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Abstract. Two of the most well-known belief contraction operators are partial meet
contractions (PMCs) and kernel contractions (KCs). In this paper we propose two new classes
of contraction operators, namely the class of generalized partial meet contractions (GPMC) and
the class of generalized kernel contractions (GKC), which strictly contain the classes of PMCs
and of KCs, respectively. We identify some extra conditions that can be added to the definitions of
GPMCs and of GKCs, which give rise to some interesting subclasses of those classes of functions,
namely the classes of extensional and of uniform GPMCs/GKCs. In the context of contractions
on belief sets the classes of partial meet contractions, uniform GPMCs and extensional GPMCs
are all identical. Nevertheless, when considered as operations on belief bases, the class of uniform
GPMCs coincides with the class of partial meet contractions, but the extensional GPMCs
constitute a new kind of belief base contraction functions whose characterizing postulate of
irrelevance of syntax is extensionality—the same postulate of irrelevance of syntax which occurs
in the classical axiomatic characterization of partial meet contractions for belief sets—rather
than the postulate of uniformity—which is the irrelevance of syntax postulate used in the
axiomatic characterization for partial meet contractions on belief bases. Analogous results are
obtained regarding the classes of extensional and of uniform GKCs. We present the interrelations
in the sense of inclusion among all the new classes of operators presented in this paper and several
well known classes of PMCs and of KCs.

§1. Introduction. Belief Change is a multidisciplinary area that studies the
dynamics of knowledge. One of the main goals underlying this area is to model how a
rational agent updates his/her set of beliefs when confronted with new information. The
most influential contribution in the literature to the study of belief change is the AGM
model [1]. In all that follows we assume that the underlying propositional language L
contains the usual Boolean connectives¬ (negation), ∧ (conjunction),∨ (disjunction),
→ (implication) and ↔ (equivalence), and by abuse of notation we shall represent the
set of all sentences of that language also by L. Additionally we shall make use of a
consequence operation Cn that takes sets of sentences to sets of sentences and that
satisfies the standard Tarskian properties [16], namely: (i) A ⊆ Cn(A) (inclusion); (ii)
IfA ⊆ B , then Cn(A) ⊆ Cn(B) (monotony) and (iii) Cn(A) = Cn(Cn(A)) (iteration).
Furthermore we will assume that Cn satisfies the following three properties: (iv)
If α can be derived from A by classical truth-functional logic, then α ∈ Cn(A)
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(supraclassicality); (v) � ∈ Cn(A ∪ {α}) if and only if α → � ∈ Cn(A) (deduction)
and (vi) If α ∈ Cn(A), then α ∈ Cn(A′) for some finite subset A′ of A (compactness).
We will use K to represent a set of sentences that is closed under logical consequence
(i.e., K = Cn(K))—such a set is called a belief set. A belief change operator on a set
A is a function ◦ : L → P(A). In what follows, given a set A, a belief change operator,
◦, on A and a sentence α, we shall denote the image of α by ◦, i.e., ◦(α), by A ◦ α.
In the AGM framework beliefs are represented by sentences, the belief state of an
agent is modelled by a belief set—i.e., a logically closed set of (belief-representing)
sentences and epistemic inputs are represented by single sentences. The AGM model
considers three kinds of belief change operators, namely expansion, contraction and
revision. An expansion occurs when new information is added to the set of the beliefs
of an agent. The expansion of a belief set K by a sentence α is the logical closure of
K ∪ {α}. A contraction occurs when information is removed from the set of beliefs
of an agent. A revision occurs when new information is added to the set of the beliefs
of an agent while retaining consistency if the new information is itself consistent.
From the three above-mentioned operations, expansion is the only one that can be
univocally defined. Contractions and revisions are characterized by a set of postulates
and can be defined in terms of each other by means of the Harper and the Levi
identities.

In [1] the following properties were proposed as being the characteristic properties
of a contraction, where K is a belief set:

(K – 1) K ÷ α = Cn(K ÷ α). (Closure)
(K – 2)K ÷ α ⊆ K. (Inclusion)
(K – 3) If α 
∈ K, then K ÷ α = K. (Vacuity)
(K – 4) If α 
∈ Cn(∅), then α 
∈ K ÷ α. (Success)
(K – 5) If α ↔ � ∈ Cn(∅), then K ÷ α = K ÷ � . (Extensionality)
(K – 6) K ⊆ Cn((K ÷ α) ∪ {α}). (Recovery)
(K – 7) (K ÷ α) ∩ (K ÷ �) ⊆ K ÷ (α ∧ �). (Conjunctive overlap)
(K – 8) K ÷ (α ∧ �) ⊆ K ÷ α whenever α 
∈ K ÷ (α ∧ �). (Conjunctive inclusion)

These conditions are usually designated by AGM postulates for contraction.
Postulates (K – 1)–(K – 6) are called basic AGM postulates for contraction. Postulates
(K – 7) and (K – 8) are designated by supplementary AGM postulates for contraction.

There are in the belief change literature several constructive methods for defining
operators which satisfy all or at least some of the AGM postulates for contraction.
Some of those models are the (transitively relational) partial meet contractions [1]
and safe contraction [3, 15], which we will recall in Section 2. Although the AGM
model has quickly acquired the status of standard model of theory change, several
researchers (for an overview see [6]) have proposed some extensions and variants to
that framework. One of such variants is the use of belief bases, instead of belief sets,
to model the belief state of an agent. The main motivation underlying the numerous
models of belief base change that have been presented in the literature is the fact that
the usage of belief sets to model the belief states may be undesirable for several reasons.
Firstly, belief sets are very large entities (eventually even infinite), and its use is not
adequate for computational implementations. The logical closure of belief sets raises
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other issues not related to computational implementations. Rott pointed out in [14]
that the AGM theory is unrealistic in its assumption that epistemic agents are “ideally
competent regarding matters of logic. They should accept all the consequences of the
beliefs they hold (that is, their set of beliefs should be logically closed), and they should
rigorously see to it that their beliefs are consistent.” Furthermore, belief sets make no
distinction between different inconsistent belief states. They also make no distinction
between basic beliefs and those that are inferred from them.

Several of the existing models of contraction for beliefs sets have been adapted to the
case when belief states are represented by belief bases. For example, the partial meet
contractions for belief bases were presented in [8–10] and the kernel contractions—
which can be seen as a generalization of safe contractions—were introduced in [11].

Given a set of sentences A the outcome of a partial meet contraction (PMC) of A by
a sentence α is essentially the result of the intersection of some of the maximal subsets
of A that do not imply α, usually called the remainders of A by α. More formally,
denoting by A ⊥ α the set of remainders of A by α—which is called the remainder
set of A by α—an operator ÷ on A is a partial meet contraction operator on A if, for
any sentence α, A÷ α = ∩�(A ⊥ α), where � is a function, which is called a selection
function, which is such that �(A ⊥ α) is a set of some of the remainders of A by α,
whenever A ⊥ α 
= ∅.

On the other hand, the outcome of a kernel contraction (KC) of a set sentences
A by a sentence α is a set that can be obtained from A by removing from it a set
such that (i) it is formed by some of the sentences which are included in some of
the minimal subsets of A that imply α, usually called the α-kernels of A, and (ii) it
contains at least one element of each one of the (non-empty) α-kernels of A. More
formally, denoting by A⊥⊥α the set of α-kernels of A—which is called the kernel set of
A by α—an operator ÷ on A is a kernel contraction operator on A if, for any sentence
α, A÷ α = A \ �(A⊥⊥α), where � is a function, which is called an incision function,
which is such that �(A⊥⊥α) is a subset of A which satisfies conditions (i) and (ii)
above.

At this point we notice that the central constructs in the definitions of partial
meet contractions and kernel contractions are the selection functions and the incision
functions. These functions are such that:

• A selection function �, associated to a partial meet contraction on a set A,
is such that � : {A ⊥ α : α ∈ L} → P(P(A)), i.e., its domain is the set of all
remainder sets of A.

• An incision function �, associated to a kernel contraction on a set A, is such that
� : {A⊥⊥α : α ∈ L} → P(A), i.e., its domain is the set of all kernel sets of A.

In this paper we propose and axiomatically characterize two new classes of
contraction operators, namely the generalized partial meet contractions (GPMC) and
the generalized kernel contractions (GKC) which are broader than the classes of PMC
and KC, respectively. The definitions of GPMC and GKC are similar to the definitions
of partial meet contractions and kernel contractions, respectively, except for making
use of sentence based selection functions instead of standard selection functions and
sentence based incision functions instead of standard incision functions, respectively.
The main difference between the sentence based selection and incision functions and
the standard selection and incision functions is the fact that the domain of the former
is L (instead of {A ⊥ α : α ∈ L} and {A⊥⊥α : α ∈ L}, respectively).

https://doi.org/10.1017/S175502032200034X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032200034X


GENERALIZED PARTIAL MEET AND KERNEL CONTRACTIONS 369

The rest of the paper is organized as follows: In Section 2 we introduce the notations
and recall the main background concepts that will be needed throughout this article
and, in particular, we formally introduce some of the concepts mentioned in the text
above. The readers who are well familiarized with the AGM framework and with
the Hansson’s model of Kernel contraction may skip this section. In Section 3 we
present the definition of sentence based selection functions, propose some properties
that may be required from those functions and study the interrelation among these new
functions and the standard selection functions. Afterwards, we present the definition
of GPMC, obtain an axiomatic characterization for those operators, and identify, in
the context of belief bases, two relevant strict subclasses of that class of functions (the
smallest of which coincides with the class of partial meet contractions). At the end of
Section 3, we present an analysis of the interrelations among some classes of GPMCs
on belief sets and the classes of AGM contractions. In Section 4 we introduce the
sentence based incision functions and the generalized kernel contractions and present
a study of these functions which is the kernel contraction counterpart of the study
carried out in the previous section regarding partial meet contraction. In Section 5
we present the interrelations in the sense of inclusion among all the newly defined
classes of contractions on belief bases. Finally, in Section 6 we summarize and discuss
the main contributions of the paper and their relevance. In the Appendix we provide
proofs for all the original results presented.

§2. Background. In order to make this paper self-contained, in this section we will
essentially recall the main definitions and results from [1, 3, 11]. The readers who are
knowledgeable of these works may skip this section.

2.1. Basic notations and conventions. In this subsection we briefly introduce the
notations and conventions that we will use throughout this paper (besides the
ones already mentioned in the previous section). We will sometimes use Cn(α) for
Cn({α}),A � α for α ∈ Cn(A), � α for α ∈ Cn(∅),A 
� α for α 
∈ Cn(A), and 
� α for
α 
∈ Cn(∅). The letters α, �, ... (except for � and �) will be used to denote sentences
of L. Lowercase Latin letters such as p, q, ... will be used to denote atomic sentences
of L. A,B, ... shall denote sets of sentences of L. K is reserved to represent a belief set.

2.2. Belief base contraction. In this subsection we recall some postulates for base
contraction and also several constructive models of contraction functions on belief
bases.

2.2.1. Postulates for base contraction. The following are some well known
postulates for belief base contraction:1

Success: If 
� α, then A÷ α 
� α.
Inclusion: A÷ α ⊆ A.
Failure: If � α then A÷ α = A.
Vacuity: If A 
� α, then A ⊆ A÷ α.
Relative Closure: A ∩ Cn(A÷ α) ⊆ A÷ α.
Relevance: If � ∈ A and � 
∈ A÷ α then there is some set A′ such that A÷ α ⊆

A′ ⊆ A and α 
∈ Cn(A′) but α ∈ Cn(A′ ∪ {�}).

1 For an overview of these postulates see [6, 12].
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Core-retainment: If � ∈ A and � /∈ A÷ α then there is some setA′ such thatA′ ⊆ A
and α /∈ Cn(A′) but α ∈ Cn(A′ ∪ {�}).

Extensionality: If � α ↔ � , then A÷ α = A÷ � .
Uniformity: If it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if

� ∈ Cn(A′), then A÷ α = A÷ � .
The following observation presents some relations between the belief base postulates

for contraction mentioned above.

Observation 1 [12]. Let A be a belief base and ÷ an operator on A. Then:

(a) If ÷ satisfies relevance, then it satisfies relative closure and core-retainment.
(b) If ÷ satisfies inclusion and core-retainment, then it satisfies failure and vacuity.
(c) If ÷ satisfies uniformity, then it satisfies extensionality.

In the rest of this section we recall some explicit definitions of contraction functions
and their axiomatic characterizations.

2.2.2. Partial meet contraction. The first kinds of contraction operators that we
will present are known as partial meet contractions and were originally presented in [1].
We start by recalling the concept of remainder set, that is the set of maximal subsets
(of a given set) that fail to imply a given sentence. Formally:

Definition 1 [2]. Let A be a set of sentences and α a sentence. The set A⊥α
(A remainder α) is the set of sets such that B ∈ A⊥α if and only if:

1. B ⊆ A.
2. B 
� α.
3. If B ⊂ B ′ ⊆ A, then B ′ � α.

A⊥α is called remainder set of A by α and its elements are called remainders (of A by α).

It follows from compactness and Zorn’s lemma (cf. [2, Proof of Observation 2.2])
that, given a set of sentences A and a sentence α, every subset D of A that does not
imply α is contained in some remainder of A by α. This property is known as upper
bound property:

If D ⊆ A and D 
� α, then there is some D′ such that D ⊆ D′ ∈ A ⊥ α.
The partial meet contractions are obtained by intersecting some elements of the
(associated) remainder set. The choice of those elements is performed by a selection
function.

Definition 2. Let A be a set of sentences. A selection function for A is a function
� : {A ⊥ � : � ∈ L} −→ P(P(A)) such that for all sentences α:

1. If A ⊥ α 
= ∅, then �(A ⊥ α) is a non-empty subset of A ⊥ α.
2. If A ⊥ α = ∅, then �(A ⊥ α) = {A}.

Definition 3 [1, 8]. The partial meet contraction operator on A based on a selection
function � is the operator ÷� such that for all sentences α,

A÷� α = ∩�(A⊥α).

An operator ÷ for a set A is a partial meet contraction if and only if there is a selection
function � for A such that A÷ α = A÷� α for all sentences α.
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In the following observation we recall a characterization, in terms of postulates, of
partial meet contraction operators.

Observation 2 [8]. Let A be a belief base. An operator ÷ on A is a partial meet
contraction for A if and only if ÷ satisfies success, inclusion, uniformity and relevance.

2.2.3. Kernel contraction. As we mentioned previously the partial meet contraction
operators of a given set by a sentence α are based on a selection among the maximal
subsets of that set that fail to imply α. Another different proposal consists of
constructing a contraction operator based on a selection of elements of A that are
fundamental in some deduction of α and then discarding them when contracting A
by α. Following this approach, Hansson, in [11], introduced the kernel contraction
operators.

Definition 4 [11]. Let A be a set of sentences and α be a sentence. Then A⊥⊥α is the set
such that B ∈ A⊥⊥α if and only if:

1. B ⊆ A.
2. B � α.
3. If B ′ ⊂ B then B ′ 
� α.

A⊥⊥α is called the kernel set of A with respect to α and its elements are the α-kernels
of A.

When contracting a belief α from a set A we must give up sentences of each
α-kernel, otherwiseα would continue being implied by the outcome of the contraction.
The so-called incision functions select the beliefs to be discarded.

Definition 5 [11]. Let A be a set of sentences. Let A⊥⊥α be the kernel set of A with
respect to α. An incision function for A is a function � : {A⊥⊥� : � ∈ L} −→ P(A) such
that for all sentences α:

1. �(A⊥⊥α) ⊆
⋃

(A⊥⊥α).
2. If ∅ 
= B ∈ A⊥⊥α, then B ∩ �(A⊥⊥α) 
= ∅.

Definition 6 [11]. Let A be a set of sentences and � be an incision function for A. The
kernel contraction on A based on � is the operator ÷� such that for all sentences α,

A÷� α = A \ �(A⊥⊥α).

An operator ÷ for a set A is a kernel contraction if and only if there is an incision
function � for A such that A÷ α = A÷� α for all sentences α.

We now recall from [11] an axiomatic characterization for kernel contractions defined
on belief bases.

Observation 3 [11]. Let A be a belief base. An operator ÷ on A is a kernel contraction
if and only if it satisfies success, inclusion, uniformity and core-retainment.

Sometimes, when contracting a set by means of a kernel contraction, for some
sentence � such that � ∈ A and � ∈ Cn(A÷ α) it may be the case that � 
∈ A÷ α
(see the example presented on [12, p. 90]), i.e., some kernel contradictions do not satisfy
the relative closure postulate. This undesirable situation can be avoided by considering
only incision functions that satisfy the condition expressed in the following definition.
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Definition 7 [11]. An incision function � for a set A is smooth if and only if it holds for
all subsets A′ of A that if A′ � � and � ∈ �(A⊥⊥α) then A′ ∩ �(A⊥⊥α) 
= ∅.

A kernel contraction is smooth if and only if it is based on a smooth incision function.

The following observation presents an axiomatic characterization for smooth kernel
contractions.

Observation 4 [11]. Let A be a belief base. An operator ÷ on A is a smooth kernel
contraction if and only if it satisfies success, inclusion, uniformity, core-retainment and
relative closure.

2.3. AGM contraction operators on belief sets. In this subsection we recall the
definition and the axiomatic characterizations of some contraction operators on belief
sets.

2.3.1. Partial meet contractions on belief sets. The definition of partial meet
contraction operators was already presented in Section 2.2.2. In the following
observation we recall from [1] a representation theorem for partial meet contraction
operators on belief sets.

Observation 5 [1]. Let K be a belief set and ÷ be a contraction operator on K.
Then ÷ is a partial meet contraction on K if and only if it satisfies the basic AGM
postulates for contraction.

A selection function is expected to pick up the best elements (in some sense) of the
remainder set. If we consider a relation � on subsets of A such that A1 � A2 holds if
and only if A2 is at least as much worth retaining as A1, then we can define a selection
function, based on �, that chooses the “best” elements of A ⊥ α, according to �.
A selection function that is based on a relation in this way is called relational:

Definition 8 [1]. A selection function � for a set A is relational if and only if there is a
relation � over

⋃
{A ⊥ α : α ∈ L} such that for all sentences α, if A ⊥ α is non-empty,

then

�(A ⊥ α) = {B ∈ A ⊥ α : C � B for all C ∈ A ⊥ α}.

� is transitively relational if and only if this holds for some transitive relation �.
A partial meet contraction function is relational (respectively transitively relational )

if and only if it is determined by some relational (respectively transitively relational )
selection function.

The following observation provides an axiomatic characterization for the class of
transitively relational partial meet contraction operators.

Observation 6 [1]. Let K be a belief set and ÷ be an operator on K. Then ÷ is a
transitively relational partial meet contraction if and only if it satisfies both the basic and
the supplementary AGM postulates for contraction.

2.3.2. Smooth kernel contractions and safe contractions on belief sets. The defini-
tions of kernel and smooth kernel contractions were already presented in Section 2.2.3.
In the following observation we recall from [11] a representation theorem for smooth
kernel contraction operators on belief sets.
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Observation 7 [11]. Let K be a belief set. Then ÷ is a smooth kernel contraction on
K if and only if it satisfies the basic AGM postulates for contraction.

In order to be able to define safe contraction in terms of kernel contractions we
need to recall some additional concepts, namely the ones presented in the following
five definitions:

Definition 9 [12]. Let A be a set of sentences. A kernel selection function for A is a
function s such that for all X ∈ A⊥⊥α, for some sentence α:

(a) s(X ) ⊆ X ;
(b) If X 
= ∅, then s(X ) 
= ∅.

Definition 10 [12]. Let s be a kernel selection function for a set A. Then an incision
function � ( for A) is the cumulation of s if and only if for all sentences α,

�(A⊥⊥α) =
⋃

{s(X ) : X ∈ A⊥⊥α}.

A kernel selection function s can be seen as a function that selects the sentences of
each kernel that should be removed when performing a contraction. It seems natural
that these sentences should be the least valuable elements of each kernel. Thus it seems
natural that s should be based on a binary relation that orders sentences according to
its epistemic value.

Definition 11 [12]. A kernel selection function s for a set A is based on a relation ≺ if
and only if for all X ∈ A⊥⊥α,

� ∈ s(X ) if and only if � ∈ X and there is no � ∈ X such that � ≺ �.

An incision function is based on a relation ≺ if and only if it is the cumulation of some
kernel selection function that is based on ≺.

Definition 12 [12]. Let A be a set of sentences and ≺ be a relation on A. Then ≺ satisfies
acyclicity if and only if for all positive integers n, if {α1, ... , αn} ⊆ A, then it is not the
case that α1 ≺ α2 ≺ ··· ≺ αn ≺ α1.

We will consider that ≺ treats logical equivalents sentences alike. An acyclic relation
over a set A that satisfies this condition is called a hierarchy over A. Formally:

Definition 13 [3, 12]. A relation ≺ over a set A is a hierarchy over A if and only if:

(a) it is acyclic;
(b) if � α ↔ α′ and � � ↔ � ′, then α ≺ � holds if and only if α′ ≺ � ′ holds.

In the following definition we present the notion of safe contraction.

Definition 14 [3]. Let ≺ be a hierarchy over a set of sentences A. Let � be the incision
function that is based on ≺ and ÷� the kernel contraction based on �. The operation of
safe contraction ÷≺ based on ≺ is defined as follows:

A÷≺ α = A ∩ Cn(A÷� α).
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Definition 15 [4]. A relation ≺ over a set A is regular if and only if it satisfies the
following two properties:

Continuing-up: If α ≺ � and � � �, then α ≺ �.
Continuing-down: If α � � and � ≺ �, then α ≺ �.
As stated in [3], for a safe contraction based on a hierarchy ≺ to satisfy (÷8) it is

enough that≺ satisfies either continuing-up or continuing-down as well as the following
property:

Virtual connectivity: If α ≺ � , then either α ≺ � or � ≺ � .

In the following observation we present an axiomatic characterization for safe
contractions operator functions on a belief set based on a regular and virtual connected
hierarchy.

Observation 8 [13].2 Let K be a belief set and ÷ be a contraction function on K.
Then ÷ is a safe contraction, based on a regular and virtually connected hierarchy, if and
only if it satisfies both the basic and the supplementary AGM postulates for contraction.

§3. Generalized partial meet contractions. In this section we present the definition
and axiomatic characterization of a new type of contraction operators called
generalized partial meet contractions.

3.1. Sentence based selection functions. In this subsection we introduce the sentence
based selection functions, whose definition differs from the definition of the standard
selection functions in the following aspect: The domain of the sentence based selection
functions is the set L of all sentences rather than {A ⊥ α : α ∈ L}. We will also
present some properties that may be naturally imposed to these functions and study
the interrelation among these new sentence based functions and the standard selection
functions.

Definition 16. Let A be a set of sentences. A sentence based function for A is a function
f from L to either P(P(A)) or P(A).

A sentence based function f is extensional if and only if, for all sentences α and � ,
if � α ↔ � , then f(α) = f(�).

A sentence based function f is uniform if and only if, for all sentences α and � , if for all
subsets A′ of A it holds that α ∈ Cn(A′) if and only if � ∈ Cn(A′), then f(α) = f(�).

The following observation states that any uniform sentence based function is
extensional.

Observation 9. Let A be a set of sentences and f be a sentence based function for A.
If f is uniform, then it is extensional.

Now we present the definition of sentence based selection functions.

Definition 17. Let A be a set of sentences. A sentence based selection function for A is
a function � : L −→ P(P(A)) such that for all sentences α:3

1. If A ⊥ α 
= ∅, then �(α) is a non-empty subset of A ⊥ α.
2. If A ⊥ α = ∅, then �(α) = {A}.

2 For the case when the language is finite this result was proven in [4].
3 It follows from its definition that a sentence based selection function for A is a sentence based

function for A.
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The following observation states that, in the belief set context, any extensional
sentence based selection function is uniform.

Observation 10. Let A be a belief set. If � is an extensional sentence based selection
function for A, then � is uniform.

From the last observation, having in mind Observation 9, we can conclude that, in
the context of belief sets, � is an extensional sentence based selection function if and
only if it is a uniform sentence based selection function.

We now present the definition of relational sentence based selection function.

Definition 18. A sentence based selection function � for a set A is relational if and only
if there is a relation � over

⋃
{A ⊥ α : α ∈ L} such that for all sentences α, if A ⊥ α is

non-empty, then

�(α) = {B ∈ A ⊥ α : C � B for all C ∈ A ⊥ α}.
� is transitively relational if and only if this holds for some transitive relation �.

The following theorems show how sentence based selection functions can be defined
from standard selection functions and vice versa.

Theorem 1. Let A be a set of sentences and � : {A ⊥ � : � ∈ L} −→ P(P(A)) be a
selection function for A. Let � ′ be such that � ′(α) = �(A ⊥ α) ( for all sentences α).4

Then it holds that:

1. � ′ is a uniform sentence based selection function for A.
2. If � is a transitively relational selection function for A, then � ′ is a uniform

transitively relational sentence based selection function for A.

Theorem 2. Let A be a set of sentences and � : L −→ P(P(A)) be a uniform
sentence based selection function for A. Let � ′ be such that � ′(A ⊥ α) = �(α) ( for
all sentences α).5 Then it holds that:

1. � ′ is a selection function for A.
2. If � is a uniform transitively relational selection function for A, then � ′ is a

transitively relational selection function for A.

3.2. Generalized partial meet contractions on belief bases. The definition of these
operators is similar to the one presented for partial meet contractions, but instead
of being defined by means of selection functions, generalized partial meet contraction
operators, are defined by means of sentence based selection functions.

Definition 19. Let A be a set of sentences and � : L −→ P(P(A)) be a sentence based
selection function. The generalized partial meet contraction (GPMC ) operator on A
based on � is the operator ÷� such that for all sentences α,

A÷� α = ∩�(α).

An operator ÷ for a set A is a GPMC operator if and only if there is a sentence based
selection function � for A such that A÷ α = A÷� α for all sentences α.

4 More formally, � ′ is the binary relation {(α, �(A ⊥ α)) : α ∈ L} ⊆ L × P(P(A)).
5 More formally, � ′ is the binary relation {(A ⊥ α, �(α)) : α ∈ L} ⊆ {A ⊥ � : � ∈ L} ×

P(P(A)).

https://doi.org/10.1017/S175502032200034X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032200034X


376 MARCO GARAPA AND MAURÍCIO D. L. REIS

In the following theorem, we present an axiomatic characterization for GPMC
operators.

Theorem 3. Let A be a belief base. An operator ÷ on A is a GPMC for A if and only if
÷ satisfies success, inclusion and relevance.

A GPMC operator, in general, does not satisfy the irrelevance of syntax criteria
according to which the outcome of a change should not depend on the syn-
tax/representation of either the previous beliefs or the new information that triggers
that change. For example, let A = {r, r → q}. It holds that A ⊥ (¬p ∨ q) = A ⊥
(p → q) = {{r}, {r → q}}. Now consider a sentence based selection function � such
that �(p → q) = {{r}} and �(¬p ∨ q) = {{r → q}}, and let ÷ be the GPMC based
on �. It holds thatA÷ (p → q) = {r} andA÷ (¬p ∨ q) = {r → q}. Hence, although
� (¬p ∨ q) ↔ (p → q),A÷ (p → q) 
= A÷ (¬p ∨ q). In order to obtain an operation
that satisfies that criteria, we will impose constrains on the sentence based selection
function on which the operator is based.

Definition 20. An extensional GPMC operator on A is a GPMC operator on A which
is based on an extensional sentence based selection function. A uniform GPMC operator
on A is a GPMC operator on A which is based on a uniform sentence based selection
function.

We now present axiomatic characterizations for the classes of operators mentioned
in the above definition.

Theorem 4. Let A be a belief base and ÷ an operator on A. The following pair of
conditions are equivalent.

(a) ÷ is an extensional GPMC operator.
(b) ÷ satisfies success, inclusion, relevance and extensionality.

Theorem 5. Let A be a belief base and ÷ an operator on A. The following conditions are
equivalent.

(a) ÷ is a uniform GPMC operator.
(b) ÷ satisfies success, inclusion, relevance and uniformity.
(c) ÷ is a partial meet contraction.

We finish this section by presenting an example that illustrates that, in general, the
classes of extensional GPMC and of uniform GPMC do not coincide.

Example 1. Let A = {r, r → (p ∧ q)}. For all subset B of A it holds that B � p if
and only if B � q. On the other hand, A ⊥ p = A ⊥ q = {{r}, {r → (p ∧ q)}}. Let �
be an extensional sentence based selection function such that �(p) = {{r}} and �(q) =
{{r → (p ∧ q)}}. Thus the operator ÷ on A such that A÷ α =

⋂
�(α) ( for all α) is an

extensional GPMC. However, it holds that A÷ p = {r} and A÷ q = {r → (p ∧ q)}.
Hence ÷ does not satisfy uniformity. Therefore, ÷ is an extensional GPMC but not a
uniform GPMC.

3.3. Generalized partial meet contraction operators on belief sets. In this subsection
we start by showing that, when considering the specific case of contractions on
belief sets, the newly proposed classes of extensional GPMC and uniform GPMC
are identical and, furthermore, they are also identical to the class of standard partial
meet contractions.
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Theorem 6. Let K be a belief set and÷ be a contraction operator on K. Then the following
conditions are equivalent:

(a) ÷ is an extensional GPMC.
(b) ÷ is a uniform GPMC.
(c) ÷ is a partial meet contraction.
(d) ÷ satisfies the basic AGM contraction postulates.

Definition 21. A GPMC is relational respectively transitively relational if and only
if it is determined by some relational respectively transitively relational sentence based
selection function.

The following theorem asserts that the newly proposed classes of extensional and of
uniform transitively relational GPMC (on belief sets) are identical and, furthermore,
they coincide with the class of standard transitively relational partial meet contractions
(and so they are axiomatically characterized by the basic and supplementary AGM
contraction postulates).

Theorem 7. Let K be a belief set and÷ be a contraction operator on K. Then the following
conditions are equivalent:

(a) ÷ is an extensional transitively relational GPMC.
(b) ÷ is a uniform transitively relational GPMC.
(c) ÷ is a transitively relational partial meet contraction.
(d) ÷ satisfies the basic and supplementary AGM contraction postulates.

§4. Generalized kernel contractions. In this section we present the definition and
axiomatic characterization of a new type of contraction operators called generalized
kernel contraction operators.

4.1. Sentence based incision functions. In this subsection we present the definition
of (several kinds) of sentence based incision functions and present some results that
relate incision functions with sentence based incision functions.

Definition 22. Let A be a set of sentences. Let A⊥⊥α be the kernel set of A with respect
to α. A sentence based incision function � for A is a function � : L −→ P(A) such that
for all sentences α:6

1. �(α) ⊆
⋃

(A⊥⊥α).
2. If ∅ 
= B ∈ A⊥⊥α, then B ∩ �(α) 
= ∅.

The following observation states that, in the belief set context, any extensional
sentence based incision function is uniform.

Observation 11. Let A be a belief set. If � is an extensional sentence based incision
function for A, then � is uniform.

From the above observation and Observation 9, it follows that, in the context of
belief sets, � is an extensional sentence based incision function if and only if it is a
uniform sentence based incision function.

6 It follows from its definition that a sentence based incision function for A is a sentence based
function for A.
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Next we present the definition of some subclasses of sentence based incision
functions.

Definition 23. A sentence based smooth incision function for a set A is a sentence based
incision function � for A such that it holds for all subsets A′ of A that if A′ � � and
� ∈ �(α) then A′ ∩ �(α) 
= ∅.

Definition 24. Let s be a kernel selection function for a set A. Then a sentence based
incision function � : L −→ P(A) is the cumulation of s if and only if for all sentences α,

�(α) =
⋃

{s(X ) : X ∈ A⊥⊥α}.

Definition 25. A sentence based incision function is based on a relation ≺ if and only if
it is the cumulation of some kernel selection function that is based on ≺.

The following theorems show how sentence based incision functions can be defined
from standard incision functions and vice versa.

Theorem 8. Let A be a set of sentences and � : {A⊥⊥� : � ∈ L} −→ P(A) be an incision
function for A. Let �′ be such that �′(α) = �(A⊥⊥α) ( for all α).7 Then it holds that:

1. �′ is a uniform sentence based incision function for A.
2. If � is smooth, then �′ is a uniform sentence based smooth incision function for A.
3. If � is based on a regular and virtually connected hierarchy ≺, then �′ is a uniform

sentence based incision function that is based on ≺.

Theorem 9. Let A be a set of sentences and � : L −→ P(A) be a uniform sentence based
incision function for A. Let �′ be such that �′(A⊥⊥α) = �(α) ( for all α).8 Then it holds
that:

1. �′ is an incision function for A.
2. If � is smooth, then �′ is a smooth incision function for A.
3. If � is based on a regular and virtually connected hierarchy ≺, then �′ is an incision

function that is based on ≺.

4.2. Generalized kernel contractions on belief bases. The definition of the general-
ized kernel contraction operators is similar to the one presented for kernel contractions,
but instead of being defined by means of incision functions these operators are defined
by means of sentence based incision functions.

Definition 26. Let A be a set of sentences and � : L −→ P(A) be a sentence based
incision function for A. The generalized kernel contraction (GKC ) operator on A based
on � is the operator ÷� such that for all sentences α:

A÷� α = A \ �(α).

An operator ÷ for a set A is a GKC if and only if there is a sentence based incision
function � for A such that A÷ α = A÷� α for all sentences α.

In the following theorem, we present an axiomatic characterization for GKC
operators.

7 More formally, �′ is the binary relation {(α, �(A⊥⊥α)) : α ∈ L} ⊆ L × P(A).
8 More formally, �′ is the binary relation {(A⊥⊥α, �(α)) : α ∈ L} ⊆ {A⊥⊥� : � ∈ L} × P(A).
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Theorem 10. Let A be a belief base. An operator ÷ on A is a GKC if and only if it
satisfies success, inclusion and core-retainment.

In the following definition we introduce less general classes of GKC operators.

Definition 27. An extensional GKC operator on A is a GKC operator on A which is
based on an extensional sentence based incision function. A uniform GKC operator on
A is a GKC operator on A which is based on a uniform sentence based incision function.
A GKC operator is smooth if and only if it is based on a sentence based smooth incision
function.

We now present axiomatic characterizations for the classes of operators mentioned
in the above definition.

Theorem 11. Let A be a belief base and ÷ an operator on A. It holds that:

÷ is iff ÷ satisfies success, inclusion,
core-retainment and

an extensional GKC operator extensionality
a smooth GKC operator relative closure
an extensional smooth GKC operator extensionality and relative closure

We finish this section by presenting two representation theorems. These theorems
illustrate that the classes of uniform GKC and of uniform smooth GKC operators
coincide, respectively, with the classes of kernel contraction and of smooth kernel
contraction operators.

Theorem 12. Let A be a belief base and ÷ an operator on A. The following conditions
are equivalent.

(a) ÷ is a uniform GKC operator.
(b) ÷ satisfies success, inclusion, core-retainment and uniformity.
(c) ÷ is a kernel contraction.

Theorem 13. Let A be a belief base and ÷ an operator on A. The following conditions
are equivalent.

(a) ÷ is a uniform smooth GKC operator.
(b) ÷ satisfies success, inclusion, core-retainment, uniformity and relative closure.
(c) ÷ is a smooth kernel contraction.

4.3. Generalized smooth kernel and safe contraction operators on belief sets. We
start this subsection with a theorem that states that when considering the specific case
of contractions on belief sets, the classes of extensional smooth GKC, of uniform
smooth GKC and of standard smooth kernel contractions are all identical.

Theorem 14. Let K be a belief set and ÷ be a contraction operator on K. Then the
following conditions are equivalent:

(a) ÷ is an extensional smooth GKC.
(b) ÷ is a uniform smooth GKC.
(c) ÷ is a smooth kernel contraction.
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(d) ÷ satisfies the basic AGM contraction postulates.

In the following definition we introduce the definition of generalized safe contraction
operator.

Definition 28. Let ≺ be a hierarchy over a set of sentences A. Let � be the sentence
based incision function that is based on≺ and÷� the generalized kernel contraction based
on �. The operation of generalized safe contraction ÷≺ based on ≺ is defined as follows:

A÷≺ α = A ∩ Cn(A÷� α).

The following theorem asserts that the newly proposed classes of extensional safe and
of uniform safe contractions (on belief sets) based on a regular and virtually connected
hierarchy are identical and, furthermore, that they are axiomatically characterized
by the basic and supplementary AGM contraction postulates (just as it is the case
regarding the standard safe contractions based on a regular and virtually connected
hierarchy).

Theorem 15. Let K be a belief set and ÷ be a contraction operator on K. Then the
following conditions are equivalent:

(a) ÷ is an extensional generalized safe contraction based on a regular and virtually
connected hierarchy.

(b) ÷ is a uniform generalized safe contraction based on a regular and virtually
connected hierarchy.

(c) ÷ is a safe contraction based on a regular and virtually connected hierarchy.
(d) ÷ satisfies the basic and supplementary AGM contraction postulates.

§5. Maps between belief base contraction operators. In this section, we study
the interrelations among the classes of GPMC and GKC operators on belief
bases introduced in the previous sections. The following observation presents those
interrelations, which follow from Observation 1 and the representation theorems
presented in Sections 3.2 and 4.2.

Observation 12. Let A be a belief base and ÷ be an operator on A. Then:

1. If ÷ is an extensional GPMC, then it is a GPMC.
2. If ÷ is a uniform GPMC, then it is an extensional GPMC.
3. If ÷ is an extensional smooth GKC, then it is a smooth GKC.
4. If ÷ is a uniform smooth GKC, then it is an extensional smooth GKC.
5. If ÷ is an extensional GKC, then it is a GKC.
6. If ÷ is a uniform GKC, then it is an extensional GKC.
7. If ÷ is a GPMC, then it is a smooth GKC.
8. If ÷ is an extensional GPMC, then it is an extensional smooth GKC.
9. If ÷ is a uniform GPMC, then it is a uniform smooth GKC.
10. If ÷ is a smooth GKC, then it is a GKC.
11. If ÷ is an extensional smooth GKC, then it is an extensional GKC.
12. If ÷ is a uniform smooth GKC, then it is a uniform GKC.

In Figure 1 we present a diagram that summarizes the logical relationships between
the operators of base contraction mentioned along this paper. The relationships in
terms of set inclusion among the classes of operators represented in this diagram are
exactly those indicated by arrows (and their transitive closure).
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Extensional
GPMC

GPMC Uniform GPMC Partial meet
contraction

Extensional
Smooth GKC

Smooth GKC Uniform
Smooth GKC

Smooth kernel
contraction

Extensional GKCGKC Uniform GKC Kernel
contraction

Relevance

Relative
closure

Inclusion,
success and

core-
retainment

Extensionality

Uniformity

Fig. 1. Logical relationships between different operations of base contraction. An arrow
between two boxes symbolizes that the class of contraction operators at the origin of the
arrow is a subclass of the class of contraction operators at the end of that arrow.

§6. Summary, discussion and conclusion. The one that is currently considered
the standard model of belief change is the AGM model, presented in [1]. In that
seminal paper the class of partial meet contractions on belief sets was proposed and
axiomatically characterized.

A partial meet contraction on a set of sentences A is essentially defined as a function
which associates to each sentence α the intersection of some non-empty family of
remainders of A by α (i.e., maximal subsets of A which do not imply α). Hence,
naturally, the basic construct underlying the definition of partial meet contractions
on a set of sentences A is a selection function—which is, roughly speaking, a function
that picks, for each remainder set of A, some of its elements. Not surprisingly these
functions have been defined as functions from {A ⊥ α : α ∈ L} to P(P(A)).

One of the main rationality principles that are usually required to be fulfilled by a
(belief) change operation is known as irrelevance of syntax (e.g., [5, 7]) according
to which the result of a (belief) change should not depend on the syntax (or
representation) of neither the previous beliefs nor the new information (that causes the
change). Of the postulates included in the axiomatic characterization of the operators
of partial meet contraction (on belief sets) presented in [1], the one that captures
the principle of irrelevance of syntax is extensionality, while the irrelevance of syntax
postulate that is used in the axiomatic characterization of partial meet contraction on
belief bases, presented in [9], is uniformity.

Next we present a brief analysis of the usefulness of the postulates of extensionality
and of uniformity in the (proofs for the) axiomatic characterizations of partial meet
contraction on belief sets [1] and on belief bases [9], respectively.

The selection function � : {A ⊥ � : � ∈ L} −→ P(P(A)) that is presented in the
postulates to construction part of the proof of the representation theorem for partial
meet contractions (both on belief sets and on belief bases), is defined, using ÷, by

�(A ⊥ α) =

{
{X ∈ A ⊥ α : A÷ α ⊆ X}, if A ⊥ α 
= ∅,
A, if A ⊥ α = ∅.

When A is a belief set, the assumption that ÷ satisfies extensionality is enough to
assure that � is a (well-defined) function. However, if A is not assumed to be a logically
closed set, the postulate of extensionality is not strong enough to assure this. In that
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scenario the proof presented for the fact that � is a function relies on the imposition
that ÷ satisfies uniformity.

While the postulate of extensionality is a very intuitive and natural property to
require from a belief change operator, the postulate of uniformity is much less intuitive.
Indeed, while extensionality can be informally stated as “the outputs of contractions
by equivalent sentences are identical,” the postulate of uniformity is a quite technical
property which asserts that “the outputs of contractions by sentences which are implied
by exactly the same subsets of the belief base A are identical.”

In this paper we have proposed a new kind of function, which we designated by
sentence based selection functions, whose purpose is exactly the same of the standard
selection functions (i.e., to choose some of the elements of any given remainder
set), but which differ from the standard selection functions in the fact that, while
the latter associate a set of remainders to each remainder set, the sentence based
selection functions associate a set of remainders (directly) to each sentence, i.e.,
sentence based selection functions have been defined as functions from L to P(P(A)).
Then we have introduced a new class of contraction functions—the generalized partial
meet contractions (GPMC)—whose definition is similar to that of the partial meet
contractions but uses the sentence based selection functions instead of the standard
ones. More precisely, while a partial meet contraction on a set A is an operator ÷
such that, for all sentences α, A÷ α = ∩�(A ⊥ α), for some selection function �, a
generalized partial meet contraction on a set A is an operator ÷G such that, for all
sentences α, the slightly simpler and more natural identity A÷G α = ∩�G(α) holds,
where �G is a sentence based selection function.

Some of the results presented in this paper show that, in the context of contractions
on belief bases:

(i) GPMCs are axiomatically characterized by the postulates of success, inclusion
and relevance, i.e., by the all the postulates that axiomatically characterize
partial meet contractions except uniformity.

(ii) Extensional sentence based selection functions—which are sentence based
selection functions that associate the same image to any two equivalent
sentences—and uniform sentence based selection functions—which are sen-
tence based selection functions that associate the same image to any two
sentences that are implied by precisely the same subsets of the belief base A
under consideration—give rise to the following particular kinds of GPMCs:
• Extensional GPMCs—the GPMCs that are based on an extensional

sentence based selection function—which are axiomatically characterized
by the postulates of success, inclusion, relevance and extensionality and may
not satisfy uniformity. Hence the class of partial meet contractions is a strict
subclass of the class of extensional GPMCs;

• Uniform GPMCs—the GPMCs that are based on a uniform sentence
based selection function—which are axiomatically characterized by the
postulates of success, inclusion, relevance and uniformity.

The above facts highlight that, while the class of uniform GPMCs coincides precisely
with the class of partial meet contractions (although their definitions are different),
the GPMCs and the extensional GPMCs constitute two novel types of contraction
functions on belief bases, which differ from the partial meet contractions essentially in
what concerns the way each of them addresses the principle of irrelevance of syntax.
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In what follows we present a brief analysis of each of those contraction functions from
that perspective.

The GPMCs do not satisfy the irrelevance of syntax principle at all. In fact, given a
GPMC ÷G on a set A and two logically equivalent sentences α and � it may be the case
thatA÷G α 
= A÷G � . Due to this fact the adequacy of GPMCs as (belief) contraction
functions is naturally questionable. In this regard, and however this discussion is beyond
the scope of this paper, we shall only remark that there are lots of contexts in which
the irrelevance of syntax principle may be itself arguable. For example, in some belief
change scenarios (or other similar contexts) it may be appropriate to treat differently
the two sentences/beliefs “John does not dislike swimming” and “John likes swimming”
(although these are two logically equivalent sentences).

On the other hand, extensional GPMCs constitute a new kind of belief base
contraction function whose characterizing postulate of irrelevance of syntax is precisely
the same one which occurs in the classical axiomatic characterization of partial meet
contractions for belief sets. Therefore, we believe extensional GPMCs are more natural
belief change functions on belief bases than partial meet contractions.

We have also shown that in the context of contractions on belief sets the classes of
partial meet contractions, uniform GPMCs and extensional GPMCs are all identical.
Furthermore, we have also shown that the class of transitively relational partial meet
contractions is also a notable subclass of the class of GPMCs. Indeed it coincides
with both the classes of extensional transitively relational GPMCs and of uniform
transitively relational GPMCs.

At this point we would like to mention that, despite the above mentioned equivalence
of definitions in the context of belief sets, in our opinion, also in that setting, the
definition presented in the present paper is simpler and more natural than the classical
definition of partial meet contraction. The main difference between the two definitions
is the fact that one uses standard selection functions and the other one uses sentence
based selection functions. While it is absolutely understandable why, in the original
definition, the selection functions � are assumed to be functions whose domain is the
set of all remainder sets, we believe that when contracting a set A by a sentence α it
is more natural to use a function �S whose domain is L, and which can be directly
applied to α rather that to A ⊥ α. That is, we consider that it is more natural to define
A÷ α by ∩�S(α) than by ∩�(A ⊥ α). In fact, when using a function �S from L to
P(P(A)) the (GPMC) contraction of A by α consists of a two step procedure (first
compute �S(α) and then obtain the intersection of all the sets there contained). On
the other hand, when considering a function �S from {A ⊥ α : α ∈ L} to P(P(A)),
the process of (partial meet) contraction of A by α comprises three steps (first obtain
the remainder set A ⊥ α, then compute �(A ⊥ α) and finally obtain the intersection
of all the sets there contained).

However, as we have seen, in the context of belief sets these different definitions all
turn out to be equivalent and, for this reason whichever would have been the first one
of this definitions to be presented, it would naturally be accepted (because it would
be proven to be characterized by the AGM postulates for contraction). In fact, since
one of the basic AGM postulates is extensionality, we believe that if the AGM trio had
first considered the contraction function ÷, defined by A÷ α = ∩�S(α) (where �S is
a sentence based selection function), then they would have immediately required �S to
be extensional (since that would be the most obvious way to proceed in order to assure
the satisfaction of the postulate of extensionality by the induced contraction function).
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Nevertheless, we doubt the notion of uniform sentence based selection functions would
ever have come to their mind (since in our opinion it not a very natural or intuitive
notion).

Moreover, we conjecture that if the original definition of partial meet contractions
on belief sets would have been presented with the formulation that we have used in
the definition proposed in this paper for extensional GPMCs, then the contraction
functions which are nowadays known as partial meet contractions on belief bases
would probably never have appeared and, furthermore, even the postulate of uniformity
might not have been proposed (yet). The definition of partial meet contractions on
belief bases is simply identical to the classical definition of partial meet contraction
(the only difference being the fact that the set to be contracted is assumed to be a belief
base rather than a belief set). However, the postulate of extensionality is not a strong
enough irrelevance of syntax postulate to characterize this operation and, for that
purpose, Hansson [9] needed to introduce the postulate of uniformity. Nevertheless,
if the original definition of partial meet contractions on belief sets would have been
presented with the alternative (but equivalent) formulation which we propose in the
present paper as definition for the extensional GPMCs, then its direct translation
to the context of belief bases would originate a class of functions—namely the class
of extensional GPMCs on belief bases—which has the postulate of extensionality as
its characteristic irrelevance of syntax postulate. If this had been the case, it seems
to us there would not exist any motivation for introducing either the postulate of
uniformity (which, as previously mentioned, is a quite technical and not at all intuitive
property) or the class of uniform GPMCs (which coincides with the class of partial
meet contractions on belief bases).

Apart from the above summarized and discussed definitions and results concerning
partial meet contractions, in the present paper we have also presented an analogous
study concerning kernel contraction [11], another operation of belief contraction that
has also acquired the status of a benchmark in the context of belief change operators.

Unlike partial meet contractions, kernel contractions were originally proposed as
contraction functions defined on the more general setting of belief bases (rather than
only on belief sets). However, their definition was strongly inspired by the definition of
partial meet contractions. In fact, while a partial meet contraction of A byα is based on
a selection among the maximal subsets of A that do not imply α, a kernel contraction
is based on a selection among the elements of minimal subsets of A that imply α,
which are called α-kernels of A. So, the main construct underlying the definition of
kernel contractions on a set of sentences A is an incision function—which, roughly
speaking, is a function that picks, for each kernel set of A, a set of sentences which
(i) only contains sentences that are included in some of the members of that kernel
set and (ii) contains at least one element of each one of the (non-empty) elements
of that kernel set. Analogously to what had been the case regarding the definition of
selection functions, the incision functions were originally presented as functions from
{A⊥⊥α : α ∈ L} to P(A).

Both the axiomatic characterization for partial meet contractions, and that for kernel
contractions on belief bases (obtained in [9, 11]respectively) contain exactly the same
irrelevance of syntax postulate, namely uniformity.

Reasoning in an absolutely analogous way to the way we did regarding partial
meet contractions, we have introduced the so-called sentence based incision functions,
whose purpose is exactly the same of the standard incision functions, but which have
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L (instead of {A⊥⊥α : α ∈ L}) as their domain. Then we have defined the class of
generalized kernel contractions (GKC), which are basically operators defined as kernel
contractions but using sentence based incision functions instead of standard incision
functions. That is, an operator ÷ is a GKC if, for every sentence α,A÷ α = A \ �(α),
for some sentence based incision function �. We have also considered several relevant
subclasses of the class of GKC. The results that we have obtained regarding these
operations are similar to the ones obtained regarding GPMCs and, in particular, allow
us to conclude that:

• GKCs (resp. smooth GKCs) are axiomatically characterized by the postulates
of success, inclusion and core-retainment (resp. by the postulates of success,
inclusion, core-retainment and relative closure), i.e., by all the postulates
that axiomatically characterize kernel (respectively, smooth kernel) except
uniformity.

• Extensional GKCs (resp. extensional smooth GKCs)—which are the GKCs
(resp. smooth GKCs) that are based on a sentence based incision function that
associates the same image to any two equivalent sentences—are axiomatically
characterized by the postulates of success, inclusion, core-retainment and
extensionality (resp. by the postulates of success, inclusion, core-retainment,
relative closure and extensionality) and may not satisfy uniformity. Hence
the class of kernel contractions (resp. smooth kernel contractions) is a strict
subclass of the class of extensional GKCs (resp. extensional smooth GKCs);

• The class of uniform GKCs (resp. uniform smooth GKCs)—which are the
GKCs (resp. smooth GKCs) that are based on a sentence based incision
function that associates the same image to any two sentences that are implied
by precisely the same subsets of the set A under consideration—is identical to
the class of kernel contractions (resp. smooth kernel contractions).

To finish we mention that our perspective over the newly proposed classes of GKCs is
similar to the one we exposed above concerning GPMCs. In particular, we consider that
extensional GKCs are more natural than kernel contractions, both in what concerns
their definitions (since the definition of GKCs, which uses a sentence based incision
function, is simpler and, furthermore, it encompasses a two step procedure while
the definition of kernel contractions, for using a standard incision function, forces the
performance of three steps whenever a contraction is carried out) and in what concerns
their axiomatic characterizations (since extensionality is a much nicer postulate of
irrelevance of syntax than uniformity).

It remains only to say that we are also convinced that it is only due to the fact
that the original definition of partial meet contractions (on belief sets) was made
by means of standard selection functions that the kernel contractions on belief bases
(as we know them nowadays) have come to be defined. Indeed, if the definition of
partial meet contractions had originally been proposed using extensional sentence
based selection functions rather than standard selection functions, the reasoning that
led to the appearance of kernel contractions would have rather led to the definition of
the (operators that we have designated in the present paper by) extensional GKCs.
Additionally, we believe that if that had been the case then the class of kernel
contractions or, equivalently, the class of uniform GKCs, would never have come
into play, since at first sight there is nothing that makes the operation of kernel
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contraction/uniform GKC more appealing or more interesting than the operation
of extensional GKC.

Appendix: Proofs.

Lemma 1 [2, Observation 2.2]. Let A be a set of sentences and α a sentence. Then,
A ⊥ α = ∅ if and only if � α (provided that the consequence operation Cn is compact).

Lemma 2 [11]. Let A be a set of sentences and α and � be sentences. The following
three conditions are equivalent:

1. A ⊥ α = A ⊥ � .
2. A⊥⊥α = A⊥⊥� .
3. For all subsets D of A: D � α if and only if D � � .

Proof of Observation 9. Let A be a set of sentences and f a sentence based function
for A. Assume that f is uniform. Let � α ↔ � . Hence it holds that for all subsets
A′ of A that α ∈ Cn(A′) if and only if � ∈ Cn(A′). Since f is uniform it holds that
f(α) = f(�). Therefore f is extensional.

Proof of Observation 10. Let A be a belief set and assume that � is an extensional
sentence based selection function. Assume that it holds that for all subsetsA′ of A that
α ∈ Cn(A′) if and only if � ∈ Cn(A′). We will consider two cases:

Case (1) A � α. Hence A � � . Since A is a belief set, it holds that α ∈ A and � ∈ A. It
holds that {α} � α and {�} � � from which it follows, by hypothesis, that {α} � � and
{�} � α. Hence � α ↔ � . Since � is an extensional sentence based selection function,
it follows that �(α) = �(�).

Case (2) A 
� α. Hence A 
� � . Thus A ⊥ α = {A} = A ⊥ � . Therefore, according to
condition (1) of Definition 17 it follows that �(α) = �(�) = {A}.

Proof of Theorem 1. Let A be a set of sentences and � : {A ⊥ � : � ∈ L} −→
P(P(A)) be a selection function for A. Let � ′ be such that � ′(α) = �(A ⊥ α) (for
all sentences α). It holds that, for every α ∈ L, � ′(α) ∈ P(P(A)).

1. We must prove that: (i) � ′ is a (well-defined) function; (ii) � ′ satisfies conditions
(1) and (2) of Definition 17; (iii) � ′ is uniform.
(i) and (ii) Follow immediately from the definition of � ′ and the fact that � is a
selection function.
(iii) Assume that it holds that for all subsets D of A that D � α if and only if
D � � . By Lemma 2 it follows that A ⊥ α = A ⊥ � . Since � is a function, it
holds that � ′(α) = �(A ⊥ α) = �(A ⊥ �) = � ′(�).

2. Follows immediately from (1) and Definitions 8 and 18.

Proof of Theorem 2. Let A be a set of sentences and � : L −→ P(P(A)) be a uniform
sentence based selection function for A. Let � ′ be such that � ′(A ⊥ α) = �(α) (for all
sentences α).

It holds that, for every α ∈ L, � ′(A ⊥ α) ∈ P(P(A)).

1. We must prove that: (i) � ′ is a (well-defined) function and (ii) � ′ satisfies
conditions (1) and (2) of Definition 2.

(i) Let A ⊥ α = A ⊥ � . By Lemma 2 it follows from A ⊥ α = A ⊥ � that
for all subsets D of A thatD � α if and only ifD � � . Since � is uniform, it
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follows that �(α) = �(�). Thus � ′(A ⊥ α) = �(α) = �(�) = � ′(A ⊥ �).
Thus � ′ is a well defined function.

(ii) Follows immediately from the definition of � ′ and the fact that � is a
sentence based selection function.

2. Follows immediately from (1) and Definitions 8 and 18.

Proof of Theorem 3. Let A be a belief base.

Construction to postulates:
Success: Let 
� α. HenceA ⊥ α 
= ∅. By definition of sentence based selection function
it follows that �(α) is a non-empty subset of A ⊥ α. Let X ∈ �(α), hence X ∈ A ⊥ α.
From which it follows that X 
� α. Hence it follows, from

⋂
�(α) ⊆ X , that A÷ α =⋂

�(α) 
� α.

Inclusion: We will consider two cases:

Case (1)� α. HenceA ⊥ α = ∅. Thus �(α) = {A}. From which it follows thatA÷ α =⋂
�(α) = A.

Case (2) 
� α. Hence A ⊥ α 
= ∅. It holds that �(α) is a non-empty subset of A ⊥ α.
All elements of A ⊥ α are subsets of A. Therefore

⋂
�(α) ⊆ A.

Relevance: Let � ∈ A \ A÷ α. ThusA÷ α 
= A, from which it follows thatA ⊥ α 
= ∅.
It holds that �(α) is a non-empty subset of A ⊥ α. It follows from � 
∈ A÷ α =⋂
�(α) that there exists some X ∈ �(α) such that � 
∈ X . It holds that X ∈ A ⊥ α.

Hence X 
� α and X ⊂ X ∪ {�} ⊆ A. From X ∈ A ⊥ α and � ∈ A \ X it follows that
X ∪ {�} � α. On the other hand, fromX ∈ �(α) it follows thatA÷ α =

⋂
�(α) ⊆ X .

Postulates to construction:
Assume that ÷ is an operator on A that satisfies success, inclusion and relevance.
Let � be such that, for any sentence α ∈ L:

1. If A ⊥ α 
= ∅, then �(α) = {X ∈ A ⊥ α : A÷ α ⊆ X}.
2. If A ⊥ α = ∅, then �(α) = {A}.

It holds, for every α ∈ L, that �(α) ∈ P(P(A)).
We need to show that: (i) � is a sentence based selection function and (ii)

⋂
�(α) =

A÷ α.
(i) We start by showing that � is a well-defined function.
Let α = � . We will prove that �(α) = �(�). From α = � it follows that A ⊥ α =

A ⊥ � . We will consider two cases:

Case (1) A ⊥ α = ∅. Thus A ⊥ � = ∅. Hence �(α) = {A} = �(�).

Case (2) A ⊥ α 
= ∅. Thus A ⊥ � 
= ∅. Since ÷ is an operator, it holds that
A÷ α = A÷ � . Hence �(α) = {X ∈ A ⊥ α : A÷ α ⊆ X} = {X ∈ A ⊥ � : A÷ � ⊆
X} = �(�). We will now prove that � is a sentence based selection function. To do so
we need to prove that:

(1) If A ⊥ α 
= ∅, then �(α) is a non-empty subset of A ⊥ α.
(2) If A ⊥ α = ∅, then �(α) = {A}.

That (2) holds, follows trivially by definition of �. Assume now that A ⊥ α 
= ∅.
That �(α) ⊆ A ⊥ α follows by definition of �. It remains to prove that �(α) 
= ∅. From
A ⊥ α 
= ∅ it follows that 
� α. By÷ success it follows thatA÷ α 
� α and by÷ inclusion
it follows thatA÷ α ⊆ A. By the upper bound property it follows that there exists some
B such thatA÷ α ⊆ B ∈ A ⊥ α. Thus B ∈ �(α), from which it follows that �(α) 
= ∅.
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(ii) We need to prove that
⋂
�(α) = A÷ α.

We will consider two cases:

Case (1) � α. Hence A ⊥ α = ∅. Thus �(α) = {A}. Thus
⋂
�(α) = A. From ÷

inclusion and relevance it follows that ÷ satisfies failure (Observation 1). From which
it follows that A÷ α = A. Thus

⋂
�(α) = A÷ α.

Case (2) 
� α. Hence A ⊥ α 
= ∅. Thus �(α) 
= ∅. According to the definition of � it
follows that A÷ α ⊆ X , for all X ∈ �(α). Thus A÷ α ⊆

⋂
�(α).

Let � 
∈ A÷ α. We are going to show that � 
∈
⋂
�(α). This follows trivially if � 
∈ A.

Assume now that � ∈ A. By ÷ relevance it follows that there exists some set B such
that A÷ α ⊆ B ⊆ A, B 
� α but B ∪ {�} � α. It follows by the upper bound property
that there exists some C such that B ⊆ C ∈ A ⊥ α. It holds that � 
∈ C (otherwise, it
would follow from B ∪ {�} � α and B ⊆ C that C � α, contrary to C ∈ A ⊥ α). It
follows from A÷ α ⊆ B ⊆ C and C ∈ A ⊥ α that C ∈ �(α). Thus � 
∈

⋂
�(α).

Therefore
⋂
�(α) = A÷ α.

Proof of Theorem 4. Let A be a belief base.
(a) to (b):
By Theorem 3 it follows that ÷ satisfies success, inclusion and relevance. It remains

to prove that ÷ satisfies extensionality.
It holds that, for any sentenceα,A÷ α =

⋂
�(α), where � is an extensional sentence

based selection function. Assume that � α ↔ � . Thus �(α) = �(�). From which it
follows that A÷ α =

⋂
�(α) =

⋂
�(�) = A÷ � .

(b) to (a):
Let � be such that, for any sentence α ∈ L:

1. If A ⊥ α 
= ∅, then �(α) = {X ∈ A ⊥ α : A÷ α ⊆ X}.
2. If A ⊥ α = ∅, then �(α) = {A}.

We need to show that: (i) � is an extensional sentence based selection function and (ii)⋂
�(α) = A÷ α.
This is the construction used in the proof of Theorem 3. Thus according to that

proof it follows that � is a sentence based selection function and
⋂
�(α) = A÷ α. It

remains to prove that � is extensional.
Assume that � α ↔ � . By ÷ extensionality it follows that A÷ α = A÷ � . On the

other hand, it holds that A ⊥ α = A ⊥ � . We will consider two cases:

Case (1) A ⊥ α = ∅. Thus A ⊥ � = ∅. Therefore, �(α) = {A} = �(�).

Case (2) A ⊥ α 
= ∅. Thus A ⊥ � 
= ∅. Therefore, �(α) = {X ∈ A ⊥ α : A÷
α ⊆ X} = {X ∈ A ⊥ � : A÷ � ⊆ X} = �(�).

Proof of Theorem 5. Let A be a set of sentences and ÷ be an operator on A.
(a) to (b):
By Theorem 3 it follows that ÷ satisfies success, inclusion and relevance. It remains

to prove that ÷ satisfies uniformity.
It holds that, for any sentence α, A÷ α =

⋂
�(α), where � is a uniform sentence

based selection function. Assume that it holds for all subsets A′ of A that α ∈ Cn(A′)
if and only if � ∈ Cn(A′). Thus �(α) = �(�). From which it follows that A÷ α =⋂
�(α) =

⋂
�(�) = A÷ � .

(b) to (a):
Let � be such that, for any sentence α ∈ L:
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1. If A ⊥ α 
= ∅, then �(α) = {X ∈ A ⊥ α : A÷ α ⊆ X}.
2. If A ⊥ α = ∅, then �(α) = {A}.

We need to show that: (i) � is a uniform sentence based selection function and (ii)⋂
�(α) = A÷ α.
This is the construction used in the proof of Theorem 3. Thus according to that

proof it follows that � is a sentence based selection function and
⋂
�(α) = A÷ α. It

remains to prove that � is uniform.
Assume that it holds for all subsetsA′ of A thatα ∈ Cn(A′) if and only if� ∈ Cn(A′).

By ÷ uniformity it follows that A÷ α = A÷ � . On the other hand, by Lemma 2, it
follows that A ⊥ α = A ⊥ � . We will consider two cases:

Case (1) A ⊥ α = ∅. Thus A ⊥ � = ∅. Therefore, �(α) = {A} = �(�).

Case (2) A ⊥ α 
= ∅. Thus A ⊥ � 
= ∅. Therefore, �(α) = {X ∈ A ⊥ α : A÷ α ⊆
X} = {X ∈ A ⊥ � : A÷ � ⊆ X} = �(�).

(b) to (c) and (c) to (b): Follows by Observation 2.

Proof of Theorem 6. Let K be a belief set and ÷ be an operator on K.
According to Observation 5 conditions (c) and (d) are equivalent. On the other

hand it follows immediately from Observations 9 and 10 that conditions (a) and (b)
are equivalents. Therefore, to conclude this proof it is enough to show that conditions
(b) and (c) are equivalents.

(c) to (b)
Let ÷ be a partial meet contraction. Hence there exists a selection function � :

{K ⊥ � : � ∈ L} −→ P(P(K)) such that K ÷ α =
⋂
�(K ⊥ α). Let � ′ be such that

� ′(α) = �(K ⊥ α) (for all α). By Theorem 1, � ′ is a uniform sentence based selection
function. Thus K ÷ α =

⋂
�(K ⊥ α) =

⋂
� ′(α). Hence ÷ is a uniform GPMC.

(b) to (c)
Let ÷ be a uniform GPMC. Hence there exists a uniform sentence based selection

function � such that K ÷ α =
⋂
�(α). Let � ′ be such that � ′(K ⊥ α) = �(α) (for all

α). By Theorem 2, � ′ is a selection function. Thus K ÷ α =
⋂
�(α) =

⋂
� ′(K ⊥ α).

Hence ÷ is a partial meet contraction.

Proof of Theorem 7. Let K be a belief set and ÷ be an operator on K.
According to Observation 6 conditions (c) and (d) are equivalent. On the other

hand it follows immediately from Observations 9 and 10 that conditions (a) and (b)
are equivalents. Therefore, to conclude this proof it is enough to show that conditions
(b) and (c) are equivalents.

(c) to (b)
Assume that÷ is a transitively relational partial meet contraction. Hence there exists

a transitively relational selection function such that K ÷ α =
⋂
�(K ⊥ α). Let � ′ be

such that � ′(α) = �(K ⊥ α) (for all α). By Theorem 1, � ′ is a uniform transitively
relational sentence based selection function. It holds that K ÷ α =

⋂
�(K ⊥ α) =⋂

� ′(α). Hence ÷ is a uniform transitively relational GPMC.
(b) to (c)
Assume that ÷ is a uniform transitively relational GPMC. Hence there exists a

uniform transitively relational sentence based selection function � such that K ÷ α =⋂
�(α). Let � ′ be such that � ′(K ⊥ α) = �(α) (for all α). By Theorem 2, � ′ is a

transitively relational selection function. It holds that K ÷ α =
⋂
�(α) =

⋂
�(K ⊥ α).

Hence ÷ is a transitively relational partial meet contraction.
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Proof of Observation 11. Let A be a belief set and assume that � is an extensional
sentence based incision function. Assume that it holds that for all subsets A′ of A that
α ∈ Cn(A′) if and only if � ∈ Cn(A′). We will consider two cases:

Case (1) A � α. Hence A � � . Since A is a belief set, it holds that α ∈ A and � ∈ A.
It holds that {α} � α and {�} � � from which it follows, by hypothesis, that {α} � �
and {�} � α. Hence � α ↔ � . Since � is extensional, it follows that �(α) = �(�).

Case (2) A 
� α. Hence A 
� � . Thus A⊥⊥α = ∅ = A⊥⊥� . Therefore, according to
condition (1) of Definition 22, it follows that �(α) = ∅ = �(�).

Proof of Theorem 8. Let A be a set of sentences and � : {A⊥⊥� : � ∈ L} −→ P(A)
be an incision function for A. Let �′ be such that �′(α) = �(A⊥⊥α) (for all α).

It holds that, for every α ∈ L, �′(α) ∈ P(A).

1. We must prove that: (i) �′ is a (well-defined) function; (ii) �′ satisfies conditions
(1) and (2) of Definition 22; and (iii) �′ is uniform.
(i) and (ii) Follow immediately from the definition of �′ and the fact that � is
an incision function.
(iii) Assume that it holds that for all subsets D of A that D � α if and only if
D � � . By Lemma 2 it follows thatA⊥⊥α = A⊥⊥� . Since � is a function, it holds
that �′(α) = �(A⊥⊥α) = �(A⊥⊥�) = �′(�).

2. Follows immediately from (1) and Definitions 7 and 23.
3. Follows immediately from (1) and Definitions 11 and 25.

Proof of Theorem 9. Let A be a set of sentences and � : L −→ P(A) be a uniform
sentence based incision function for A. Let �′ be such that �′(A⊥⊥α) = �(α) (for
all α).

It holds that, for every α ∈ L, �′(A⊥⊥α) ∈ P(A).

1. We must prove that: (i) �′ is a (well-defined) function and (ii) �′ satisfies
conditions (1) and (2) of Definition 5.

(i) LetA⊥⊥α = A⊥⊥� . It holds that�′(A⊥⊥α) = �(α) and�′(A⊥⊥�) = �(�).
On the other hand, by Lemma 2 it follows from A⊥⊥α = A⊥⊥� that for
all subsets D of A that D � α if and only if D � � . Since � is uniform, it
follows that �(α) = �(�). Thus �′(A⊥⊥α) = �(α) = �(�) = �′(A⊥⊥�).
Thus �′ is a well defined function.

(ii) Follows immediately from the definition of �′ and the fact that � is a
sentence based incision function.

2. Follows immediately from (1) and Definitions 7 and 23.
3. Follows immediately from (1) and Definitions 11 and 25.

Proof of Theorem 10. Let A be a set of sentences and ÷ be an operator on A.

Construction to postulates:
Inclusion: Follows immediately by definition of ÷.

Success: Let 
� α. Assume by reductio ad absurdum that A÷ α � α. Then there exists
B ⊆ A÷ α such that B ∈ A⊥⊥α. From 
� α it follows that B 
= ∅. By the second clause
of Definition 22 it follows that B ∩ �(α) 
= ∅. Thus there exists a sentence � such that
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� ∈ B and � ∈ �(α). From the latter it follows that � 
∈ A÷ α. Contradiction, since
� ∈ B ⊆ A÷ α.

Core-retainment: Let � ∈ A \ A÷ α. Thus � ∈ �(α). It holds that �(α) ⊆
⋃

(A⊥⊥α).
Thus there exists B ∈ A⊥⊥α such that � ∈ B . Let C = B \ {�}. Hence it holds that
C ⊆ A, C 
� α and C ∪ {�} � α.

Postulates to construction:
Assume that ÷ is an operator on A that satisfies success, inclusion and core-

retainment.
Let � be such that, for any sentence α, �(α) = A \ A÷ α.
It holds, for every α ∈ L, that �(α) ∈ P(A).
We need to show that: (i) � is a sentence based incision function and (ii)

A÷ α = A \ �(α).
(i) We start by showing that � is a well-defined function. Let α = � . We will prove

that �(α) = �(�). From α = � it follows thatA÷ α = A÷ � (since ÷ is a contraction
operator). Thus �(α) = A \ A÷ α = A \ A÷ � = �(�). It remains to prove that it is a
sentence based incision function, i.e., that conditions (1) and (2) of Definition 22 hold.

(1) Let � ∈ �(α). Hence � ∈ A \ A÷ α. By ÷ core-retainment it follows that there
exists some set A′ such that A′ ⊆ A and α /∈ Cn(A′) but α ∈ Cn(A′ ∪ {�}). By
compactness there exists a finite subset A′′ of A′ such that α ∈ Cn(A′′ ∪ {�}). It
follows from α /∈ Cn(A′′) and α ∈ Cn(A′′ ∪ {�}) that there exists some α-kernel A′′′

that contains � . It follows from � ∈ A′′′ ∈ A⊥⊥α that � ∈
⋃

(A⊥⊥α).
(2) Assume that ∅ 
= B ∈ A⊥⊥α. We intend to prove that B ∩ �(α) 
= ∅. It follows

from ∅ 
= B ∈ A⊥⊥α that 
� α. By ÷ success it follows thatA÷ α 
� α. From B ∈ A⊥⊥α
it follows that B � α. Hence B 
⊆ A÷ α. Hence there exists some � ∈ B ⊆ A such
that � 
∈ A÷ α. Therefore � ∈ A \ A÷ α = �(α). Hence � ∈ B ∩ �(α), from which
it follows that B ∩ �(α) 
= ∅.

(ii) It follows from ÷ inclusion that A÷ α ⊆ A. Hence A \ �(α) = A \ (A \ A÷
α) = A÷ α.

Proof of Theorem 11. (Left-to-right)
Let � be a sentence based incision function for A and÷ be such that, for any sentence

α, A÷ α = A \ �(α). By Theorem 10 it holds that ÷ satisfies success, inclusion and
core-retainment. Next we prove that:

(i) If � is an extensional sentence based incision function, then ÷ satisfies
extensionality.

(ii) If � is a sentence based smooth incision function, then ÷ satisfies relative closure.
(i) Let� α ↔ � and assume that � is an extensional sentence based incision function.

Hence �(α) = �(�). Therefore A÷ α = A \ �(α) = A \ �(�) = A÷ � .
(ii) Assume that � 
∈ A÷ α. We intend to prove that � 
∈ A ∩ Cn(A÷ α). It follows

trivially if � 
∈ A. Assume now that � ∈ A. From � 
∈ A÷ α it follows that � ∈ �(α).
Assume by reductio ad absurdum that � ∈ Cn(A÷ α). Hence � ∈ Cn(A \ �(α)). Let
B = A \ �(α). Hence B ⊆ A, B � � and � ∈ �(α). It holds that � is smooth, from
which it follows that B ∩ �(α) 
= ∅. Contradiction.

(Right-to-left)
Assume that ÷ satisfies success, inclusion and core-retainment. Let � be such that,

for any α ∈ L, �(α) = A \ A÷ α. It was shown in the postulates to construction part
of the proof of Theorem 10 that � is a sentence based incision function and for any α
that A÷ α = A \ �(α). Next we prove that:
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(i) If ÷ satisfies extensionality, then � is an extensional sentence based incision
function;

(ii) If ÷ satisfies relative closure, then � is a sentence based smooth incision
function.

(i) Let � α ↔ � . By ÷ extensionality it follows that A÷ α = A÷ � . Hence �(α) =
A \ A÷ α = A \ A÷ � = �(�).

(ii) Let B ⊆ A be such that B � � and � ∈ �(α). We will show that B ∩ �(α) 
=
∅. Suppose by reductio ad absurdum that A÷ α � � . From � ∈ �(α) = A \ A÷ α it
follows that � ∈ A. By ÷ relative closure it follows that � ∈ A÷ α. Contradiction,
since � ∈ A \ A÷ α. Therefore, we can conclude that A÷ α 
� � . From the latter and
B � � it follows that B 
⊆ A÷ α. Hence there exists ε ∈ B \ A÷ α. It holds that B ⊆
A, thus ε ∈ A \ A÷ α = �(α). Therefore ε ∈ B ∩ �(α), from which it follows that
B ∩ �(α) 
= ∅.

Proof of Theorem 12. Let A be a set of sentences and ÷ be an operator on A.
(a) to (b)
Assume that÷ is a uniform GKC operator. It follows, by Theorem 10, that÷ satisfies

success, inclusion and core-retainment. It remains to prove that ÷ satisfies uniformity. It
holds, for any sentence α that A÷ α = A \ �(α), where � is a uniform sentence based
incision function. Assume that it holds for all subsets A′ of A that α ∈ Cn(A′) if and
only if � ∈ Cn(A′). Hence �(α) = �(�). Therefore A÷ α = A \ �(α) = A \ �(�) =
A÷ � .

(b) to (a)
Assume now that ÷ satisfies success, inclusion, core-retainment and uniformity. Let

� be such that, for any sentence α, �(α) = A \ A÷ α. This is the construction used in
the proof of the postulates to construction part of Theorem 10. Thus it only remains to
show that � is uniform. Assume that it holds for all subsets A′ of A that α ∈ Cn(A′)
if and only if � ∈ Cn(A′). By ÷ uniformity it follows that A÷ α = A÷ � . Hence
�(α) = A \ A÷ α = A \ A÷ � = �(�).

(b) to (c) and (c) to (b)
Follows by Observation 3.

Proof of Theorem 13. Let A be a set of sentences and ÷ be an operator on A.
(a) to (b)
Follows by Theorems 11 and 12.
(b) to (a)
Assume now that ÷ satisfies success, inclusion, core-retainment, uniformity and

relative closure. Let � be such that, for any sentence α, �(α) = A \ A÷ α. This is
the construction used in the proof of the postulates to construction part of Theorems
10–12. Therefore, according to those proofs � is a uniform sentence based smooth
incision function and, for any α ∈ L, A÷ α = A \ �(α).

(b) to (c) and (c) to (b)
Follows by Observation 4.

Proof of Theorem 14. Let K be a belief set and ÷ be an operator on K.
According to Observation 7 conditions (c) and (d) are equivalent. On the other

hand it follows immediately from Observations 9 and 11 that conditions (a) and (b)
are equivalents. Therefore, to conclude this proof it is enough to show that conditions
(b) and (c) are equivalents.
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(c) to (b)
Let ÷ be a smooth kernel contraction. Hence there exists a smooth incision function

� such that K ÷ α = K \ �(K⊥⊥α). Let �′ be such that �′(α) = �(K⊥⊥α) (for all α).
By Theorem 8, �′ is a uniform sentence based smooth incision function. Since for all α
it holds that K ÷ α = K \ �(K⊥⊥α) = K \ �′(α), we can conclude that ÷ is a uniform
smooth GKC.

(b) to (c)
Let ÷ be a uniform smooth GKC. Hence there exists a uniform sentence based

smooth incision function � such that K ÷ α = K \ �(α). Let �′ be such that �′(K⊥⊥
α) = �(α) (for all α). By Theorem 9, �′ is a smooth incision function. Since for all α,
K ÷ α = K \ �(α) = K \ �′(K⊥⊥α), it holds that ÷ is a smooth kernel contraction.

Proof of Theorem 15. According to Observation 8 conditions (c) and (d) are
equivalent. On the other hand it follows immediately from Observations 9 and 11
that conditions (a) and (b) are equivalents. Therefore, to conclude this proof it is
enough to show that conditions (b) and (c) are equivalents.

(c) to (b)
Let ÷ be a safe contraction based on a regular and virtually connected hierarchy ≺.

Hence there exists an incision function � that is based on a regular and virtually
connected hierarchy ≺ such that K ÷ α = K ∩ Cn(K \ �(K⊥⊥α)). Let �′ be such that
�′(α) = �(K⊥⊥α) (for all α). By Theorem 8, �′ is a uniform sentence based incision
function that is based on ≺ and K ÷ α = K ∩ Cn(K \ (�(α)). Hence ÷ is a uniform
generalized safe contraction based on a regular and virtually connected hierarchy.

(b) to (c)
Let ÷ be a uniform generalized safe contraction based on a regular and virtually

connected hierarchy ≺. Hence there exists a uniform sentence based incision function
� that is based on a regular and virtually connected hierarchy ≺ such that K ÷ α =
K ∩ Cn(K \ (�(α)). Let �′ be such that �′(K⊥⊥α) = �(α) (for all α). By Theorem 9, �′

is an incision function that is based on ≺ and K ÷ α = K ∩ Cn(K \ (�(K⊥⊥α)). Hence
÷ is a safe contraction based on a regular and virtually connected hierarchy.
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grant UIDB/04674/2020 of FCT.

BIBLIOGRAPHY

[1] Alchourrón, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory
change: Partial meet contraction and revision functions. The Journal of Symbolic
Logic, 50, 510–530.

https://doi.org/10.1017/S175502032200034X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032200034X


394 MARCO GARAPA AND MAURÍCIO D. L. REIS
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