Birman short exact
sequences for procongruence mapping class groups (cf. Corollary 4.7 in [11]), it follows that the kernel
of fWP identifies with the group �̂(2g(S)+ 2). Hence, the theorem follows if we show that the image of
Pϒ̂(S)→ P�̌(S �WP (S)) has trivial intersection with the subgroup �̂(2g(S)+ 2).

Since the image of Pϒ̂(S) in P�̌(S �WP (S)) is centralized by the hyperelliptic involution υ,
it is enough to prove that the centralizer of υ in P�̌(S �WP (S)) has trivial intersection with
the subgroup �̂(2g(S)+ 2). The last claim can be proved by the same argument given at the
end of the proof of Lemma 3.7 in [6] or, alternatively, it is an immediate consequence of
Lemma 6.6 in [11].

7.4. Hyperelliptic mapping class groups are good

In Proposition 3.2 in [6], we showed that the hyperelliptic mapping class group ϒ(S, 
P) of a marked
hyperelliptic closed surface is good, that is to say, according to Serre’s definition (cf. Exercise 1,
Section 2.6 in [32]), the natural homomorphism ϒ(S, 
P)→ ϒ̂(S, 
P) induces an isomorphism on coho-
mology with finite coefficients. It is not difficult to extend this result to arbitrary hyperbolic marked
hyperelliptic surfaces:

Theorem 7.4. Let (S, υ, P) be a hyperbolic marked hyperelliptic surface. Then, the natural homo-
morphism ϒ(S, P)→ ϒ̂(S, P) induces, for every discrete, finite, continuous ϒ̂(S, P)-module M, an
isomorphism Hi(ϒ̂(S, P), M)

∼→Hi(ϒ(S, P), M), for all i≥ 0.

Proof. Since the pure hyperelliptic mapping class group has finite index in the hyperelliptic mapping
class group ϒ(S, P), by Hochschild-Serre spectral sequence, it is enough to show that Pϒ(S, P) has this
property.

It is well known (cf. also the proof of Theorem 7.2) that the Birman short exact sequence (6) induces
one of profinite completions:

1→ π̂1(S �P , Q)→ Pϒ̂(S, P ∪ {Q})→ Pϒ̂(S, P)→ 1. (32)

Since the fundamental group of a surface is good, by Hochschild-Serre spectral sequence, we have
that, if Pϒ(S, P) is good, then Pϒ(S, P ∪ {Q}) has the same property. By a simple inductive argument,
we are then reduced to prove that Pϒ(S) is good.

The short exact sequence (5) implies that Pϒ(S) is good, if and only if, P�(S/υ , Bυ) is good. This
is well known (again by the profinite Birman short exact sequence and Hochschild-Serre spectral
sequence), which completes the proof of the theorem.

From Exercise 2, Section 2.6 in [32], it then follows:

Corollary 7.5. The hyperelliptic Birman exact sequences (20) induce the short exact sequences, on
profinite completions:

1→ π̂1(S �WP (S), Q)→ ϒ̂(S◦)◦ → ϒ̂(S)→ 1
and

1→ π̂1(S �WP (S), Q)→ Pϒ̂(S◦)→ Pϒ̂(S)→ 1.
(33)

7.5. The complex of profinite curves

Let us recall a few definitions and results from Sections 3 and 4 of [8]. Let G→G′ be a homomorphism
of an abstract group in a profinite group, with dense image, and let {Gλ}λ∈� be the cofiltered system
formed by the sugroups of G which are inverse images of open subgroups of G′. Let X• be a simplicial
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set endowed with a geometric G-action (see Section 3 in [8]) such that the set of G-orbits in Xn is finite
for all n≥ 0. Assume, moreover, that there exists a μ ∈� such that X•, with the induced Gμ-action, is a
simplicial Gμ-set.

The G′-completion of X• is defined to be the simplicial profinite set

X′• := lim←−
λ∈�, λ≤μ

X•/Gλ,

which is then endowed with a natural continuous geometric action of G′. The simplicial profinite set
X′• has the following universal property. Let f : X• → Y• be a simplicial G-equivariant map, where Y•
is a simplicial profinite set endowed with a continuous geometric action of G′. Then, f factors uniquely
through the natural map X• → X′• and a simplicial G′-equivariant continuous map f ′ : X′• → Y•.

For S a hyperbolic surface, by Proposition 2.2 in [8], there is then an order of the vertex set of the
simplicial complex C(S) such that the associated simplicial set C(S)• is a �(S)[4]-simplicial set endowed
with a natural geometric �(S)-action. For this order, the conditions prescribed in order to define the
�̌(S)-completion of the simplicial set C(S)• are all satisfied. The procongruence curve complex Č(S)• is
then the simplicial profinite set defined as the �̌(S)-completion of C(S)•. It comes with a natural injective
�(S)-equivariant map C(S)• ⊆ Č(S)• (cf. Proposition 5.1 in [5]).

For �λ a finite index subgroup of �(S) contained in the abelian level �(S)[4], the quotient Cλ(S)• :=
C(S)•/�λ identifies with the nerve of the DM boundary of M(S)λ. Therefore, the procongruence curve
complex Č(S)• can also be defined to be the inverse limit of the nerves of the DM boundaries of all
geometric level structures over M(S).

A simplicial profinite complex is an abstract simplicial complex whose set of vertices is endowed
with a profinite topology such that the sets of k-simplices, with the induced topologies, are compact
and then profinite, for all k≥ 0. For these simplicial complexes, the procedure, which associates with an
abstract simplicial complex and an order of its vertex set a simplicial set, produces a simplicial profinite
set. By Theorem 4.2 of [8], Č(S)• has a realization as the simplicial profinite set associated with an
abstract simplicial profinite complex which is defined in terms of the fundamental group π1(S, Q) and
its profinite completion π̂1(S, Q) as follows.

Let L(S) be the set of isotopy classes of simple closed curves on S. Let then π1(S, Q)/∼ be the set
of conjugacy classes of elements of π1(S, Q) and let P2(π1(S, Q)/∼ ) be the set of unordered pairs of
elements of π1(S, Q)/∼. For a given γ ∈ π1(S, Q), let us denote by γ ±1 the set {γ , γ −1} and by [γ ±1] its
equivalence class in P2(π1(S, Q)/∼ ). There is a natural embedding ι : L(S) ↪→P2(π1(S, Q)/∼ ) defined
by choosing, for γ ∈L(S), an element 
γ∗ ∈ π1(S, Q) whose free isotopy class contains γ and letting
ι(γ ) := [ 
γ ±1

∗ ].
Let π̂1(S, Q) be the profinite completion of π1(S, Q) and π̂1(S, Q)/∼ be the set of conjugacy classes of

elements of π̂1(S, Q) and P2(π̂1(S, Q)/∼ ) the profinite set of unordered pairs of elements of π̂1(S, Q)/∼.
Since π1(S, Q) is conjugacy separable, the set π1(S, Q)/∼ embeds in the profinite set π̂1(S, Q)/∼. We
define the set of profinite simple closed curves L̂(S) on S to be the closure of the set ι(L(S)) inside
the profinite set P2(π̂1(S, Q)/∼ ). An order of the set {α, α−1} is preserved by the conjugacy action and
defines an orientation for the associated equivalence class [α±1] ∈ L̂(S).

For all k≥ 0, there is a natural embedding of the set C(S)k−1 of isotopy classes of k-multicurves, that
is to say, multicurves on S of cardinality k, into the profinite set Pk(L̂(S)) of unordered subsets of k
elements of L̂(S). The set of profinite k-multicurves on S is then the closure of the set C(S)k−1 inside the
profinite set Pk(L̂(S)), for k > 0.

Definition 7.6. Let L(�̂(S)) be the abstract simplicial profinite complex whose k-simplices are the profi-
nite k-multicurves on S. The abstract simplicial profinite complex L(�̂(S)) is called the complex of
profinite curves on S.

By Theorem 4.2 of [8], for a suitable order of the vertex set of L(�̂(S)), there is a natural isomorphism:

Č(S)• ∼= L(�̂(S))•. (34)
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7.6. The complex of profinite symmetric curves

For a hyperbolic marked hyperelliptic surface (S, υ, P), by definition, there is a natural ϒ(S, υ, P)-
equivariant embedding of simplicial complexes C(S, υ, P)⊆C(S �P) and hence, for a suitable order
of the vertex set, an embedding of ϒ(S, P)[4]-simplicial sets C(S, υ, P)• ⊆C(S �P)•.

In particular, the conditions we need in order to define the ϒ̂(S, P)-completion of the simplicial set
C(S, υ, P)• are satisfied. The symmetric profinite curve complex Ĉ(S, υ, P)• is then defined to be the
ϒ̂(S, P)-completion of the simplicial set C(S, υ, P)•. Note that the natural ϒ(S, P)-equivariant map
C(S, υ, P)• → Ĉ(S, υ, P)• is then also an embedding.

Since, by Theorem 7.2, we have ϒ̂(S, P)= ϒ̌(S, P) the ϒ̂(S, P)-completion of C(S, υ, P)• coincides
with its ϒ̌(S, P)-completion. We will show that the natural ϒ̂(S, υ, P)-equivariant continuous map of
simplicial profinite sets Ĉ(S, υ, P)• → Č(S �P)• is an embedding.

For ϒλ, a finite index subgroup of ϒ(S, P) contained in the abelian level ϒ(S, P)[4], the quotient
finite simplicial set Cλ(S, υ, P)• := C(S, υ, P)•/ϒλ identifies with the nerve of the DM boundary of
M(S, υ, P)λ. Therefore, the profinite curve complex Ĉ(S, υ, P)• is naturally isomorphic to the inverse
limit of the nerves of the DM boundaries of all level structures over M(S, υ, P). This fact implies the
following nontrivial description of stabilizers for the continuous action of ϒ̂(S, P) on Ĉ(S, υ, P)• (cf.
Proposition 6.5 in [5]):

Theorem 7.7. Let ϒ̂λ be an open subgroup of ϒ̂(S, P) and let ϒλ := ϒ̂λ ∩ϒ(S, P), where we have
identified ϒ(S, P) with its image in ϒ̂(S, P). Then, we have:

1. For σ ∈C(S, υ, P)• ⊂ Ĉ(S, υ, P)•, the stabilizer ϒ̂λ
σ

of σ for the action of ϒ̂λ on Ĉ(S, υ, P)• is
the closure, inside the profinite group ϒ̂(S, P), of the stabilizer ϒλ

σ
of σ for the action of ϒλ on

C(S, υ, P)•.
2. The stabilizer ϒ̂λ

σ
is the profinite completion of the stabilizer ϒλ

σ
.

Proof. (i): For ϒμ a finite index normal subgroup of ϒλ contained in ϒ(S, P)[4], the stabilizer
(ϒλ/ϒμ)σμ

of the image σμ of σ in the quotient Cμ(S, υ, P)• for the action of the finite group
ϒλ/ϒμ identifies with the Galois group of the normal étale covering �̂μ

σ
→ �̂λ

σ
, where �̂μ

σ
and �̂λ

σ

are punctured tubular neighborhoods of the open strata parameterized by σ in M(S, υ, P)μ and
M(S, υ, P)λ, respectively. Since the fundamental group of �̂λ

σ
is isomorphic to the stabilizer ϒλ

σ
, it

follows that (ϒλ/ϒμ)σμ
=ϒλ

σ
/ϒμ

σ
. By taking the inverse limit on all such ϒμ, we get the first item of the

theorem.
(ii): It is not restrictive to take ϒ̂λ = Pϒ̂(S, P). For P =∅, the conclusion then follows from the exact

sequences (15), the isomorphisms (2) and (9), Theorem 4.5 in [8] and the congruence subgroup property
for hyperelliptic mapping class groups (cf. Theorem 7.2).

For P �= ∅, given σ ∈C(S, υ, P), let us denote by σ̄ the, possibly trivial, isotopy class in S of a mul-
ticurve on S �P in the isotopy class σ . There is then a natural epimorphism Pϒ(S, P)σ→ Pϒ(S)σ̄

whose kernel, by the definition of Pϒ(S, P), coincides with the kernel of the natural epimorphism
P�(S, P)σ→ P�(S)σ̄ . By the case P =∅ considered above, it is then enough to show that the kernel of
the natural epimorphism P�̌(S, P)σ→ P�̌(S)σ̄ is the profinite completion of the kernel of P�(S, P)σ→
P�(S)σ̄ . But this immediately follows from Theorem 4.5 in [8] and the Birman short exact sequence for
procongruence mapping class groups (cf. Corollary 4.7 in [11]).

From the description (13) of the stabilizer ϒ(S, P)σ of a simplex σ ∈C(S, υ, P) for the action of the
hyperelliptic mapping class group ϒ(S, P), it then follows:

Corollary 7.8. For a simplex σ ∈ Ĉ(S, υ, P)• in the image of C(S, υ, P)•, the stabilizer ϒ̂(S, P)σ for
the action of the profinite hyperelliptic mapping class group ϒ̂(S, P) on Ĉ(S, υ, P)• is described by the
short exact sequence:
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1→
∏
γ∈σ

τ Ẑ

γ
→ ϒ̂(S, P)σ→ ϒ̂(S � σ , P), (35)

where τ Ẑ

γ
, ϒ̂(S, P)σ and ϒ̂(S � σ , P) are naturally isomorphic to the profinite completions of the groups

τZ

γ
, ϒ(S, P)σ and ϒ(S � σ , P), respectively.

Proof. Right exactness of the sequence (35) follows from Theorem 7.7 and left exactness from
Theorem 4.5 in [8].

Corollary 7.9. For a simplex σ ∈ Ĉ(S, υ, P)•, let σ also denote its image in Č(S �P). Then, for ϒ̂λ

an open subgroup of ϒ̂(S, P), we have ϒ̂λ
σ
= ϒ̂λ ∩ �̌(S, P)σ , where we have identified ϒ̂(S, P) with its

image in the procongruence mapping class group �̌(S, P).

Proof. It is not restrictive to assume that ϒ̂λ = ϒ̂(S, P) and that σ is in the image of C(S, υ, P)•. The
conclusion then follows from Corollary 7.8 and Theorem 4.9 in [12].

Corollary 7.9 implies, in particular, the claim we made at the beginning of this section:

Corollary 7.10. For a hyperbolic marked hyperelliptic surface (S, υ, P), the natural map Ĉ(S, υ, P)• →
Č(S �P)• is injective.

As done for the procongruence curve complex, we can now give a more intrinsic description of the
profinite symmetric curve complex Ĉ(S, υ, P)•. Let us define the set of symmetric profinite k-multicurves
on S as the closure of the set C(S, υ, P)k−1 inside the profinite set Pk(L̂(S �P)), for k > 0.

Definition 7.11. Let L(�̂(S �P), υ) be the abstract simplicial profinite complex whose k-simplices are
the symmetric profinite k-multicurves on S. The abstract simplicial profinite complex L(�̂(S �P), υ) is
called the complex of symmetric profinite curves on S.

By Corollary 7.10 and the isomorphism (34), for a suitable order of the vertex set of L(�̂(S �P), υ),
there is then a natural isomorphism of simplicial profinite sets:

Ĉ(S, υ, P)• ∼= L(�̂(S �P), υ)•. (36)

7.7. Centralizers of symmetric profinite multitwists and the center of the profinite hyperelliptic
mapping class group

There is a natural �(S �P)-equivariant map T : C(S �P)→ �(S �P) which assigns to a multicurve
σ the multitwist T(σ ) := ∏

γ∈σ τγ . By the universal property of the �̌(S �P)-completion, this map then
extends to a continuous �̌(S �P)-equivariant map:

Ť : L(�̂(S �P))→ �̌(S �P),

which assigns to a profinite multicurve σ the procongruence multitwist Ť(σ ) := ∏
γ∈σ τγ . It is clear that

this map restricts to a continuous ϒ̂(S, P)-equivariant map:

T̂ : L(�̂(S �P), υ)→ ϒ̂(S, P),

which assigns to a symmetric profinite multicurve σ the symmetric profinite multitwist T̂(σ ) := ∏
γ∈σ τγ .

Thanks to Corollary 7.9, we can determine the centralizer and the normalizer in ϒ̂(S, P) of such an
element:
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Corollary 7.12. For σ ∈ L(�̂(S �P), υ) and all k ∈N+, we have:

Zϒ̂(S,P)(̂T(σ )k)=Nϒ̂(S,P)(〈̂T(σ )k〉)=Nϒ̂(S,P)(〈τ k
γ
| γ ∈ σ 〉)= ϒ̂(S, P)σ ,

where by 〈A〉 we denote the closed subgroup generated by a set A of elements in a profinite group and
ϒ̂(S, P)σ is the stabilizer described in Corollary 7.8. In particular, the map T̂ defined above is injective.

Proof. Let us identify ϒ̂(S, P) with its image in the procongruence mapping class group �̌(S, P). It
is clear that we have Zϒ̂(S,P)(̂T(σ )k)= Z�̌(S,P)(̂T(σ )k)∩ ϒ̂(S, P) and the same holds for the normalizers
appearing in the statement of the corollary. But then the conclusion is an immediate consequence of
Corollary 7.9 and Corollary 4.11 in [12] (see also Corollary 4.3 in [11]).

We can now determine the centralizer of an open subgroup of the profinite hyperelliptic mapping
class group:

Theorem 7.13. Let (S, υ, P) be a marked hyperelliptic surface such that S is hyperbolic and n(S
◦
/υ
�

Bυ) > 4. Then, for every open subgroup ϒ̂λ of ϒ̂(S, P), the centralizer of ϒ̂λ in ϒ̂(S, P) is generated by
the hyperelliptic involution υ if P =∅ and is trivial if P �= ∅.

Proof. Let us consider first the case P =∅. Since S is hyperbolic, by the exact sequence (3), there is
an exact sequence:

1→〈υ〉→ ϒ̂(S)→ �̂(S/υ , Bυ)pυ
→ 1, (37)

where the group �̂(S/υ , Bυ)pυ
identifies with an open subgroup of �̂(S

◦
/υ
�Bυ).

For n(S
◦
/υ
�Bυ) > 4, it is well known that the centralizer in �̂(S

◦
/υ
�Bυ) of an open subgroup is trivial

(cf. (i) of Theorem 4.14 in [12]). This then implies the claim of the theorem for P =∅.
The next case to deal with is when P = {P} is a single point. Let us consider the profinite Birman

short exact sequence:

1→ π̂1(S, P)→ ϒ̂(S, P)
f̂P→ ϒ̂(S)→ 1.

Since, as it is well known, the centralizer in π̂1(S, P) of the open subgroup ϒ̂λ ∩ π̂1(S, P) is trivial, the
intersection Zϒ̂(S,P)(ϒ̂λ)∩ π̂1(S, P) is also trivial. Therefore, the centralizer Zϒ̂(S,P)(ϒ̂λ) identifies with a
subgroup of the centralizer Zϒ̂(S)(f̂P(ϒ̂λ)).

By the caseP =∅ of the theorem, Zϒ̂(S)(f̂P(ϒ̂λ)) is generated by the hyperelliptic involution υ. Let then
υ̃ ∈ϒ(S, P) be a hyperelliptic involution which lifts υ. By (ii) of Lemma 3.1 in [9], the only elements
of order 2 in the profinite group π̂1(S, P) · 〈υ̃〉 are the conjugates of υ̃. Thus, either Zϒ̂(S,P)(ϒ̂λ) is trivial
or is generated by a conjugate of υ̃. Now, by (i) of Lemma 3.1 in [9], the hyperelliptic involution υ̃, and
so its conjugates, are self-centralizing in the group π̂1(S, P) · 〈υ̃〉. Therefore, Zϒ̂(S,P)(ϒ̂λ) is trivial.

For 	P ≥ 2, fix a point Q ∈P and let P ′ := P � Q. As a first step, let us show that, for every open
subgroup ϒ̂λ of ϒ̂(S, P), the centralizer of ϒ̂λ in ϒ̂(S, P) is in fact contained in the subgroup ϒ̂(S, P ′, Q)
of ϒ̂(S, P). Let γ be a separating simple closed curve on S bounding on one side a subsurface S′ of S
containing only the point Q ∈P and on the other side a subsurface S′ ′ containing all the other points P ′.
Let us also choose γ in a way that the marked hyperelliptic surfaces (S′, υ|S′ , Q) and (S′ ′, υ|S′ ′ , P ′) are
not isomorphic.

The open subgroup ϒ̂λ contains a power τ k
γ
, for some k ∈N+. By Corollary 7.12, we have that

Zϒ̂(S,P)(τ k
γ
)= ϒ̂(S, P)γ and then Zϒ̂(S,P)(ϒ̂λ)⊆ Zϒ̂(S,P)(τ k

γ
)= ϒ̂(S, P)γ . It is easy to check that the image

of the subgroup ϒ̂(S, P)γ via the natural epimorphism ϒ̂(S, P)→�P is contained in the stabilizer of
the point Q in the symmetric group �P and so the same is true for the image of Zϒ̂(S,P)(ϒ̂λ). It follows
that Zϒ̂(S,P)(ϒ̂λ) is contained in ϒ̂(S, P ′, Q), as claimed above.
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We now proceed by induction on 	P ≥ 2, with the base of the induction provided by the case 	P = 1.
Let us consider the profinite Birman short exact sequence:

1→ π̂1(S, Q)→ ϒ̂(S, P ′, Q)
f̂Q→ ϒ̂(S, P ′)→ 1.

As above, the intersection of Zϒ̂(S,P)(ϒ̂λ) with the profinite surface group π̂1(S, Q) is trivial. Therefore,
the centralizer Zϒ̂(S,P)(ϒ̂λ) identifies with a subgroup of the centralizer Zϒ̂(S,P ′)(f̂Q(ϒ̂λ)). Since 	P ′ =
	P − 1≥ 1, by the induction hypothesis, the latter group is trivial and so the conclusion of the theorem
follows.

Remark 7.14. For n(S
◦
/υ
�Bυ)= 3, the statement of the theorem is still true but mostly trivial. For

n(S
◦
/υ
�Bυ)= 4, the situation is more complicated. By Proposition 2.7 in [16], there is an isomorphism:

�(S0,4)∼= PSL2 (Z) � (Z/2×Z/2),

where PSL2 (Z) acts on Z/2×Z/2 (the Klein subgroup) through its quotient PSL2 (Z/2) and the pure
mapping class group P�(S0,4) identifies with the kernel of this action. We then also have an isomorphism:

�̂(S0,4)∼= ̂PSL2 (Z) � (Z/2×Z/2).

In particular, the pure profinite mapping class group P�̂(S0,4) is centralized by the Klein subgroup of
�̂(S0,4) and so the statement of Theorem 7.13 does not hold in this case.

Another interesting case which is not considered in Theorem 7.13 is when (S, υ, P) is a marked
hyperelliptic closed surface of genus 1. In this case, ϒ̂(S, P)= �̂(S, P) so that, by Theorem 4.14 in
[12], we have that Zϒ̂(S,P)(ϒ̂λ) is generated by the hyperelliptic involution for P ≤ 2 and is trivial for
P > 2.
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