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Abstract

Background. As a neuroprogressive illness, depression is accompanied by brain structural
abnormality that extends to many brain regions. However, the progressive structural alteration
pattern remains unknown.
Methods. To elaborate the progressive structural alteration of depression according to illness
duration, we recruited 195 never-treated first-episode patients with depression and 130
healthy controls (HCs) undergoing T1-weighted MRI scans. Voxel-based morphometry
method was adopted to measure gray matter volume (GMV) for each participant. Patients
were first divided into three stages according to the length of illness duration, then we
explored stage-specific GMV alterations and the causal effect relationship between them
using causal structural covariance network (CaSCN) analysis.
Results. Overall, patients with depression presented stage-specific GMV alterations compared
with HCs. Regions including the hippocampus, the thalamus and the ventral medial pre-
frontal cortex (vmPFC) presented GMV alteration at onset of illness. Then as the illness
advanced, others regions began to present GMV alterations. These results suggested that
GMV alteration originated from the hippocampus, the thalamus and vmPFC then expanded
to other brain regions. The results of CaSCN analysis revealed that the hippocampus and the
vmPFC corporately exerted causal effect on regions such as nucleus accumbens, the precuneus
and the cerebellum. In addition, GMV alteration in the hippocampus was also potentially
causally related to that in the dorsolateral frontal gyrus.
Conclusions. Consistent with the neuroprogressive hypothesis, our results reveal progressive
morphological alteration originating from the vmPFC and the hippocampus and further elu-
cidate possible details about disease progression of depression.

Introduction

As one of the leading causes of disability worldwide (Murray et al. 2012), depression affects
approximately 350 million people each year (Schmaal et al. 2017). Although the neurological
substrates of depression are investigated by intensive research studies, the understanding of the
pathophysiological mechanism underlying depression remains unclear. As development mag-
netic resonance imaging (MRI) methods, evidences from structural MRI have consistently
pointed to the conclusion that (para-) limbic circuits including dorsomedial prefrontal cortex,
orbitofrontal cortex and rostral anterior cingulate cortex (ACC) and the hippocampus present-
ing structural alteration are involved in the pathophysiological mechanism of depression (Bora,
Fornito, Pantelis, & Yücel, 2012; Kempton et al. 2011; Schmaal et al. 2016). However, these
findings are not consistent due to various clinical characteristics such as medicine, recurrence
status (first v. recurrent episode), age of onset, especially for illness duration which is thought
to be one of the important potential confounders leading to inconsistent findings in
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depression (Chen et al. 2016b). Evidences suggest that depression
is a neuroprogressive illness (Morris et al. 2019; Verduijn et al.
2015) and gray matter volumes (GMVs) are differently altered
at different stages according to the length of illness duration
(Bora et al. 2012; Serra-Blasco et al. 2013). However, the details
about the progressive brain structural alterations as illness
advances are still unknown in depression.

Evidences coming from biochemical to brain structural mor-
phological studies convergently indicate that depression is a neu-
roprogressive illness. Even patients with depression suffering from
only one depressive episode also display characteristics of a pro-
gressive illness (Moylan, Maes, Wray, & Berk, 2013). Depressive
episodes cause brain tissue damage and physiological functioning
through a variety of mechanisms underpinning symptomatology
and functional decline over time probably resulted from toxic
or adaptive effects produced during depressive episodes
(Moylan et al. 2013). Patients with longer and more frequent
depressive episodes appear to be associated with increased vulner-
ability to further relapses and functional decline such as increased
memory decline and dementia risk (Gorwood, Corruble,
Falissard, & Goodwin, 2008; Kessing & Andersen, 2004). This
conclusion is supported from evidences from clinical, biochemical
and neuroimaging studies (Moylan et al. 2013; Ruiz, Del Ángel,
Olguín, & Silva, 2018; Verduijn et al. 2015). In structural neuroi-
maging studies, gray matter alterations of some crucial regions are
found depending on the stage of depression (Alexander-Bloch,
Giedd, & Bullmore, 2013; Frodl et al. 2003; van Eijndhoven
et al. 2009) and structural changes inconsistently found during
the first episode appear more commonly in severe protracted ill-
ness (Lorenzetti, Allen, Fornito, & Yücel, 2009). One of the most
representative brain regions is the hippocampus whose structural
alteration is inconsistently found in first-episode patients
(Caetano et al. 2004; Campbell, Marriott, Nahmias, &
MacQueen, 2004; Eker & Gonul, 2010; Malykhin, Carter, Seres,
& Coupland, 2010; McKinnon, Yucel, Nazarov, & MacQueen,
2009) but consistently presents in patients with longer illness dur-
ation or more frequent episode (McKinnon et al. 2009).
Moreover, a relationship between the hippocampal volume
decline and longer cumulative illness duration has been described
(Sheline, Gado, & Kraemer, 2003). The same goes for gray matter
alterations in rostral ACC and dorsomedial frontal cortex sup-
ported from longitudinal work (Frodl et al. 2008). Even though
many studies attempt to find correlation between illness progres-
sion information (such as illness duration) and morphometric
alteration (Chen et al. 2016a; McKinnon et al. 2009), the progres-
sive structural alteration pattern and details about how initial
structural alterations extend to other brain regions remain
unknown in depression. Exploring initial structural alterations
and the causality between these regions is of great significance
for revealing neuroprocessive pathogenesis of depression.

A newly proposed method named causal structural covariance
network (CaSCN) analysis (Zhang et al. 2017) to elucidate the
causal relationships of brain structural alterations as illness
advances. This method is inspired by Granger causality (GC) ana-
lysis commonly used in functional MRI data delineating informa-
tion flow between time series of two brain regions (Jiang et al.
2018) and conducted by applying the signed path coefficient
GC analysis to structural images. In the method, structural images
of patients are sequenced in ascending order of illness duration
and treated as pseudo-time series describing progressive property
of disease (Zhang et al. 2017). With the help of the CaSCN
researchers find original GMV reduction in the hippocampus

and the thalamus expert causal effects on prefrontal cortex and
other brain regions in epilepsy (Zhang et al. 2017), important
role of the thalamus and frontal lobe in the progression of schizo-
phrenia (Jiang et al. 2018) and progressive pathway originally
decreased GMV in the subgenual anterior cortex then propagat-
ing to other brain regions such as ventromedial prefrontal cortex
and insula in generalized anxiety disorder (Chen et al. 2020).
However, the progressive morphological alterations as illness
advances and the causal relationship between these structural
alterations remain unclear in depression.

In this study, we aimed to investigate GMV alterations at each
stage according to illness duration and explore how did initial
structural alterations expand to other regions. One hundred
ninety-five never-treated first-episode patients with depression
and 130 healthy controls (HCs) undergoing T1-weighted MRI
scans were included in this study where GMV was quantified
using voxel-based morphometry (VBM). We first explored
GMV alterations at different stages to assess the gradual changing
pattern in depression. This procedure was done to clarify initial
and stage-specific structural alterations in depression. Then,
regions with GMV alterations at the first stage were treated as
seeds for the following CaSCN analysis. This analysis would illus-
trate how initial alterations spread to other brain regions in
depression.

Methods

Participants

Patients with depression were recruited from out-patient/inpatient
services of Department of Psychiatry, the First Affiliated Hospital
of Zhengzhou University, Zhengzhou, China. One chief physician
and one well-trained psychiatrist diagnosed patients according to
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV) for depression. Inclusion criteria for patients
included: (a) First episode and never taking any antidepres-
sants/antipsychotics and any other antidepressant treatment
such as psychological therapy and electric shock treatment; (b)
No comorbidity of other mental/psychotic disorders; (c) Did
not have previous episodes of manic symptoms. All patients
were Han Chinese and right handedness. The severity of depres-
sion was evaluated using the 24/17-items Hamilton Depression
scale (HAMD).

HCs were recruited from the community through poster
advertisement. None of them presented a history of serious med-
ical or neuropsychiatric illness or a family history of major psychi-
atric or neurological illness in their first-degree relatives. All HCs
were Han Chinese and right handedness.

In addition, participants (both HCs and patients) in the cur-
rent study would be excluded it they meet one of the following
exclusion criteria: (1) Taking drugs such as anesthesia, sleeping
and analgesia in the past 1 month. (2) Substance abuse; (3) A his-
tory of brain tumor, trauma, surgery, or other organic body dis-
ease; (4) Suffering from cardiovascular diseases, diabetes,
hypertension; (5) Contraindications for MRI scanning including
fixed dentures, metal braces, artificial heart valves and other
metal foreign bodies in the body. (6) Other structural brain
abnormalities revealed by MRI scan.

Written informed consents were obtained from all participants
before experiment. The study was approved by the research eth-
ical committee of the First Affiliated Hospital of Zhengzhou
University.
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Data acquisition

T1-weighted anatomical images of participants in dataset 1 were
acquired using on 3-Tesla GE Discovery MR750 scanner (General
Electric, Fairfield Connecticut, USA). Using an eight-channel
prototype quadrature birdcage head coil, we acquired structural
T1-weighted images with 3D spoiled gradient echo scan sequence:
Repetition time = 8164ms, echo time = 3.18ms, inversion time =
900ms, flip angle = 7 degrees, resolution matrix = 256 × 256, slices =
188, thickness = 1.0mm, and voxel size = 1 × 1 × 1mm3.

Voxel-based morphometry analysis

All T1 images were processed with stand pipeline steps in the
CAT12 toolbox (http://dbm.neuro.uni-jena.de/cat12/). The arti-
facts of images were checked and the origins of the images were
adjusted to the anterior commissure. Images were normalized to
Montreal Neurologic Institute space and segmented into gray
matter, white matter and cerebrospinal areas. Then images were
resampled to a volume image resolution of 1.5 × 1.5 × 1.5 mm3.
Finally, the gray matter maps were smoothed using 6 mm full-
width at half-maximum Gaussian kernel (FWHM). The total
intracranial volume (TIV) of each participant was also calculated
for the next comparative analysis.

Overall and stage-specific GMV alteration in depression

First, two sample t test was employed to examine overall GMV
aberrance and stage-specific GMV aberrance in depression.
Overall GMV aberrance was obtained by comparing GMV of all
patients with depression with that in matched HCs. Stage-specific
GMV aberrance was obtained by subgroup of patients with
depression according to illness duration with that in matched
HCs. As there was no acknowledged strategy dividing patients into
subgroups, we arbitrarily divided patients into three stages (stage
1: <12 months; stage 2: 12–24 months; stage 3: > = 24 months)
according to illness duration distribution of patients in the current
study. At each stage, the GMV maps in patients were compared
with that in HCs matched for gender, age and education level
using two sample t test. Moreover, to explore whether aberrance
of GMV occurred at illness onset, we also explored altered
GMVs in patients with shorter illness duration (<3/6 months).
In this procedure, age, gender and educational level were treated
as covariates. Because we had used nonlinearly modulated gray
matter maps in the preprocessing, the voxel values were already
corrected for individual brain sizes. As done in previous study,
we did not include total brain volume as an additional covariate
(Bludau et al. 2016).

Results reported were corrected for multiple comparison
(voxel-wise p < 0.005, cluster-level p < 0.05; Gaussian random
field (GRF) corrected). The mean GMVs of each peak coordinate
of statistical results with spherical radius of 4 mm were extracted
at each stage/across stages (for overall aberrance) for the following
steps. We also compared the TIV of patients with that of HCs at
each stage and across stages to explore whether TIV was altered in
patients with depression.

Association between GMV alteration and clinical
characteristics

Then, we explored correlation between clinical characteristics
such as gender, age of onset with the GMV alteration in

depression. Specially, to explore the effect of gender on the
GMV alteration, we divided patients into male and female groups.
Peak coordinates of GMV alteration were identified in previous
steps. The mean GMVs of each peak coordinate with spherical
radius of 6 mm were calculated and compared between female
and male patients. As for the age of onset, because the number
of patients whose age of onset were older than 21/25 years, the
critical age for distinguishing between adolescent onset patients
and adult onset patients in depression (Penttilä et al. 2009;
Truong et al. 2013), was only 33/15, we just calculated the
Pearson correlation between the mean GMVs and age of onset
in patients. In addition, the Pearson correlation between the
mean GMVs and illness duration was also calculated. Note the
aforementioned steps (statistical and correlation analysis) were
done at each stage and across all stages.

Seed-based CaSCN analysis

The CsSCN was performed as done in the previous studies (Jiang
et al. 2018; Zhang et al. 2017), the GMV data of all patients were
first ranked in ascending order of illness duration. The data
sequencing of GMV was granted as time-series information for
characterizing the progressive property of depression. Then, seed-
based CsSCN similar to signed-path coefficient GC analysis
applied in functional MRI data analysis was constructed. The
seed regions were selected from VBM analysis at the beginning
of the illness (illness duration <3 months). The signed-path coef-
ficient GC analysis implemented in REST (http://www.restfmri.
net) was done to measure directed influences between GMV alter-
ation of the seed regions on that of other voxels in gray matter or
the other way around. The positive GC value indicated the same
GMV alteration in the voxels lagged behind the seed region or
driven by the seed region while the negative GC value denoted
an opposite alteration lagged behind the seed region implying a
compensatory effect (Jiang et al. 2018; Zhang et al. 2017). Age
and gender were treated as covariates in conducting CsSCN ana-
lysis. Based on the presumption that the GMV alteration was the
origination of pathological alteration of brain structures in depres-
sion, we only adopted GC value of the seed region on the other
voxels in gray matter (Zhang et al. 2017). The GC maps were
further transformed into a z score and the results were corrected
with Bonferroni correction (where voxel p < 0.05 and correspond-
ing Z > 5.3).

Results

Clinical demographics

The clinical demographics were presented in online Supplementary
Table S1. To exclude the effects of covariates such as age and gen-
der on the comparative results, GMV alteration was determined by
comparing GMVs between patients at different stages with that in
age-, gender-, education level-matched HCs. The clinical demo-
graphics of patients at different stages and matched HCs were in
online Supplementary Table S2.

Overall GMV alterations in depression

Overall, patients with depression presented decreased GMVs in
the bilateral hippocampus extending to the thalamus and cerebel-
lum while increased GMVs in regions including the medial
frontal gyrus parahippocampa gyrus, amygdala, ventral portions
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of the ventral medial prefrontal cortex (vmPFC) and the right pre-
cuneus. The results reported were corrected for multiple compari-
son (voxel-wise p < 0.005, cluster-level p < 0.05; GRF corrected)
(Fig. 1 and online Supplementary Table S3).

Different GMV alterations at different stages in depression

Whereafter, we investigated gradual structural alterations at different
stages according to illness duration in depression. Patients with
depression were divided into three stages (stage 1: 0–12 months;
stage 2: 12–24 months; stage 3: > = 24 months) according to illness
duration. By comparing GMVs in patients with that in matched
HCs, we found stage-specific structural alteration in depression.
Specifically, patients presented decreased GMVs in the bilateral
hippocampus extending to the thalamus and cerebellum, while
increased GMVs in the sgACC/vmPFC at the first stage (< 12
months). At the second stage, GMVs of the thalamus were found
decreased while that in regions such as right insula extending to
the right amygdala and the right putamen, orbital frontal gyrus
and dorsal medial frontal gyrus extending to ACC were found
increased in patients with depression. At the third stage, patients
presented overall decreased GMV in regions including the thalamus,
the hippocampus and the cerebellum (Fig. 2, online Supplementary
Table S4). Considering that whether structural alterations in critical
regions such as medial frontal gyrus, the hippocampus and the
amygdala occurred at the onset of illness was still controversial,
we also investigated GMV alteration in patients shorter illness dur-
ation (<3/6 months) (Belleau, Treadway, & Pizzagalli, 2019;
Bremner et al. 2000; Mervaala et al. 2000; Sheline, Gado, & Price,
1998; Treadway et al. 2015). As a result, GMV reduction was
found in the hippocampus and the thalamus and GMV elevation
in the sgACC/vmPFC were found in patients with illness less than
3 months. Additional GMV reduction in the cerebellum was
found in patients with illness less than 6 months (Fig. 3 and online
Supplementary Table S5). We did not observe significant difference
of TIV between patients and HCs at each stage and across stages.

Association with clinical characteristics

To explore the effect of gender on the GMV alteration, we com-
pared mean GMVs of each peak coordinate with spherical radius
of 4 mm between female and male patients using two sample t test
at each stage and across stages. There was no significant difference
in GMVs between male and female patients with depression.
Then, we explored the Pearson correlation between the mean
GMVs of each peak coordinate with spherical radius of 4 mm
and illness duration/age of onset at each stage and across stages.
Overall, the mean GMVs of the thalamus was significantly corre-
lated with age of onset (R =−0.208, p = 0.004) and the mean
GMVs of the vmPFC was correlated with illness duration (R =
−0.188, p = 0.008) across stage. At the first stage, the mean
GMVs of left hippocampus was correlated with illness duration
(R =−0.271, p = 0.011) (online Supplementary Fig. S1).

Causal effects of GMV alteration pattern in depression

To map the causal effects of progressive GMV alteration in
patients with depression, the CsSCN was constructed with sem-
inal structural alterations at the onset of the illness (illness dur-
ation <3 months). The bilateral hippocampus (MNI: 30, −35, 9
for the right, −32, −33, −9 for the left) and the sgACC/vmPFC
(MNI: −2, 18, −12) were selected as seeds for CsSCN analysis.

The positive/negative GC values represented same/opposite
GMV alterations in the regions occurring behind the seed region
(Jiang et al. 2018; Zhang et al. 2017). As a result, the sgACC/
vmPFC presented positive GC values on the bilateral nucleus
accumbens (NAc), the right ACC, the inferior frontal gyrus and
the cerebellum and while negative GC values on the left precu-
neus extending to the calcarine, and the left rolandic operculum
(Fig. 4, online Supplementary Table S6). Positive GC values
were found from the left hippocampus to the right precuneus
extending to calcarine, the bilateral NAc and the bilateral middle
occipital gyrus and negative GC values to the left inferior parietal
lobe and right inferior frontal gyrus (Fig. 4). As for the right
hippocampus, only positive GC values were found in the bilateral
dorsolateral frontal gyrus (DLPFC), right ACC, bilateral precu-
neus and the cerebellum (Fig. 4). The summary of the CsSCN
analysis was presented in Fig. 5, the GC values were included in
online Supplementary Table S7.

Discussion

In this study, we investigated stage-specific morphometric altera-
tions measured with VBM and how these alterations extended to
other brain regions as illness advanced. At the first stage (illness
duration <12 months), patients with depression were companied
with GMV increase in vmPFC while GMV reduction in the bilat-
eral hippocampus and the thalamus. Then as the illness duration
was prolonged, GMV alterations spread to other brain regions
including the NAc, orbital (and medial) frontal gyrus, the amyg-
dala, the putamen, precuneus and the cerebellum. These results
elaborated stage-specific GMV alterations pattern in depression.
The CaSCN results revealed causal effect of the bilateral hippo-
campus and the vmPFC on other brain regions. Specifically, the
bilateral hippocampus and the vmPFC corporately exerted causal
effect on NAc, the precuneus and the cerebellum. GMV altera-
tions in the hippocampus were also potentially causally related
to that in the DLPFC. Consistent with aforesaid stage-specific
GMV alteration pattern, these results revealed expanding pattern
of GMV alterations from the hippocampus and the vmPFC to
other brain regions. In general, our results revealed progressive
morphological alteration stemming from and further elucidated
possible details about disease progression in depression.

The stage-specific morphological alterations revealed the pro-
gressive alteration pattern spreading from original alterations in
regions including the hippocampus, the thalamus and the
sgACC/vmPFC to other regions such as amygdala, dorsal medial
frontal gyrus and NAc. Converging evidences suggested that
depression was a neuroprogressive illness (Kendler, Thornton,
& Gardner, 2001; Moylan et al. 2013), the morphometric alter-
ation of critical brain regions was related to illness progression
information (Alexander-Bloch et al. 2013; Chen et al. 2016a;
Frodl et al. 2003; McKinnon et al. 2009; van Eijndhoven et al.
2009). Consistent with these studies, we observed stage-specific
GMV alterations in never-treated first-episode patients with
depression. Specially, the GMVs of the hippocampus and the
vmPFC were found altered at the onset of illness. Whether
GMV alterations in critical brain regions such as the hippocam-
pus, the vmPFC and the amygdala was still in dispute (Schmaal
et al. 2016, 2017) that might be resulted from illness duration
(Chen et al. 2016b). Progressive GMV alterations of the hippo-
campus, the vmPFC and the amygdala (Belleau et al. 2019;
Bora et al. 2012) were related to chronic stress and toxic effects
of recurrent depressive episodes (Treadway et al. 2015). Our
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results suggested that structural alterations of these regions
occurred at the onset of the illness. In fact, patients with longer
(than the current study) illness duration presented decreased
GMVs (Coryell, Nopoulos, Drevets, Wilson, & Andreasen, 2005;
Klauser et al. 2015; Yucel et al. 2008) suggesting illness duration
burden-mediated alterations in this region. In all, these results
confirmed the notion that depression was a neuroprogressive
illness and structural alterations of the hippocampus and the
vmPFC occurred at the onset of the illness.

At the second stage, we found transient increase of GMVs in
regions such as DLPFC, insula, and dorsal medial frontal gyrus.
At the third stage, GMVs of these regions presented insignificant

reduction. The possible explanation might be pre-apoptotic
osmotic changes (Adler, Levine, DelBello, & Strakowski, 2005;
Yucel et al. 2009) in depression. Both decreased (Kandilarova,
Stoyanov, Sirakov, & Maes, 2019; Vasic, Walter, Höse, & Wolf,
2008; Wise, Radua, Via, Cardoner, & Abe, 2017) and increased
(Adler et al. 2005; Brambilla et al. 2002; Straub et al. 2019; van
Eijndhoven et al. 2013; Yucel et al. 2009) GMVs were found in
these regions, we noticed that reduced GMVs of these regions
were found in patients with much longer illness duration than
the current study. Combining the findings that stress-mediated
neurotoxic processes resulted in progressive volumetric reductions
in these regions (Ansell, Rando, Tuit, Guarnaccia, & Sinha, 2012;

Fig. 1. Overall GMV alterations in depression.

Fig. 2. Different GMV alterations at different stages in depression.
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Bora et al. 2012; Hatton et al. 2018), GMV reductions would be
found in patients with longer illness duration. However, this con-
clusion might be treated carefully, as there was no study

investigating structural abnormality in depression with the same
specific interval of illness duration. At the third stage, the GMV
of these regions began to exhibit decreasing trend in patients

Fig. 3. Altered GMVs in patients with shorter illness duration (< 3/6 months).

Fig. 4. Causal effects of GMV alterations pattern in depression.
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with longer illness duration (online Supplementary Fig. S2).
However, the limited sample size and the not enough length of
illness duration might restrict the statistical power to detect
GMV reductions in these regions. Combined with GMV altera-
tions at the first stage, these results elucidated the stage-specific
GMV alterations pattern in depression.

The CaSCN analysis revealed causal relationship between ini-
tial GMV alterations in the hippocampus and the vmPFC and
that in other brain regions. The vmPPFC was implicated in a var-
iety of social, cognitive and affective functions that were disrupted
in depression (Hiser & Koenigs, 2018). Specially, the vmPFC was
in charge of the generation and regulation for negative emotions
by inhibition of the amygdala (Likhtik, Pelletier, Paz, & Paré,
2005; Quirk, Likhtik, Pelletier, & Paré, 2003; Rosenkranz,
Moore, & Grace, 2003), representation of reward/value-based
decision making through its interaction with the ventral striatum
(Christakou, Robbins, & Everitt, 2004; Richard & Berridge, 2013),
processing of self-relevant information and social cognition by
interacting with default mode network (DMN) and temporopar-
ietal cortex (Hiser & Koenigs, 2018; Raichle, 2015). Sustained
negative affect and impairment of emotional regulation were hall-
mark features in depression (Joormann & Stanton, 2016). Prior
GMV alterations in the vmPPFC then followed by GMV altera-
tions in the amygdala might be associated with emotional regula-
tion dysfunctions in depression. Although we did not find direct
linear causal effect from GMVs alterations in the vmPPFC on that
in the amygdala, the reason might be that the causal relationship
between the two regions was nonlinear or independent. The
altered prediction error with reinforcement learning theories
was hypothesized to underlie the anhedonia in depression
(Gradin et al. 2011). NAc and its connected regions including
vmPPFC played an important role in motivated decision making
and encoding of prediction errors in depression (Christoffel et al.
2015; Han et al. 2020a; Stuber et al. 2011). Consistent with stud-
ies, we observed significant causal effect of the GMV alterations in
the vmPPFC on the that in the NAc and middle temporal cortex.

In addition, we also found causal relationship between the GMV
alterations in the vmPPFC on that in the precuneus. As an
important part of DMN, dysfunctions of the precuneus were
related to the rumination about low self-esteem in depression
(Cheng et al. 2018; Han et al. 2020b). Taken together, these results
suggested that clinical symptoms including emotional regulation
especially for sustained negative affect, aberrant reward processing
and rumination related GMV aberrance might originate from
structural aberrance in the vmPPFC in depression.

The causal effects of the GMVs of the bilateral hippocampus
on that of the DLPFC, the precuneus, NAc and the cerebellum
were identified in the current study. Receiving dense glutamater-
gic projections from the hippocampus and the medial PFC
(Friedman, Aggleton, & Saunders, 2002; Phillipson & Griffiths,
1985), NAc and its structural covariance network were found to
be responsible for the anhedonia in depression (Han et al.
2020a). Especially, the hippocampus input was particularly cap-
able of stably depolarizing NAc neurons, allowing prefrontal cor-
tex input to generate spike firing in these cells (Friedman et al.
2002) and contributing to the proper regulation of goal-directed
behaviors (LeGates et al. 2018). In addition to vmPFC, the
GMV alterations of the bilateral hippocampus also exerted causal
effect on that in the NAc, these results suggested the vmPFC and
the hippocampus jointly facilitated the GMV alterations in the
NAc. The conclusion held true for the GMV alterations in the
precuneus. Recent studies suggested that DLPFC receiving mono-
synaptic projections from the hippocampus (Barbas & Blatt, 1995;
Hoover & Vertes, 2007), was recruited during the regulation of
negative emotion through reappraisal/suppression strategies
(Eippert et al. 2007; Lévesque et al. 2003; Ochsner et al. 2004;
Ochsner, Bunge, Gross, & Gabrieli, 2002; Phan et al. 2005). Its
(both anatomical and functional) interactions with the hippocam-
pus played a central role in various behavioral and cognitive func-
tions and were disturbed in psychiatric disease (Sigurdsson &
Duvarci, 2015). Negative stimuli, such as stress and cognitive
impairment resulted in dysfunction of neural plasticity in the
hippocampus then that of the DPLFC in depression (Kuhn
et al. 2014). Recent years, the cerebellum draw researcher’s atten-
tion for its anatomical connections with the limbic regions
involved in mood regulation (Turner et al. 2007) and important
role in emotion and cognitive processing (Moulton et al. 2011;
O’Reilly, Beckmann, Tomassini, Ramnani, & Johansen-Berg,
2010). The interaction between the cerebellum and regions espe-
cially the hippocampus was suggested to be central to depression
(Steinke et al. 2017). The hippocampal glutamate/glutamine
related to cognitive functions (Ende, 2015), was found linked to
the cerebellar function (Steinke et al. 2017). Our results suggested
that the decreased GMVs in the cerebellum might be originated
from GMV alterations in the hippocampus.

We also explored the association between the GMV alterations
with clinical characteristics. Consistent with hypothesis that
depression was a neuroprogressive illness, GMVs in the vmPFC
were positively correlated with illness duration across stages,
reflecting the effect of the cumulative adversity and stress on
this region (Ansell et al. 2012). As for the hippocampus, we
observed negative correlation between the GMVs with illness
duration at first stage. The negative correlation between GMVs
in the hippocampus and the thalamus with age of onset embodied
effect of illness onset on the functional and structural alterations in
depression (Ancelin et al. 2019; Brown, Clark, Hassel, MacQueen,
& Ramasubbu, 2019). In the current study, we observed the nega-
tive correlation between GMV in the hippocampus and the

Fig. 5. Summary of the CsSCN analysis. The red arrow represented positive GC values
and the negative ones represented negative GC values.
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thalamus and age of onset. Taken together, our results elaborated
that GMVs of regions like the thalamus were related to various
clinical factors, explaining the possible reason for the inconsonant
GMVs results in depression.

Several limitations must be considered in the current study.
First, conclusions drawn in this study come from a single dataset,
another independent dataset was needed to validate our results in
the future. Second, the age of patients enrolled was less than 36
years, whether conclusions held are true for late-onset depression
need to be explored (Penttilä et al. 2009; Truong et al. 2013).
Third, the CaSCN results could not directly reflect the real
sequence of morphological changes, longitudinal studies were
needed to further clarify the causal relationship between morpho-
logical changes in depression. Fourth, other clinical variables such
as severity of depression that might also be related to brain struc-
tural alterations could be considered in future. Fifth, we did not
consider the causal effect between the GMV alteration in the fol-
lowing brain regions since the second stage.

Conclusion

We explored initial GMV alterations, progressive structural alter-
ation pattern and causal relationships of them using CaSCN ana-
lysis in never-treated first-episode patients with depression in this
study. Our results revealed progressive structural alteration pat-
tern in depression. Specially, patients with depression were
accompanied with GMV increase in vmPFC while GMV reduc-
tion in the bilateral hippocampus and the thalamus at the first
stage. Then GMV alterations spread to regions such as NAc,
orbital (and medial) frontal gyrus, amygdala, the putamen, the
precuneus and the cerebellum. The GMV alterations in the bilat-
eral hippocampus and the vmPFC jointly or separately exerted
causal effects on that in the following brain regions, hinting
their crucial roles in the disease progression. Consistent with
the neuroprogressive hypothesis, our results revealed progressive
morphological alterations originating from the vmPFC and the
hippocampus and elucidated possible details about disease pro-
gression of depression.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721003986.
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