
Acta Numerica (2025), pp. 805–890
doi:10.1017/S0962492924000096

Acceleration methods for fixed-point iterations

Yousef Saad
Department of Compter Science and Engineering, University of Minnesota,

Twin cities, MN 55455, USA
E-mail: saad@umn.edu

A pervasive approach in scientific computing is to express the solution to a given
problem as the limit of a sequence of vectors or other mathematical objects. In many
situations these sequences are generated by slowly converging iterative procedures,
and this led practitioners to seek faster alternatives to reach the limit. ‘Acceleration
techniques’ comprise a broad array of methods specifically designed with this goal
in mind. They started as a means of improving the convergence of general scalar
sequences by various forms of ‘extrapolation to the limit’, i.e. by extrapolating the
most recent iterates to the limit via linear combinations. Extrapolation methods of
this type, the best-known of which is Aitken’s delta-squared process, require only the
sequence of vectors as input.

However, limiting methods to use only the iterates is too restrictive. Accelerating
sequences generated by fixed-point iterations by utilizing both the iterates and the
fixed-point mapping itself has proved highly successful across various areas of phys-
ics. A notable example of these fixed-point accelerators (FP-accelerators) is a method
developed by Donald Anderson in 1965 and now widely known as Anderson accel-
eration (AA). Furthermore, quasi-Newton and inexact Newton methods can also be
placed in this category since they can be invoked to find limits of fixed-point iteration
sequences by employing exactly the same ingredients as those of the FP-accelerators.

This paper presents an overview of these methods – with an emphasis on those,
such as AA, that are geared toward accelerating fixed-point iterations. We will
navigate through existing variants of accelerators, their implementations and their
applications, to unravel the close connections between them. These connections were
often not recognized by the originators of certain methods, who sometimes stumbled
on slight variations of already established ideas. Furthermore, even though new
accelerators were invented in different corners of science, the underlying principles
behind them are strikingly similar or identical.

The plan of this article will approximately follow the historical trajectory of extra-
polation and acceleration methods, beginning with a brief description of extrapolation
ideas, followed by the special case of linear systems, the application to self-consistent
field (SCF) iterations, and a detailed view of Anderson acceleration. The last part of
the paper is concerned with more recent developments, including theoretical aspects,
and a few thoughts on accelerating machine learning algorithms.

2020 Mathematics Subject Classification: 65B05, 65B99, 65F10, 65H10

© The Author(s), 2025. Published by Cambridge University Press.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution,
and reproduction in any medium, provided the original work is properly cited.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

806 Y. Saad

CONTENTS
1 Historical perspective and overview 806
2 Extrapolation methods for general sequences 809
3 Accelerators for linear iterative methods 823
4 Accelerating the SCF iteration 839
5 Inexact and quasi-Newton approaches 843
6 A detailed look at Anderson acceleration 845
7 Nonlinear truncated GCR 871
8 Acceleration methods for machine learning 879
References 885

1. Historical perspective and overview
Early iterative methods for solving systems of equations, whether linear or nonlin-
ear, often relied on simple fixed-point iterations of the form

𝑥 𝑗+1 = 𝑔(𝑥 𝑗), (1.1)

which, under certain conditions, converge to a fixed point 𝑥∗ of 𝑔, i.e. a point such
that 𝑔(𝑥∗) = 𝑥∗. Here, 𝑔 is some mapping from R𝑛 to itself which we assume to be
at least continuous. Thus the iterative method for solving linear systems originally
developed by Gauss in 1823 and commonly known today as the Gauss–Seidel
iteration (see e.g. Saad 2003) can be recast in this form. The fixed-point iterative
approach can be trivially adopted for solving a system of equations of the form

𝑓 (𝑥) = 0, (1.2)

where 𝑓 is again a mapping from R𝑛 to itself. This can be achieved by selecting a
non-zero scalar 𝛾 and defining the mapping 𝑔(𝑥) ≡ 𝑥 + 𝛾 𝑓 (𝑥), whose fixed points
are identical to the zeros of 𝑓 . The process would generate the iterates

𝑥 𝑗+1 = 𝑥 𝑗 + 𝛾 𝑓 (𝑥 𝑗), 𝑗 = 0, 1, . . . (1.3)

starting from some initial guess 𝑥0. Approaches that utilize the above framework
are common in optimization, where 𝑓 (𝑥) is the negative of the gradient of a certain
objective function 𝜙(𝑥) whose minimum is sought. The simplicity and versatility
of the fixed-point iteration method for solving nonlinear equations are among the
reasons it has been successfully used across various fields.

Sequences of vectors, whether of the type (1.1) introduced above or generated by
some other ‘black-box’ process, often converge slowly or may even fail to converge.
As a result practitioners have long sought to build sequences that converge faster
to the same limit as the original sequence, or even to establish convergence in case
the original sequence fails to converge. We need to emphasize a key distinction
between two different strategies that have been adopted in this context. In the first,
we are just given all or a few of the recent members of the sequence and no other

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 807

information, and the goal is to produce another sequence from it, that will hopefully
converge faster. These procedures typically rely on forming a linear combination
of the current iterate with previous ones in an effort to essentially extrapolate to
the limit, and for this reason they are often called extrapolation methods. Starting
from a sequence {𝑥 𝑗} 𝑗=0,1,..., a typical extrapolation technique builds the new,
extrapolated, sequence as follows:

𝑦 𝑗 =

𝑗∑︁
𝑖=[𝑗−𝑚]

𝛾
(𝑗)
𝑖
𝑥𝑖 , (1.4)

where we recall the notation [𝑗 −𝑚] = max{ 𝑗 −𝑚, 0} and 𝑚 is a parameter, known
as the ‘depth’ or ‘window size’, and the 𝛾(𝑗)

𝑖
are ‘acceleration parameters’. If the

new sequence is to converge to the same limit as the original one, the condition
𝑗∑︁

𝑖=[𝑗−𝑚]
𝛾

(𝑗)
𝑖

= 1 (1.5)

must be imposed. Because the process works by forming linear combinations
of iterates of the original sequences, it is also often termed a linear acceleration
procedure (see e.g. Brezinski and Redivo-Zaglia 1991, Brezinski 2000, Forsythe
1953), but the term ‘extrapolation’ is more common. Extrapolation methods are
discussed in Section 2.

In the second strategy we are again given all or a few of the recent iterates,
but now we also have access to the fixed-point mapping 𝑔 to help build the next
member of the sequence. A typical example of these methods is the Anderson/Pulay
acceleration, which is discussed in detail in Sections 4.3 and 6. When presented
from the equivalent form of Pulay mixing, this method builds a new iterate as
follows:

𝑥 𝑗+1 =

𝑗∑︁
𝑖=[𝑗−𝑚]

𝜃
(𝑗)
𝑖
𝑔(𝑥𝑖), (1.6)

where the 𝜃(𝑗)
𝑖

satisfy the constraint
∑ 𝑗

𝑖=[𝑗−𝑚] 𝜃
(𝑗)
𝑖

= 1. As can be seen, the function
𝑔 is now invoked when building a new iterate. Of course, having access to 𝑔 may
allow us to develop more powerful methods than if we were to use only the iterates,
as is done in extrapolation methods. It is also clear that there are situations when
this is not practically feasible.

The emphasis of this paper is on this second class, which we will refer to as
fixed-point acceleration methods, or FP-acceleration methods. Due to their broad
applicability, FP-acceleration emerged from different corners of science. Ideas
related to extrapolation can be traced as far back as the seventeenth century; see
Brezinski and Redivo-Zaglia (2019, § 6) for references. However, one can say that
modern extrapolation and acceleration ideas took off with the work of Richardson
(1910) and Aitken (1926), among others, in the early part of the twentieth century

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

808 Y. Saad

Figure 1.1. Four distinct classes of acceleration methods.

and then gained importance toward the mid-1950s, with the advent of electronic
computers; e.g. Romberg (1955) and Shanks (1955).

Because acceleration and extrapolation methods are often invoked for solving
nonlinear equations, they naturally compete with ‘second-order type methods’ such
as those based on quasi-Newton approaches. Standard Newton-type techniques
cannot be placed in the same category of methods as those described above because
they exploit a local second-order model and invoke the differential of 𝑓 explicitly.
In many practical problems, obtaining the Jacobian of 𝑓 is not feasible, or it may
be too expensive. However, inexact Newton and quasi-Newton methods are two
alternatives that bypass the need to compute the whole Jacobian 𝐽 of 𝑓 . Therefore
they satisfy our requirements for what can be viewed as a method for accelerating
iterations of the form (1.3), in that they only invoke previous iterates and our
ability to apply the mapping 𝑔 (or 𝑓) to any given vector. It should therefore come
as no surprise that one can find many interesting connections between this class
of methods and some of the FP-acceleration techniques. A few of the methods
developed in the quasi-Newton context bear strong similarities, and are in some
cases even mathematically equivalent, to techniques from the FP-acceleration class.

The four classes of methods discussed above are illustrated in Figure 1.1. This art-
icle aims to provide coverage of these four classes of acceleration and interpolation
methods, with an emphasis on those geared toward accelerating fixed-point itera-
tions, i.e. those in the top-right corner of Figure 1.1. There is a vast amount of
literature on these methods, and it would be challenging and unrealistic to try to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 809

be exhaustive. However, one of our specific goals is to unravel the various con-
nections between the different methods. Another is to present, whenever possible,
interesting variants of these methods and details of their implementations.

Notation
• Throughout the article, 𝑔 will denote a mapping from R𝑛 to itself, and we are

interested in a fixed point 𝑥∗ of 𝑔. Similarly, 𝑓 will also denote a mapping
from R𝑛 to itself, and we are interested in a zero of 𝑓 .

• {𝑥 𝑗} 𝑗=0,1,... denotes a sequence in R𝑛.
• Given a sequence {𝑥 𝑗} 𝑗=0,1,..., the forward difference operator Δ builds a new

sequence whose terms are defined by

Δ𝑥 𝑗 = 𝑥 𝑗+1 − 𝑥 𝑗 , 𝑗 = 0, 1, (1.7)

• We will often refer to an evolving set of columns where the most recent 𝑚
vectors from a sequence are retained. In order to cope with the different
indexing used in the algorithms, we found it convenient to define, for any
𝑘 ∈ Z,

[𝑘] = max{𝑘, 0}. (1.8)

Thus we will often see matrices of the form

𝑋 𝑗 = [𝑥 [𝑗−𝑚+1] , 𝑥 [𝑗−𝑚+1]+1, . . . , 𝑥 𝑗]

that have 𝑗 + 1 columns when 𝑗 < 𝑚, and 𝑚 columns otherwise.
• Throughout the paper, ∥ · ∥2 will denote the Euclidean norm and ∥ · ∥𝐹 is the

Frobenius norm on matrices.

2. Extrapolation methods for general sequences
Given a sequence {𝑥 𝑗} 𝑗=0,1,..., an extrapolation method builds an auxiliary sequence
{𝑦 𝑗} 𝑗=0,1,..., where 𝑦 𝑗 is typically a linear combination of the most recent iterates
as in (1.4). The goal is to produce a sequence that converges faster to the limit of
𝑥 𝑗 . Here 𝑚 is a parameter known as the ‘depth’ or ‘window size’, and the 𝛾(𝑗)

𝑖
are

‘acceleration parameters’, which sum up to one; see (1.5). Aitken’s delta-squared
process (Aitken 1926) is an early instance of such a procedure that had a major
impact.

2.1. Aitken’s procedure

Suppose we have a scalar sequence {𝑥𝑖} for 𝑖 = 0, 1, . . . that converges to a limit
𝑥∗. Aitken assumed that in this situation the sequence roughly satisfies the relation

𝑥 𝑗+1 − 𝑥∗ = 𝜆(𝑥 𝑗 − 𝑥∗) for all 𝑗 , (2.1)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

810 Y. Saad

where 𝜆 is some unknown scalar. This is simply an expression of a geometric
convergence to the limit. The above condition defines a set of sequences and the
condition is termed a ‘kernel’. In this particular case (2.1) is the Aitken kernel.

The scalar 𝜆, and the limit 𝑥∗ can be trivially determined from three consecutive
iterates 𝑥 𝑗 , 𝑥 𝑗+1, 𝑥 𝑗+2 by writing

𝑥 𝑗+1 − 𝑥∗
𝑥 𝑗 − 𝑥∗

= 𝜆,
𝑥 𝑗+2 − 𝑥∗
𝑥 𝑗+1 − 𝑥∗

= 𝜆, (2.2)

from which it follows by eliminating 𝜆 from the two equations that

𝑥∗ =
𝑥 𝑗𝑥 𝑗+2 − 𝑥2

𝑗+1

𝑥 𝑗+2 − 2𝑥 𝑗+1 + 𝑥 𝑗
= 𝑥 𝑗 −

(Δ𝑥 𝑗)2

Δ2𝑥 𝑗
. (2.3)

Here Δ is the forward difference operator defined earlier in (1.7), and Δ2𝑥 𝑗 =
Δ(Δ𝑥 𝑗). As can be expected, the set of sequences that satisfy Aitken’s kernel, i.e.
(2.1), is very narrow. In fact, subtracting the same relation obtained by replacing
𝑗 by 𝑗 − 1 from relation (2.1), we would obtain 𝑥 𝑗+1 − 𝑥 𝑗 = 𝜆(𝑥 𝑗 − 𝑥 𝑗−1), hence
𝑥 𝑗+1 − 𝑥 𝑗 = 𝜆 𝑗(𝑥1 − 𝑥0). Therefore scalar sequences that satisfy Aitken’s kernel
exactly are of the form

𝑥 𝑗+1 = 𝑥0 + (𝑥1 − 𝑥0)
𝑗∑︁

𝑘=0
𝜆𝑘 for 𝑗 ≥ 0. (2.4)

Although a given sequence is unlikely to satisfy Aitken’s kernel exactly, it may
nearly satisfy it when approaching the limit, and in this case the extrapolated value
(2.3) will provide a way to build an ‘extrapolated’ sequence defined as follows:

𝑦 𝑗 = 𝑥 𝑗 −
(Δ𝑥 𝑗)2

Δ2𝑥 𝑗
𝑗 = 0, 1, (2.5)

Note that to compute 𝑦 𝑗 we must have available three consecutive iterates, namely
𝑥 𝑗 , 𝑥 𝑗+1, 𝑥 𝑗+2, so 𝑦 𝑗 starts with a delay relative to the original sequence.

A related approach known as Steffensen’s method is geared toward solving the
equation 𝑓 (𝑥) = 0 by the Newton-like iteration

𝑥 𝑗+1 = 𝑥 𝑗 −
𝑓 (𝑥 𝑗)
𝑑(𝑥 𝑗)

, where 𝑑(𝑥) =
𝑓 (𝑥 + 𝑓 (𝑥)) − 𝑓 (𝑥)

𝑓 (𝑥)
. (2.6)

One can recognize in 𝑑(𝑥) an approximation of the derivative of 𝑓 at 𝑥. This scheme
converges quadratically under some smoothness assumptions for 𝑓 . In addition,
it can be easily verified that when the sequence {𝑥 𝑗} is produced from the fixed-
point iteration 𝑥 𝑗+1 = 𝑔(𝑥 𝑗), one can recover Aitken’s iteration for this sequence by
applying Steffensen’s scheme to the function 𝑓 (𝑥) = 𝑔(𝑥) − 𝑥. Therefore Aitken’s
method also converges quadratically for such sequences when 𝑔 is smooth enough.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 811

2.2. Generalization: The Shanks transform and the 𝜖-algorithm

Building on the success of Aitken’s acceleration procedure, Shanks (1955) explored
ways to generalize it by replacing the kernel (2.1) with a kernel of the form

𝑎0(𝑥 𝑗 − 𝑥∗) + 𝑎1(𝑥 𝑗+1 − 𝑥∗) + · · · + 𝑎𝑚(𝑥 𝑗+𝑚 − 𝑥∗) = 0, (2.7)

where the scalars 𝑎0, . . . , 𝑎𝑚 and the limit 𝑥∗ are unknowns. The sum of the scalars
𝑎𝑖 cannot be equal to 0 and there is no loss of generality in assuming that they add
up to 1, that is,

𝑎0 + 𝑎1 + · · · + 𝑎𝑚 = 1. (2.8)

In addition, it is commonly assumed that 𝑎0𝑎𝑚 ≠ 0, so that exactly 𝑚 + 1 terms are
involved at any given step. We can set up a linear system to compute 𝑥∗ by putting
equation (2.7) and (2.8) together into the (𝑚 + 2) × (𝑚 + 2) linear system{

𝑎0 + 𝑎1 + · · · + 𝑎𝑚 = 1,
𝑎0𝑥 𝑗+𝑖 + 𝑎1𝑥 𝑗+𝑖+1 + · · · + 𝑎𝑚𝑥 𝑗+𝑖+𝑚 − 𝑥∗ = 0, 𝑖 = 0, . . . , 𝑚. (2.9)

Cramer’s rule can now be invoked to solve this system and derive a formula for 𝑥∗.
With a few row manipulations, we end up with the following formula, known as
the Shanks (or ‘Schmidt–Shanks’) transformation for scalar sequences:

𝑦
(𝑚)
𝑗

=

���������
𝑥 𝑗 𝑥 𝑗+1 · · · 𝑥 𝑗+𝑚
Δ𝑥 𝑗 Δ𝑥 𝑗+1 · · · Δ𝑥 𝑗+𝑚
...

...
...

...

Δ𝑥 𝑗+𝑚−1 Δ𝑥 𝑗+𝑚 · · · Δ𝑥 𝑗+2𝑚−1

������������������
1 1 · · · 1

Δ𝑥 𝑗 Δ𝑥 𝑗+1 · · · Δ𝑥 𝑗+𝑚
...

...
...

...

Δ𝑥 𝑗+𝑚−1 Δ𝑥 𝑗+𝑚 · · · Δ𝑥 𝑗+2𝑚−1

���������
. (2.10)

A more elegant way to derive the above formula – one that will lead to useful
extensions – is to exploit the following relation, which follows from the kernel
(2.7):

𝑎0Δ𝑥 𝑗 + 𝑎1Δ𝑥 𝑗+1 + · · · + 𝑎𝑚Δ𝑥 𝑗+𝑚 = 0. (2.11)

With this, we will build a new system, now for the unknowns 𝑎0, 𝑎1, . . . , 𝑎𝑚, as
follows:{

𝑎0 + 𝑎1 + · · · + 𝑎𝑚 = 1,
𝑎0Δ𝑥 𝑗+𝑖 + 𝑎1Δ𝑥 𝑗+𝑖+1 + · · · + 𝑎𝑚Δ𝑥 𝑗+𝑖+𝑚 = 0, 𝑖 = 0, . . . , 𝑚 − 1. (2.12)

The right-hand side of this (𝑚+1)×(𝑚+1) system is the vector 𝑒1 = [1, 0, . . . , 0]⊤ ∈
R𝑚+1. Using Cramer’s rule will yield an expression for 𝑎𝑘 as the fraction of two
determinants. The denominator of this fraction is the same as that of (2.10). The
numerator is (−1)𝑘 times the determinant of that same denominator where the first

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

812 Y. Saad

row and the (𝑘 + 1)th column are deleted. Substituting these formulas for 𝑎𝑘 into
the sum 𝑎0𝑥 𝑗 + 𝑎1𝑥 𝑗+1 + · · · + 𝑎𝑚𝑥 𝑗+𝑚 will result in an expression that amounts to
expanding the determinant in the numerator of (2.10) with respect to its first row.
By setting 𝑎𝑖 ≡ 𝛾(𝑚)

𝑖
we can therefore rewrite Shank’s formula in the form

𝑦
(𝑚)
𝑗

= 𝛾
(𝑚)
0 𝑥 𝑗 + 𝛾(𝑚)

1 𝑥 𝑗+1 + · · · + 𝛾(𝑚)
𝑚 𝑥 𝑗+𝑚, (2.13)

where each 𝛾(𝑚)
𝑗

is the ratio of two determinants, as was just explained.
It can be immediately seen that the particular case 𝑚 = 1 yields exactly Aitken’s

delta-squared formula:

𝑦
(2)
𝑗

=

���� 𝑥 𝑗 𝑥 𝑗+1
Δ𝑥 𝑗 Δ𝑥 𝑗+1

�������� 1 1
Δ𝑥 𝑗 Δ𝑥 𝑗+1

���� =
𝑥 𝑗Δ𝑥 𝑗+1 − 𝑥 𝑗+1Δ𝑥 𝑗

Δ2𝑥 𝑗
= 𝑥 𝑗 −

(Δ𝑥 𝑗)2

Δ2𝑥 𝑗
.

As written, the above expressions are meant for scalar sequences, but they can be
generalized to vectors and this will be discussed later.

The generalization discovered by Shanks relied on ratios of determinants of
order 𝑚, where 𝑚 is the depth of the recurrence defined above. The non-practical
character of this technique prompted Peter Wynn (1956) to explore an alternative
implementation, and this resulted in an amazingly simple formula which he dubbed
the ‘𝜖-algorithm’. This remarkable discovery spurred a huge following among the
numerical linear algebra community, e.g. Cabay and Jackson (1976), Eddy and
Wang (1979), Brezinski (1980), Eddy (1979), Mešina (1977), Sidi, Ford and Smith
(1986), Wynn (1962), Brezinski (1977), Kaniel and Stein (1974), Brezinski (1975),
Jbilou (1988), Jbilou and Sadok (1991) and Germain-Bonne (1978), among many
others. Brezinski (2000) gives a rather exhaustive review of these techniques up
to the year 2000. More recently, Brezinski and Redivo-Zaglia (2019) surveyed
these methods while also providing a wealth of information on the history of their
development.

So what is Wynn’s procedure to compute the 𝑦(𝑚)
𝑗

? The formula given above
leads to expressions with determinants that involve Hankel matrices from which
some recurrences can be obtained, but these are not only complicated but also
numerically unreliable.

Wynn’s 𝜖-algorithm is a recurrence relation to compute 𝑦(𝑚)
𝑗

shown in equation
(2.14). It defines sequences {𝜖 (𝑚)

𝑗
} 𝑗=0,1,..., each indexed by an integer1 𝑚 starting

with 𝑚 = −1.

1 Note that this article adopts a different notation from the common usage in the literature: the
index of the sequence is a subscript rather than a superscript. In Wynn’s notation {𝜖 (𝑗)

𝑚 } 𝑗=0,1,...
denotes the 𝑚th extrapolated sequence.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 813

ε ε

εε

j

j−1

m−1 m m+1

j+1

j−1

jj

j+1

(m+1) (m)

j+1
(m)(m−1)

Figure 2.1. Wynn’s rhombus rule for the 𝜖-algorithm.

The sequence {𝜖 (−1)
𝑗

} is just the zero sequence 𝜖 (−1)
𝑗

= 0, for all 𝑗 , while the
sequence {𝜖 (0)

𝑗
} is the original sequence 𝜖 (0)

𝑗
= 𝑥 𝑗 , for all 𝑗 . The other sequences,

i.e. {𝜖 (𝑚)
𝑗

}, are then obtained recursively as follows:

𝜖
(−1)
𝑗

= 0, 𝜖
(0)
𝑗

= 𝑥 𝑗 , 𝜖
(𝑚+1)
𝑗

= 𝜖
(𝑚−1)
𝑗+1 + 1

𝜖
(𝑚)
𝑗+1 − 𝜖

(𝑚)
𝑗

for 𝑚, 𝑗 ≥ 0. (2.14)

Each sequence {𝜖 (𝑚)
𝑗

}, where 𝑚 is constant, can be placed on a vertical line on a
grid, as shown in Figure 2.1. With this representation, the 𝑗 th iterate for the (𝑚+1)th
sequence can be obtained using a simple rhombus rule from two members of the
𝑚th sequence and one member of the (𝑚 − 1)th sequence, as is shown in the figure.
Only the even-numbered sequences are accelerations of the original sequence. The
odd-numbered ones are just intermediate auxiliary sequences. For example, the
sequence 𝜖 (𝑚)

2 is identical to the sequence obtained from Aitken’s delta-squared
process but the sequence 𝜖 (𝑚)

1 is auxiliary.
If we let 𝜂𝑚 denote the transformation that maps a sequence {𝑥 𝑗} into {𝑡(𝑚)

𝑗
},

i.e. we have 𝜂𝑚(𝑥 𝑗) = 𝑡(𝑚)
𝑗

, then it can be shown that 𝜖 (2𝑚)
𝑗

= 𝜂𝑚(𝑥 𝑗) and 𝜖 (2𝑚+1)
𝑗

=

1/𝜂𝑚(Δ𝑥 𝑗).
From a computational point of view, we would proceed differently in order not

to have to store all the sequences. The process, shown in Figure 2.2, works on
diagonals of the table. When the original sequence is computed we usually generate
𝑥0, 𝑥1, . . . , 𝑥 𝑗 , . . . in this order. Assuming that we need to compute up to the 𝑚th
sequence {𝜖 (𝑚)

𝑗
}, then once 𝜖 (0)

𝑗
= 𝑥 𝑗 becomes available we can obtain the entries

𝜖
(1)
𝑗−1, 𝜖

(2)
𝑗−2, . . . , 𝜖

(𝑚)
𝑗−𝑚. This will require the entries 𝜖 (0)

𝑗−1, 𝜖
(1)
𝑗−2, . . . , 𝜖

(𝑚−1)
𝑗−𝑚 , so we

will only need to keep the previous diagonal.
Wynn’s result on the equivalence between the 𝜖-algorithm and Shank’s formula

is stunning not only for its elegance but also because it is highly non-trivial and
complex to establish; see comments regarding this in Brezinski (1980, p. 162).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

814 Y. Saad

0

0

0

0

x
0

x
1

x
2

x
3

x
4

0
(1)

1
(1)

2
(1)

3
(1)

0
(2)

1
(2)

2
(2)

0
(3)

1
(3) 0

(4)

Figure 2.2. Computational diagram of the 𝜖 algorithm.

2.3. Numerical illustration

Extrapolation methods were quite popular for dealing with scalar sequences such as
those originating from numerical integration, or from computing numerical series.
The following illustration highlights the difference between fixed-point acceleration
and extrapolation.

In the example we compute 𝜋 from the Arctan expansion

atan(𝑧) = 𝑧 − 𝑧3

3
+ 𝑧

5

5
− 𝑧7

7
+ · · · =

∞∑︁
𝑗=0

(−1) 𝑗 𝑧2 𝑗+1

2 𝑗 + 1
. (2.15)

Applying this to 𝑧 = 1 will give a sequence that converges to 𝜋/4. For an arbitrary
𝑧, we would take the following sequence, starting with 𝑥0 = 0:

𝑥 𝑗+1 = 𝑥 𝑗 +
(−1) 𝑗 𝑧2 𝑗+1

2 𝑗 + 1
, 𝑗 = 0, 1, . . . , 𝑛 − 1. (2.16)

In this illustration, we take 𝑛 = 30 and 𝑧 = 1.
Figure 2.3 shows the convergence of the original sequence along with four

extrapolated sequences. In the figure, ‘Aitken2’ refers to Aitken applied twice,
that is, Aitken is applied to the extrapolated sequence obtained from applying the
standard Aitken process. Note that all extrapolated sequences are shorter since,
as was indicated above, a few iterates from the original sequence are needed in
order to get the new sequence started. The plot shows a remarkable improvement
in convergence relative to the original sequence: 15 digits of accuracy are obtained
for the sixth-order 𝜖-algorithm in 20 steps, in comparison to barely two digits
obtained with 30 steps of the original sequence.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 815

0 5 10 15 20 25 30 35

10 -15

10 -10

10 -5

10 0

Orig.

Aitken

Aitken 2

4
(.)

6
(.)

Figure 2.3. Comparison of a few extrapolation methods for computing 𝜋/4 with
formula (2.16).

2.4. Vector sequences

Extrapolation methods have been generalized to vector sequences in a number of
ways. There is no canonical generalization that seems compelling and natural,
but the simplest consists of applying the acceleration procedure componentwise.
However, this naive approach is not recommended in the literature as it fails to
capture the intrinsic vector character of the sequence. Many of the generalizations
relied on extending in some way the notion of inverse of a vector or that of the
division of a vector by another vector. For the Aitken procedure this leads to quite
a few possible generalizations; see e.g. Ramière and Helfer (2015).

Peter Wynn himself considered a generalization of his scheme to vectors (Wynn
1962). Note that generalizing the recurrence formula (2.14) of the 𝜖-algorithm
only requires that we define the inverse of a vector. To this end, Wynn considered
several options and ended up adopting a definition proposed by Samelson:

𝑥−1 =
𝑥

(𝑥, 𝑥)
=

𝑥

∥𝑥∥2
2
, (2.17)

where 𝑥 denotes the complex conjugate of 𝑥. This is simply the pseudo-inverse of
𝑥 viewed as a matrix from C1 to C𝑛. It is also known as the Samelson inverse of
a vector. Recently, Brezinski, Redivo-Zaglia and Salam (2023) considered more
complex extensions of the 𝜖-algorithm by resorting to Clifford algebra.

The various generalizations of the 𝜖-algorithm to vectors based on extending
the inverse of a vector were not too convincing to practitioners. For this reason,
Brezinski (1977, 1975) adopted a different approach that essentially introduced
duality as a tool. We start with the simple case of Aitken’s acceleration, for which

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

816 Y. Saad

we rewrite the original ansatz (2.1) as follows:

𝑥∗ = 𝑥 𝑗 + 𝜇Δ𝑥 𝑗 ,

where 𝜇 = 1/(1− 𝜆) is a scalar. In the scalar case, it can be readily seen from (2.3)
that 𝜇 is given by

𝜇 = −
Δ𝑥 𝑗

Δ2𝑥 𝑗
. (2.18)

In the vector case, we need 𝜇 to be a scalar, and so a natural extension to vector
sequences would entail taking inner products of the numerator and denominator in
(2.18) with a certain vector 𝑤:

𝜇 = −
(𝑤,Δ𝑥 𝑗)
(𝑤,Δ2𝑥 𝑗)

. (2.19)

This leads to the formula

𝑦 𝑗 = 𝑥 𝑗 −
(𝑤,Δ𝑥 𝑗)
(𝑤,Δ2𝑥 𝑗)

Δ𝑥 𝑗 =

���� 𝑥 𝑗 𝑥 𝑗+1
(𝑤,Δ𝑥 𝑗) (𝑤,Δ𝑥 𝑗+1)

�������� 1 1
(𝑤,Δ𝑥 𝑗) (𝑤,Δ𝑥 𝑗+1)

���� . (2.20)

We need to clarify notation. The determinant in the numerator of the right-hand
side in (2.20) now has the vectors 𝑥 𝑗 and 𝑥 𝑗+1 in its first row, instead of scalars.
This is to be interpreted with the help of the usual expansion of this determinant
with respect to this row. Thus this determinant is evaluated as

(𝑤,Δ𝑥 𝑗+1)𝑥 𝑗 − (𝑤,Δ𝑥 𝑗)𝑥 𝑗+1 = (𝑤,Δ𝑥 𝑗+1 − Δ𝑥 𝑗)𝑥 𝑗 + (𝑤,Δ𝑥 𝑗)(𝑥 𝑗 − 𝑥 𝑗+1)
= (𝑤,Δ2𝑥 𝑗)𝑥 𝑗 − (𝑤,Δ𝑥 𝑗)Δ𝑥 𝑗 .

This establishes the second equality in (2.20) by noting that the denominator in the
last expression of (2.20) is just (𝑤,Δ2𝑥 𝑗).

The vector 𝑤 can be selected in a number of ways, but it is rather natural to take
𝑤 = Δ2𝑥 𝑗 , and this leads to

𝑦 𝑗 = 𝑥 𝑗 −
(Δ𝑥 𝑗 ,Δ2𝑥 𝑗)
∥Δ2𝑥 𝑗 ∥2

2
Δ𝑥 𝑗 . (2.21)

Our aim in showing the expression on the right of (2.20) is to unravel possible
extensions of the more general Shanks formula (2.10). It turns out that the above
formulation of Aitken acceleration for vector sequences is a one-dimensional ver-
sion of the RRE extrapolation method; see Section 2.6 for details.

The vector version of Aitken’s extrapolation described above can easily be ex-
tended to a vector form of the Shanks formula (2.10) by selecting a vector 𝑤 and
replacing every differenceΔ𝑥 𝑗+𝑖 in (2.10) by (𝑤,Δ𝑥 𝑗+𝑖). The first row of the determ-
inant in the numerator will still have the vectors 𝑥 𝑗+𝑖 and the resulting determinant

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 817

is to be interpreted, as was explained above. Doing this would lead to the following
extension of the Shanks formula (2.10):

𝑦
(𝑚)
𝑗

=

���������
𝑥 𝑗 𝑥 𝑗+1 · · · 𝑥 𝑗+𝑚

(𝑤,Δ𝑥 𝑗) (𝑤,Δ𝑥 𝑗+1) · · · (𝑤,Δ𝑥 𝑗+𝑚)
...

...
...

...

(𝑤,Δ𝑥 𝑗+𝑚−1) (𝑤,Δ𝑥 𝑗+𝑚) · · · (𝑤,Δ𝑥 𝑗+2𝑚−1)

������������������
1 1 · · · 1

(𝑤,Δ𝑥 𝑗) (𝑤,Δ𝑥 𝑗+1) · · · (𝑤,Δ𝑥 𝑗+𝑚)
...

...
...

...

(𝑤,Δ𝑥 𝑗+𝑚−1) (𝑤,Δ𝑥 𝑗+𝑚) · · · (𝑤,Δ𝑥 𝑗+2𝑚−1)

���������
. (2.22)

This generalization was advocated in Brezinski (1975).
However, there is a missing step in our discussion so far: although we now

have a generalized Shanks formula, we still need an effective way to evaluate the
related expressions, hopefully with something similar to the 𝜖-algorithm, that avoids
determinants. This is not an issue for Aitken’s procedure, which corresponds to
the case 𝑚 = 2 as the corresponding determinants are trivial. For the cases where
𝑚 is larger, a different approach is required. This was examined by Brezinski
(1975, 1977), who proposed a whole class of techniques referred to as topological
𝜖-algorithms; see also Brezinski and Redivo-Zaglia (2019) and Brezinski (1980).

2.5. The projection viewpoint and MMPE

Another way to extend extrapolation methods to vector sequences is to invoke a
projection approach. We return to equations (2.12), where the second equation is
taken with 𝑖 = 0, and eliminate the first equation by setting 𝑎0 = 1−𝑎1−𝑎2−· · ·−𝑎𝑚,
which leads to

Δ𝑥 𝑗 +
𝑚∑︁
𝑖=1

𝑎𝑖(Δ𝑥 𝑗+𝑖 − Δ𝑥 𝑗) = 0. (2.23)

Making use of the simple identity 𝑢 𝑗+𝑖 − 𝑢 𝑗 = Δ𝑢 𝑗+𝑖−1 + Δ𝑢 𝑗+𝑖−2 + · · · + Δ𝑢 𝑗

will show that the term Δ𝑥 𝑗+𝑖 − Δ𝑥 𝑗 is the sum of the vectors Δ2𝑥𝑘 for 𝑘 = 𝑗 to
𝑘 = 𝑗 + 𝑖 − 1, and this leads to the following reformulation of the left-hand side of
(2.23):

Δ𝑥 𝑗 +
𝑚∑︁
𝑖=1

𝑎𝑖

𝑗+𝑖−1∑︁
𝑘= 𝑗

Δ2𝑥𝑘 = Δ𝑥 𝑗 +
𝑗+𝑚−1∑︁
𝑘= 𝑗

[𝑎𝑘− 𝑗+1 + 𝑎𝑘− 𝑗+2 + · · · + 𝑎𝑚]Δ2𝑥𝑘

≡ Δ𝑥 𝑗 +
𝑗+𝑚−1∑︁
𝑘= 𝑗

𝛽𝑘− 𝑗+1Δ
2𝑥𝑘 ,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

818 Y. Saad

where we set 𝛽𝑘− 𝑗+1 ≡ 𝑎𝑘− 𝑗+1 + 𝑎𝑘− 𝑗+2 + · · · + 𝑎𝑚. Thus equation (2.23) becomes

Δ𝑥 𝑗 +
𝑚∑︁
𝑖=1

𝛽𝑖Δ
2𝑥 𝑗+𝑖−1 = 0, (2.24)

where 𝛽𝑖 = 𝑎𝑖 + 𝑎𝑖+1 + · · · + 𝑎𝑚. It is convenient to define

Δ𝑋 𝑗 = [Δ𝑥 𝑗 ,Δ𝑥 𝑗+1, . . . ,Δ𝑥 𝑗+𝑚−1], (2.25)
Δ2𝑋 𝑗 = [Δ2𝑥 𝑗 ,Δ𝑥 𝑗+1, . . . ,Δ

2𝑥 𝑗+𝑚−1], (2.26)
𝛽 = [𝛽1, 𝛽2, . . . , 𝛽𝑚]⊤. (2.27)

With this notation the system (2.23) takes the matrix form

Δ𝑥 𝑗 + Δ2𝑋 𝑗 𝛽 = 0. (2.28)

This is an over-determined system of equations with 𝑚 unknowns. Taking a
projection viewpoint, we can select a set of vectors 𝑊 ∈ R𝑛×𝑚 and extract a
solution to the projected system

𝑊⊤(Δ𝑥 𝑗 + Δ2𝑋 𝑗 𝛽) = 0. (2.29)

Assuming that the 𝑚 × 𝑚 matrix 𝑊⊤ [Δ2𝑋 𝑗] is non-singular, then the accelerated
iterate exists and is given by

𝑦 𝑗 = 𝑥 𝑗 − Δ𝑋 𝑗 𝛽, where 𝛽 =
[
𝑊⊤Δ2𝑋 𝑗

]−1(𝑊⊤Δ𝑥 𝑗). (2.30)

A number of methods developed in Brezinski (1975) were of the type shown above
with various choices of the set 𝑊 . Among these, one approach in particular is
worth mentioning due to its connection with other methods.

This approach starts with another natural extensions of (2.22), which is to use a
different vector 𝑤 for each of the rows of the determinants, but apply these to the
same Δ𝑥𝑘 on the same column:

𝑦
(𝑚)
𝑗

=

���������
𝑥 𝑗 𝑥 𝑗+1 · · · 𝑥 𝑗+𝑚

(𝑤1,Δ𝑥 𝑗) (𝑤1,Δ𝑥 𝑗+1) · · · (𝑤1,Δ𝑥 𝑗+𝑚)
...

...
...

...

(𝑤𝑚,Δ𝑥 𝑗) (𝑤𝑚,Δ𝑥 𝑗+1) · · · (𝑤𝑚,Δ𝑥 𝑗+𝑚)

������������������
1 1 · · · 1

(𝑤1,Δ𝑥 𝑗) (𝑤1,Δ𝑥 𝑗+1) · · · (𝑤𝑚,Δ𝑥 𝑗+𝑚)
...

...
...

...

(𝑤𝑚,Δ𝑥 𝑗) (𝑤𝑚,Δ𝑥 𝑗+1) · · · (𝑤𝑚,Δ𝑥 𝑗+𝑚)

���������
. (2.31)

It was first discussed in Brezinski (1975), and essentially the same method was
independently published in the Russian literature in Pugachëv (1977). The method
was later rediscovered by Sidi et al. (1986), who gave it the name modified minimal

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 819

polynomial extrapolation (MMPE), by which it is commonly known today. Because
there is some freedom in the selection of the set 𝑊 , MMPE represents more than
just one method. We will discuss it further in Section 2.6.

It is rather interesting that the above determinant can be expressed in the same
form as (2.30). To see this, we need to process the numerator and denominator
of (2.31) as follows. Starting from the last column and proceeding backwards, we
subtract column 𝑘 − 1 from column 𝑘 , and this is done for 𝑘 = 𝑚 + 1, 𝑚, . . . , 2.
With this, the first row of the determinant in the denominator will be a one followed
by 𝑚 zeros. The first row of the determinant in the numerator will be the vector
𝑥 𝑗 followed by Δ𝑥 𝑗 ,Δ𝑥 𝑗+1,Δ𝑥 𝑗+𝑚−1. The entries in the first columns of both
denominators are unchanged. The block consisting of entries (2 : 𝑚+1)×(2 : 𝑚+1)
of both denominators will have the entries (𝑤𝑖 ,Δ

2𝑥 𝑗+𝑘−1) in its 𝑘th column, with
𝑘 = 1, . . . , 𝑚. This block is simply the matrix 𝑊⊤Δ2𝑋 𝑗 . To expand the resulting
determinant in the numerator, we utilize the following relation, where 𝜏 is a scalar
and 𝑆 is an invertible 𝑚 × 𝑚 matrix:����𝜏 𝑓

𝑏 𝑆

���� = det(𝑆)[𝜏 − 𝑓 𝑆−1𝑏] . (2.32)

This relation is also true in the case when 𝜏 is a vector in R𝜈×1 and 𝑓 is in R𝜈×𝑚
with the interpretation of such determinants seen earlier. After transforming the
numerator of (2.31) as discussed above, we will obtain a determinant in the form
of the left-hand side of (2.32) in which 𝑓 = Δ𝑋 𝑗 , 𝑏 = 𝑊⊤Δ𝑋 𝑗 and 𝑆 = 𝑊⊤Δ2𝑋 𝑗 .
Applying the above formula to this determinant results in the expression (2.30).

Vector acceleration algorithms were also defined as processes devoted solely
to vector sequences generated from linear iterative procedures. The next section
explores this framework a little further.

2.6. RRE and related methods

The difficulties encountered in extending Aitken’s method and the 𝜖-algorithm to
vector sequences led researchers to seek better motivated alternatives, by focusing
on vector sequences generated from specific linear processes. Thus Cabay and
Jackson (1976) introduced a method called the minimal polynomial extrapolation
(MPE) which exploits the low-rank character of the set of sequences in the linear
case. At about the same time, Eddy (1979) and Mešina (1977) developed a method
dubbed ‘reduced rank extrapolation’ (RRE), which was quite similar in spirit to
MPE. Our goal here is mainly to link these methods with the ones seen earlier and
developed from a different viewpoint.

We begin by describing RRE by following the notation and steps of the original
paper by Mešina (1977). RRE was initially designed for vector sequences generated
from the following fixed-point (linear) iterative process:

𝑥 𝑗+1 = 𝑀𝑥 𝑗 + 𝑓 . (2.33)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

820 Y. Saad

Mešina chose to express the extrapolated sequence in the form

𝑦𝑚 = 𝑥0 +
𝑚∑︁
𝑖=1

𝛽𝑖Δ𝑥𝑖−1, (2.34)

where 𝛽𝑖 , 𝑖 = 1, . . . , 𝑚 are scalars to be determined.
With the notation (2.25)–(2.27) we can write 𝑦𝑚 = 𝑥0+Δ𝑋0𝛽. For the sequences

under consideration, i.e. those defined by (2.33), the relation Δ2𝑥 𝑗 = −(𝐼 − 𝑀)Δ𝑥 𝑗
holds, and therefore we also have Δ2𝑋0 = −(𝐼 − 𝑀)Δ𝑋0. Furthermore, since we
are in effect solving the system (𝐼 −𝑀)𝑥 = 𝑓 , the residual vector associated with 𝑥
is 𝑟 = 𝑓 − (𝐼 − 𝑀)𝑥. Now consider the residual 𝑟𝑚 for the vector 𝑦𝑚:

𝑟𝑚 = 𝑓 − (𝐼 − 𝑀)𝑦𝑚 = 𝑓 − (𝐼 − 𝑀)[𝑥0 + Δ𝑋0𝛽]
= 𝑓 + 𝑀𝑥0 − 𝑥0 + Δ2𝑋0𝛽

= Δ𝑥0 + Δ2𝑋0𝛽. (2.35)

Setting the over-determined systemΔ𝑥0+Δ2𝑋0𝛽 = 0 yields exactly the same system
as (2.24) with 𝑗 = 0.

The idea in the original paper was to determine 𝛽 so as to minimize the Euclidean
norm of the residual (2.35). It is common to formulate this method in the form
of a projection technique: the norm ∥Δ𝑥0 + Δ2𝑋0𝛽∥2 is minimized by imposing
the condition that the residual 𝑟 = Δ𝑥0 + Δ2𝑋0𝛽 is orthogonal to the span of the
columns of Δ2𝑋0, i.e. to the second-order forward differences Δ2𝑥𝑖:

(Δ2𝑋0)⊤ [Δ𝑥0 + Δ2𝑋0𝛽] = 0. (2.36)

This is exactly the same system as in (2.29) with 𝑗 = 0 and 𝑊 = Δ2𝑋0. Therefore
RRE is an instance of the MMPE method seen earlier, where we set 𝑊 to be
𝑊 = Δ2𝑋0. The case 𝑚 = 1 is interesting. Indeed, when 𝑚 = 1, equations
(2.34) and (2.36) yield the same extrapolation as the vector version of the Aitken
process shown in formula (2.21) for the case 𝑗 = 0. One can therefore view the
vector version of the Aitken process (2.21) as a particular instance of RRE with a
projection dimension 𝑚 equal to 1.

In the early development of the method, the idea was to exploit a low-rank
character of Δ2𝑋0. If Δ2𝑋0 has rank 𝑚 then 𝑦𝑚 will be an exact solution of the
system (𝐼 − 𝑀)𝑥 = 𝑓 , since 𝑟𝑚 will be zero. Let us explain this in order to make
a connection with Krylov subspace methods, to be discussed in Section 3.3. From
(2.33) it follows immediately that 𝑥 𝑗+1 − 𝑥 𝑗 = 𝑀(𝑥 𝑗 − 𝑥 𝑗−1), and therefore

Δ𝑥 𝑗 = 𝑥 𝑗+1 − 𝑥 𝑗 = 𝑀 𝑗(𝑥1 − 𝑥0) = 𝑀 𝑗𝑟0. (2.37)

Therefore the accelerated vector 𝑦𝑚 is of the form 𝑦𝑚 = 𝑥0 + 𝑞𝑚−1(𝑀)𝑟0, where
𝑞𝑚−1 is a polynomial of degree ≤ 𝑚 − 1. The residual vector 𝑟𝑚 is 𝑓 − (𝐼 − 𝑀)𝑦𝑚
and thus

𝑟𝑚 = 𝑟0 − (𝐼 − 𝑀)𝑞𝑚−1(𝑀)𝑟0 ≡ 𝑝𝑚(𝑀)𝑟0, (2.38)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 821

where 𝑝𝑚(𝑡) ≡ 1−(1−𝑡)𝑞𝑚−1(𝑡) is a degree𝑚 polynomial such that 𝑝𝑚(1) = 1. The
polynomial 𝑞𝑚−1, and therefore also the residual polynomial 𝑝𝑚, is parametrized
with the 𝑚 coefficients 𝛽𝑖 , 𝑖 = 1, . . . , 𝑚. The minimization problem of RRE can
be translated in terms of polynomials: find the degree 𝑚 polynomial 𝑝𝑚 satisfying
the constraint 𝑝𝑚(1) = 1 for which the norm of the residual 𝑝𝑚(𝑀)𝑟0 is minimal.
If the minimal polynomial for 𝑀 is 𝑚 then the smallest norm residual is zero. This
was behind the motivation of the method. Note that the accelerated solution 𝑦𝑚
belongs to the subspace

𝐾𝑚(𝑀, 𝑟0) = Span{𝑟0, 𝑀𝑟0, . . . , 𝑀
𝑚−1𝑟0},

which is called a Krylov subspace. This is the same subspace as the one more
commonly associated with linear systems, in which 𝑀 is replaced by the coefficient
matrix 𝐼 − 𝑀 .

In the scenario where the minimal polynomial is of degree𝑚, the rank of𝑀 is also
𝑚, hence the term ‘reduced rank extrapolation’ given to the method. Although the
method was initially designed with this special case in mind, it can clearly be used
in a more general setting. Note also that although the RRE acceleration scheme was
designed for sequences of the form (2.33), the process is an extrapolation method,
in that it does not utilize any information other than the original sequence itself.
All we need are the first- and second-order difference matrices Δ𝑋0 and Δ2𝑋0, and
the matrix 𝑀 is never referenced. Furthermore, nothing prevents us from using
the procedure to accelerate a sequence produced by some nonlinear fixed-point
iteration.

The MPE method mentioned at the beginning of this section is closely related
to RRE. Like RRE, MPE expresses the extrapolated solution in the form (2.34)
and so the residual of this solution also satisfies (2.35). Instead of trying to
minimize the norm of this residual, MPE imposes a Galerkin condition of the form
𝑊⊤(Δ𝑥0 + Δ2𝑋0𝛽) = 0, but now𝑊 is selected to be equal to Δ𝑋0. As can be seen,
this can again be derived from the MMPE framework discussed earlier. Clearly, if
𝑀 is of rank 𝑚 then 𝑦𝑚 will again be the exact solution of the system. Note also
that RRE was presented in difference forms by Eddy (1979) and Mešina (1977),
and the equivalence between the two methods was established in Smith, Ford and
Sidi (1987).

2.7. Alternative formulations of RRE and MPE

In formula (2.34) the accelerated vector 𝑦𝑚 is expressed as an update to 𝑥0, the
first member of the sequence. It is also possible to express it as an update to 𝑥𝑚,
its most recent member. Indeed, the affine space 𝑥0 + Span{Δ𝑋0} is identical to
𝑥𝑚 + Span{Δ𝑋0} because of the relation

𝑥𝑚 = 𝑥0 + Δ𝑥0 + Δ𝑥1 + · · · + Δ𝑥𝑚−1 = 𝑥0 + Δ𝑋0𝑒,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

822 Y. Saad

where 𝑒 is the vector of all ones. If we set 𝑦𝑚 = 𝑥𝑚 + Δ𝑋0𝛾 then the residual in
(2.35) becomes Δ𝑥𝑚 + Δ𝑋0𝛾, and so we can reformulate RRE as

𝑦𝑚 = 𝑥𝑚 + Δ𝑋0𝛾, where 𝛾 = argmin𝛾 ∥Δ𝑥𝑚 + Δ𝑋0𝛾∥2. (2.39)

A similar formulation also holds for MPE. The above formulation will be useful
when comparing RRE with the Anderson acceleration to be seen later.

In another expression of MPE and RRE the 𝑥𝑖 are invoked directly instead of
their differences in (2.34). We will explain this now because similar alternative
formulations will appear a few times later in the paper. Equation (2.34) yields

𝑦𝑚 = 𝑥0 + 𝛽1(𝑥1 − 𝑥0) + 𝛽2(𝑥2 − 𝑥1) + · · · + 𝛽𝑚(𝑥𝑚 − 𝑥𝑚−1)
= (1 − 𝛽1)𝑥0 + (𝛽1 − 𝛽2)𝑥1 + · · · + (𝛽𝑖 − 𝛽𝑖+1)𝑥𝑖 + · · · + 𝛽𝑚𝑥𝑚.

This can be rewritten as
∑𝑚

𝑖=0 𝛼𝑖𝑥𝑖 by setting 𝛼𝑖 ≡ 𝛽𝑖 − 𝛽𝑖+1 for 𝑖 = 0, . . . , 𝑚, with
the convention that 𝛽𝑚+1 = 0, and 𝛽0 = 1. We then observe that the 𝛼𝑖’s sum up to
one. Thus we can reformulate (2.34) in the form

𝑦𝑚 =

𝑚∑︁
𝑖=0

𝛼𝑖𝑥𝑖 , with
𝑚∑︁
𝑖=0

𝛼𝑖 = 1. (2.40)

The above setting is quite a common alternative to that of (2.34) in acceleration
methods. It is also possible to proceed in reverse by formulating an accelerated
sequence stated as in (2.40) in the form (2.34), and this was done previously; see
Section 2.5.

2.8. Additional comments and references

It should be stressed that extrapolation algorithms of the type discussed in this
section often played a major role in providing a framework for the other classes
of methods. They were initially invented to deal with scalar sequences, e.g. those
produced by quadrature formulas. Later, they served as templates to deal with
fixed-point iterations, where the fixed-point mapping 𝑔 was brought to the fore to
develop effective techniques. While ‘extrapolation’-type methods were gaining in
popularity, physicists and chemists were seeking new ways of accelerating compu-
tationally intensive, and slowly converging, fixed-point iterations. The best-known
of these fixed-point techniques is the self-consistent field (SCF) iteration, which
permeated a large portion of computational chemistry and quantum mechanics. As
a background, SCF methods, along with the acceleration tricks developed in the
context of the Kohn–Sham equation, will be summarized in Section 4. Solving lin-
ear systems of equations is one of the most common practical problems encountered
in computational sciences, so it should not be surprising that acceleration methods
have also been deployed in this context. The next section addresses the special case
of linear systems.

We conclude this section with a few bibliographical pointers. Extrapolation
methods generated a rich literature starting in the 1970s, and a number of surveys

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 823

and books have appeared that provide a wealth of details, both historical and
technical. Among early books on the topic, we mention those of Brezinski (1980)
and Brezinski and Redivo-Zaglia (1991). Most of the developments of extrapolation
methods took place in the twentieth century, and these are surveyed by Brezinski
(2000). A number of other papers provide an in-depth review of extrapolation
and acceleration methods; see e.g. Higham and Strabić (2016), Jbilou and Sadok
(2000) and Sidi (2012). A nicely written and more recent survey of extrapolation
and its relation to rational approximation is the volume by Brezinski and Redivo-
Zaglia (2020), which contains a large number of references while also discussing
the fascinating lives of the main contributors to these fields.

3. Accelerators for linear iterative methods
Starting with the work of Gauss in 1823 (see Forsythe 1951), quite a few iterative
methods for solving linear systems of equations were developed. The idea of
accelerating these iterative procedures is natural, and it has been invoked repeatedly
in the past. A diverse set of techniques were advocated for this purpose, including
Richardson’s method, Chebyshev acceleration and the class of Krylov subspace
methods. It appears that acceleration techniques were first suggested in the early
twentieth century with the work of Richardson, and reappeared in force a few
decades later as modern electronic computers started to emerge.

3.1. Richardson’s legacy

Consider a linear system of the form

𝐴𝑥 = 𝑏, (3.1)

where 𝐴 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛. Adopting the point of view expressed in equation
(1.3) with the function 𝑓 (𝑥) ≡ 𝐴𝑥 − 𝑏, we obtain the iteration

𝑥 𝑗+1 = 𝑥 𝑗 − 𝛾(𝐴𝑥 𝑗 − 𝑏) = 𝑥 𝑗 + 𝛾𝑟 𝑗 , (3.2)

where 𝑥 𝑗 is the current iterate and 𝑟 𝑗 = 𝑏 − 𝐴𝑥 𝑗 the related residual. This simple
‘first-order’ scheme was proposed by Richardson (1910). Assuming that the eigen-
values of 𝐴 are real and included in the interval [𝛼, 𝛽] with 𝛼 > 0, it is not difficult
to see that the scheme will converge to the solution for any 𝛾 such that 0<𝛾 < 2/𝛽
and that the value of 𝛾 that yields the best convergence rate is 𝛾opt = 2/[𝛼 + 𝛽]; see
e.g. Saad (2003).

Richardson also considered a more general procedure where the scalar 𝛾 changed
at each step:

𝑥 𝑗+1 = 𝑥 𝑗 + 𝛾 𝑗𝑟 𝑗 . (3.3)

If 𝑥∗ is the exact solution, he studied the question of selecting the best sequence of
𝛾 𝑗 to use if we want the error norm ∥𝑥 𝑗 − 𝑥∗∥2 at the 𝑗 th step to be the smallest
possible. This will be addressed in the next section.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

824 Y. Saad

A number of procedures discovered at different times can be cast into the general
Richardson iteration framework represented by (3.3). Among these, two examples
stand out. The first example is the minimal residual iteration (MR), where 𝛾 𝑗 is
selected as the value of 𝛾 that minimizes the next residual norm, ∥𝑏−𝐴(𝑥 𝑗 +𝛾𝑟 𝑗)∥2.
The second is the steepest descent algorithm, where instead of minimizing the
residual norm we minimize ∥𝑥 − 𝑥∗∥𝐴, where ∥𝑣∥2

𝐴
= (𝐴𝑣, 𝑣). Both methods are

one-dimensional projection techniques and will be discussed in Section 3.3.1.

3.2. The Chebyshev procedure

Richardson (1910) seems to have been the first to consider a general scheme given
by (3.3), where the 𝛾 𝑗 are sought with the goal of achieving the fastest possible
convergence. From (3.3) we get

𝑟 𝑗+1 = 𝑏 − 𝐴(𝑥 𝑗 + 𝛾 𝑗𝑟 𝑗) = 𝑟 𝑗 − 𝛾 𝑗𝐴𝑟 𝑗 = (𝐼 − 𝛾 𝑗𝐴)𝑟 𝑗 , (3.4)

which leads to the relation

𝑟 𝑗+1 = (𝐼 − 𝛾 𝑗𝐴)(𝐼 − 𝛾 𝑗−1𝐴) · · · (𝐼 − 𝛾0𝐴)𝑟0 ≡ 𝑝 𝑗+1(𝐴)𝑟0, (3.5)

where 𝑝 𝑗+1(𝑡) is a polynomial of degree 𝑗 + 1. Since 𝑝 𝑗+1(0) = 1, then 𝑝 𝑗+1 is of
the form 𝑝 𝑗+1(𝑡) = 1 − 𝑡𝑞 𝑗(𝑡), with deg (𝑞 𝑗) = 𝑗 . Therefore

𝑟 𝑗+1 = (𝐼 − 𝐴𝑞 𝑗(𝐴))𝑟0 = (𝑏 − 𝐴𝑥0) − 𝐴𝑞 𝑗(𝐴)𝑟0 = 𝑏 − 𝐴[𝑥0 + 𝑞 𝑗(𝐴)𝑟0],

which means that
𝑥 𝑗+1 = 𝑥0 + 𝑞 𝑗(𝐴)𝑟0. (3.6)

Richardson worked with error vectors instead of residuals. Defining the error
𝑢 𝑗 = 𝑥∗−𝑥 𝑗 , where 𝑥∗ is the exact solution, and using the relation 𝐴𝑢 𝑗 = 𝑏−𝐴𝑥 𝑗 = 𝑟 𝑗
we can multiply (3.5) by 𝐴−1 to obtain the relation

𝑢 𝑗+1 = 𝑝 𝑗+1(𝐴)𝑢0 (3.7)

for the error vector at step 𝑗 + 1, where 𝑝 𝑗+1 is the same polynomial as above. He
formulated the problem of selecting the 𝛾𝑖 in (3.7) with a goal of making the error
𝑢 𝑗+1 as small as possible. The 𝛾𝑖 in his formula were the inverses of the ones above,
but the reasoning is identical. Such a scheme can be viewed as an ‘acceleration’
of the first-order Richardson method (3.2) seen earlier. Richardson assumed only
the knowledge of an interval [𝛼, 𝛽] containing the eigenvalues of 𝐴. When 𝐴 is
symmetric positive definite (SPD), then there exists 𝛼, 𝛽, with 𝛼 > 0 such that
Λ(𝐴) ⊂ [𝛼, 𝛽].

If we wish to minimize the maximum deviation from zero in the interval, then the
best polynomial can be found from a well-known and simple result in approximation
theory. We will reason with residuals, recall equation (3.5), and let P 𝑗+1,0 denote
the set of polynomials 𝑝 of degree 𝑗 + 1 such that 𝑝(0) = 1. Thus 𝑝 𝑗+1 in (3.5) and
(3.7) is a member of P 𝑗+1,0, and our problem is to find a polynomial 𝑝 ∈ P 𝑗+1,0

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 825

such that max𝑡∈[𝛼,𝛽] |𝑝(𝜆)| is minimal. In other words we seek the solution to the
min-max problem

min
𝑝∈P 𝑗+1,0

max
𝑡∈[𝛼,𝛽]

|𝑝(𝑡)|. (3.8)

The polynomial 𝑇𝑗+1 that realizes the solution to (3.8) is known, and it can be
expressed in terms of the Chebyshev polynomials of the first kind 𝐶 𝑗(𝑡):

𝑇𝑗+1(𝑡) ≡ 1
𝜎𝑗+1

𝐶 𝑗+1

(
𝛽 + 𝛼 − 2𝑡
𝛽 − 𝛼

)
, with 𝜎𝑗+1 ≡ 𝐶 𝑗+1

(
𝛽 + 𝛼
𝛽 − 𝛼

)
. (3.9)

If the polynomial𝑇𝑗+1 is set to be the same as 𝑝 𝑗+1 in (3.5), then clearly the inverses
of its roots will yield the best sequence of 𝛾𝑖 to use in (3.3). Richardson seems
to have been unaware of Chebyshev polynomials. Instead, his approach was to
select the roots 1/𝛾𝑖 by spreading them in an ad hoc fashion in [𝛼, 𝛽]. One has to
wait more than four decades before this idea, or similar ones based on Chebyshev
polynomials, appeared.

A few of the early methods in this context computed the roots of the modified
Chebyshev polynomial (3.9) and used the inverses of these roots as the 𝛾 𝑗 in (3.3)
(Shortley 1953, Sheldon 1955, Young 1954). These methods were difficult to use
in practice and prone to numerical instability. A far more elegant approach is to
exploit the three-term recurrence of the Chebyshev polynomials:

𝐶 𝑗+1(𝑡) = 2𝑡𝐶 𝑗(𝑡) − 𝐶 𝑗−1(𝑡), 𝑗 ≥ 1, (3.10)

starting with 𝐶0(𝑡) = 1, 𝐶1(𝑡) = 𝑡. Lanczos (1952) suggested a process for pre-
processing a right-hand side of a linear system prior to solving it with what was
then a precursor to a Krylov subspace method. The residual polynomials related
to this process are more complicated than Chebyshev polynomials, as was noted
by Young (1954). However, they too rely on Chebyshev polynomials, and Lanczos
does exploit the three-term recurrence in his 1952 article while Shortley, Sheldon
and Young do not.

The first real acceleration scheme based on the Chebyshev polynomials that
exploits the three-term recurrence seems to be that of Blair et al. (1959). The
article included two appendices written by von Neumann, and the second of these
discussed the method. The method must have been developed around the year 1956
or earlier by von Neumann, who died on 8 February 1957. Two years after the von
Neumann article, Golub and Varga (1961) published a very similar technique which
they named the ‘semi-iterative method’. They included a footnote acknowledging
the earlier contribution by von Neumann.

The arguments of von Neumann’s contribution were rooted in acceleration tech-
niques, with a goal of producing a process for linearly combining the previous
iterates of a given sequence in order to achieve faster convergence. Specifically,
the new sequence is of the form 𝑦 𝑗 =

∑ 𝑗

𝑖=0 𝜂𝑖, 𝑗𝑥𝑖 , where the 𝜂 satisfy the constraint
that

∑
𝜂𝑖, 𝑗 = 1. Although this may seem different from what was done above, it

actually amounts to the same idea.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

826 Y. Saad

Indeed, the residual of the ‘accelerated’ sequence is

𝑏 − 𝐴𝑦 𝑗 = 𝑏 −
𝑗∑︁

𝑖=0
𝜂𝑖, 𝑗𝐴𝑥𝑖 =

𝑗∑︁
𝑖=0

𝜂𝑖, 𝑗 [𝑏 − 𝐴𝑥𝑖] =
𝑗∑︁

𝑖=0
𝜂𝑖, 𝑗 𝑝𝑖(𝐴)𝑟0,

where 𝑝𝑖(𝑡) is the residual polynomial of degree 𝑖 associated with the original
sequence, that is, it is defined by (3.5). As was already seen, the polynomial
𝑝𝑖 satisfies the constraint 𝑝𝑖(0) = 1. Because

∑ 𝑗

𝑖=0 𝜂𝑖 𝑗 𝑝𝑖(0) =
∑
𝜂𝑖 𝑗 = 1, the

new residual polynomial 𝑝 𝑗(𝑡) =
∑ 𝑗

𝑖=0 𝜂𝑖, 𝑗 𝑝𝑖(𝑡) also satisfies the same condition
𝑝 𝑗(0) = 1. Therefore we can say that the procedure seeks to find a degree 𝑗

polynomial, expressed in the form
∑ 𝑗

𝑖=0 𝜂𝑖, 𝑗 𝑝𝑖(𝑡), whose value at zero is one and
which is optimal in some sense.

We now return to Chebyshev acceleration to provide details of the procedure
discovered by John von Neumann and Golub and Varga. Letting

𝜃 ≡ 𝛽 + 𝛼
2

, 𝛿 ≡ 𝛽 − 𝛼
2

, (3.11)

we can write 𝑇𝑗 defined by (3.9) as

𝑇𝑗(𝑡) ≡
1
𝜎𝑗

𝐶 𝑗

(
𝜃 − 𝑡
𝛿

)
, with 𝜎𝑗 ≡ 𝐶 𝑗

(
𝜃

𝛿

)
. (3.12)

The three-term recurrence for the Chebyshev polynomials leads to

𝜎𝑗+1 = 2
𝜃

𝛿
𝜎𝑗 − 𝜎𝑗−1, 𝑗 = 1, 2 . . . , with 𝜎0 = 1, 𝜎1 =

𝜃

𝛿
. (3.13)

We combine equations (3.10) and (3.12) into a three-term recurrence for the poly-
nomials 𝑇𝑗 , for 𝑗 ≥ 1:

𝜎𝑗+1𝑇𝑗+1(𝑡) = 2
𝜃 − 𝑡
𝛿
𝜎𝑗𝑇𝑗(𝑡) − 𝜎𝑗−1𝑇𝑗−1(𝑡), (3.14)

starting with 𝑇0(𝑡) = 1, 𝑇1(𝑡) = 1 − 𝑡/𝜃.
We now need a way of expressing the sequence of iterates from the above

recurrence of the residual polynomials. There are at least two ways of doing this.
One idea is to note that 𝑟 𝑗+1 −𝑟 𝑗 = −𝐴(𝑥 𝑗+1 −𝑥 𝑗) = 𝑇𝑗+1(𝐴)𝑟0 −𝑇𝑗(𝐴)𝑟0. Therefore
we need to find a recurrence for (𝑇𝑗+1(𝑡) − 𝑇𝑗(𝑡))/(−𝑡). Going back to (3.14) and
exploiting the recurrence (3.13), we write for 𝑗 ≥ 1

𝜎𝑗+1𝑇𝑗+1 − 𝜎𝑗+1𝑇𝑗 = 2
𝜃 − 𝑡
𝛿
𝜎𝑗𝑇𝑗 −

(
2
𝜃

𝛿
𝜎𝑗 − 𝜎𝑗−1

)
𝑇𝑗 − 𝜎𝑗−1𝑇𝑗−1

= −2
𝑡

𝛿
𝜎𝑗𝑇𝑗 + 𝜎𝑗−1(𝑇𝑗 − 𝑇𝑗−1) →

𝑇𝑗+1 − 𝑇𝑗
−𝑡 = 2

1
𝛿

𝜎𝑗

𝜎𝑗+1
𝑇𝑗 +

𝜎𝑗−1

𝜎𝑗+1

𝑇𝑗 − 𝑇𝑗−1

−𝑡 . (3.15)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 827

Algorithm 1 Chebyshev acceleration
1: Input: System 𝐴, 𝑏, initial guess 𝑥0 and parameters 𝛿, 𝜃
2: Set 𝑟0 ≡ 𝑏 − 𝐴𝑥0, 𝜎1 = 𝜃/𝛿; 𝜌0 = 1/𝜎1 and 𝑑0 = 1

𝜃
𝑟0;

3: for 𝑗 = 0, 1, . . . , until convergence: do
4: 𝑥 𝑗+1 = 𝑥 𝑗 + 𝑑 𝑗

5: 𝑟 𝑗+1 = 𝑟 𝑗 − 𝐴𝑑 𝑗

6: 𝜌 𝑗+1 = (2𝜎1 − 𝜌 𝑗)−1

7: 𝑑 𝑗+1 =
2𝜌 𝑗+1
𝛿
𝑟 𝑗+1 + 𝜌 𝑗+1𝜌 𝑗𝑑 𝑗

8: end for

When translated into vectors of the iterative scheme,𝑇𝑗(𝑡) will give 𝑟 𝑗 , and (𝑇𝑗+1(𝑡)−
𝑇𝑗(𝑡))/(−𝑡) will translate to 𝑥 𝑗+1 − 𝑥 𝑗 , and if we set 𝑑 𝑗 = 𝑥 𝑗+1 − 𝑥 𝑗 , then (3.15)
yields

𝑑 𝑗 =
2
𝛿

𝜎𝑗

𝜎𝑗+1
𝑟 𝑗 +

𝜎𝑗−1

𝜎𝑗+1
𝑑 𝑗−1. (3.16)

We can set
𝜌 𝑗 ≡

𝜎𝑗

𝜎𝑗+1
, 𝑗 = 1, 2, . . . ,

and invoke the relation (3.13) to get 𝜌 𝑗 = 1/[2𝜎1 − 𝜌 𝑗−1], and then (3.16) becomes

𝑑 𝑗 =
𝜌 𝑗

𝛿
𝑟 𝑗 +

𝜌 𝑗

𝜌 𝑗−1
𝑑 𝑗−1.

This leads to Algorithm 1.
A second way to obtain a recurrence relation for the iterates 𝑥 𝑗 is to write the

error as 𝑥 𝑗+1 − 𝑥∗ = 𝑇𝑗+1(𝐴)(𝑥0 − 𝑥∗) and then exploit (3.14):

𝜎𝑗+1(𝑥 𝑗+1 − 𝑥∗) = 2
𝜃𝐼 − 𝐴
𝛿

𝜎𝑗(𝑥 𝑗 − 𝑥∗) − 𝜎𝑗−1(𝑥 𝑗−1 − 𝑥∗) (3.17)

= 2
𝜃

𝛿
𝜎𝑗(𝑥 𝑗 − 𝑥∗) +

2𝜎𝑗

𝛿
𝑟 𝑗 − 𝜎𝑗−1(𝑥 𝑗−1 − 𝑥∗) (3.18)

From the relation (3.13), we see that the terms in 𝑥∗ cancel out and we get

𝜎𝑗+1𝑥 𝑗+1 = 2
𝜃

𝛿
𝜎𝑗𝑥 𝑗 +

2𝜎𝑗

𝛿
𝑟 𝑗 − 𝜎𝑗−1𝑥 𝑗−1. (3.19)

Finally, invoking (3.13) again we can write 2 𝜃
𝛿
𝜎𝑗 = 𝜎𝑗+1 + 𝜎𝑗−1, and hence

𝜎𝑗+1𝑥 𝑗+1 = 𝜎𝑗+1𝑥 𝑗 + 𝜎𝑗−1(𝑥 𝑗 − 𝑥 𝑗−1) +
2𝜎𝑗

𝛿
𝑟 𝑗 . (3.20)

Note that lines 4 and 7 of the algorithm can be merged in order to rewrite the
iteration as

𝑥 𝑗+1 = 𝑥 𝑗 + 𝜌 𝑗

[
𝜌 𝑗−1(𝑥 𝑗 − 𝑥 𝑗−1) + 2

𝛿
(𝑏 − 𝐴𝑥 𝑗)

]
, (3.21)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

828 Y. Saad

which is a ‘second-order iteration’, of the same class as momentum-type methods
seen in optimization and machine learning, to be discussed in the next section. This
is a common form used in particular by Golub and Varga (1961) in their seminal
work on ‘semi-iterative methods’. A major advantage of the Chebyshev iterative
method is that it does not require any inner products. On the other hand, the scheme
requires estimates for the extremal eigenvalue in order to set the sequence of scalars
necessary for the iteration.

It is easy to see that the iteration parameters 𝜌 𝑗 used in the algorithm converge
to a limit. Indeed, the usual formulas for Chebyshev polynomials show that

𝜎𝑗 = ch
[
𝑗ch−1 𝜃

𝛿

]
=

1
2

[(
𝜃

𝛿
+

√︄(
𝜃

𝛿

)2
− 1

) 𝑗

+
(
𝜃

𝛿
+

√︄(
𝜃

𝛿

)2
− 1

)− 𝑗]
.

As a result, we have

lim
𝑗→∞

𝜌 𝑗 = lim
𝑗→∞

𝜎𝑗

𝜎𝑗+1
=

(
𝜃

𝛿
+

√︄(
𝜃

𝛿

)2
− 1

)−1
=
𝜃

𝛿
−

√︄(
𝜃

𝛿

)2
− 1 ≡ 𝜌. (3.22)

One can therefore consider replacing the scalars 𝜌 𝑗 with their limit in the algo-
rithm. This scheme, which we will refer to as the stationary Chebyshev iteration,
typically results in a small reduction in convergence speed relative to the standard
Chebyshev iteration (Kerkhoven and Saad 1992).

3.3. An overview of Krylov subspace methods

Polynomial iterations of the type introduced by Richardson lead to a residual of the
form (3.5), where 𝑝 𝑗+1 is a polynomial of degree 𝑗 +1; see Section 3.1. The related
approximate solution at step 𝑗 + 1 is given in equation (3.6). The approximate
solution 𝑥 𝑗 at step 𝑗 is of the form 𝑥0 + 𝛿 where 𝛿 belongs to the subspace

K 𝑗(𝐴, 𝑟0) = Span{𝑟0, 𝐴𝑟0, . . . , 𝐴
𝑗−1𝑟0}. (3.23)

This is the 𝑗 th Krylov subspace. As can be seen, K 𝑗(𝐴, 𝑟0) is simply the space
of all vectors of the form 𝑞(𝐴)𝑟0, where 𝑞 is an arbitrary polynomial of degree not
exceeding 𝑗 − 1. When there is no ambiguity we denote K 𝑗(𝐴, 𝑟0) by K 𝑗 .

Krylov subspace methods for solving a system of the form (3.1) are projection
methods on the subspace (3.23) and can be viewed as a form of optimal polynomial
acceleration implemented via a projection process. We begin with a brief discussion
of projection methods.

3.3.1. Projection methods
The primary objective of a projection method is to extract an approximate solution
to a problem from a subspace. Suppose we wish to obtain a solution 𝑥 ∈ R𝑛 to a
given problem (𝑃). The problem is projected into a problem (�̃�) set in a subspace
K of R𝑛 from which we obtain an approximate solution 𝑥. Typically, the dimension
𝑚 of K is much smaller than 𝑛, the size of the system.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 829

When applied to the solution of linear systems of equations, we assume the
knowledge of some initial guess 𝑥0 to the solution and two subspaces K and L,
both of dimension 𝑚. From these the following projected problem is formulated:

Find 𝑥 = 𝑥0 + 𝛿, 𝛿 ∈ K such that 𝑏 − 𝐴𝑥 ⊥ L. (3.24)

We have 𝑚 degrees of freedom (dimension of K) and 𝑚 constraints (dimension of
L), and so (3.24) will result in an 𝑚 ×𝑚 linear system which is non-singular under
certain mild conditions on K and L. The Galerkin projection process just described
satisfies important optimality properties that play an essential role in their analysis.
There are two important cases.

Orthogonal projection (OP) methods. This case corresponds to the situation where
the subspacesK andL are the same. In this scenario the residual 𝑏−𝐴𝑥 is orthogonal
to K and the corresponding approximate solution is the closest vector from affine
space 𝑥0 +K to the exact solution 𝑥∗, where distance is measured with the 𝐴-norm,
∥𝑣∥𝐴 = (𝐴𝑣, 𝑣)1/2.

Proposition 3.1. Assume that 𝐴 is symmetric positive definite and L = K. Then
a vector 𝑥 is the result of an (orthogonal) projection method ontoK with the starting
vector 𝑥0 if and only if it minimizes the 𝐴-norm of the error over 𝑥0 +K, i.e. if and
only if

𝐸(𝑥) = min
𝑥∈𝑥0+K

𝐸(𝑥),

where
𝐸(𝑥) ≡ (𝐴(𝑥∗ − 𝑥), 𝑥∗ − 𝑥)1/2.

The necessary condition means the following:

L = K and 𝐴 SPD −→ ∥𝑥∗ − 𝑥∥𝐴 = min
𝑥∈𝑥0+K

∥𝑥∗ − 𝑥∥𝐴.

It is interesting to note that Richardson’s scheme shown in equation (3.3) can
be cast to include another prominent one-dimensional projection method, namely
the well-known steepest descent algorithm. Here, 𝐴 is assumed to be symmetric
positive definite, and at each step the algorithm computes the vector of the form
𝑥 = 𝑥 𝑗 + 𝛾𝑟 𝑗 , where 𝑟 𝑗 = 𝑏 − 𝐴𝑥 𝑗 , that satisfies the orthogonality condition
𝑏 − 𝐴𝑥 ⊥ 𝑟 𝑗 . This leads to selecting at each step 𝛾 = 𝛾 𝑗 ≡ (𝑟 𝑗 , 𝑟 𝑗)/(𝐴𝑟 𝑗 , 𝑟 𝑗),
which, according to the above proposition, minimizes ∥𝑥 − 𝑥∗∥𝐴 over 𝛾. Another
method in this category is the conjugate gradient method, which will be covered
shortly.

Minimal residual (MR) methods. This case corresponds to the situation when
L = 𝐴K. It can be shown that if 𝐴 is non-singular, then 𝑥 minimizes the Euclidean
norm of the residual over the affine space 𝑥0 +K.

Proposition 3.2. Let 𝐴 be an arbitrary square matrix and assume that L = 𝐴K.
Then a vector 𝑥 is the result of an (oblique) projection method onto K orthogonally

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

830 Y. Saad

Algorithm 2 Conjugate gradient
1: Compute 𝑟0 ≔ 𝑏 − 𝐴𝑥0, 𝑝0 ≔ 𝑟0.
2: for 𝑗 = 0, 1, . . ., until convergence Do: do
3: 𝛼 𝑗 ≔ (𝑟 𝑗 , 𝑟 𝑗)/(𝐴𝑝 𝑗 , 𝑝 𝑗)
4: 𝑥 𝑗+1 ≔ 𝑥 𝑗 + 𝛼 𝑗 𝑝 𝑗

5: 𝑟 𝑗+1 ≔ 𝑟 𝑗 − 𝛼 𝑗𝐴𝑝 𝑗

6: 𝛽 𝑗 ≔ (𝑟 𝑗+1, 𝑟 𝑗+1)/(𝑟 𝑗 , 𝑟 𝑗)
7: 𝑝 𝑗+1 ≔ 𝑟 𝑗+1 + 𝛽 𝑗 𝑝 𝑗

8: end for

to L with the starting vector 𝑥0 if and only if it minimizes the 2-norm of the residual
vector 𝑏 − 𝐴𝑥 over 𝑥 ∈ 𝑥0 +K, i.e. if and only if

𝑅(𝑥) = min
𝑥∈𝑥0+K

𝑅(𝑥),

where 𝑅(𝑥) ≡ ∥𝑏 − 𝐴𝑥∥2.

The necessary condition now means the following:

L = 𝐴K and 𝐴 non-singular −→ ∥𝑏 − 𝐴𝑥∥2 = min
𝑥∈𝑥0+K

∥𝑏 − 𝐴𝑥∥2.

Methods in this category include the conjugate residual (CR) method, the gen-
eralized conjugate residual (GCR) method, and GMRES among others; see Sec-
tion 3.3.3.

Another instance of Richardson’s general iteration of the form (3.3) is the minimal
residual iteration (MR), where 𝛾 𝑗 is selected as the value of 𝛾 that minimizes the
next residual norm, ∥𝑏 − 𝐴(𝑥 𝑗 + 𝛾𝑟 𝑗)∥2. A little calculation will show that the
optimal 𝛾 is 𝛾 𝑗 = (𝑟 𝑗 , 𝐴𝑟 𝑗)/(𝐴𝑟 𝑗 , 𝐴𝑟 𝑗), where it is assumed that 𝐴𝑟 𝑗 ≠ 0; see e.g.
Saad (2003). MR is a one-dimensional projection method since it computes a vector
of the form 𝑥 𝑗 + 𝑑, where 𝑑 ∈ X = Span{𝑟 𝑗}, which satisfies the orthogonality
condition 𝑏 − 𝐴𝑥 ⊥ 𝐴X .

3.3.2. OP-Krylov and the conjugate gradient method
One particularly important instance in the OP class of projection methods is the
conjugate gradient algorithm (CG) algorithm, a clever implementation of the case
where K = L is a Krylov subspace of the form (3.23) and 𝐴 is SPD. This imple-
mentation is shown in Algorithm 2.

The discovery of CG (Hestenes and Stiefel 1952) was a major breakthrough
in the early 1950s. Magnus Hestenes (UCLA) and Eduard Stiefel (ETH) made
the discovery independently and, as they learned of each other’s work, decided to
publish the paper together; see Saad (2022) for a brief history of Krylov methods.

Today the CG algorithm is often presented as a projection method on Krylov
subspaces, but Hestenes and Stiefel (1952) invoked purely geometric arguments,
as their insight from the two-dimensional case and knowledge of ‘conics’ led

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 831

●

●

●●y

y

x

x

L
L

L

p

p

s

p

2

1

1

2

2

1

1

2
2

1

3

x
*

Figure 3.1. Illustration of the construction of conjugate gradient directions. This
illustration is based on Hestenes and Todd (1991).

them to the notion of conjugate directions. The goal is to find the minimum of
𝑓 (𝑥) = 1

2 (𝐴𝑥, 𝑥) − (𝑏, 𝑥). In R2 the contour lines of 𝑓 (𝑥), i.e. the sets {𝑥 | 𝑓 (𝑥) = 𝜅}
where 𝜅 is a constant, are con-focal ellipses, the centre of which is 𝑥∗, the desired
solution.

Figure 3.1 provides an illustration borrowed from Hestenes and Todd (1991).
The minimum of 𝑓 (𝑥) on a given chord of the ellipse is reached in the middle
of the chord. The middles 𝑥2, 𝑦2 of two given parallel chords 𝐿1, 𝐿2 will define
a line 𝐿3 that passes through the centre 𝑥∗ of the ellipse. The minimum of 𝑓 (𝑥)
along 𝐿3 will be at the centre, i.e. at the exact solution. If 𝑥2 = 𝑥1 + 𝛼1𝑝1 is an
iterate and 𝑦1 = 𝑥2 + 𝑠2, an intermediate iterate, the line 𝐿2, 𝑦(𝑡) = 𝑦1 + 𝑡 𝑝1, is
parallel to 𝐿1. Its minimum is reached at a point 𝑦2 = 𝑦1 + 𝛽1𝑝1, and the direction
𝑝2 = 𝑦2 − 𝑥2 ≡ 𝑝1 + 𝛽1𝑠2 is conjugate to 𝑝1. In the CG algorithm, the direction 𝑠2
is taken to be the residual 𝑟2 of 𝑥2.

At the same time as the CG work was unfolding, Cornelius Lanczos, who also
worked at the INA, developed a similar method using a different notation and
viewpoint (Lanczos 1952). This was a minimal residual approach (MR method,
discussed below), implemented with the use of what we now call a Lanczos basis
(Lanczos 1950), for solving eigenvalue problems – another major contribution to
numerical linear algebra from the same era.

The conjugate gradient algorithm was not too well received initially. It was
viewed as an unstable direct solution method, and for this reason it lay dormant for
about two decades. Two important articles played a role in its revival. The first one
was by John Reid (1971), who discovered that the method could be rather effective
when used as an iterative procedure. At the same time, work by Paige (1971, 1980)
analysed the Lanczos process for eigenvalue problems from the point of view of
inexact arithmetic, and this work gave a much better understanding of how the loss
of orthogonality affected the process. The same loss of orthogonality affected the
CG method and led to its initial rejection by numerical analysts.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

832 Y. Saad

3.3.3. MR-Krylov methods, GCR, GMRES
Quite a few projection methods on the Krylov subspaces K 𝑗(𝐴, 𝑟0) were developed
starting in the late 1970s, with the objective of minimizing the residual norm. As
was seen earlier, this optimality condition is equivalent to the property that the
approximate solution 𝑥 ∈ K 𝑗(𝐴, 𝑟0) is orthogonal to the subspace 𝐴K 𝑗(𝐴, 𝑟0).

Implementations with orthonormal basis of 𝐾𝑚 led to the generalized minimal
residual (GMRES) method (Saad and Schultz 1986), a procedure based on the
Arnoldi process. Other implementations included Axelsson’s GCG-LS method
(Axelsson 1980), ORTHOMIN (Vinsome 1976), ORTHODIR (Jea and Young
1980) and the generalized conjugate residual method (GCR) of Eisenstat, Elman
and Schultz (1983), among others. A fairly exhaustive treatise on this work can
be found in the book by Meurant and Tebbens (2020). We now briefly discuss the
GCR method for solving the system (3.1), since this approach will be exploited
later.

The original GCR algorithm (Eisenstat et al. 1983) for solving (3.1) exploits an
orthogonal basis of the subspace 𝐴K 𝑗(𝐴, 𝑟0). The 𝑗 th step of the procedure can be
described as follows. Assume that we already have vectors 𝑝0, 𝑝0, . . . , 𝑝 𝑗 that are
𝐴⊤𝐴-orthogonal, i.e. such that (𝐴𝑝𝑖 , 𝐴𝑝𝑘) = 0 if 𝑖 ≠ 𝑘 for 𝑖, 𝑘 ≤ 𝑗 . Thus the set
{𝑝𝑖}𝑖=0,..., 𝑗 forms an 𝐴⊤𝐴 -orthogonal basis of the Krylov subspace K 𝑗+1. In this
situation the solution 𝑥 𝑗+1 at the current iteration, i.e. the one that minimizes the
residual norm in 𝑥0 +K 𝑗+1 = 𝑥0 + Span{𝑝0, 𝑝1, . . . , 𝑝 𝑗}, becomes easy to express.
It can be written as follows (see Lemma 6.21 of Saad 2003, and Lemma 3.1 below):

𝑥 𝑗+1 = 𝑥 𝑗 +
(𝑟 𝑗 , 𝐴𝑝 𝑗)

(𝐴𝑝 𝑗 , 𝐴𝑝 𝑗)
𝑝 𝑗 , (3.25)

where 𝑥 𝑗 is the current iterate and 𝑟 𝑗 is the related residual 𝑟 𝑗 = 𝑏 − 𝐴𝑥 𝑗 .
Once 𝑥 𝑗+1 is computed, the next basis vector, i.e. 𝑝 𝑗+1, is obtained from 𝐴⊤𝐴-

orthogonalizing the residual vector 𝑟 𝑗+1 = 𝑏 − 𝐴𝑥 𝑗+1 against the previous 𝑝𝑖 by the
loop

𝑝 𝑗+1 = 𝑟 𝑗+1 −
𝑗∑︁

𝑖=0
𝛽𝑖 𝑗 𝑝𝑖 , where 𝛽𝑖 𝑗 ≔ (𝐴𝑟 𝑗+1, 𝐴𝑝𝑖)/(𝐴𝑝𝑖 , 𝐴𝑝𝑖). (3.26)

The above succinctly describes one step of the algorithm. In practice, it is necessary
to keep a set of vectors for the 𝑝𝑖’s and another set for the 𝐴𝑝𝑖’s. We will set
𝑣𝑖 = 𝐴𝑝𝑖 in what follows. In the classical (‘full’) version of GCR, these sets are
denoted by

𝑃 𝑗 = [𝑝0, 𝑝1, . . . , 𝑝 𝑗], 𝑉 𝑗 = [𝑣0, 𝑣1, . . . , 𝑣 𝑗] . (3.27)

Note here that all previous search directions 𝑝𝑖 and the corresponding 𝑣𝑖 must be
saved in this full version.

We will bring two modifications to the basic procedure just described. The first
is to introduce a truncated version of the algorithm whereby only the most recent
min{𝑚, 𝑗 + 1} vectors {𝑝𝑖} and {𝐴𝑝𝑖} are kept. Thus the summation in (3.26)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 833

Algorithm 3 TGCR(𝑚)
1: Input: Matrix 𝐴, right-hand side 𝑏, initial guess 𝑥0, window size 𝑚
2: Set 𝑟0 ≡ 𝑏 − 𝐴𝑥0; 𝑣 = 𝐴𝑟0;
3: 𝑣0 = 𝑣/∥𝑣∥2; 𝑝0 = 𝑟0/∥𝑣∥2;
4: for 𝑗 = 0, 1, 2, . . . , Until convergence do
5: 𝛼 𝑗 = ⟨𝑟 𝑗 , 𝑣 𝑗⟩
6: 𝑥 𝑗+1 = 𝑥 𝑗 + 𝛼 𝑗 𝑝 𝑗

7: 𝑟 𝑗+1 = 𝑟 𝑗 − 𝛼 𝑗𝑣 𝑗
8: 𝑝 = 𝑟 𝑗+1; 𝑣 = 𝐴𝑝;
9: if j> 0 then [with 𝑉 𝑗 , 𝑃 𝑗 defined in (3.28)]

10: Compute 𝑠 = 𝑉⊤
𝑗
𝑣

11: Compute 𝑣 = 𝑣 −𝑉 𝑗 𝑠 and 𝑝 = 𝑝 − 𝑃 𝑗 𝑠

12: end if
13: 𝑝 𝑗+1 ≔ 𝑝/∥𝑣∥2 ; 𝑣 𝑗+1 ≔ 𝑣/∥𝑣∥2 ;
14: end for

starts at 𝑖 = [𝑗 − 𝑚 + 1] instead of 𝑖 = 0, that is, it starts at 𝑖 = 0 for 𝑗 < 𝑚 and at
𝑖 = 𝑗 − 𝑚 + 1 otherwise. The sets 𝑃 𝑗 , 𝑉 𝑗 in (3.27) are replaced by

𝑃 𝑗 = [𝑝 [𝑗−𝑚+1] , . . . , 𝑝 𝑗], 𝑉 𝑗 = [𝑣 [𝑗−𝑚+1] , . . . , 𝑣 𝑗] . (3.28)

The second change is to make the set of 𝑣𝑖 orthonormal, i.e. such that (𝑣 𝑗 , 𝑣𝑖) =
𝛿𝑖 𝑗 . Thus the new vector 𝑣 𝑗+1 is made orthonormal to 𝑣 𝑗−𝑚+1, 𝑣 𝑗−𝑚+2, . . . , 𝑣 𝑗 ,
when 𝑗 − 𝑚 + 1 ≥ 0 or to 𝑣0, 𝑣1, . . . , 𝑣 𝑗 otherwise.

Regarding notation, it may be helpful to observe that the last column of 𝑃 𝑗

(resp. 𝑉 𝑗) is always 𝑝 𝑗 (resp. 𝑣 𝑗) and that the number of columns of 𝑃 𝑗 (and also
𝑉 𝑗) is min{𝑚, 𝑗 + 1}. Note also that in practice it is preferable to replace the
orthogonalization steps in lines 10–11 of the algorithm with a modified Gram–
Schmidt procedure.

The following lemma explains why the update to the solution takes the simple
form of equation (3.25). This result was stated in a slightly different form in Saad
(2003, Lemma 6.21).

Lemma 3.1. Assume that we are solving the linear system 𝐴𝑥 = 𝑏 and let
{𝑝𝑖 , 𝑣𝑖}𝑖=[𝑗−𝑚+1]: 𝑗 be a paired set of vectors with 𝑣𝑖 = 𝐴𝑝𝑖 , 𝑖 = [𝑗 −𝑚 + 1], . . . , 𝑗 .
Assume also that the set 𝑉 𝑗 is orthonormal. Then the solution vector of the affine
space 𝑥 𝑗 + Span{𝑃 𝑗} with smallest residual norm is 𝑥 𝑗 + 𝑃 𝑗 𝑦 𝑗 , where 𝑦 𝑗 = 𝑉⊤

𝑗
𝑟 𝑗 .

In addition, only the bottom component of 𝑦 𝑗 , namely 𝑣⊤
𝑗
𝑟 𝑗 , is non-zero.

Proof. The residual of 𝑥 = 𝑥 𝑗 + 𝑃 𝑗 𝑦 is 𝑟 = 𝑟 𝑗 − 𝐴𝑃 𝑗 𝑦 = 𝑟 𝑗 − 𝑉 𝑗 𝑦 and its norm
is smallest when 𝑉⊤

𝑗
𝑟 = 0. Hence the first result. Next, this condition implies that

the inner products 𝑣⊤
𝑖
𝑟 𝑗+1 are all zero when 𝑖 ≤ 𝑗 , so the vector 𝑦 𝑗+1 = 𝑉⊤

𝑗+1𝑟 𝑗+1 at
the next iteration will have only one non-zero component, namely its last one, i.e.
𝑣⊤
𝑗+1𝑟 𝑗+1. This proves the second result for the index 𝑗 + 1 replaced by 𝑗 .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

834 Y. Saad

It follows from the lemma that the approximate solution obtained by a projection
method that minimizes the residual norm in the affine space 𝑥 𝑗 + Span{𝑃 𝑗} can
be written in the simple form 𝑥 𝑗+1 = 𝑥 𝑗 + 𝛼 𝑗 𝑝 𝑗 , where 𝛼 𝑗 = 𝑣

⊤
𝑗
𝑟 𝑗 . This explains

formula (3.25) shown above and lines 5–6 of Algorithm 3 when we take into
consideration the orthonormality of the 𝑣𝑖 .

When there is no truncation, we call this the ‘full window’ case of the algorithm.
This is equivalent to setting 𝑚 = ∞ in the algorithm. The truncated variation to
GCR (𝑚 < ∞), which we will call truncated GCR (TGCR), was first introduced in
Vinsome (1976) and was named ‘ORTHOMIN’. Eisenstat et al. (1983) established
a number of results for both the full window case (𝑚 = ∞) and the truncated case
(𝑚 < ∞), including a convergence analysis for the situation when 𝐴 is positive real,
i.e. when its symmetric part is positive definite. In addition to the orthogonality of
the vectors 𝐴𝑝𝑖 , or equivalently the 𝐴⊤𝐴-orthogonality of the 𝑝𝑖 , another property
of (full) GCR is that the residual vectors that it produces are ‘semi-conjugate’ in
that (𝑟𝑖 , 𝐴𝑟 𝑗) = 0 for 𝑖 > 𝑗 .

Note that when 𝑗 ≥ 𝑚 in TGCR (𝑚 < ∞), then the approximate solution 𝑥 𝑗 no
longer minimizes the residual norm over the whole Krylov subspace 𝑥0 +K 𝑗(𝐴, 𝑟0)
but only over 𝑥 𝑗−𝑚 + span{𝑝 𝑗−𝑚, . . . 𝑝 𝑗}; see Eisenstat et al. (1983, Theorem 4.1).

3.4. Momentum-based techniques

The Chebyshev iteration provides a good introduction to the notion of momentum.
It is sufficient to frame the method for an optimization problem, where we seek
to minimize the quadratic function 𝜙(𝑥) = 1

2𝑥
⊤𝐴𝑥 − 𝑏⊤𝑥, where 𝐴 is SPD. In this

case ∇𝜙(𝑥) = 𝐴𝑥 − 𝑏, which is the negative of the residual. With this we see that
Chebyshev iteration (3.21) can be written as

𝑥 𝑗+1 = 𝑥 𝑗 + 𝜂 𝑗Δ𝑥 𝑗−1 − 𝜈 𝑗∇𝜙(𝑥 𝑗), (3.29)

where 𝜂 𝑗 = 𝜌 𝑗𝜌 𝑗−1 and 𝜈 𝑗 = 2𝜌 𝑗/𝛿. Recall the notation Δ𝑥 𝑗−1 = 𝑥 𝑗 − 𝑥 𝑗−1.

3.4.1. The ‘heavy ball’ method
Equation (3.29) is the general form of a gradient-type method with momentum,
whereby the next iterate 𝑥 𝑗+1 is a combination of the term 𝑥 𝑗 −𝜈 𝑗∇𝜙(𝑥 𝑗), which can
be viewed as a standard gradient-type iterate, and the previous increment, i.e. the
difference 𝑥 𝑗 − 𝑥 𝑗−1. This difference Δ𝑥 𝑗−1 is often termed velocity and denoted
by 𝑣 𝑗−1 in the literature. Thus a method with momentum takes the gradient iterate
from the current point and adds a multiple of velocity. A comparison is often made
with a mechanical system representing a ball rolling downhill. Often the term
heavy ball method is used to describe the iteration (3.29) in which the coefficients
𝜂 𝑗 , 𝜇 𝑗 are constant. An illustration is provided in Figure 3.2.

It is common to rewrite equation (3.29) by explicitly invoking a momentum part.
This can be done by defining 𝑣 𝑗 ≡ Δ𝑥 𝑗 = 𝑥 𝑗+1 − 𝑥 𝑗 . Then the update (3.29) can be

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 835

j−1

GD j+1

j

xx

xx

∆xj−1η

Figure 3.2. Illustration of the gradient method with momentum.

written in two parts as {
𝑣 𝑗 = 𝜂 𝑗𝑣 𝑗−1 − 𝜈 𝑗∇𝜙(𝑥 𝑗),
𝑥 𝑗+1 = 𝑥 𝑗 + 𝑣 𝑗 .

(3.30)

However, often the velocity 𝑣 𝑗 is defined with the opposite sign,2 i.e. 𝑣 𝑗 ≡ −Δ𝑥 𝑗 =
𝑥 𝑗 − 𝑥 𝑗+1, in which case the update (3.29) becomes{

𝑣 𝑗 = 𝜂 𝑗𝑣 𝑗−1 + 𝜈 𝑗∇𝜙(𝑥 𝑗),
𝑥 𝑗+1 = 𝑥 𝑗 − 𝑣 𝑗 .

(3.31)

Both expressions (3.30) and (3.31) can be found in the literature but we will utilize
(3.31), which is equivalent to a form seen in machine learning (ML). In ML, the
scalar parameters of the sequence are constant, i.e. 𝜂 𝑗 ≡ 𝜂, 𝜈 𝑗 ≡ 𝜈, and the velocity
vector 𝑣 𝑗 is often scaled by 𝜈, that is, we set 𝑣 𝑗 = 𝜈𝑤 𝑗 , upon which (3.31) becomes{

𝑤 𝑗 = 𝜂𝑤 𝑗−1 + ∇𝜙(𝑥 𝑗),
𝑥 𝑗+1 = 𝑥 𝑗 − 𝜈𝑤 𝑗 .

(3.32)

In this way, 𝑤 𝑗 is just a damped average of previous gradients, where the damping
coefficient is a power of 𝜂 that gives more weight to recent gradients. In deep
learning, the gradient is actually a sampled gradient corresponding to a ‘batch’ of
functions that make up the final objective function; see Section 8.

3.4.2. Convergence
The convergence of Chebyshev iteration for linear problems is well understood;
see e.g. Saad (2011). Here we consider, more generally, the momentum scheme
(3.29), but we restrict our study to the particular case where the scalars 𝜂 𝑗 , 𝜈 𝑗 are
constant, denoted by 𝜂, 𝜈 respectively. We also make the same assumption as for

2 The motivation here is that when 𝜂 = 0, which corresponds to the gradient method without
momentum, the vector 𝑣 𝑗 in the update 𝑥 𝑗+1 = 𝑥 𝑗 + 𝑣 𝑗 should be a negative multiple of the
gradient of 𝜙, so changing the sign makes 𝑣 𝑗 a positive multiple of the gradient.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

836 Y. Saad

the Chebyshev iteration that the eigenvalues of 𝐴 are real and located in the interval
[𝛼, 𝛽] with 𝛼 > 0. Equation (3.29) becomes

𝑥 𝑗+1 = 𝑥 𝑗 + 𝜂(𝑥 𝑗 − 𝑥 𝑗−1) − 𝜈(𝐴𝑥 𝑗 − 𝑏)
= [(1 + 𝜂)𝐼 − 𝜈𝐴]𝑥 𝑗 − 𝜂𝑥 𝑗−1 + 𝜈𝑏. (3.33)

To analyse the convergence of the above iteration, we can write it in the form(
𝑥 𝑗+1
𝑥 𝑗

)
=

 (1 + 𝜂)𝐼 − 𝜈𝐴 −𝜂𝐼

𝐼 0

(
𝑥 𝑗
𝑥 𝑗−1

)
+
(
𝜈𝑏

0

)
. (3.34)

It is helpful to introduce two matrices,

𝐵 =
1
𝛿

(𝐴 − 𝜃𝐼) and 𝐶 =
1
2
[(1 + 𝜂)𝐼 − 𝜈𝐴], (3.35)

where we recall that 𝛿, 𝜃 are defined in (3.11) and that the eigenvalues 𝜆𝑖(𝐵) are in
the interval [−1, 1]. Then the iteration matrix in (3.34) is

𝐺 =

(
2𝐶 −𝜂𝐼
𝐼 0

)
. (3.36)

If 𝜇 𝑗 , 𝑗 = 1, . . . , 𝑛, are the eigenvalues of 𝐶, then those of 𝐺 are

𝜆 𝑗 = 𝜇 𝑗 ±
√︃
𝜇2
𝑗
− 𝜂. (3.37)

This expression can help determine if the scheme (3.29) will converge. As a
particular case, a sufficient condition for convergence is that 0 < 𝜂 < 1 and all 𝜇 𝑗

are less than √
𝜂 in magnitude. In this case 𝜇2

𝑗
− 𝜂 is negative and the modulus of

𝜆 𝑗 is a constant equal to √
𝜂, which is independent of 𝑗 .

As an example, we will look at what happens in the case of the stationary
Chebyshev iteration defined earlier.

Proposition 3.3. Consider the stationary Chebyshev iteration in which 𝜂 𝑗 = 𝜂 ≡
𝜌2 and 𝜈 𝑗 = 𝜈 = 2(𝜌/𝛿), where 𝜌 was defined in (3.22). Then each of the
eigenvalues 𝜇 𝑗 of the matrix 𝐶 in (3.35) satisfies the inequality |𝜇 𝑗 | ≤ 𝜌. In
addition, if 𝜌 < 1 the stationary Chebyshev iteration converges and its convergence
factor, that is, the spectral radius of the matrix 𝐺 in (3.36), is equal to 𝜌.

Proof. The eigenvalues 𝜇 𝑗 of 𝐶 are related to those of 𝐵 as follows:

𝜇 𝑗 =
1
2
[1 + 𝜂 − 𝜈𝜆 𝑗(𝐴)] = 1

2
[1 + 𝜂 − 𝜈(𝜃 + 𝛿𝜆 𝑗(𝐵))] . (3.38)

Substituting 𝜂 = 𝜌2 and 𝜈 = 2𝜌/𝛿 leads to

𝜇 𝑗 =
1
2

[
1 + 𝜌2 − 2𝜌

𝛿
(𝜃 + 𝛿𝜆 𝑗(𝐵))

]
=

1
2

[
𝜌2 − 2

𝜃

𝛿
𝜌 + 1

]
− 𝜌𝜆 𝑗(𝐵). (3.39)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 837

It can be observed that 𝜌 in (3.22) is a root of the quadratic term in the brackets in
the second part, i.e. 𝜌2−2 𝜃

𝛿
𝜌+1 = 0, and so 𝜇 𝑗 = −𝜌𝜆 𝑗(𝐵). Since |𝜆 𝑗(𝐵)| ≤ 1, it is

clear that |𝜇 𝑗 | ≤ 𝜌 and therefore the term 𝜇2
𝑗
−𝜂 = 𝜇2

𝑗
− 𝜌2 in (3.37) is non-positive.

Hence the eigenvalues 𝜆 𝑗 are of the form 𝜆 𝑗 = 𝜇 𝑗 ± 𝑖
√︃
𝜌2 − 𝜇2

𝑗
and they all have

the same modulus 𝜌.

It may seem counter-intuitive that a simple fixed-point iteration like (3.34) can
be competitive with more advanced schemes, but we note that we have doubled
the dimension of the problem relative to a simple first-order scheme. The strategy
of moving a problem into a higher dimension to achieve better convergence is
common.

3.4.3. Nesterov acceleration
A slight variation of the momentum scheme discussed above is Nesterov’s iteration
(Nesterov 2014). In this approach the gradient is evaluated at an intermediate point
instead of the most recent iterate:

𝑥 𝑗+1 = 𝑥 𝑗 + 𝜂 𝑗Δ𝑥 𝑗−1 − 𝜈 𝑗∇𝜙(𝑥 𝑗 + 𝜂 𝑗Δ𝑥 𝑗−1). (3.40)

Using earlier notation where 𝑣 𝑗−1 = −Δ𝑥 𝑗−1, this can also be rewritten as{
𝑣 𝑗 = 𝜂 𝑗𝑣 𝑗−1 + 𝜈 𝑗∇𝜙(𝑥 𝑗 − 𝜂 𝑗𝑣 𝑗−1),
𝑥 𝑗+1 = 𝑥 𝑗 − 𝑣 𝑗 .

(3.41)

To analyse convergence in the linear case, we need to rewrite (3.40) in a block
form similar to (3.34). Setting 𝜂 𝑗 = 𝜂, 𝜈 𝑗 = 𝜈 and ∇𝜙(𝑥) = 𝐴𝑥 − 𝑏 in (3.40) yields

𝑥 𝑗+1 = 𝑥 𝑗 + 𝜂(𝑥 𝑗 − 𝑥 𝑗−1) − 𝜈[𝐴(𝑥 𝑗 + 𝜂(𝑥 𝑗 − 𝑥 𝑗−1)) − 𝑏]
= (1 + 𝜂)𝑥 𝑗 − 𝜂𝑥 𝑗−1 − 𝜈(1 + 𝜂)𝐴𝑥 𝑗 + 𝜈𝜂𝐴𝑥 𝑗−1 + 𝜈𝑏
= (1 + 𝜂)(𝐼 − 𝜈𝐴)𝑥 𝑗 − 𝜂[𝐼 − 𝜈𝐴]𝑥 𝑗−1 + 𝜈𝑏,

which leads to(
𝑥 𝑗+1
𝑥 𝑗

)
=

 (1 + 𝜂)(𝐼 − 𝜈𝐴) −𝜂(𝐼 − 𝜈𝐴)

𝐼 0

(
𝑥 𝑗
𝑥 𝑗−1

)
+
(
𝜈𝑏

0

)
. (3.42)

The scheme represented by (3.40) and its matrix form (3.42) can be viewed as
a way of accelerating a Richardson-type scheme (see (3.2)), with the parameters
𝛾 𝑗 set equal to 𝜈 for all 𝑗 . The corresponding iteration matrix (3.4) is the matrix
𝐵 ≡ 𝐼 − 𝜈𝐴. If 𝜇 𝑗 , 𝑗 = 1, . . . , 𝑛 are the eigenvalues of 𝐵, those of the iteration
matrix in (3.42) are roots of the equation 𝜆2 − (1 + 𝜂)𝜇 𝑗𝜆 + 𝜂𝜇 𝑗 = 0, and they can
be written as

𝜆±𝑗 = 𝜇 𝑗

[
1 + 𝜂

2
±

√︄(
1 + 𝜂

2

)2
− 𝜂

𝜇 𝑗

]
, (3.43)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

838 Y. Saad

with the convention that when 𝜇 𝑗 = 0 both roots are zero. Assume that the
eigenvalues of 𝐵 are real and such that

−𝜃1 ≤ 𝜇 𝑗 ≤ 𝜃2, (3.44)

where 𝜃1, 𝜃2 are non-negative. It is convenient to define

𝜃∗ =
𝜂

1
2 (1 + 𝜂)2

. (3.45)

The simplest scenario to analyse is when 𝜈 and 𝜂 are selected such that 𝜃1 = 0
and 𝜃2 = 𝜃∗. For example, we can first set 𝜈 = 1/𝜆max(𝐴) to satisfy the requirement
𝜃1 = 0 since in this case

𝜇𝑖 = 1 − 𝜈𝜆𝑖(𝐴) ≥ 1 − 𝜆max
𝜆max

= 0.

Then, with 𝜈 set to the value just selected, we will find 𝜂 so that 𝜃∗ = 𝜃2, i.e.
𝜂/(1

2 (1 + 𝜂))2 = 𝜃2, which yields the quadratic equation

𝜂2 − 2
(

2
𝜃2

− 1
)
𝜂 + 1 = 0. (3.46)

Note that if the eigenvalues of 𝐴 are positive, then 𝜃2 ≤ 1 and the discriminant
Δ = (2/𝜃2 − 1)2 − 1 is non-negative, so the roots are real. It is important to also
note that the product of the two roots of this equation is one, and we will select 𝜂
to be the smallest of the two roots, so we know it will not exceed one.

In this scenario, the eigenvalues 𝜇 𝑗 are in the interval [0, 𝜃∗] and will yield a
negative value inside the square root in formula (3.43) for 𝜆±

𝑗
. The squared modulus

of 𝜆±
𝑗

is

𝜇2
𝑗

[(
1 + 𝜂

2

)2
+ 𝜂

𝜇 𝑗

−
(

1 + 𝜂
2

)2]
= 𝜂𝜇 𝑗 . (3.47)

So each of these eigenvalues is transformed into a complex conjugate pair of
eigenvalues with modulus √

𝜂𝜇 𝑗 , but since 𝜇 𝑗 ≤ 𝜃∗ the maximum modulus is
≤ 2𝜂/(1 + 𝜂), which is less than one when 𝜇 is selected to be the smallest root
of (3.46) as discussed above. In this situation the scheme will converge with a
convergence factor 2𝜂/(1 + 𝜂).

It is also possible to analyse convergence in a more general scenario when

−𝜃1 ≤ 0 ≤ 𝜃∗ ≤ 𝜃2.

In this situation we would need to distinguish between three different cases corres-
ponding to the intervals [𝜃1, 0), [0, 𝜃∗) and [𝜃∗, 𝜃2]. The analysis is more complex
and is omitted.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 839

4. Accelerating the SCF iteration
The Schrödinger equation 𝐻Ψ = 𝐸Ψ was the result of a few decades of exception-
ally productive research starting in the late nineteenth century that revolutionized
our understanding of matter at the nanoscale; see Gamov (1966). In this equation
𝐸 is the energy of the system and Ψ = Ψ(𝑟1, 𝑟2, . . . , 𝑟𝑛, 𝑅1, 𝑅2, . . . , 𝑅𝑁) is the
wavefunction that depends on the positions 𝑅𝑖 , 𝑟𝑖 of the nuclei and electrons re-
spectively. This dependence makes the equation intractable except for the smallest
cases. Thus Dirac (1929, p. 1) famously stated:
The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble. It therefore becomes desirable that approximate practical methods of applying
quantum mechanics should be developed.

It took about four additional decades to develop such methods, a good representative
of which is density functional theory (DFT).

4.1. The Kohn–Sham equations and the SCF iteration

DFT manages to obtain a tractable version of the original equation by replacing
the many-particle wavefunction Ψ with one that depends on one fictitious particle
which will generate the same charge density as that of the original interacting
multi-particle system. The foundation of the method is a fundamental result by
Kohn and Sham (1965), namely that observable quantities are uniquely determined
by the ground state charge density. The resulting Kohn–Sham equation can be
written as [

− ℎ
2

2𝑚
∇2 +𝑉tot [𝜌(𝑟)]

]
Ψ(𝑟) = 𝐸Ψ(𝑟), (4.1)

where the total potential 𝑉tot is the sum of three terms:

𝑉tot = 𝑉ion +𝑉𝐻 +𝑉𝑥𝑐 . (4.2)

Both the Hartree potential 𝑉𝐻 and the exchange-correlation 𝑉𝑥𝑐 depend on the
charge density (or electron density), which is defined from ‘occupied’ wavefunc-
tions:

𝜌(𝑟) =
occup∑︁

𝑖

|Ψ𝑖(𝑟)|2. (4.3)

Thus the Hartree potential 𝑉𝐻 is a solution of the Poisson equation, ∇2𝑉𝐻 =

−4𝜋𝜌(𝑟), on the domain of interest, while the exchange-correlation potential de-
pends nonlinearly on 𝜌 under various expressions that depend on the model. Once
discretized, equation (4.1) yields a large eigenvalue problem, typically involving
𝑛occup eigenvalues and associated eigenvectors. For additional details, see Saad,
Chelikowsky and Shontz (2009).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

840 Y. Saad

The basic SCF iteration would start from a guessed value of the charge density
and other variables and obtain a total potential from it. Then the eigenvalue problem
is solved to give a new set of wavefunctions 𝜓𝑖 , from which a new charge density
𝜌 is computed, and the cycle is repeated until self-consistency is reached, i.e. until
the input 𝜌in and output 𝜌out are close enough. One can capture the process of
computing 𝜌 in this way by a fixed-point iteration,

𝜌 𝑗+1 = 𝑔(𝜌 𝑗), (4.4)

where 𝑔 is a rather complex mapping that computes a new charge density from the
old one. This mapping involves solving an eigenvalue problem, a Poisson equation,
and making some other updates.

Convergence of this process can be slow in some specific situations. In addi-
tion, the cost of each iteration can be enormous. For example, one could have a
discretized eigenvalue problem with a size in the tens of millions, and a number of
occupied states, i.e. eigenpairs to compute, in the tens of thousands. It is therefore
natural to think of employing procedures that accelerate the process, and this can
be done in a number of ways.

4.2. Simple mixing

The idea of acceleration used in the context of DFT is different from that of
extrapolation discussed earlier. Here researchers invoke the idea of ‘mixing’ a
current 𝜌 with older ones. The most basic of these is known as ‘simple mixing’
and it defines a new 𝜌 from an old one as follows, where 𝛾 is a scalar parameter:

𝜌 𝑗+1 = 𝛾𝑔(𝜌 𝑗) + (1 − 𝛾)𝜌 𝑗 (4.5)
= 𝜌 𝑗 + 𝛾(𝑔(𝜌 𝑗) − 𝜌 𝑗). (4.6)

It may be helpful to link the above acceleration scheme with other methods that
have been developed in different contexts, and to this end a suitable notation is key
to unravelling these links. We will replace 𝜌 with a more general variable 𝑥, so
(4.4) becomes

𝑥 𝑗+1 = 𝑔(𝑥 𝑗), (4.7)

and we will let 𝑓 denote the function

𝑓 (𝑥) = 𝑔(𝑥) − 𝑥. (4.8)

With this, the ‘simple mixing’ iteration (4.6) becomes

𝑥 𝑗+1 = 𝑥 𝑗 + 𝛾 𝑓 (𝑥 𝑗). (4.9)

The first link that will help set the notation and terminology is with Richardson’s
iteration (see equation (3.2)) for solving linear systems of the form 𝐴𝑥 = 𝑏. In this
case 𝑔(𝑥) = 𝑥 + 𝛾(𝑏− 𝐴𝑥) and 𝑓 (𝑥) = 𝑏− 𝐴𝑥. So Richardson’s iteration amounts to
the simple mixing scheme above, where 𝑓 (𝑥) is the residual 𝑏 − 𝐴𝑥. We will refer
to the general scheme defined by (4.9) as Richardson’s iteration, or ‘linear mixing’,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 841

in order to avoid the term ‘simple mixing’, which is proper to the physics literature.
Often, linear iterations are expressed in the form 𝑥 𝑗+1 = 𝑀𝑥 𝑗 + 𝑏. In this case we
seek to solve the system (𝐼 − 𝑀)𝑥 = 𝑏, and 𝑓 (𝑥) = (𝐼 − 𝑀)𝑥 − 𝑏 is the negative of
the residual.

The next link is with gradient descent algorithms for minimizing a scalar function
𝜙(𝑥). Assuming that the function is convex and differentiable, the iteration reads

𝑥 𝑗+1 = 𝑥 𝑗 − 𝛾∇𝜙(𝑥 𝑗), (4.10)

where 𝛾 is a positive scalar selected to ensure a decrease of the function 𝜙(𝑥). In the
special case where 𝜙(𝑥) = 1

2𝑥
⊤𝐴𝑥 − 𝑏⊤𝑥 and 𝐴 is symmetric, then ∇𝜙(𝑥) = 𝐴𝑥 − 𝑏,

which is the negative of the residual, i.e. ∇𝜙(𝑥) = −(𝑏 − 𝐴𝑥). This leads to the
gradient method for minimizing 𝜙(𝑥), and thereby solving the system 𝐴𝑥 = 𝑏, when
𝐴 is SPD.

4.3. Anderson mixing

Anderson (1965) presented what he called an ‘extrapolation algorithm’ for accel-
erating sequences produced by fixed-point iterations. The method became well
known in the physics literature as ‘Anderson mixing’, and later as ‘Anderson ac-
celeration’ (AA) among numerical analysts. The following description of the
algorithm introduces minimal changes to the notation adopted in the original pa-
per. Anderson’s scheme aimed at generalizing the simple mixing discussed earlier.
It also starts with a mapping 𝑔 that takes an input 𝑥 into some output 𝑦, so that
𝑦 = 𝑔(𝑥). The pair 𝑥, 𝑦 is ‘self-consistent’ when the output and input values are
the same, i.e. when ∥𝑦 − 𝑥∥2 = 0, or small enough in practice. In the following
we define 𝑓 to be the residual 𝑓 (𝑥) = 𝑔(𝑥) − 𝑥. First, Anderson considered a pair
consisting of an intermediate iterate 𝑥 𝑗 and an associated ‘linear residual’ 𝑓 𝑗 :

𝑥 𝑗 = 𝑥 𝑗 +
𝑗−1∑︁

𝑖=[𝑗−𝑚]
𝜃𝑖(𝑥𝑖 − 𝑥 𝑗), (4.11)

𝑓 𝑗 = 𝑓 𝑗 +
𝑗−1∑︁

𝑖=[𝑗−𝑚]
𝜃𝑖(𝑓𝑖 − 𝑓 𝑗). (4.12)

Since 𝑓 𝑗 can be viewed as a linearized residual for 𝑥 𝑗 , the idea is to determine the
set of 𝜃𝑖 so as to minimize the 2-norm of 𝑓 𝑗 :

min
{ 𝜃𝑖 }

 𝑓 𝑗 + 𝑗−1∑︁
𝑖=[𝑗−𝑚]

𝜃𝑖(𝑓𝑖 − 𝑓 𝑗)

2
. (4.13)

Once the optimal 𝜃 = [𝜃 [𝑗−𝑚] , . . . , 𝜃 𝑗−1]⊤ is found, the vectors 𝑥 𝑗 , 𝑓 𝑗 are computed
according to (4.11)–(4.12) and the next iterate is then defined as

𝑥 𝑗+1 = 𝑥 𝑗 + 𝛽 𝑓 𝑗 . (4.14)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

842 Y. Saad

In the original article 𝛽 was dependent on 𝑗 , but we removed this dependence for
simplicity, as this also reflects common practice.

When comparing the Anderson scheme to Pulay mixing discussed in the next
section, it becomes useful to rewrite equations (4.11)–(4.12) by defining 𝜃 𝑗 =

1 −∑ 𝑗−1
𝑖=[𝑗−𝑚] 𝜃𝑖 . This leads to the mathematically equivalent equations

𝑥 𝑗 =

𝑗∑︁
𝑖=[𝑗−𝑚]

𝜃𝑖𝑥𝑖 , (4.15)

𝑓 𝑗 =

𝑗∑︁
𝑖=[𝑗−𝑚]

𝜃𝑖 𝑓𝑖 , (4.16)

{𝜃𝑖} = argmin

{ 𝑗∑︁
𝑖=[𝑗−𝑚]

𝜃𝑖 𝑓𝑖

2

subject to
𝑗∑︁

𝑖=[𝑗−𝑚]
𝜃𝑖 = 1

}
. (4.17)

Formulation (4.11)–(4.13) leads to a standard (unconstrained) least-squares prob-
lem to solve; see (4.13). It can be viewed as a straightforward alternative to the for-
mulation (4.15)–(4.17), which requires solving a constrained optimization problem.
The first formulation is still not an efficient one from the implementation point of
view, mainly because the sets of vectors 𝑓𝑖− 𝑓 𝑗 and 𝑥𝑖−𝑥 𝑗 for 𝑖 = [𝑗−𝑚], . . . , 𝑗−1]
must be computed at each step. An equivalent algorithm that avoids this will be
seen in Section 6.

4.4. DIIS (Pulay mixing)

Direct inversion in the iterative subspace (DIIS) is a method introduced by Pulay
(1980) to address the same acceleration needs as Anderson’s method. It is well
known as ‘Pulay mixing’ and widely used in computational chemistry. The method
defines the new iterate in the form

𝑥 𝑗+1 =

𝑗∑︁
𝑖=[𝑗−𝑚]

𝜃𝑖𝑔(𝑥𝑖), (4.18)

where the 𝜃𝑖 are parameters to be determined such that
∑ 𝑗

𝑖=[𝑗−𝑚] 𝜃𝑖 = 1. Defining
the residual for iteration 𝑖 as 𝑓𝑖 = 𝑔(𝑥𝑖) − 𝑥𝑖 , the 𝜃𝑖 are selected to minimize the
norm of the linearized residual, that is, they result from solving the following
optimization problem:

min
 𝑗∑︁
𝑖=[𝑗−𝑚]

𝜃𝑖 𝑓𝑖

2

subject to
𝑗∑︁

𝑖=[𝑗−𝑚]
𝜃𝑖 = 1. (4.19)

In the original paper, the above problem was solved by using standard techniques
based on Lagrange multipliers. However, an alternative approach is to invoke the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 843

constraint and express one of the 𝜃𝑖 in terms of the others. Specifically, we can
define

𝜃 𝑗 = 1 −
𝑗−1∑︁

𝑖=[𝑗−𝑚]
𝜃𝑖 . (4.20)

When this is substituted in the optimization problem (4.19) we obtain the same
optimization problem (4.13) as for AA. In addition, assume that DIIS is applied to
an iteration of the form (4.9) with 𝛾 replaced by 𝛽. In this case 𝑔(𝑥𝑖) = 𝑥𝑖 + 𝛽 𝑓 (𝑥𝑖),
and therefore the next iterate defined in (4.18) can be rewritten as

𝑥 𝑗+1 =

𝑗∑︁
𝑖=1

𝜃𝑖(𝑥𝑖 + 𝛽 𝑓 (𝑥𝑖)) =
𝑗∑︁

𝑖=[𝑗−𝑚]
𝜃𝑖𝑥𝑖 + 𝛽

𝑗∑︁
𝑖=[𝑗−𝑚]

𝜃𝑖 𝑓 (𝑥𝑖)) ≡ 𝑥 𝑗 + 𝛽 𝑓 𝑗 , (4.21)

which is identical to Anderson’s update in (4.14). Note also that the vectors 𝑓𝑖
defined above are now 𝑥𝑖 − 𝑔(𝑥𝑖) = 𝛽 𝑓𝑖 , so the solution to the problem (4.19) is
unchanged. So the two schemes are equivalent when both are used to accelerate
an iteration of the Richardson type (4.9). For this reason, the common term
‘Anderson–Pulay mixing’ is often used to refer to either method.

Later, Pulay (1982) considered improvements to the original scheme discussed
above. This improved scheme consisted mainly in introducing a new SCF iteration,
i.e. an alternative to the function 𝑔 in our notation, which leads to better conver-
gence. In other words the method is specifically targeted at SCF iterations. Pulay
seemed unaware of Anderson’s work, which preceded his by approximately 15
years. Indeed, neither of the two articles just mentioned cites Anderson’s method.

Chupin, Dupuy, Legendre and Séré (2021) discuss the convergence of variable
depth DIIS algorithms and show that these can lead to superior convergence and
computationally more effective schemes.

5. Inexact and quasi-Newton approaches
Among other techniques that have been successfully used to accelerate fixed-
point iterations, such as the ones in DFT, are those based on quasi-Newton (QN)
approaches. One might argue whether or not it is legitimate to view these as
‘acceleration techniques’. If the only restriction we put on acceleration methods
is that they utilize a few of the previous iterates of the sequence, and that they
apply the fixed-point mapping 𝑔 to one or more vectors, then inexact Newton and
quasi-Newton methods satisfy these requirements.

5.1. Inexact Newton

Many of the approaches developed for solving (1.2) are derived as approximations
to Newton’s approach, which is based on the local linear model around some current
approximation 𝑥 𝑗 :

𝑓 (𝑥 𝑗 + Δ𝑥) ≈ 𝑓 (𝑥 𝑗) + 𝐽(𝑥 𝑗)Δ𝑥, (5.1)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

844 Y. Saad

where 𝐽(𝑥 𝑗) is the Jacobian matrix at 𝑥 𝑗 . Newton’s method determines 𝛿 = Δ𝑥 𝑗 =

𝑥 𝑗+1 − 𝑥 𝑗 at step 𝑗 , to make the right-hand side on (5.1) equal to zero. This is
achieved by solving the Newton linear system 𝐽(𝑥 𝑗)𝛿 + 𝑓 (𝑥 𝑗) = 0. Inexact Newton
methods (see e.g. Kelley 1995, Dembo, Eisenstat and Steihaug 1982, Brown and
Saad 1990, among many references) compute a sequence of iterates in which the
above Newton systems are solved approximately, typically by an iterative method.
Starting from an initial guess 𝑥0, the iteration proceeds as follows:

solve 𝐽(𝑥 𝑗)𝛿 𝑗 ≈ − 𝑓 (𝑥 𝑗), (5.2)
set 𝑥 𝑗+1 = 𝑥 𝑗 + 𝛿 𝑗 . (5.3)

The right-hand side of the Newton system is − 𝑓 (𝑥 𝑗), and this is also the residual
for the linear system when 𝛿 𝑗 = 0. Therefore in later sections we will define the
residual vector 𝑟 𝑗 ≡ − 𝑓 (𝑥 𝑗).

Suppose that we invoke a Krylov subspace method for solving (5.2). If we set
𝐽 ≡ 𝐽(𝑥 𝑗), then the method will usually generate an approximate solution that can
be written in the form

𝛿 𝑗 = 𝑉 𝑗 𝑦 𝑗 , (5.4)

where 𝑉 𝑗 is an orthonormal basis of the Krylov subspace

K 𝑗 = Span{𝑟 𝑗 , 𝐽𝑟 𝑗 , . . . , 𝐽𝑚−1𝑟 𝑗}. (5.5)

The vector 𝑦 𝑗 represents the expression of the solution in the basis𝑉 𝑗 . For example,
if we use GMRES, or equivalently GCR (Eisenstat et al. 1983), then 𝑦 𝑗 becomes
𝑦 𝑗 = (𝐽𝑉 𝑗)†(− 𝑓 (𝑥 𝑗)). In essence, the inverse Jacobian is locally approximated by
the rank 𝑚 matrix:

𝐵 𝑗 ,GMRES = 𝑉 𝑗(𝐽𝑉 𝑗)†. (5.6)

In inexact Newton methods the approximation just defined can be termed ‘local’,
since it is only used for the 𝑗 th step: once the solution is updated, the approximate
inverse Jacobian (5.6) is discarded and the process will essentially compute a new
Krylov subspace and related approximate Jacobian at the next iteration. This ‘lack
of memory’ can be an impediment to performance. Herein lies an important distinc-
tion between these methods and quasi-Newton methods, whose goal is to compute
approximations to the Jacobians, or their inverses, by an accumulative process,
which utilizes the most recent iterates to gradually update these approximations.

5.2. Quasi-Newton

Standard quasi-Newton methods build a local approximation 𝐽 𝑗 to the Jacobian
𝐽(𝑥 𝑗) progressively by using previous iterates. These methods require the relation
(5.1) to be satisfied by the updated 𝐽 𝑗+1 which is built at step 𝑗 . First the following
secant condition is imposed:

𝐽 𝑗+1Δ𝑥 𝑗 = Δ 𝑓 𝑗 , (5.7)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 845

where Δ 𝑓 𝑗 ≔ 𝑓 (𝑥 𝑗+1) − 𝑓 (𝑥 𝑗). Such a condition will force the new approximation
to be exact on the pair Δ𝑥 𝑗 ,Δ 𝑓 𝑗 in the sense that the mapping 𝐽 𝑗+1 must transform
Δ𝑥 𝑗 into Δ 𝑓 𝑗 exactly. A second common requirement is the no-change condition:

𝐽 𝑗+1𝑞 = 𝐽 𝑗𝑞 for all 𝑞 such that 𝑞⊤Δ𝑥 𝑗 = 0. (5.8)

In other words, there should be no new information from 𝐽 𝑗 to 𝐽 𝑗+1 along any
direction 𝑞 orthogonal to Δ𝑥 𝑗 . Broyden showed that there is a unique matrix 𝐽 𝑗+1
that satisfies both conditions (5.7) and (5.8), and it can be obtained by the update
formula

𝐽 𝑗+1 = 𝐽 𝑗 + (Δ 𝑓 𝑗 − 𝐽 𝑗Δ𝑥 𝑗)
Δ𝑥⊤

𝑗

Δ𝑥⊤
𝑗
Δ𝑥 𝑗

. (5.9)

Broyden’s second method approximates the inverse Jacobian directly instead of
the Jacobian itself. If 𝐺 𝑗 denotes this approximate inverse Jacobian at the 𝑗 th
iteration, then the secant condition (5.7) becomes

𝐺 𝑗+1Δ 𝑓 𝑗 = Δ𝑥 𝑗 . (5.10)

By minimizing 𝐸(𝐺 𝑗+1) = ∥𝐺 𝑗+1 − 𝐺 𝑗 ∥2
𝐹

with respect to 𝐺 𝑗+1 subject to (5.10),
one finds this update formula for the inverse Jacobian

𝐺 𝑗+1 = 𝐺 𝑗 + (Δ𝑥 𝑗 − 𝐺 𝑗Δ 𝑓 𝑗)
Δ 𝑓 ⊤

𝑗

Δ 𝑓 ⊤
𝑗
Δ 𝑓 𝑗

, (5.11)

which is also the only update satisfying both the secant condition (5.10) and the
no-change condition for the inverse Jacobian

(𝐺 𝑗+1 − 𝐺 𝑗)𝑞 = 0 for all 𝑞 ⊥ Δ 𝑓 𝑗 . (5.12)

AA can be viewed from the angle of multisecant methods, i.e. block forms of the
secant methods just discussed, in which we impose a secant condition on a whole
set of vectors Δ𝑥𝑖 ,Δ 𝑓𝑖 at the same time; see Section 6.7.1.

6. A detailed look at Anderson acceleration
Anderson (1965) hinted that he was influenced by the literature on ‘extrapolation
methods’ of the type presented by Richardson and Shanks, and in fact he named
his method the ‘extrapolation method’, although more recent terminology reserves
this term to a different class of methods. There were several rediscoveries of the
method, as well as variations in the implementations. In this section we will take a
deeper look at AA and explore different implementations, variants of the algorithm,
as well as theoretical aspects.

6.1. Reformulating Anderson’s method

We begin by making a small adjustment to the notation in order to rewrite AA in a
form that resembles that of extrapolation methods. This variation requires a simple

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

846 Y. Saad

change of basis. As was seen in Section 4.3, Anderson used the basis vectors (in
MATLAB colon notation)

𝑑𝑖 = 𝑓 𝑗 − 𝑓𝑖 for 𝑖 = [𝑗 − 𝑚] : 𝑗 − 1 (6.1)

to express the vector added to 𝑓 𝑗 to obtain 𝑓 𝑗 as shown in (4.12), which becomes

𝑓𝑖 = 𝑓 𝑗 −
𝑗−1∑︁

𝑖=[𝑗−𝑚]
𝜃𝑖𝑑𝑖 . (6.2)

We assume that the 𝑑𝑖 do indeed form a basis. It is common in extrapolation
methods to use forward differences, e.g. Δ 𝑓𝑖 = 𝑓𝑖+1 − 𝑓𝑖 and Δ𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖 . These
can be exploited to form an alternate basis consisting of the vectorsΔ 𝑓𝑖−1 = 𝑓𝑖− 𝑓𝑖−1
for 𝑖 = [𝑗 − 𝑚] : 𝑗 − 1 instead of the 𝑑𝑖 . Note that the simple relations

Δ 𝑓𝑖 = (𝑓𝑖+1 − 𝑓 𝑗) − (𝑓𝑖 − 𝑓 𝑗) = 𝑑𝑖 − 𝑑𝑖+1, 𝑖 = [𝑗 − 𝑚], . . . , 𝑗 − 1, (6.3)
𝑓 𝑗 − 𝑓𝑖 = (𝑓 𝑗 − 𝑓 𝑗−1) + (𝑓 𝑗−1 − 𝑓 𝑗−2) + · · · + (𝑓𝑖+1 − 𝑓𝑖)

= Δ 𝑓 𝑗−1 + Δ 𝑓 𝑗−2 + · · · + Δ 𝑓𝑖 , 𝑖 = [𝑗 − 𝑚], . . . , 𝑗 − 1, (6.4)

allow us to switch from one basis representation to the other. The linear independ-
ence of one of these two sets of vectors implies the linear independence of the
other. A similar transformation can also applied to express the vectors 𝑥 𝑗 − 𝑥𝑖 in
terms of Δ𝑥𝑖 and vice versa.

With this new notation at hand, we can rewrite AA as follows. Starting with an
initial 𝑥0 and 𝑥1 ≡ 𝑔(𝑥0) = 𝑥0 + 𝛽 𝑓0, where 𝛽 > 0 is a parameter, we define blocks
of forward differences

X 𝑗 = [Δ𝑥 [𝑗−𝑚] · · · Δ𝑥 𝑗−1], F 𝑗 = [Δ 𝑓[𝑗−𝑚] · · · Δ 𝑓 𝑗−1] . (6.5)

We will define 𝑚 𝑗 = min{𝑚, 𝑗}, which is the number of columns in X 𝑗 and F 𝑗 .
The least-squares problem (4.13) is translated to the new problem

𝛾(𝑗) = argmin𝛾∈R𝑚𝑗 ∥ 𝑓 𝑗 − F 𝑗𝛾∥2, (6.6)

from which we get the vectors in equations (4.11), (4.12) and (4.14):

𝑥 𝑗 = 𝑥 𝑗 − X 𝑗 𝛾
(𝑗), (6.7)

𝑓 𝑗 = 𝑓 𝑗 − F 𝑗 𝛾
(𝑗), (6.8)

𝑥 𝑗+1 = 𝑥 𝑗 + 𝛽 𝑓 𝑗 . (6.9)

We have given this as Algorithm 4.
It is clear that the two methods are mathematically equivalent, as they both

express the same underlying problem in two different bases. To better see the
correspondence between the two in the simplest case when 𝑚 = ∞ (in which case

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 847

Algorithm 4 Anderson acceleration AA(𝑚)
1: Input: Function 𝑓 (𝑥), initial guess 𝑥0, window size 𝑚
2: Set 𝑓0 ≡ 𝑓 (𝑥0);
3: 𝑥1 = 𝑥0 + 𝛽0 𝑓0;
4: 𝑓1 ≡ 𝑓 (𝑥1).
5: for 𝑗 = 1, 2, . . . , until convergence do
6: Δ𝑥 𝑗−1 = 𝑥 𝑗 − 𝑥 𝑗−1 Δ 𝑓 𝑗−1 = 𝑓 𝑗 − 𝑓 𝑗−1
7: Set X 𝑗 = [Δ𝑥 [𝑗−𝑚] , . . . ,Δ𝑥 𝑗−1], F 𝑗 = [Δ 𝑓[𝑗−𝑚] , . . . ,Δ 𝑓 𝑗−1]
8: Compute 𝛾(𝑗) = argmin𝛾 ∥ 𝑓 𝑗 − F 𝑗𝛾∥2
9: Compute 𝑥 𝑗+1 = (𝑥 𝑗 − X 𝑗𝛾

(𝑗)) + 𝛽(𝑓 𝑗 − F 𝑗𝛾
(𝑗))

10: end for

[𝑗 − 𝑚] = 0) we can expand 𝑓 𝑗 − F 𝑗𝛾 and exploit (6.3):

𝑓 𝑗 − F 𝑗𝛾 = 𝑓 𝑗 −
𝑗−1∑︁
𝑖=0

𝛾𝑖+1(𝑓𝑖+1 − 𝑓𝑖)

= 𝑓 𝑗 −
𝑗−1∑︁
𝑖=0

𝛾𝑖+1 [𝑑𝑖 − 𝑑𝑖+1] (note: 𝑑 𝑗 ≡ 0)

= 𝑓 𝑗 −
𝑗−1∑︁
𝑖=0

(𝛾𝑖+1 − 𝛾𝑖)𝑑𝑖 (with 𝛾0 ≡ 0).

Thus a comparison with (6.2) shows that the optimal 𝜃𝑖 in the original Anderson
algorithm can be obtained from the 𝛾𝑖 of the variant just presented by using the
relation 𝜃𝑖 = 𝛾𝑖+1 −𝛾𝑖 for 𝑖 = 0, . . . , 𝑗 −1 with the convention that 𝛾0 ≡ 0. It is also
easy to go in the opposite direction and express the 𝛾𝑖 from the 𝜃𝑖 of the original
algorithm. In fact, a simple induction argument using the relations 𝜃𝑖 = 𝛾𝑖+1 − 𝛾𝑖
for 𝑖 ≥ 0 with 𝛾0 ≡ 0, will show that 𝛾𝑖+1 =

∑𝑖
𝑗=0 𝜃 𝑗 for 𝑖 ≥ 0.

The intermediate solution 𝑥 𝑗 in (6.7) can be interpreted as the minimizer of the
linear model:

𝑓 (𝑥 𝑗 − X 𝑗𝛾) ≈ 𝑓 (𝑥 𝑗) − F 𝑗𝛾, (6.10)

where we use the approximation 𝑓 (𝑥 𝑗 − 𝛾𝑖Δ𝑥𝑖) ≈ 𝑓 (𝑥 𝑗) − 𝛾𝑖Δ 𝑓𝑖 . The method
computes the minimizer of the linear model (6.10) and the corresponding optimal
𝑥 𝑗 . The vector 𝑓 𝑗 is the corresponding linear residual. Anderson’s method obtains
this intermediate solution 𝑥 𝑗 and proceeds to perform a fixed-point iteration using
the linear model represented by the pair 𝑥 𝑗 , 𝑓 𝑗 , as shown in (6.9).

From an implementation perspective, to compute the new iterate 𝑥 𝑗+1 as defined
in (6.36) we need the pair 𝑥 𝑗 , 𝑓 𝑗 , the pair of arrays X 𝑗 ,F 𝑗 , and 𝛽. We may write this
as 𝑥 𝑗+1 = AA(𝑥 𝑗 , 𝛽,X 𝑗 , F 𝑗). The algorithm would first obtain 𝛾(𝑗) from solving
(6.6), then compute 𝑥 𝑗 , 𝑓 𝑗 , and finally obtain the next iterate 𝑥 𝑗+1 from (6.9). In
the restarted version of the algorithm, X 𝑗 ,F 𝑗 are essentially reset to empty arrays

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

848 Y. Saad

every, say, 𝑘 iterations. The case where all previous vectors are used, called the
‘full window AA’ (or just ‘full AA’), corresponds to setting 𝑚 = ∞ in Algorithm 4.
The ‘finite window AA’ or ‘truncated AA’ corresponds to Algorithm 4, where 𝑚
is finite. The parameter 𝑚 is often termed the ‘window size’ or ‘depth’ of the
algorithm.

6.2. Classical implementations

In the classical implementation of AA, the least-squares problems (6.6) or (4.13)
are solved via the normal equations

(F⊤
𝑗 F 𝑗)𝛾(𝑗) = F⊤

𝑗 𝑓 𝑗 , (6.11)

where it is assumed that F 𝑗 has full rank. When the iterates approach convergence,
the column vectors of F 𝑗 will tend to be close to zero or they may just become
linearly dependent to within the available working accuracy. Solving the normal
equations (6.11) in these situations will fail or be subject to severe numerical issues.
In spite of this, the normal equation approach is rather common, especially when
the window size 𝑚 is small. The ideal solution to the problem from a numerical
point of view is to resort to the singular value decomposition (SVD) and apply the
truncated SVD (Golub and Van Loan 2013, § 5.5). However, this ‘gold-standard’
approach is expensive and has been avoided by practitioners. An alternative is to
regularize the least-squares problem, replacing (6.11) with

(F⊤
𝑗 F 𝑗 + 𝜏𝐼)𝛾(𝑗) = F⊤

𝑗 𝑓 𝑗 , (6.12)

where 𝜏 is a regularization parameter. This compromise works reasonably well
in practice and has the advantage of being inexpensive in terms of arithmetic and
memory. Note that the memory cost of an approach based on normal equations is
modest, mainly requiring us to keep the sets F 𝑗 ,X 𝑗 , i.e. a total of 2𝑚 vectors of
length 𝑛.

6.3. Implementation with ‘downdating QR’

A numerically effective alternative to the normal equations is based on exploiting
the QR factorization. Here we will focus on problem (6.6) of the formulation of AA
discussed above. In principle the idea of using QR is straightforward. Start with a
QR factorization of F 𝑗 , which we write as F 𝑗 = 𝑄𝑅 with 𝑄 ∈ R𝑛×𝑚 𝑗 , where we
recall the notation 𝑚 𝑗 = min{𝑚, 𝑗} and 𝑅 ∈ R𝑚 𝑗×𝑚 𝑗 . Then obtain 𝛾(𝑗) by simply
solving the triangular system 𝑅𝛾(𝑗) = 𝑄⊤ 𝑓 𝑗 . Such a trivial implementation runs
into a practical difficulty, in that recomputing the QR factorization of F 𝑗 at each
step is wasteful as it ignores the evolving nature of the block F 𝑗 .

Assume at first that 𝑗 ≤ 𝑚 − 1. Then, at the end of the 𝑗 th step represented in
the main loop of Algorithm 4, one column is added to F 𝑗 (which has 𝑗 columns)
to obtain F 𝑗+1 (which has 𝑗 + 1 ≤ 𝑚 columns). If F 𝑗 = 𝑄𝑅 and the new column

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 849

𝑣 ≡ Δ 𝑓 𝑗 is added, then we just need to carry out one additional step of the Gram–
Schmidt process whereby this 𝑣 is orthonormalized against the existing columns
of 𝑄, that is, we write 𝑞 = 𝑣 − 𝑄ℎ where ℎ = 𝑄⊤𝑣 and then 𝑞 𝑗+1 = 𝑞/𝜌 where
𝜌 = ∥𝑞∥2. Hence the new factorization is

F 𝑗+1 = [F 𝑗 , 𝑣] = [𝑄, 𝑞 𝑗+1]
(
𝑅 ℎ

0 𝜌

)
≡ �̃��̃�. (6.13)

Assume now that 𝑗 > 𝑚 − 1. Then, to form F 𝑗+1 in the next step, a column 𝑣
is added to F 𝑗 while the oldest one, Δ 𝑓𝑚 𝑗

, must be discarded to create room for
the new vector. Recall that the number of columns must stay ≤ 𝑚. This calls for a
different strategy based on ‘downdating’ the QR factorization, i.e. updating a QR
factorization when a column of the original matrix is deleted.

To simplify notation in describing the process, we will remove indices and write
our current F 𝑗 simply as 𝐹 = [𝑣1, 𝑣2, . . . , 𝑣𝑚] (𝑚 columns) and assume that 𝐹
was previously factorized as 𝐹 = 𝑄𝑅. The aim is to build the QR factorization
of [𝑣2, 𝑣3, . . . , 𝑣𝑚] from the existing factors 𝑄, 𝑅 of 𝐹. Once this is done we will
be in the same situation as the one where 𝑗 ≤ 𝑚 − 1, which was treated above,
and we can finish the process in the same way, as will be seen shortly. We write
𝐹 = [𝑣1, 𝑣2, . . . , 𝑣𝑚], 𝑅 = [𝑟1, 𝑟2, . . . , 𝑟𝑚] and denote the same matrices with their
first columns deleted by

𝐹(−) = [𝑣2, 𝑣3, . . . , 𝑣𝑚], 𝐻 = [𝑟2, 𝑟3, . . . , 𝑟𝑚] . (6.14)

The matrix 𝐻 is of size 𝑚 × (𝑚 − 1) and has an upper Hessenberg form, i.e. ℎ𝑖 𝑗 = 0
for 𝑖 > 𝑗 + 1. The matrix 𝐹(−) satisfies

𝐹(−) = 𝑄𝐻, (6.15)

and our goal is to obtain a QR factorization of 𝐹(−) from this relation. For this we
need to transform 𝐻 into upper triangular form with the help of Givens rotation
matrices (Golub and Van Loan 2013), as is often done. Givens rotations are
matrices of the form

𝐺(𝑖, 𝑘, 𝜃) =

1 . . . 0 . . . 0 0
...
. . .

...
...

...
...
...

0 · · · 𝑐 · · · 𝑠 · · · 0
... · · ·

...
. . .

...
...
...

0 · · · −𝑠 · · · 𝑐 · · · 0
... · · ·

... · · ·
... · · ·

...

0 . . . 0 . . . 1

𝑖

𝑘

with 𝑐 = cos 𝜃 and 𝑠 = sin 𝜃. This matrix represents a rotation of angle −𝜃 in
the span of 𝑒𝑖 and 𝑒𝑘 . A rotation of this type is usually applied to transform
some entry in the 𝑘th row of a matrix 𝐴 to zero by an appropriate choice of
𝜃. If 𝐻 = {ℎ𝑖 𝑗}𝑖=1: 𝑚, 𝑗=1: 𝑚−1, we can find a rotation 𝐺1 = 𝐺(1, 2, 𝜃1) so that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

850 Y. Saad

(𝐺1𝐻)2,1 = 0. The values of 𝑐 and 𝑠 for this first rotation are

𝑐 =
ℎ11√︃

ℎ2
11 + ℎ

2
12

, 𝑠 =
ℎ12√︃

ℎ2
11 + ℎ

2
12

.

This is then followed by applying a rotation𝐺2 = 𝐺(2, 3, 𝜃2) so that (𝐺2(𝐺1𝐻))3,2 =

0, etc. Let Ω be the composition of these rotation matrices:

Ω = 𝐺𝑚−1𝐺𝑚−2 · · ·𝐺2𝐺1.

The process just described transforms 𝐻 to an 𝑚 × (𝑚 − 1) upper triangular matrix
with a zero last row:

Ω𝐻 =

(
�̂�

0

)
.

Defining �̂� ≡ 𝑄Ω⊤ ≡ [𝑞1, 𝑞2, . . . , 𝑞𝑚] and �̂�(−) ≡ [𝑞1, . . . , 𝑞𝑚−1], we see that

𝐹(−) = 𝑄𝐻 = (𝑄Ω⊤) (Ω𝐻) = �̂� ×
(
�̂�

0

)
= �̂�(−)�̂�, (6.16)

which is the factorization we were seeking. Once the factorization in (6.16) is
available, we can proceed just as was done in the full window case (𝑗 ≤ 𝑚 − 1)
seen earlier to add a new vector 𝑣 to the subspace, by updating the QR factorization
of [𝐹(−), 𝑣] from that of 𝐹(−); see equation (6.13). Computing the downdated QR-
factors in this way is much less expensive than recomputing a new QR factorization.

This procedure yields a pair of matrices 𝑄 𝑗 , 𝑅 𝑗 such that F 𝑗 = 𝑄 𝑗𝑅 𝑗 at each
step 𝑗 . The solution to the least-squares problem in line 8 is 𝛾(𝑗) = 𝑅−1

𝑗
𝜂(𝑗), where

𝜂(𝑗) = 𝑄⊤
𝑗
𝑓 𝑗 . Then, clearly, in line 9 of Algorithm 4 we have

𝑓 𝑗 − F 𝑗𝛾
(𝑗) = 𝑓 𝑗 − (𝑄 𝑗𝑅 𝑗)𝛾(𝑗) = 𝑓 𝑗 − (𝑄 𝑗𝑅 𝑗)𝑅−1

𝑗 𝜂
(𝑗) = 𝑓 𝑗 −𝑄 𝑗𝜂

(𝑗), (6.17)

and thus lines 8–9 need to be replaced by

8𝑎: 𝜂(𝑗) = 𝑄⊤
𝑗 𝑓 𝑗 , 𝛾(𝑗) = 𝑅−1

𝑗 𝜂
(𝑗), (6.18)

9𝑎: 𝑥 𝑗+1 = (𝑥 𝑗 − X 𝑗𝛾
(𝑗)) + 𝛽(𝑓 𝑗 −𝑄 𝑗𝜂

(𝑗)). (6.19)

It is clear that the matrix𝑄 𝑗 can be computed ‘in place’ in the sense that the new
𝑄 𝑗 can be computed and overwritten on the old one without requiring additional
storage. Also, it is no longer necessary to store F 𝑗 in line 7. Instead we will
perform a standard factorization where the vector 𝑣 = Δ 𝑓 𝑗−1 is orthonormalized
against those previous 𝑞𝑖 that are saved. When 𝑗 > 𝑚 − 1, a downdating QR
factorization is performed to prepare the matrices �̂�(−), �̂� from which the updated
QR is performed.

We will refer to this algorithm as ‘AA-QR’ if there is a need to specifically
emphasize this particular implementation of AA. It will lead us to an interesting
variant of AA to be discussed in Section 6.5.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 851

6.4. Simple downdating

We now briefly discuss an alternative method for downdating the QR factorization.
Returning to (6.15), we split the Hessenberg matrix 𝐻 into its (𝑚 − 1) × (𝑚 − 1)
lower block, which is triangular and which we denote by 𝑅, and its first row, which
we denote by ℎ⊤1 . With this, (6.15) can be rewritten as follows:

𝐹(−) = 𝑞1ℎ
⊤
1 + [𝑞2, 𝑞2, . . . , 𝑞𝑚]𝑅

= [𝑄(−) + 𝑞1ℎ
⊤
1 𝑅

−1]𝑅
≡ [𝑄(−) + 𝑞1𝑠

⊤]𝑅, (6.20)

where we have set 𝑠⊤ ≡ ℎ⊤1 𝑅
−1. From here, there are two ways of proceeding. We

can either get a QR factorization of 𝑄(−) + 𝑞1𝑠
⊤, which can then be retrofitted into

(6.20), or we can provide some other orthogonal factorization that can be used to
solve the least-squares problem effectively.

Consider the first approach. One way to get the QR factorization of𝑄(−)+𝑞1𝑠
⊤ is

via the Cholesky factorization of the matrix [𝑄(−)+𝑞1𝑠
⊤]⊤ [𝑄(−)+𝑞1𝑠

⊤]. Observing
that the columns of 𝑄(−) are orthonormal and orthogonal to 𝑞1, we see that

[𝑄(−) + 𝑞1𝑠
⊤]⊤ [𝑄(−) + 𝑞1𝑠

⊤] = 𝐼 + 𝑠𝑠⊤. (6.21)

As it turns out, matrices of the form 𝐼 + 𝑠𝑠⊤ lead to an inexpensive Cholesky
factorization due to a nice structure that can be exploited.3 From this factorization,
say 𝐼 + 𝑠𝑠⊤ = 𝐺𝐺⊤ where 𝐺 is lower triangular, we get the updated factorization

𝐹(−) = (𝑄(−) + 𝑞1𝑠
⊤)𝑅 (6.22)

= [(𝑄(−) + 𝑞1𝑠
⊤)𝐺−𝑇]︸ ︷︷ ︸

𝑄

[𝐺⊤𝑅]︸ ︷︷ ︸
𝑅

≡ 𝑄𝑅. (6.23)

The Q-factor defined above can be verified to be indeed an orthogonal matrix
while the R-factor is clearly upper triangular. Implementation and other details are
omitted.

The second approach is a simplified, possibly more appealing, procedure. Here
we no longer rely on a formal QR factorization, but on a factorization that none-
theless exploits an orthogonal factor. Starting from (6.22), we now write

𝐹(−) = [(𝑄(−) + 𝑞1𝑠
⊤)(𝐼 + 𝑠𝑠⊤)−1/2]︸ ︷︷ ︸
𝑄

(𝐼 + 𝑠𝑠⊤)1/2𝑅]︸ ︷︷ ︸
𝑆

≡ 𝑄𝑆. (6.24)

3 In a nutshell, the entries below the main diagonal of the 𝑗 th column of the 𝐿 matrix in the LDLT
decomposition of the matrix 𝐼 + 𝑠𝑠⊤ are a constant times the entries 𝑗 +1: 𝑛 of 𝑠. This observation
leads to a Cholesky factorization that is inexpensive and easy to compute and to exploit.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

852 Y. Saad

Note in passing that the product 𝑄(𝐼 + 𝑠𝑠⊤)1/2 is just the polar decomposition
(Golub and Van Loan 2013) of the matrix 𝑄(−) + 𝑞1𝑠

⊤. Here too the structure of
𝐼 + 𝑠𝑠⊤ leads to simplifications, in this case for the terms in the fractional powers
of 𝐼 + 𝑠𝑠⊤. Indeed, if we set 𝜆 = 1 + 𝑠⊤𝑠, then it can be shown that

(𝐼 + 𝑠𝑠⊤)1/2 = 𝐼 + 𝛼𝑠𝑠⊤, with 𝛼 =
1

1 +
√
𝜆
, (6.25)

(𝐼 + 𝑠𝑠⊤)−1/2 = 𝐼 − 𝛽𝑠𝑠⊤, with 𝛽 =
1

𝜆 +
√
𝜆
. (6.26)

Noting that 𝑄⊤𝑄 = 𝐼, we wind up with a factorization of the form 𝐹(−) = 𝑄𝑆,
where 𝑄 has orthonormal columns but 𝑆 = (𝐼 + 𝑠𝑠⊤)1/2𝑅 is not triangular. It is
possible to implement this by keeping the matrix 𝑆 as a square matrix or in factored
form in order to exploit its inverse, which is 𝑆−1 = 𝑅−1(𝐼 − 𝛽𝑠𝑠⊤), where 𝛽 is given
in (6.26). The next step, adding a vector to the system, can be processed as in a
standard QR factorization (see (6.13)), where the block 𝑅 is to be replaced by 𝑆.

These two simple alternatives to the Givens-based downdating QR do not seem
to have been considered in the literature. Their main merit is that they focus more
explicitly on the consequence of deleting a column and show what remedies can
be applied. The deletion of a column leads to the QR-like factorization (6.22) of
𝐹(−). This resembles a QR factorization but the Q-part, namely 𝑄(−) + 𝑞1𝑠

⊤, is not
orthogonal. The standard remedy is to proceed with a downdating QR factorization
that obtains QR-factors from (6.15) instead of (6.20). Instead, the remedies outlined
above proceed from (6.20), from which either the QR factorization of this matrix
or its polar decomposition are derived. In both cases, the results are then retrofitted
into (6.22) to obtain a corrected decomposition, with an orthogonal Q-factor.

6.5. The truncated Gram–Schmidt (TGS) variant

There is an appealing alternative to AA-QR worth considering: bypass the down-
dating QR, and just use the orthogonal factor 𝑄 𝑗 obtained from a truncated Gram–
Schmidt (TGS) orthogonalization. This means that a new vector 𝑞 𝑗 is obtained by
orthonormalizing Δ 𝑓 𝑗−1 against the previous 𝑞𝑖 that are saved, and when we delete
a column we just omit the adjustment consisting of the downdating QR process.
Without this adjustment the resulting factors𝑄 𝑗 , 𝑅 𝑗 are no longer a QR factorization
of X 𝑗 when a truncation has taken place, i.e. when 𝑗 > 𝑚. The solution to the
least-squares problem now uses𝑄 𝑗 instead ofF 𝑗 , that is, we minimize ∥ 𝑓 𝑗−𝑄 𝑗𝛾∥2,
ending with 𝛾(𝑗) = 𝑄⊤

𝑗
𝑓 𝑗 . In the limited window case, the resulting least-squares

approximation to 𝑓 𝑗 , i.e. 𝑄 𝑗𝛾
(𝑗), is no longer equal to the one resulting from the

downdating QR approach, which solves the original LS problem (4.13) with the
set F 𝑗 by exploiting its QR factorization. In Anderson acceleration with truncated
Gram–Schmidt (AA-TGS), the resulting matrix 𝑄 𝑗 is not required to be the Q-
factor of F 𝑗 and so the range of F 𝑗 is different from that of 𝑄 𝑗 . Therefore the
method is not equivalent to AA in the finite window case.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 853

We can write the orthogonalization process at the 𝑗 th step as

𝑞 𝑗 =
1
𝑠 𝑗 𝑗

[
Δ 𝑓 𝑗−1 −

𝑗−1∑︁
𝑖=[𝑗−𝑚+1]

𝑠𝑖 𝑗𝑞𝑖

]
. (6.27)

Here the scalars 𝑠𝑖 𝑗 , 𝑖 = [𝑗 − 𝑚 + 1], . . . , 𝑗 − 1 are those utilized in a modified
Gram–Schmidt process, and 𝑠 𝑗 𝑗 is a normalizing factor so that ∥𝑞 𝑗 ∥2 = 1.

With 𝑚 𝑗 ≡ min{𝑚, 𝑗 + 1}, define the 𝑚 𝑗 × 𝑚 𝑗 upper triangular matrix 𝑆 𝑗 =

{𝑠𝑖𝑘}𝑖=[𝑗−𝑚+1]: 𝑗 ,𝑘=[𝑗−𝑚+1]: 𝑗 resulting from the orthogonalization process in (6.27).
Having selected the set of columns to use in place of F 𝑗 , the question now is how
to compute the solution 𝑥 𝑗+1, that is, how do we change line 9 of Algorithm 4? One
is tempted to take as a model equations (6.18)–(6.19) of AA-QR, where the matrix
𝑅 𝑗 in (6.18) is replaced by4 𝑆 𝑗 . However, the relation F 𝑗 = 𝑄 𝑗𝑅 𝑗 is only valid
in the full window case, so the relation 𝑓 𝑗 − F 𝑗𝑅

−1
𝑗
𝜂(𝑗) = 𝑓 𝑗 − 𝑄 𝑗𝜂

(𝑗) in (6.17) no
longer holds, and thus we cannot write 𝑥 𝑗 in the form 𝑥 𝑗 = 𝑥 𝑗 − X 𝑗𝑅

−1
𝑗
𝜂(𝑗). The

solution is to make use of the basis 𝑈 𝑗 that is defined from the set of Δ𝑥𝑖 in the
same way that 𝑄 𝑗 is defined from the Δ 𝑓𝑖 . Thus we compute the 𝑗 th column of𝑈 𝑗

by the same process we applied to obtain 𝑞 𝑗 , namely

𝑢 𝑗 =
1
𝑠 𝑗 𝑗

[
Δ𝑥 𝑗−1 −

𝑗−1∑︁
𝑖=[𝑗−𝑚+1]

𝑠𝑖 𝑗𝑢𝑖

]
, (6.28)

where the scalars 𝑠𝑖 𝑗 are the same as those utilized to obtain 𝑞 𝑗 in (6.27). With
this, the relations (6.7)–(6.9) are replaced by

𝑥 𝑗 = 𝑥 𝑗 −𝑈 𝑗𝜂
(𝑗), 𝑓 𝑗 = 𝑓 𝑗 −𝑄 𝑗𝜂

(𝑗), 𝑥 𝑗+1 = 𝑥 𝑗 + 𝛽 𝑓 𝑗 . (6.29)

The procedure is sketched as Algorithm 5. Let us examine the algorithm and
compare it with the downdating QR version seen in Section 6.3. When 𝑗 ≤ 𝑚 (full
window case), the 𝑖 loop starting in line 6, begins at 𝑖 = 0, and the block in lines
6–12 essentially performs a Gram–Schmidt QR factorization of the matrix F 𝑗 ,
while also enforcing identical operations on the set X 𝑗 . A result of the algorithm
is that

F 𝑗 = 𝑄 𝑗𝑆 𝑗 , X 𝑗 = 𝑈 𝑗𝑆 𝑗 . (6.30)

The above relations are not valid when 𝑗 > 𝑚. In particular, the subspace spanned
by𝑄 𝑗 is no longer the span of F 𝑗 . We saw how to deal with this issue in Section 6.3
in order to recover a QR factorization for F 𝑗 from a QR downdating process. AA-
TGS provides an alternative solution by relaxing the requirement of having to use
a QR factorization of X 𝑗 .

To better understand the process, we examine what happens specifically when
𝑗 = 𝑚 + 1, focusing on the set of 𝑞𝑖 . We adopt the same abbreviated notation as in

4 Recall that for convenience the indexing of the columns in 𝑄 and other arrays in Section 6.3 start
at 1 instead of 0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

854 Y. Saad

Algorithm 5 AA-TGS(𝑚)
1: Input: Function 𝑓 (𝑥), initial guess 𝑥0, window size 𝑚
2: Set 𝑓0 ≡ 𝑓 (𝑥0), 𝑥1 = 𝑥0 + 𝛽0 𝑓0, 𝑓1 ≡ 𝑓 (𝑥1)
3: for 𝑗 = 1, 2, . . . , until convergence do
4: 𝑢 ≔ Δ𝑥 = 𝑥 𝑗 − 𝑥 𝑗−1
5: 𝑞 ≔ Δ 𝑓 = 𝑓 𝑗 − 𝑓 𝑗−1
6: for 𝑖 = [𝑗 − 𝑚 + 1], . . . , 𝑗 − 1 do
7: 𝑠𝑖 𝑗 ≔ (𝑞, 𝑞𝑖)
8: 𝑢 ≔ 𝑢 − 𝑠𝑖 𝑗𝑢𝑖
9: 𝑞 ≔ 𝑞 − 𝑠𝑖 𝑗𝑞𝑖

10: end for
11: 𝑠 𝑗 𝑗 = ∥𝑞∥2
12: 𝑞 𝑗 ≔ 𝑞/𝑠 𝑗 𝑗 , 𝑢 𝑗 ≔ 𝑢/𝑠 𝑗 𝑗
13: Set 𝑄 𝑗 = [𝑞 [𝑗−𝑚+1] , . . . , 𝑞 𝑗], 𝑈 𝑗 = [𝑢 [𝑗−𝑚+1] , . . . , 𝑢 𝑗]
14: Compute 𝜂(𝑗) = 𝑄⊤

𝑗
𝑓 𝑗

15: 𝑥 𝑗+1 = (𝑥 𝑗 −𝑈 𝑗𝜂
(𝑗)) + 𝛽 𝑗(𝑓 𝑗 −𝑄 𝑗𝜂

(𝑗))
16: 𝑓 𝑗+1 = 𝑓 (𝑥 𝑗+1)
17: end for

Section 6.3, and in particular the indexing in arrays 𝑄 and 𝑆 starts at 1 instead of
0. Before the orthogonalization step we have the QR factorization F𝑚 = 𝑄𝑚𝑆𝑚.
Dropping the oldest (first) column is captured by equations (6.14) and (6.15). We
rewrite (6.15) as follows:

𝐹(−) = 𝑄𝐻 = [𝑞1, 𝑞2, ..., 𝑞𝑚]𝐻 = 𝑞1ℎ
⊤
1 + [𝑞2, 𝑞3, . . . , 𝑞𝑚]𝑆(−).

As before,𝐻 is the𝑚×(𝑚−1) Hessenberg matrix obtained from the upper triangular
matrix 𝑆𝑚 by deleting its first column. The row vector ℎ⊤1 is the first row of 𝐻
(first row of 𝑆𝑚, omitting its first entry). The matrix 𝑆(−) is the (𝑚 − 1) × (𝑚 − 1)
upper triangular matrix obtained from 𝑆𝑚 by deleting its first row and its first
column. Thus, if we let𝑄(−) = [𝑞2, 𝑞3, . . . , 𝑞𝑚] as before, we obtain a reduced QR
factorization but it is for a different matrix, that is,

𝐹(−) − 𝑞1ℎ
⊤
1 = 𝑄(−)𝑆(−). (6.31)

After the truncation, the new vector 𝑣𝑚+1 = Δ 𝑓𝑚 is orthonormalized against
𝑞2, 𝑞3, . . . , 𝑞𝑚, leading to the next vector 𝑞𝑚+1. Then we can write

[𝐹(−) − 𝑞1ℎ
⊤
1 , 𝑣𝑚+1] = [𝑄(−), 𝑞𝑚+1] ×

[
𝑆(−) 𝑠2:𝑚,𝑚+1

0 𝑠𝑚+1,𝑚+1

]
≡ 𝑄𝑚+1𝑆𝑚+1. (6.32)

Therefore at step 𝑗 = 𝑚 + 1 the pair of matrices 𝑄𝑚+1, 𝑆𝑚+1 produce a QR factor-
ization of a rank-one perturbation of the matrix F𝑚+1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 855

Herein lies the only difference between the two methods: the downdating QR
enforces the relation F 𝑗 = 𝑄 𝑗𝑅 𝑗 by correcting the relation (6.31) into a valid
factorization of 𝐹(−) before proceeding. We saw in Sections 6.3 and 6.4 how this
can be done. This ensures that we obtain the same solution as with AA. In contrast,
AA-TGS simplifies the process by not insisting on having a QR factorization of
F 𝑗 . Instead, it exploits a QR factorization of a modified version of F 𝑗 ; see (6.32)
for the case 𝑗 = 𝑚 + 1. Note that when 𝑗 > 𝑚 + 1 the rank-one modification on the
left-hand side of (6.32) becomes a sum of rank-one matrices.

Let us now consider the full window case, i.e. the situation 𝑗 ≤ 𝑚. It is easy
to see that in this case the subspaces spanned by F 𝑗 and 𝑄 𝑗 are identical, and in
this situation the iterates 𝑥 𝑗+1 resulting from AA and AA-TGS will be the same. In
particular, when𝑚 = ∞ this will always be the case. We will state this mathematical
equivalence of the two algorithms in the following proposition.

Proposition 6.1. Assuming that they start from the same initial guess 𝑥0, AA-
TGS (∞) and AA(∞) return the same iterates at each iteration, in exact arithmetic.
In addition, they also break down under the same condition.

The proof is straightforward and relies on the equality Span{𝑄 𝑗} = Span{X 𝑗}
for all 𝑗 . Although rather trivial, this property is worth stating explicitly because it
will help us simplify our analysis of AA in the full window case. It is clear that we
can also state a more general result for the restarted versions of the algorithms.5

We end this section with an important addition to the AA-TGS algorithm whose
goal is to circumvent some numerical stability issues. The two recurrences induced
by equations (6.27)–(6.28) are linear recurrences that can lead to instability. A
mechanism must be added to monitor the behaviour of the above sequence with
the help of a scalar sequence whose numerical behaviour imitates that of the vector
sequences. This will help prevent excessive growth of rounding errors by restarting
the process when deemed necessary. A process of this type was developed in Tang
et al. (2024). Readers are referred to the article for details.

6.6. Numerical illustration

We will illustrate a few of the methods seen so far in this paper with two examples.
The first example is usually viewed as an easy problem to solve because its level of
nonlinearity can be characterized as mild. The second is an optimization problem
in molecular physics with highly nonlinear coefficients.

5 Restarting can be implemented for any of the algorithms seen in this article. By restarting, we
mean that at every 𝑘 iterations the algorithm starts anew with 𝑥0 replaced by the most recent
approximation computed. The parameter 𝑘 is called the ‘restart dimension’, or ‘period’. Other
restarting strategies are not periodic, and instead restart when deemed necessary by the numerical
behaviour of the iterates.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

856 Y. Saad

6.6.1. The Bratu problem
The Bratu problem appears in modelling thermal combustion, radiative heat trans-
fer and thermal reaction, among other applications; see e.g. Mohsen (2014) and
Jacobsen and Schmitt (2002) for references. It consists in the following nonlinear
elliptic PDE with Dirichlet boundary conditions on an open domain Ω:

Δ𝑢 + 𝜆𝑒𝑢 = 0 in Ω,

𝑢(𝑥, 𝑦) = 0 for (𝑥, 𝑦) ∈ 𝜕Ω.

Here 𝜆 is a parameter and there is a solution only for values of 𝜆 in a certain
interval. We set 𝜆 to the value 𝜆 = 0.5 and define the domain Ω to be the square
Ω = (0, 1)× (0, 1). Discretization with central differences using 100 interior points
in each direction results in a system of nonlinear equations 𝑓 (𝑥) = 0, where 𝑓 is a
mapping from R𝑛 to itself, with 𝑛 = 10 000.

The first step in applying acceleration techniques to solve the problem is to
formulate an equivalent fixed-point iteration of the form

𝑔(𝑥) = 𝑥 − 𝜇 𝑓 (𝑥). (6.33)

The reader may have noted the negative sign used for 𝜇 instead of the positive
sign seen in earlier formulas for the mixing scheme (4.9). In earlier notation
𝑓 (𝑥) represented the ‘residual’, i.e. typically the negative of the gradient of some
function 𝜙, instead of the gradient as is the case here. What value of 𝜇 should we
use? Noting that the Jacobian of 𝑔 is

𝜕𝑔

𝜕𝑥
(𝑥) = 𝐼 − 𝜇𝜕 𝑓

𝜕𝑥
(𝑥),

a rule of thumb, admittedly a vague one, is that a small value is needed only when
we expect the Jacobian of 𝑓 to have large values. For all experiments dealing with
the Bratu problem, we will set 𝜇 = 0.1.

6.6.2. Molecular optimization with Lennard-Jones potential
The goal of geometry optimization is to find atom positions that minimize total
potential energy as described by a certain potential. The Lennard-Jones (LJ)
potential has a long history and is commonly used in computational chemistry; see
Kittel (1986, p. 61). Its aim is to represent both attraction and repulsion forces
between atoms by the inclusion of two terms with opposite signs:

𝐸 =

𝑁∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

4 ×
[

1
∥𝑥𝑖 − 𝑥 𝑗 ∥12

2
− 1

∥𝑥𝑖 − 𝑥 𝑗 ∥6
2

]
. (6.34)

Each 𝑥𝑖 is a three-dimensional vector whose components are the coordinates of the
location of atom 𝑖. A common problem is to start with a certain configuration and
then optimize the geometry by minimizing the potential starting from that position.
Note that the resulting position is not a global optimum but a local minimum

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 857

around some initial configuration. In this particular example we simulate an Argon
cluster by taking the initial position of the atoms to consist of a perturbed initial
face-centred cubic structure (Meyer, Barrett and Haasen 1964). We took three cells
per direction, resulting in 27 unit cells. FCC cells include four atoms each, so we
end up with a total of 108 atoms. The problem can be challenging due to the high
powers in the potential.

Instead of a nonlinear system of equations as was the case for the Bratu problem,
we now need to minimize 𝐸({𝑥𝑖}). The gradient of 𝐸 with respect to atom positions
can be readily computed. If we let 𝑥 denote the vector that contains the coordinates
of all atoms, we let 𝑓 (𝑥) denote this gradient, i.e. 𝑓 (𝑥) = ∇𝐸(𝑥). The associated
fixed-point mapping is again of the form (6.33), but this time we will need to take
a much smaller value for 𝜇, namely 𝜇 = 0.0001. Larger values of 𝜇 often result
in unstable iterates, overflow, or convergence to a non-optimal configuration. Note
that we are seeking a local minimum and as such we do need to verify for each run
that the scheme being tested converges to the correct optimal configuration, in this
case a configuration that has the potential 𝐸opt = −579.4639.

6.6.3. Gradient descent, RRE, Anderson, and Anderson-TGS
We will illustrate four algorithms for the two problems discussed above. The first
is a simple adaptive gradient descent algorithm of the form 𝑥 𝑗+1 = 𝑥 𝑗 − 𝜇 𝑓 (𝑥 𝑗),
where 𝜇 is set adaptively by a very simple scheme: if the norm of 𝑓 (𝑥 𝑗) increases,
multiply 𝜇 by 0.3, and if it decreases, multiply 𝜇 by 1.05. The initial 𝜇 is as
defined earlier: 𝜇 = 0.1 for Bratu and 𝜇 = 0.0001 for LJ. We will call this scheme
adaptGD. The second scheme tested is a restarted version of the RRE algorithm
seen in Section 2.6. If 𝑚 is the restart dimension then the scheme computes an
accelerated solution 𝑦𝑚 using 𝑥0, . . . , 𝑥𝑚+1, and then sets 𝑥0 to be equal to 𝑦𝑚
and the algorithm is continued from this 𝑥0. It is interesting to note that we use
𝑥0, . . . , 𝑥𝑚, 𝑥𝑚+1 to compute 𝑦𝑚, which is an update to 𝑥𝑚 and not 𝑥𝑚+1; see (2.39).
Thus in effect 𝑥𝑚+1 is only used to obtain the optimal 𝛾 in (2.39). Anderson
acceleration takes care of this by the extra approximate fixed-point step (6.9). We
can perform a similar step for RRE, and it will translate to

𝑥𝑚+1 = 𝑦𝑚 + 𝛽 𝑓𝑚, (6.35)

where 𝑓𝑚 = Δ𝑥𝑚 + Δ𝑋0𝛾 is the linear residual. This modification is implemented
with 𝛽 = 1 in the experiments that follow. In addition to the baseline adaptive GD,
we test RRE(3), RRE(5) and Anderson(5,10) for both problems. We also tested
Anderson-TGS(5,.) with the automatic restarting strategy briefly mentioned at the
end of Section 6.5 and described in detail in Tang et al. (2024). We should point
out that RRE(5), Anderson(5,10) and Anderson-TGS(5,.) all use roughly the same
amount of memory.

Figure 6.1 shows the results obtained by these methods for both problems.
Here AA(5,10) stands for AA with window size 5 and restart dimension 𝑘 = 10.
RRE(𝑚) is the restarted RRE procedure described above with restart dimension 𝑚,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

858 Y. Saad

0 100 200 300 400 500

Func. evaluations

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

 |
|
re

s
.

||

AdaptGD

RRE(3)

RRE(5)

AA(5,10)

AA-TGS(5,.)

(a)

0 50 100 150 200 250 300

Func. evaluations

10
-5

10
0

10
5

 |
|

j |

|

AdaptGD

RRE(3)

RRE(5)

AA(5,10)

ATGS(5,.)

(b)

Figure 6.1. Comparison of five different methods for the Bratu problem (a) and the
Lennard-Jones optimization problem (b).

where 𝑚 = 3 in the first experiment with RRE and 𝑚 = 5 in the second. The
plots show the norm of the residual (for Bratu) and the norm of the gradient (for
LJ) versus the number of function evaluations. All methods start from the same
random initial guess and are stopped when either the residual norm decreases by
tol = 10−12 or the number of function evaluations exceeds a certain maximum
(500 for the Bratu problem, 300 for Lennard-Jones). As can be seen, for the Bratu
problem, Anderson and its TGS variant both yield a good improvement relative
to the simpler RRE schemes. For the Lennard-Jones problem, in contrast, the
performance of AA(5,10) is close to that of RRE. Surprisingly, RRE(3), which
uses much less memory, does quite well for this example. In both test problems,
AA-TGS outperforms the standard Anderson algorithm by a moderate margin. The
standard Anderson scheme discussed in these experiments is based on the AA-QR
(AA with QR downdating) implementation discussed in Section 6.3.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 859

6.7. Theory

Around the year 2009, Anderson acceleration started to be noticed in the linear
algebra community, no doubt owing to its simplicity and its success in dealing with
a wide range of problems. Fang and Saad (2009) discussed multisecant methods,
first introduced as ‘generalized Broyden methods’ by Vanderbilt and Louie (1984).
These methods can be called block secant methods in which rank-one updates of
the form (5.9) or (5.11) are replaced by rank-𝑚 updates. As it turns out, AA is
a multisecant method, and this specific link was first unravelled in Eyert (1996)
and discussed further in Fang and Saad (2009). A number of other results were
subsequently shown. Among these is an equivalence between Krylov methods and
Anderson in the linear case as well as convergence studies for nonlinear sequences.
This goal of this section is to summarize these results.

6.7.1. AA as a multisecant approach
Acceleration methods, such as AA, do not aim at solving a system like (1.2) directly.
As was seen in Section 4.3, their goal is to accelerate a given fixed-point iteration of
the form (4.4). The method implicitly expresses an approximation to the Jacobian
via a secant relation which puts F 𝑗 in correspondence with X 𝑗 . Roughly speaking,
AA develops some approximation to a Jacobian 𝐽 that satisfies a secant condition of
the form F 𝑗 ≈ 𝐽X 𝑗 . The classic text by Ortega and Rheinbolt (1970, pp. 204–205)
already mentions AA as a form of quasi-Newton approach. At the time, however,
Ortega and Rheinbolt viewed the method negatively, possibly due to its potential
for numerically unstable behaviour.

As seen in Section 5, Broyden-type methods replace Newton’s iteration, 𝑥 𝑗+1 =

𝑥 𝑗 − 𝐽(𝑥 𝑗)−1 𝑓 𝑗 , with something like 𝑥 𝑗+1 = 𝑥 𝑗 −𝐺 𝑗 𝑓 𝑗 , where 𝐺 𝑗 approximates the
inverse of the Jacobian 𝐽(𝑥 𝑗) via the update formula

𝐺 𝑗+1 = 𝐺 𝑗 + (Δ𝑥 𝑗 − 𝐺 𝑗Δ 𝑓 𝑗)𝑣⊤𝑗

in which 𝑣 𝑗 is defined in several different ways; see Fang and Saad (2009) for details.
AA belongs to the related class of multisecant methods. Indeed, the approximation
(6.9) can be written as

𝑥 𝑗+1 = 𝑥 𝑗 + 𝛽 𝑓 𝑗 − (X 𝑗 + 𝛽F 𝑗) 𝜃(𝑗) (6.36)
= 𝑥 𝑗 − [−𝛽𝐼 + (X 𝑗 + 𝛽F 𝑗)(F⊤

𝑗 F 𝑗)−1F⊤
𝑗] 𝑓 𝑗 (6.37)

≡ 𝑥 𝑗 − 𝐺 𝑗 𝑓 𝑗 , with 𝐺 𝑗 ≡ −𝛽𝐼 + (X 𝑗 + 𝛽F 𝑗)(F⊤
𝑗 F 𝑗)−1F⊤

𝑗 . (6.38)

Thus 𝐺 𝑗 can be seen as an update to the (approximate) inverse Jacobian 𝐺 [𝑗−𝑚] =
−𝛽𝐼 by the formula

𝐺 𝑗 = 𝐺 [𝑗−𝑚] + (X 𝑗 − 𝐺 [𝑗−𝑚]F 𝑗)(F⊤
𝑗 F 𝑗)−1F⊤

𝑗 . (6.39)

It can be shown that the approximate inverse Jacobian𝐺 𝑗 is the result of minimizing

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

860 Y. Saad

∥𝐺 𝑗 + 𝛽𝐼 ∥𝐹 under the multisecant condition of type II6

𝐺 𝑗F 𝑗 = X 𝑗 . (6.40)

This link between AA and Broyden multisecant-type updates was first unravelled
by Eyert (1996) and expanded upon in Fang and Saad (2009). Thus the method is in
essence what we might call a ‘block version’ of Broyden’s second update method,
whereby a rank-𝑚, instead of rank-one, update is applied at each step.

In addition, we also have a multisecant version of the no-change condition (5.12).
This is just a block version of the no-change condition equation (5.12) as represented
by equation (15) in Fang and Saad (2009), which stipulates that

(𝐺 𝑗 − 𝐺 [𝑗−𝑚])𝑞 = 0 for all 𝑞 ⊥ Span{F 𝑗} (6.41)

provided we define 𝐺 [𝑗−𝑚] = 0.
The essence of AA is that it approximates 𝑓 (𝑥 𝑗 − Δ𝑋 𝑗 𝛾) by 𝑓 (𝑥 𝑗) − Δ𝐹𝑗 𝛾. If

𝐽 𝑗 is the Jacobian at 𝑥 𝑗 , we are approximating 𝐽 𝑗 Δ𝑋 𝑗 by Δ𝐹𝑗 and aim to make
𝑓 (𝑥 𝑗 − Δ𝑋 𝑗 𝛾) small by selecting 𝛾 so that its linear approximation 𝑓 (𝑥 𝑗) − Δ𝐹𝑗 𝛾

has a minimal norm. Thus, just like quasi-Newton approaches, the method also
aims to exploit earlier iterates in order to approximate 𝐽 𝑗 , or its action on a vector
or a set of vectors. The main approach relies on two sets of vectors, which we call
𝑃 𝑗 = [𝑝 [𝑗−𝑚+1] , 𝑝 [𝑗−𝑚+1]+1, . . . , 𝑝 𝑗] and 𝑉 𝑗 = [𝑣 [𝑗−𝑚+1] , 𝑣 [𝑗−𝑚+1]+1, . . . , 𝑣 𝑗] in
this paper, with the requirement that

𝐽(𝑥 𝑗)𝑝 𝑗 ≈ 𝑣 𝑗 . (6.42)

These ‘secant’ conditions establish a correspondence between the range of 𝑃 𝑗 and
the range of 𝑉 𝑗 and are at the core of any multisecant method.

6.7.2. Interpretations of AA
Anderson’s original algorithm can be interpreted from a number of different per-
spectives. He acknowledged being inspired by work on extrapolation methods
similar to those discussed in Section 2. However, the method he introduced does
not fit the definition of an extrapolation technique according to the terminology we
use in this paper.

Equation (6.9) resembles a simple Richardson iteration (see (3.2)) applied to the
intermediate iterate 𝑥 𝑗 and its (linear) residual 𝑓 𝑗 . Therefore the first question we
could address is what 𝑥 𝑗 and 𝑓 𝑗 represent. AA starts by computing an intermediate
approximation solution that is denoted by 𝑥 𝑗 . The approximation 𝑥 𝑗 is just a
member of the affine space 𝑥 𝑗 + Span{X 𝑗}. (In the equivalent initial presentation
of AA, it was of the form given by (4.11).) We would normally write any vector on
this space as 𝑥 𝑗 +X 𝑗𝛾, where 𝛾 is an arbitrary vector inR𝑚 𝑗 , where𝑚 𝑗 = min{ 𝑗 , 𝑚}

6 Type I Broyden conditions involve approximations to the Jacobian, while type II conditions deal
with the inverse Jacobian.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 861

is the number of columns of X 𝑗 . Anderson changed the sign of the coefficient 𝛾,
so instead he considered vectors of the form

𝑥(𝛾) = 𝑥 𝑗 − X 𝑗𝛾. (6.43)

Ideally, we would have liked to compute a coefficient vector 𝛾 that minimizes the
norm ∥ 𝑓 (𝑥(𝛾))∥2. This is computable by a line search but at a high cost, so instead
Anderson exploits the linear model around 𝑥 𝑗 :

𝑓 (𝑥(𝛾)) ≡ 𝑓 (𝑥 𝑗 − X 𝑗𝛾) ≈ 𝑓 (𝑥 𝑗) − F 𝑗𝛾 = 𝑓 𝑗 − F 𝑗𝛾. (6.44)

The above expression is therefore the linear residual at 𝑥 𝑗 for vectors of the form
(6.43). The optimal 𝛾 that we denoted by 𝛾(𝑗) is precisely what is computed in
(6.6). Therefore 𝑥 𝑗 is just the vector of the form (6.43) that achieves the smallest
linear residual.

An important observation here is that we could have considered the new sequence
{𝑥 𝑗} 𝑗=0,1,... by itself. Remarkably, each vector 𝑥 𝑗 is just a linear combination of the
previous 𝑥𝑖 , so it represents an extrapolated sequence of the form (2.13). In fact the
vector 𝑥 𝑗 can be seen to be identical to the vector produced by the RRE algorithm
seen in Section 2.6. Computing this extrapolated sequence by itself, without mixing
it with the original iterates, will be identical to applying the RRE procedure to the
𝑥𝑖 . It gets us closer to the solution by combining previous iterates, but we can do
better. Since 𝑥 𝑗 is likely to be a better approximation than 𝑥 𝑗 , a reasonable option
would be to define the next iterate as a fixed-point iteration based at 𝑥 𝑗 :

𝑥
(+)
𝑗+1 = 𝑥 𝑗 + 𝛽 𝑓 (𝑥 𝑗). (6.45)

This, however, would require an additional function evaluation. Therefore AA
replaces 𝑓 (𝑥 𝑗) = 𝑓 (𝑥 𝑗 − X 𝑗𝛾

(𝑗)) with its linear approximation given in (6.44),
which is just 𝑓 𝑗 , resulting in the Anderson update given by (6.9). Thus Anderson
acceleration can be viewed as a process that intermingles one step of RRE applied
to previous iterates with one linearized gradient descent of the form (6.9). An
alternative would be to restart – say every 𝑘 RRE steps – and reset the next iterate
to be the linearized update (6.9). We tested a technique of this type in the experiment
shown in Section 6.6.

6.7.3. Linear case: Links with Krylov subspace methods
In this section we consider the case when the problem is linear, and set 𝑓 (𝑥) = 𝑏−𝐴𝑥
(note the sign difference from earlier notation). We assume that 𝐴 is non-singular.
In this situation we have

F 𝑗 = −𝐴X 𝑗 . (6.46)

The following lemma shows that that the matrix 𝑈 𝑗 resulting from Algorithm 5 is
a basis of the Krylov subspace K 𝑗(𝐴, 𝑓0), and that under mild conditions 𝑄 𝑗 ,𝑈 𝑗

satisfy the same relation as F 𝑗 ,X 𝑗 in (6.46) for AA-TGS(∞).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

862 Y. Saad

Lemma 6.1. Assume 𝐴 is invertible and 𝑓 (𝑥) = 𝑏 − 𝐴𝑥. If Algorithm 5 used to
solve 𝑓 (𝑥) = 0 with𝑚 = ∞ does not break down at step 𝑗 , then the system𝑈 𝑗 forms
a basis of the Krylov subspace K 𝑗(𝐴, 𝑓0). In addition, the orthonormal system 𝑄 𝑗

built by Algorithm 5 satisfies 𝑄 𝑗 = −𝐴𝑈 𝑗 .

Proof. We first prove 𝑄 𝑗 = −𝐴𝑈 𝑗 by induction. When 𝑗 = 1, we have 𝑞1 =

(𝑓1 − 𝑓0)/𝑠11 = −𝐴𝑢1. Assume 𝑄 𝑗−1 = −𝐴𝑈 𝑗−1. Then we have

𝑠 𝑗 𝑗𝑞 𝑗 = (𝑓 𝑗 − 𝑓 𝑗−1) −
𝑗−1∑︁
𝑖=1

𝑠𝑖 𝑗𝑞𝑖

= −𝐴(𝑥 𝑗 − 𝑥 𝑗−1) −
𝑗−1∑︁
𝑖=1

𝑠𝑖 𝑗(−𝐴𝑢𝑖)

= −𝐴
[
(𝑥 𝑗 − 𝑥 𝑗−1) −

𝑗−1∑︁
𝑖=1

𝑠𝑖 𝑗𝑢𝑖

]
= 𝑠 𝑗 𝑗(−𝐴𝑢 𝑗).

Thus, since 𝑠 𝑗 𝑗 ≠ 0 we get 𝑞 𝑗 = −𝐴𝑢 𝑗 and therefore 𝑄 𝑗 = −𝐴𝑈 𝑗 , completing the
induction proof.

Next, we prove by induction that 𝑈 𝑗 forms a basis of K 𝑗(𝐴, 𝑓0). It is more
convenient to prove inductively that, for each 𝑖 ≤ 𝑗 , 𝑈𝑖 forms a basis of K𝑖(𝐴, 𝑓0).
The result is true for 𝑗 = 1 since we have 𝑢1 = (𝑥1 − 𝑥0)/𝑠11 = 𝛽0 𝑓0/𝑠11. Now let
us assume the property is true for 𝑗 − 1, that is, for each 𝑖 = 1, 2, . . . , 𝑗 − 1,𝑈𝑖 is a
basis of the Krylov subspace K𝑖(𝐴, 𝑓0). Then we have

𝑠 𝑗 𝑗𝑢 𝑗 = (𝑥 𝑗 − 𝑥 𝑗−1) −
𝑗−1∑︁
𝑖=1

𝑠𝑖 𝑗𝑢𝑖

= −𝑈 𝑗−1𝜃 𝑗−1 + 𝛽 𝑗−1(𝑓 𝑗−1 −𝑄 𝑗−1𝜃 𝑗−1) −
𝑗−1∑︁
𝑖=1

𝑠𝑖 𝑗𝑢𝑖

= −𝑈 𝑗−1𝜃 𝑗−1 + 𝛽 𝑗−1 𝑓 𝑗−1 − 𝛽 𝑗−1𝑄 𝑗−1𝜃 𝑗−1 −
𝑗−1∑︁
𝑖=1

𝑠𝑖 𝑗𝑢𝑖

= 𝛽 𝑗−1 𝑓 𝑗−1 −𝑈 𝑗−1𝜃 𝑗−1 + 𝛽 𝑗−1𝐴𝑈 𝑗−1𝜃 𝑗−1 −
𝑗−1∑︁
𝑖=1

𝑠𝑖 𝑗𝑢𝑖 . (6.47)

The induction hypothesis shows that

−𝑈 𝑗−1𝜃 𝑗−1 + 𝛽 𝑗−1𝐴𝑈 𝑗−1𝜃 𝑗−1 −
𝑗−1∑︁
𝑖=1

𝑠𝑖 𝑗𝑢𝑖 ∈ K 𝑗(𝐴, 𝑓0).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 863

It remains to show that 𝑓 𝑗−1 = 𝑏−𝐴𝑥 𝑗−1 ∈ K 𝑗(𝐴, 𝑓0). For this, expand 𝑏−𝐴𝑥 𝑗−1 as

𝑏 − 𝐴𝑥 𝑗−1 = 𝑏 − 𝐴𝑥 𝑗−1 + 𝐴𝑥 𝑗−2 − 𝐴𝑥 𝑗−2 + · · · − 𝐴𝑥1 + 𝐴𝑥0 − 𝐴𝑥0

=

𝑗−1∑︁
𝑖=1

−𝐴(𝑥𝑖 − 𝑥𝑖−1) + 𝑓0.

From the relation (6.47) applied with 𝑗 replaced by 𝑖, we see that 𝑥𝑖−𝑥𝑖−1 is a linear
combination of 𝑢1, 𝑢2, . . . , 𝑢𝑖 , i.e. a member of K𝑖 , by the induction hypothesis.
Therefore −𝐴(𝑥𝑖 − 𝑥𝑖−1) ∈ K𝑖+1, but since 𝑖 ≤ 𝑗 − 1 this vector belongs to K 𝑗 . The
remaining term 𝑓0 is clearly in K 𝑗 . Because 𝑈 𝑗 = −𝐴−1𝑄 𝑗 has full column rank
and 𝑢𝑖 ∈ K 𝑗(𝐴, 𝑓0) for 𝑖 = 1, . . . , 𝑗 ,𝑈 𝑗 forms a basis of K 𝑗(𝐴, 𝑓0). This completes
the induction proof.

From (6.29), we see that in the linear case under consideration, the vector 𝑓 𝑗 is
the residual for 𝑥 𝑗 :

𝑓 𝑗 = 𝑓 𝑗 −𝑄 𝑗𝜃 𝑗 = (𝑏 − 𝐴𝑥 𝑗) −𝑄 𝑗𝜃 𝑗

= (𝑏 − 𝐴𝑥 𝑗) + 𝐴𝑈 𝑗𝜃 𝑗

= 𝑏 − 𝐴(𝑥 𝑗 −𝑈 𝑗𝜃 𝑗)
= 𝑏 − 𝐴𝑥 𝑗 . (6.48)

The next theorem shows that 𝑥 𝑗 minimizes ∥𝑏 − 𝐴𝑥∥2 over the affine space 𝑥0 +
K 𝑗(𝐴, 𝑓0).

Theorem 6.1. The vector 𝑥 𝑗 generated at the 𝑗 th step of AA-TGS(∞) minimizes
the residual norm ∥𝑏 − 𝐴𝑥∥2 over all vectors 𝑥 in the affine space 𝑥0 + K 𝑗(𝐴, 𝑓0).
It also minimizes the same residual norm over the subspace 𝑥𝑘 +K 𝑗(𝐴, 𝑓0) for any
𝑘 such that 0 ≤ 𝑘 ≤ 𝑗 .

Proof. Consider a vector of the form 𝑥 = 𝑥 𝑗 − 𝛿, where 𝛿 = 𝑈 𝑗 𝑦 is an arbitrary
member of K 𝑗(𝐴, 𝑓0). We have

𝑏 − 𝐴𝑥 = 𝑏 − 𝐴(𝑥 𝑗 −𝑈 𝑗 𝑦) = 𝑓 𝑗 + 𝐴𝑈 𝑗 𝑦 = 𝑓 𝑗 −𝑄 𝑗 𝑦. (6.49)

The minimal norm ∥𝑏 − 𝐴𝑥∥2 is reached when 𝑦 = 𝑄⊤
𝑗
𝑓 𝑗 and the corresponding

optimal 𝑥 is 𝑥 𝑗 . Therefore 𝑥 𝑗 is the vector 𝑥 of the affine space 𝑥 𝑗 +K 𝑗(𝐴, 𝑓0) with
the smallest residual norm. We now write 𝑥 as

𝑥 = 𝑥 𝑗 −𝑈 𝑗 𝑦

= 𝑥0 + (𝑥1 − 𝑥0) + (𝑥2 − 𝑥1) + (𝑥3 − 𝑥2) + · · · + (𝑥𝑖+1 − 𝑥𝑖)
+ · · · + (𝑥 𝑗 − 𝑥 𝑗−1) −𝑈 𝑗 𝑦 (6.50)

= 𝑥0 + Δ𝑥0 + Δ𝑥1 + · · · + Δ𝑥 𝑗−1 −𝑈 𝑗 𝑦. (6.51)

We now exploit the relation obtained from the QR factorization of Algorithm 5,
namely X 𝑗 = 𝑈 𝑗𝑆 𝑗 in (6.30): if 𝑒 is the vector of all ones, then

Δ𝑥0 + Δ𝑥1 + · · · + Δ𝑥 𝑗−1 = X 𝑗𝑒 = 𝑈 𝑗𝑆 𝑗𝑒.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

864 Y. Saad

Define 𝑡 𝑗 ≡ 𝑆 𝑗𝑒. Then from (6.51) we obtain

𝑥 = 𝑥 𝑗 − 𝛿 = 𝑥0 −𝑈 𝑗 [𝑦 − 𝑡 𝑗] . (6.52)

Hence the set of all vectors of the form 𝑥 𝑗 − 𝛿 = 𝑥 𝑗 −𝑈 𝑗 𝑦 is the same as the set of
all vectors of the form 𝑥0 − 𝛿′, where 𝛿′ ∈ K 𝑗(𝐴, 𝑓0). As a result, 𝑥 𝑗 also minimizes
𝑏 − 𝐴𝑥 over all vectors in the affine space 𝑥0 + K 𝑗(𝐴, 𝑓0).

The proof can be easily repeated if we replace 𝑥0 with 𝑥𝑘 for any 𝑘 between 0
and 𝑗 . The expansion (6.50)–(6.51) becomes

𝑥𝑘 −𝑈 𝑗 𝑦 = 𝑥𝑘 + (𝑥𝑘+1 − 𝑥𝑘) + (𝑥𝑘+2 − 𝑥𝑘+1)
+ · · · + (𝑥𝑖+1 − 𝑥𝑖) + · · · + (𝑥 𝑗 − 𝑥 𝑗−1) −𝑈 𝑗 𝑦 (6.53)

= 𝑥𝑘 + Δ𝑥𝑘 + Δ𝑥𝑘+1 + · · · + Δ𝑥 𝑗−1 −𝑈 𝑗 𝑦. (6.54)

The rest of the proof is similar and straightforward.

Theorem 6.1 shows that 𝑥 𝑗 is the 𝑗 th iterate of the GMRES algorithm for solving
𝐴𝑥 = 𝑏 with the initial guess 𝑥0 and that 𝑓 𝑗 is the corresponding residual. The
value of 𝑥 𝑗 is independent of the choice of 𝛽𝑖 for 𝑖 ≤ 𝑗 . Now consider the residual
𝑓 𝑗+1 of AA-TGS(∞) at step 𝑗 + 1. From the relations 𝑥 𝑗+1 = 𝑥 𝑗 + 𝛽 𝑗 𝑓 𝑗 and (6.48),
we get

𝑓 𝑗+1 = 𝑏 − 𝐴[𝑥 𝑗 + 𝛽 𝑗 𝑓 𝑗] = 𝑏 − 𝐴𝑥 𝑗 − 𝛽 𝑗𝐴 𝑓 𝑗 = 𝑓 𝑗 − 𝛽 𝑗𝐴 𝑓 𝑗 = (𝐼 − 𝛽 𝑗𝐴) 𝑓 𝑗 . (6.55)

This implies that the vector 𝑓 𝑗+1 is the residual for 𝑥 𝑗+1 obtained from 𝑥 𝑗+1 =

𝑥 𝑗 + 𝛽 𝑗 𝑓 𝑗 , which is a simple Richardson iteration starting from the iterate 𝑥 𝑗 .
Therefore 𝑥 𝑗+1 in line 15 of Algorithm 5 is simply a Richardson iteration step from
this GMRES iterate. This is stated in the following proposition.

Proposition 6.2. The residual 𝑓 𝑗+1 of the iterate 𝑥 𝑗+1 generated at the 𝑗 th step of
AA-TGS(∞) is equal to (𝐼 − 𝛽 𝑗𝐴) 𝑓 𝑗 , where 𝑓 𝑗 = 𝑏 − 𝐴𝑥 𝑗 minimizes the residual
norm ∥𝑏− 𝐴𝑥∥2 over all vectors 𝑥 in the affine space 𝑥0+K 𝑗(𝐴, 𝑓0). In other words,
the (𝑗 + 1)th iterate of AA-TGS(∞) can be obtained by performing one step of a
Richardson iteration applied to the 𝑗 th GMRES iterate.

A similar result has also been proved for the standard AA by Walker and Ni
(2011) under slightly different assumptions; see Section 6.7.5.

Convergence in the linear case can therefore be analysed by relating the residual
of full AA-TGS to that of GMRES. The following corollary of the above proposition
shows a simple but useful inequality.

Corollary 1. If AA-TGS(∞) is used to solve the system (3.1), then the residual
norm of the iterate 𝑥(AA-TGS)

𝑗+1 satisfies the inequality

∥𝑏 − 𝐴𝑥(AA-TGS)
𝑗+1 ∥2 ≤ ∥(𝐼 − 𝛽𝐴)∥2 ∥𝑏 − 𝐴𝑥(GMRES)

𝑗
∥2, (6.56)

where 𝑥(GMRES)
𝑗

∥2 is the iterate obtained by 𝑗 steps of full GMRES starting with the
same initial guess 𝑥0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 865

Proof. According to Proposition 6.2, 𝑟 𝑗+1 = − 𝑓 (𝑥 𝑗+1) = −(𝐼−𝛽𝐴) 𝑓 𝑗 = (𝐼−𝛽𝐴)𝑟 𝑗 ,
where 𝑟 𝑗 is the residual obtained from 𝑗 steps of GMRES starting with the same
initial guess 𝑥0. Therefore𝑏 − 𝐴𝑥(AA-TGS)

𝑗+1

2 =

(𝐼 − 𝛽𝐴)
(
𝑏 − 𝐴𝑥(GMRES)

𝑗

)
2

=
(𝐼 − 𝛽𝐴)𝑟 (GMRES)

𝑗

2

≤ ∥(𝐼 − 𝛽𝐴)∥2
𝑟 (GMRES)

𝑗

2. (6.57)

Thus essentially all the convergence analysis of GMRES can be adapted to AA-
TGS when it is applied to linear systems. The next section examines the special
case of linear symmetric systems.

6.7.4. The linear symmetric case
A simple experiment will reveal a remarkable observation for the linear case when
the matrix 𝐴 is symmetric. Indeed, the orthogonalization process (lines 6–10 of
Algorithm 5) simplifies in this case in the sense that 𝑆 𝑗 consists of only three non-
zero diagonals in the upper triangular part when 𝐴 is symmetric. In other words,
when 𝐴 is symmetric we only need to save 𝑞 𝑗−2, 𝑞 𝑗−1 and 𝑢 𝑗−2, 𝑢 𝑗−1 in order to
generate 𝑞 𝑗 and 𝑢 𝑗 in the full-depth case, i.e. when 𝑚 = ∞. This is similar to the
simplification obtained by a Krylov method like FOM or GMRES when the matrix
is symmetric. We first examine the components of the vector 𝑄⊤

𝑗
𝑓 𝑗 in line 14 of

Algorithm 5.

Lemma 6.2. When 𝑓 (𝑥) = 𝑏 − 𝐴𝑥, where 𝐴 is a real non-singular symmetric
matrix, then the entries of the vector 𝜃 𝑗 = 𝑄⊤

𝑗
𝑓 𝑗 in Algorithm 5 are all zeros except

the last two.

Proof. Let 𝑖 ≤ 𝑗 − 1. From (6.55), we have

(𝑓 𝑗 , 𝑞𝑖) = (𝑓 𝑗−1 − 𝛽 𝑗−1𝐴 𝑓 𝑗−1, 𝑞𝑖) = (𝑓 𝑗−1, 𝑞𝑖) − 𝛽 𝑗−1(𝐴 𝑓 𝑗−1, 𝑞𝑖).

The first term on the right-hand side vanishes because

(𝑓 𝑗−1, 𝑞𝑖) = (𝑓 𝑗−1 −𝑄 𝑗−1𝜃 𝑗−1, 𝑞𝑖) = ((𝐼 −𝑄 𝑗−1𝑄
⊤
𝑗−1) 𝑓 𝑗−1, 𝑞𝑖) = 0.

For the second term we write (𝐴 𝑓 𝑗−1, 𝑞𝑖) = (𝑓 𝑗−1, 𝐴𝑞𝑖), and observe that since
𝑢𝑖 ∈ K𝑖(𝐴, 𝑓0) then 𝑞𝑖 = −𝐴𝑢𝑖 belongs to the Krylov subspace K𝑖+1(𝐴, 𝑓0), which
is the same as Span{𝑈𝑖+1} according to Lemma 6.1. Thus it can be written as
𝑞𝑖 = −𝐴𝑢𝑖 = 𝑈𝑖+1𝑦 for some 𝑦 and hence 𝐴𝑞𝑖 = 𝐴𝑈𝑖+1𝑦 = −𝑄𝑖+1𝑦, that is, 𝐴𝑞𝑖 is
in the span of 𝑞1, . . . , 𝑞𝑖+1. Therefore, recalling that 𝑓 𝑗−1 ⊥ Span{𝑄 𝑗−1}, we have

(𝑓 𝑗−1, 𝐴𝑞𝑖) = 0 for 𝑖 ≤ 𝑗 − 2. (6.58)

In the end, we obtain (𝑓 𝑗 , 𝑞𝑖) = 0 for 𝑖 ≤ 𝑗 − 2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

866 Y. Saad

Lemma 6.2 indicates that the computation of 𝑥 𝑗+1 in line 15 of Algorithm 5 only
depends on the two most recent 𝑞𝑖 and 𝑢𝑖 . In addition, as is shown next, the vectors
𝑞 𝑗 and 𝑢 𝑗 in line 12 can be computed from 𝑞 𝑗−2, 𝑞 𝑗−1 and 𝑢 𝑗−2, 𝑢 𝑗−1 instead of all
previous 𝑞𝑖 and 𝑢𝑖 .

Theorem 6.2. When 𝑓 (𝑥) = 𝑏 − 𝐴𝑥, where 𝐴 is a real non-singular symmetric
matrix, then the upper triangular matrix 𝑆 𝑗 produced in Algorithm 5 is banded with
bandwidth 3, that is, we have 𝑠𝑖𝑘 = 0 for 𝑖 < 𝑘 − 2.

Proof. It is notationally more convenient to consider column 𝑘 + 1 of 𝑆 𝑗 , where
𝑘 + 1 ≤ 𝑗 . Let Δ 𝑓𝑘 ≡ 𝑓𝑘+1 − 𝑓𝑘 and Δ𝑥𝑘 = 𝑥𝑘+1 − 𝑥𝑘 . The inner product 𝑠𝑖,𝑘+1 in
Algorithm 5 is the same as 𝑠𝑖,𝑘+1 = (Δ 𝑓𝑘 , 𝑞𝑖) that would be obtained by a classical
Gram–Schmidt algorithm. We note that for 𝑖 ≤ 𝑘 we have 𝑠𝑖,𝑘+1 = −(𝐴Δ𝑥𝑘 , 𝑞𝑖).
Exploiting the relation

Δ𝑥𝑘 = (𝑥𝑘 + 𝛽𝑘 𝑓𝑘) − 𝑥𝑘 = 𝑥𝑘 −𝑈𝑘𝜃𝑘 + 𝛽𝑘 𝑓𝑘 − 𝑥𝑘 = −𝑈𝑘𝜃𝑘 + 𝛽𝑘 𝑓𝑘 ,

we write

𝐴Δ𝑥𝑘 = −𝐴𝑈𝑘𝜃𝑘 + 𝛽𝑘𝐴 𝑓𝑘
= 𝑄𝑘𝜃𝑘 + 𝛽𝑘𝐴 𝑓𝑘
= −(𝑓𝑘 −𝑄𝑘𝜃𝑘) + 𝑓𝑘 + 𝛽𝑘𝐴 𝑓𝑘
= − 𝑓𝑘 + 𝑓𝑘 + 𝛽𝑘𝐴 𝑓𝑘 ,

and hence

(𝐴Δ𝑥𝑘 , 𝑞𝑖) = −(𝑓𝑘 , 𝑞𝑖) + (𝑓𝑘 , 𝑞𝑖) + 𝛽𝑘(𝐴 𝑓𝑘 , 𝑞𝑖). (6.59)

The first term on the right-hand side, (𝑓𝑘 , 𝑞𝑖), vanishes since 𝑖 ≤ 𝑘 . According
to Lemma 6.2 the inner product (𝑓𝑘 , 𝑞𝑖) is zero for 𝑖 ≤ 𝑘 − 2. In the proof of
Lemma 6.2 we showed that (𝑓 𝑗−1, 𝐴𝑞𝑖) = 0 for 𝑖 ≤ 𝑗 − 2 (see (6.58)), which means
that (𝑓𝑘 , 𝐴𝑞𝑖) = 0 for 𝑖 ≤ 𝑘 − 1. In the end 𝑠𝑖,𝑘+1 = −(𝐴Δ𝑥𝑘 , 𝑞𝑖) = 0 for 𝑖 < 𝑘 − 1,
which is equivalent to the desired result.

Lemma 6.2 and Theorem 6.2 show that when AA-TGS(∞) is applied to solving
linear symmetric problems, only the two most recent 𝑞𝑖 and 𝑢𝑖 , i.e. 𝑞 𝑗−2, 𝑞 𝑗−1 and
𝑢 𝑗−2, 𝑢 𝑗−1, are needed to compute the next iterate 𝑥 𝑗+1. In other words, the for loop
in line 6 of the algorithm only needs to be executed for 𝑖 = 𝑗 −2 and 𝑖 = 𝑗 −1, which
means that AA-TGS(3) is equivalent to AA-TGS(∞) in the linear symmetric case.
In practice, this leads to a significant reduction in memory and computational cost.

We saw earlier that in all cases the full AA-TGS algorithm is equivalent to the
full window Anderson, at least in exact arithmetic. AA-TGS is just a different
implementation of AA in this case. In the linear case, Proposition 6.2 states that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 867

the full AA-TGS is equivalent to (full) GMRES followed by a Richardson step. This
led to Corollary 1, which enables us to establish convergence results by exploiting
already known theory. One specific such result is an analysis of the special case
when the problem is linear and symmetric.

Theorem 6.3. Assume that 𝐴 is symmetric positive definite and that a constant
𝛽 is used in AA-TGS. Then the iterate 𝑥(AA-TGS)

𝑗+1 obtained at the (𝑗 + 1)th step of
AA-TGS(∞) satisfies

∥𝑏 − 𝐴𝑥(AA-TGS)
𝑗+1 ∥2 ≤ ∥𝐼 − 𝛽𝐴∥2

∥𝑏 − 𝐴𝑥0∥2

𝑇𝑗
(
𝜅+1
𝜅−1

)
≤ 2∥𝐼 − 𝛽𝐴∥2∥𝑏 − 𝐴𝑥0∥2

(√
𝜅 − 1

√
𝜅 + 1

) 𝑗

,

where 𝑇𝑗 is the Chebyshev polynomial of the first kind of degree 𝑗 , and 𝜅 = 𝜅(𝐴)
is the 2-norm condition number of 𝐴.

Proof. We start from inequality (6.56) of Corollary 1. An analysis similar to that
in Saad (2003, § 6.11.3) for the CG method will show that

∥𝑟GMRES
𝑗 ∥2 ≤ ∥𝑟0∥2

𝑇𝑗(1 + 2𝜂)
,

in which 𝜂 = 𝜆min/(𝜆max − 𝜆min) = 1/(𝜅 − 1). Noting that 1 + 2𝜂 = (𝜅 + 1)/(𝜅 −
1) establishes the first inequality. The second one follows from using standard
expressions of the Chebyshev polynomials based on the hyperbolic cosine (Saad
2003, pp. 204–205), which shows that

𝑇𝑗(1 + 2𝜂) ≥ 1
2

(√
𝜅(𝐴) + 1

√
𝜅(𝐴) − 1

) 𝑗

.

This completes the proof.

6.7.5. Other links between AA and Krylov methods in the linear case
The analysis shown above establishes strong connections between full-depth AA-
TGS and GMRES. Since AA-TGS is equivalent to standard AA in the full window
case, these results are also valid for AA. Such connections were established well
before the recent article by Tang et al. (2024).

Specifically, Walker and Ni (2011) studied the algorithm and showed a form of
equivalence between AA and GMRES in the linear case. Another study along the
same lines, discussed at the end of this section, is that of Haelterman, Degroote,
Heule and Vierendeels (2010), which is concerned with a slightly different version
of AA.

Because the Walker and Ni result is somewhat different from that of Proposi-
tion 6.2 seen in Section 6.7.3, we will now summarize it. Their paper (Walker and
Ni 2011) makes the following set of assumptions.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

868 Y. Saad

Assumption (A).

• AA is applied to the fixed-point mapping 𝑔(𝑥) = 𝐴𝑥 + 𝑏.
• Anderson acceleration is not truncated, i.e. 𝑚 = ∞.
• (𝐼 − 𝐴) is non-singular.
• GMRES is used to solve (𝐼 − 𝐴)𝑥 = 𝑏 with the same initial guess 𝑥0 as for

AA.

The main result of the article is stated for the formulation of AA that follows
the notation of Pulay mixing seen in Section 4.4. Accounting for this change of
notation, their result is stated below.

Theorem 6.4. Suppose that Assumption (A) holds and that, for some 𝑗 > 0,

𝑟
(GMRES)
𝑗−1 ≠ 0,

and also that 𝑟 (GMRES)
𝑖−1

2 >

𝑟 (GMRES)
𝑖

2

for 0 < 𝑖 < 𝑗 . Then

𝑥 𝑗 = 𝑥
(GMRES)
𝑗

and 𝑥 𝑗+1 = 𝑔
(
𝑥

(GMRES)
𝑗

)
.

Degroote, Bathe and Vierendeels (2009) described a method called QN-ILS
(quasi-Newton inverse least-squares), which resembles AA although it is presented
as a quasi-Newton approach (hence its name). They seemed unaware of the An-
derson article and the related literature but the spirit of their method is quite close
to that of AA. In fact, for their method they even use the same formulation as that
of the original AA, in that they invoke the basis (6.1) instead of the bases using
forward differences. Their algorithm is viewed from the angle of a quasi-Newton
method with updates of type II, where the inverse Jacobian is approximated. Using
our notation, the only difference with AA is that in their case the update (6.9) for
the new iterate becomes

𝑥 𝑗+1 = 𝑥 𝑗 + 𝑓 𝑗 . (6.60)

Thus, relative to the update equation (6.9) of AA, 𝛽 is set to one and 𝑓 𝑗 is replaced
by 𝑓 𝑗 in QN-ILS. In the linear case, and the full window case, the two methods
are mathematically equivalent since 𝑓 𝑗 = 𝑓 𝑗 − F 𝑗𝛾

(𝑗), and the two methods will
produce the same space of approximants in the projection process, at each step. In
the nonlinear case, the two methods will not generate the same iterates in general.

From an implementation perspective, QN-ILS is more expensive than AA. As
described in Degroote et al. (2009), the algorithm recomputes a new QR factoriz-
ation each time, and does not exploit any form of downdating. The main reason
for this is that, as already mentioned, QN-ILS relies on a basis of the form (6.1),
which changes entirely at each new step 𝑗 . This also means that each of the vectors
𝑑𝑖 = 𝑓 𝑗 − 𝑓𝑖 for 𝑖 = ([𝑗 −𝑚]), . . . , 𝑗 − 1 and the related differences 𝑥 𝑗 − 𝑥𝑖 must be

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 869

recomputed at every step 𝑗 , leading to a substantial added cost when compared to
modern implementations of AA. Indeed, the basis of the Δ𝑥𝑖 used in the modern
version of AA requires only that we compute the most recent pair Δ 𝑓 𝑗−1,Δ𝑥 𝑗−1,
since the other needed pairs were computed in earlier steps. In AA, one column is
computed and added to F 𝑗 , and one is dropped from it (when 𝑗 > 𝑚). Similarly
for X 𝑗 .

Haelterman et al. (2010) studied the method in the linear case, and established
that it is equivalent to GMRES in this situation. This result is similar to that of
Walker and Ni (2011), but we need to remember that AA and QN-ILS are different
in the nonlinear case.

6.7.6. Convergence properties of AA
Toth and Kelley (2015) proved that AA is locally 𝑟-linearly convergent under the
condition that the fixed-point map 𝑔 is a contraction mapping and the coefficients
in the linear combination remain bounded. A number of other results were proved
under different assumptions.

The article by Toth and Kelley (2015) starts by considering the linear case in
which 𝑔(𝑥) = 𝑀𝑥 + 𝑏, and shows that when 𝑀 is contracting with ∥𝑀 ∥ = 𝑐 < 1
then the iterates of Anderson acceleration applied to 𝑔 will converge to the fixed
point 𝑥∗ = (𝐼−𝑀)−1𝑏. In addition, the residuals converge 𝑞-linearly to zero, that is,
if 𝑓 (𝑥) = 𝑔(𝑥) − 𝑥 then ∥ 𝑓 (𝑥𝑘+1)∥ ≤ 𝑐∥ 𝑓 (𝑥𝑘)∥. This is used as a starting point for
proving a result in the nonlinear case.

Consider the situation where AA is used to find the fixed point of a function 𝑔
and let 𝑓 (𝑥) = 𝑔(𝑥) − 𝑥. Toth and Kelley (2015) invoke formulation (4.15)–(4.17)
because their results require assumptions on the coefficients 𝜃𝑖 . With this in mind,
their main result can be stated as follows.

Theorem 6.5 (Toth and Kelley 2015, Theorem 2.3). Assume the following.

(1) There is a constant 𝜇𝜃 such that
∑ 𝑗

𝑖= 𝑗− 𝑗𝑚
|𝜃𝑖 | ≤ 𝜇𝜃 for all 𝑗 ≥ 0.

(2) There is an 𝑥∗ such that 𝑓 (𝑥∗) = 𝑔(𝑥∗) − 𝑥∗ = 0.
(3) 𝑔 is Lipschitz-continuously differentiable in the ball B(�̂�) = {𝑥 | ∥𝑥−𝑥∗∥ ≤ �̂�}.
(4) There is a 𝑐 ∈ (0, 1) such that ∥𝑔(𝑢) − 𝑔(𝑣)∥ ≤ 𝑐∥𝑢 − 𝑣∥ for all 𝑢, 𝑣 in B(�̂�).

Let 𝑐 < 𝑐 < 1. Then, if 𝑥0 is sufficiently close to 𝑥∗, the Anderson iteration
converges to 𝑥∗ 𝑟-linearly with 𝑟-factor no greater than 𝑐. Specifically,

𝑓 (𝑥𝑘) ≤ 𝑐𝑘 𝑓 (𝑥0), (6.61)

and

∥𝑥𝑘 − 𝑢∗∥ ≤ 1 + 𝑐
1 − 𝑐 𝑐

𝑘 ∥𝑥0 − 𝑢∗∥. (6.62)

Not that the result is valid for any norm, not just for the case when the 2-norm
minimization is used in (4.13). The first condition only states that the coefficients 𝜃𝑖

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

870 Y. Saad

resulting from the constrained least-squares problem (4.17) (or equivalently the
unconstrained problem (4.13)) all remain bounded in magnitude. It cannot be
proved that this condition will be satisfied and the ill-conditioning of the least-
squares problem may lead to large values the 𝜃𝑖 . However, Toth and Kelley (2015)
show how to modify the standard AA scheme to enforce the boundedness of the
coefficients in practice.

In addition, Toth and Kelley (2015) consider the particular case when the window
size is 𝑚 = 1 and show that in this situation the coefficients 𝜃𝑖 are bounded if 𝑐 is
sufficiently small that 𝑐 ≡ ((3𝑐 − 𝑐2)/(1 − 𝑐)) < 1. If this condition is satisfied and
if 𝑥0 ∈ B(�̂�), then they show that AA(1) with least-squares optimization converges
𝑞-linearly with 𝑞-factor 𝑐.

Even though these results are proved under somewhat restrictive assumptions,
they nevertheless establish strong theoretical convergence properties. In particular,
the results show that under certain conditions the AA-accelerated iterates will
converge to the solution at least as fast as the original fixed-point sequence.

The theory in the Toth–Kelley article does not prove that the convergence of an
AA accelerated sequence will be faster than that of the original fixed-point iteration.
Evans, Pollock, Rebholz and Xiao (2020) address this issue by showing theoretically
that Anderson acceleration (AA) does improve the convergence rate of contractive
fixed-point iterations in the vicinity of the fixed point. Their experiments illustrate
the improved linear convergence rates. However, they also show that when the
initial fixed-point iteration converges quadratically, then its convergence is slowed
by the AA scheme.

Pollock and Rebholz (2021) discuss further theoretical aspects of the AA algo-
rithm and show a number of strategies to improve convergence. These include
techniques for adapting the window size 𝑚 dynamically, as well as filtering out
columns of F 𝑗 when linear dependence is detected. Along the same lines, building
on work by Rohwedder (2010), Brezinski, Cipolla, Redivo-Zaglia and Saad (2022)
present a stabilized version of AA which examines the linear independence of the
latest Δ 𝑓 𝑗 from previous differences. The main idea is to ensure that we keep a
subset of the differences that are sufficiently linearly independent for the projection
process needed to solve the least-squares problem. Local convergence properties
are proved under some assumptions.

It has been observed that AA works fairly well in practice, especially in the
situation when the underlying fixed-point iteration that is accelerated has adequate
convergence properties. However, without any modifications, it is not possible
to guarantee that the method will converge. A few papers address this ‘global
convergence’ issue. Zhang, O’Donoghue and Boyd (2020) consider ‘safeguarding
strategies’ to ensure global convergence of type I AA methods. Their technique
assumes that the underlying fixed-point mapping 𝑔 is non-expansive and, adopting
a multisecant viewpoint, develop a type I based AA update whereby the focus is to
approximate the Jacobian instead of its inverse as is done in AA. Their main scheme
relies on two ingredients. The first is to add a regularization of the approximate

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 871

Jacobian to deal with the potential (near-) singularity of the approximate Jacobian.
The second is to interleave the AA scheme with a linear mixing scheme of the form
(4.9). This is done in order to ‘safeguard the decrease in the residual norms’.

7. Nonlinear truncated GCR
Krylov accelerators for linear systems, which were reviewed in Section 3.3, can be
adapted in a number of ways for nonlinear problems. We already noted that AA
can be viewed as a modified Krylov subspace method in the linear case. We also
showed strong links between Krylov methods and a few extrapolation techniques
in Section 2. One way to uncover generalizations of Krylov methods for nonlinear
equations is to take a multisecant viewpoint. The process begins with a subspace
spanned by a set of vectors {𝑝 [𝑗−𝑚+1] , 𝑝 [𝑗−𝑚+1]+1, . . . , 𝑝 𝑗} – typically related to a
Krylov subspace – and finds an approximation to the Jacobian or its inverse when
it is restricted to this subspace. This second step can take different forms, but it is
typically expressed as a multisecant requirement, whereby a set of vectors 𝑣𝑖 are
coupled to the vectors 𝑝𝑖 such that

𝑣𝑖 ≈ 𝐽(𝑥𝑖)𝑝𝑖 , (7.1)

where 𝐽(𝑥𝑖) is the Jacobian of 𝑓 at 𝑥𝑖 . Observe that a different Jacobian is involved
for each index 𝑖. There are a number of variations to this scheme. For example,
𝐽(𝑥𝑖) can be replaced by a fixed Jacobian at some other point, e.g. 𝑥 [𝑗−𝑚+1] or 𝑥0
as in inexact Newton methods.

We will say that the two sets

𝑃 𝑗 = [𝑝 [𝑗−𝑚+1] , 𝑝 [𝑗−𝑚+1]+1, . . . , 𝑝 𝑗], 𝑉 𝑗 = [𝑣 [𝑗−𝑚+1] , 𝑣 [𝑗−𝑚+1]+1, . . . , 𝑣 𝑗]
(7.2)

are paired. This setting was encountered in the linear case (see (3.28)) and in
Anderson acceleration, where 𝑃 𝑗 was just the set X 𝑗 and 𝑉 𝑗 was F 𝑗 . Similarly,
in AA-TGS these two sets were 𝑈 𝑗 and 𝑄 𝑗 respectively. It is possible to develop
a broad class of multi-purpose accelerators with this general viewpoint. One
of these methods (He et al. 2024), named the nonlinear truncated generalized
conjugate residual (nlTGCR), is built as a nonlinear extension of the GCR method
seen in Section 3.3.3. It is discussed next.

7.1. nlTGCR

Recall that in the linear case, where we solve the system linear 𝐴𝑥 = 𝑏, the main
ingredient of GCR is to build two sets of paired vectors {𝑝𝑖}, {𝐴𝑝𝑖}, where the
𝑝𝑖 are the search directions obtained in earlier steps and the 𝐴𝑝𝑖 are orthogonal to
each other. At the 𝑗 th step we introduce a new pair 𝑝 𝑗+1, 𝐴𝑝 𝑗+1 to the set in which
𝑝 𝑗+1 is initially set equal to the most recent residual; see lines 7–12 of Algorithm 3.
This vector is then 𝐴⊤𝐴-orthogonalized against the previous 𝑝𝑖 . We saw that this
process leads to a simple expression for the approximate solution, using a projection
mechanism; see Lemma 3.1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

872 Y. Saad

The next question we address is how to extend GCR, or its truncated version
TGCR, to the nonlinear case. The simplest approach is to exploit an inexact Newton
viewpoint in which the GCR algorithm is invoked to approximately solve the linear
systems that arise from Newton’s method. However, this is avoided for a number
of reasons. First, unlike quasi-Newton techniques, inexact Newton methods build
an approximate Jacobian for the current iterate, and this approximation is used
only for the current step. In other words, it is discarded after it is used and
another one is built in the next step. This is to be contrasted with quasi-Newton
or multisecant approaches where these approximations are built gradually. Inexact
Newton methods perform best when the Jacobian is explicitly available or can be
inexpensively approximated. In such cases it is possible to solve the system in
Newton’s method as accurately as desired, leading to superlinear convergence.

An approach that is more appealing for fixed-point iterations is to exploit the
multisecant viewpoint sketched above, by adapting it to GCR. At a given step 𝑗

of TGCR, we would have available the previous directions 𝑝 [𝑗−𝑚+1] , . . . , 𝑝 𝑗 along
with their corresponding (paired) 𝑣𝑖 , for 𝑖 = [𝑗 − 𝑚 + 1], . . . , 𝑗 . In the linear case,
each 𝑣𝑖 equals 𝐴𝑝𝑖 . In the nonlinear case we would instead have 𝑣𝑖 ≈ 𝐽(𝑥𝑖)𝑝𝑖 . The
next pair 𝑝 𝑗+1, 𝑣 𝑗+1 is obtained by the update

𝑝 𝑗+1 = 𝑟 𝑗+1 −
𝑗∑︁

𝑖=[𝑗−𝑚+1]
𝛽𝑖 𝑗 𝑝𝑖 , 𝑣 𝑗+1 = 𝐽(𝑥 𝑗+1)𝑟 𝑗+1 −

𝑗∑︁
𝑖=[𝑗−𝑚+1]

𝛽𝑖 𝑗𝑣𝑖 , (7.3)

where the 𝛽𝑖 𝑗 are selected so as to make 𝑣 𝑗+1 orthonormal to the previous vectors
𝑣 [𝑗−𝑚+1] , . . . , 𝑣 𝑗 . One big difference from the linear case is that the residual vector
𝑟 𝑗+1 is now the nonlinear residual, which is 𝑟 𝑗+1 = − 𝑓 (𝑥 𝑗+1).

This process builds a pair (𝑝 𝑗+1, 𝑣 𝑗+1) such that 𝑣 𝑗+1 is orthonormal to the
previous vectors 𝑣 [𝑗−𝑚+1] , . . . , 𝑣 𝑗 . The current ‘search’ directions {𝑝𝑖} for 𝑖 =
[𝑗−𝑚+1], . . . , 𝑗 are paired with the vectors 𝑣𝑖 ≈ 𝐽(𝑥𝑖)𝑝𝑖 , for 𝑖 = [𝑗−𝑚+1], . . . , 𝑗 ;
see (7.2).

Another important difference from TGCR is that the way in which the solution
is updated in line 6 of Algorithm 3 is no longer valid. This is because the second
part of Lemma 3.1 no longer holds in the nonlinear case. Therefore the update will
be of the form 𝑥 𝑗 + 𝑃 𝑗 𝑦 𝑗 where 𝑦 𝑗 = 𝑉⊤

𝑗
𝑟 𝑗 . Putting these together leads to the

nonlinear adaptation of GCR shown in Algorithm 6.
The relation to Newton’s method can be understood from the local linear model

which is at the foundation of the algorithm

𝑓 (𝑥 𝑗 + 𝑃 𝑗 𝑦) ≈ 𝑓 (𝑥 𝑗) +𝑉 𝑗 𝑦, (7.4)

which follows from the following approximation, where the 𝛾𝑖 are the components
of 𝑦 and the sum is over 𝑖 = [𝑗 − 𝑚 + 1] to 𝑗 :

𝑓 (𝑥 𝑗 + 𝑃 𝑗 𝑦) ≈ 𝑓 (𝑥 𝑗) +
∑︁

𝛾𝑖𝐽(𝑥 𝑗)𝑝𝑖 ≈ 𝑓 (𝑥 𝑗) +
∑︁

𝛾𝑖𝐽(𝑥𝑖)𝑝𝑖 ≈ 𝑓 (𝑥 𝑗) +𝑉 𝑗 𝑦.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 873

Algorithm 6 nlTGCR(𝑚)
1: Input: Function 𝑓 (𝑥), initial guess 𝑥0, window size 𝑚
2: Set 𝑟0 = − 𝑓 (𝑥0).
3: Compute 𝑣 = 𝐽(𝑥0)𝑟0; ⊲ Use Fréchet
4: 𝑣0 = 𝑣/∥𝑣∥2, 𝑝0 = 𝑟0/∥𝑣∥2;
5: for 𝑗 = 0, 1, 2, . . . , do
6: 𝑦 𝑗 = 𝑉

⊤
𝑗
𝑟 𝑗

7: 𝑥 𝑗+1 = 𝑥 𝑗 + 𝑃 𝑗 𝑦 𝑗 ⊲ Scalar 𝛼 𝑗 becomes vector 𝑦 𝑗
8: 𝑟 𝑗+1 = − 𝑓 (𝑥 𝑗+1) ⊲ Replaces linear update: 𝑟 𝑗+1 = 𝑟 𝑗 −𝑉 𝑗 𝑦 𝑗
9: Set: 𝑝 ≔ 𝑟 𝑗+1; and compute 𝑣 = 𝐽(𝑥 𝑗+1)𝑝 ⊲ Use Fréchet

10: Compute 𝛽 𝑗 = 𝑉
⊤
𝑗
𝑣

11: 𝑣 = 𝑣 −𝑉 𝑗 𝛽 𝑗 , 𝑝 = 𝑝 − 𝑃 𝑗 𝛽 𝑗

12: 𝑝 𝑗+1 ≔ 𝑝/∥𝑣∥2 ; 𝑣 𝑗+1 ≔ 𝑣/∥𝑣∥2 ;
13: end for

The method essentially minimizes the residual norm of the linear model (7.4) at the
current step. Recall that Anderson exploited a similar local relation represented by
(6.10), and the intermediate solution 𝑥𝑘 in (6.7) is a local minimizer of the linear
model. We will often use the notation

𝑉 𝑗 ≈ [𝐽]𝑃 𝑗 (7.5)

to express the relation represented by equation (7.1).

7.2. Linear updates

The reader may have noticed that Algorithm 6 requires two function evaluations
per step, one in line 8 where the residual is computed, and one in line 9 when
invoking the Fréchet derivative to compute 𝐽(𝑥 𝑗+1)𝑝 using the formula

𝐽(𝑥)𝑝 ≈ 𝑓 (𝑥 + 𝜖 𝑝) − 𝑓 (𝑥)
𝜖

, (7.6)

where 𝜖 is some carefully selected small scalar. It is possible to avoid calculating
the nonlinear residual by simply replacing it with its linear approximation given by
expression (7.4), from which we get

𝑟 𝑗+1 = − 𝑓 (𝑥 𝑗 + 𝑃 𝑗 𝑦 𝑗) ≈ − 𝑓 (𝑥 𝑗) −𝑉 𝑗 𝑦 𝑗 = 𝑟 𝑗 −𝑉 𝑗 𝑦 𝑗 .

Therefore the idea of this ‘linearized update version’ of nlTGCR is to replace 𝑟 𝑗+1
in line 8 with its linear approximation 𝑟 𝑗 −𝑉 𝑗 𝑦 𝑗 :

8𝑎: 𝑟 𝑗+1 = 𝑟 𝑗 −𝑉 𝑗 𝑦 𝑗 .

This is now a method that resembles an inexact Newton approach. It will be
equivalent to it if we add one more modification to the scheme, namely that we omit

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

874 Y. Saad

updating the Jacobian in line 9 when computing 𝑣. In other words, the Jacobian
𝐽(𝑥 𝑗+1) invoked in line 9 is constant and equal to 𝐽(𝑥0), and line 9 becomes

9𝑎: Set: 𝑝 ≔ 𝑟 𝑗+1; and compute 𝑣 = 𝐽(𝑥0)𝑝.

In practice this means that when computing the vector 𝑣 in line 9 of Algorithm 6
with equation (7.6), the vector 𝑥 is set to 𝑥0. This works with restarts, that is, when
the number of steps reaches a restart dimension, or when the linear residual has
shown sufficient decrease, 𝑥0 is reset to be the latest iteration computed, and a new
subspace and corresponding approximation are computed.

All this means is that with minor changes to Algorithm 6 we can implement a
whole class of methods that have been thoroughly studied in the past; see e.g. Dembo
et al. (1982), Brown and Saad (1990, 1994) and Eisenstat and Walker (1994),
among others. Probably the most significant disadvantage of inexact Newton
methods, or to be specific Krylov–Newton methods, is that a large number of
function evaluations may be needed to build the Krylov subspace in order to
obtain a single iterate, i.e. the next (inexact) Newton iterate. After this iterate
is computed, all the information gathered at this step, specifically 𝑃𝑘 and 𝑉𝑘 ,
is discarded. This is to be contrasted with quasi-Newton techniques, where the
most recent function evaluation contributes to building an updated approximate
Jacobian. Inexact Newton methods are most successful when the Jacobian is
available, or inexpensive to compute, and some effective preconditioner can be
readily computed.

Nevertheless, it may still be cost-effective to reduce the number of function
evaluations from two to one whenever possible. We can update the residual norm
by replacing line 8 of Algorithm 6 with the linear form 8𝑎 when it is deemed
safe, that is, typically after the iteration reaches a region where the iterate is close
enough to the exact solution that the linear model (7.4) is accurate enough. A simple
strategy to employ linear updates and move back to using nonlinear residuals was
implemented and tested in He et al. (2024). It is based on probing periodically how
far the linear residual 𝑟 𝑗+1 = 𝑟 𝑗 −𝑉 𝑗 𝑦 𝑗 is from the actual one. Define

𝑑 𝑗 = 1 −
(𝑟 𝑗 , 𝑟 𝑗)

∥𝑟 𝑗 ∥2∥𝑟 𝑗 ∥2
. (7.7)

The adaptive nlTGCR switches the linear mode on when 𝑑 𝑗 < 𝜏 and returns to
the nonlinear mode if 𝑑 𝑗 ≥ 𝜏, where 𝜏 is a small threshold parameter. In the
experiments discussed in Section 7.5, we set 𝜏 = 0.01.

7.3. Nonlinear updates

We now consider an implementation of Algorithm 6 in which nonlinear residuals
are computed at each step. We can study the algorithm by establishing relations
with the linear residual

𝑟 𝑗+1 = 𝑟 𝑗 −𝑉 𝑗 𝑦 𝑗 , (7.8)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 875

and the deviation between the actual residual 𝑟 𝑗+1 and its linear version 𝑟 𝑗+1 at the
(𝑗 + 1)th iteration:

𝑧 𝑗+1 = 𝑟 𝑗+1 − 𝑟 𝑗+1. (7.9)

To analyse the magnitude of 𝑧 𝑗+1, we define

𝑤𝑖 = (𝐽(𝑥 𝑗) − 𝐽(𝑥𝑖))𝑝𝑖 for 𝑖 = [𝑗 − 𝑚 + 1], . . . , 𝑗 , 𝑊 𝑗 = [𝑤 [𝑗−𝑚+1] , . . . , 𝑤 𝑗]
(7.10)

and
𝑠 𝑗 = 𝑓 (𝑥 𝑗+1) − 𝑓 (𝑥 𝑗) − 𝐽(𝑥 𝑗)(𝑥 𝑗+1 − 𝑥 𝑗). (7.11)

Observe that
𝐽(𝑥 𝑗)𝑝𝑖 = 𝐽(𝑥𝑖)𝑝𝑖 + 𝑤𝑖 = 𝑣𝑖 + 𝑤𝑖 . (7.12)

Recall from the Taylor series expansion that 𝑠 𝑗 is a second-order term relative to
∥𝑥 𝑗+1 − 𝑥 𝑗 ∥2. Then it can be shown (He et al. 2024) that the difference 𝑟 𝑗+1 − 𝑟 𝑗+1
satisfies the relation

𝑟 𝑗+1 − 𝑟 𝑗+1 = 𝑊 𝑗 𝑦 𝑗 + 𝑠 𝑗 = 𝑊 𝑗𝑉
⊤
𝑗 𝑟 𝑗 + 𝑠 𝑗 , (7.13)

and therefore that

∥𝑟 𝑗+1 − 𝑟 𝑗+1∥2 ≤ ∥𝑊 𝑗 ∥2 ∥𝑟 𝑗 ∥2 + ∥𝑠 𝑗 ∥2. (7.14)

When the process nears convergence, ∥𝑊 𝑗 ∥2∥𝑟 𝑗 ∥2 is the product of two first-
order terms while 𝑠 𝑗 is a second-order term according to its definition (7.11). Thus
𝑧 𝑗+1 is a quantity of the second order.

The following properties of Algorithm 6 are easy to establish; see He et al.
(2024) for the proof and other details. We let 𝑚 𝑗 denote the number of columns in
𝑉 𝑗 and 𝑃 𝑗 , i.e. 𝑚 𝑗 = min{𝑚, 𝑗 + 1}.

Proposition 7.1. The following properties are satisfied by the vectors produced
by Algorithm 6.

(1) (𝑟 𝑗+1, 𝑣𝑖) = 0 for [𝑗 − 𝑚 + 1] ≤ 𝑖 ≤ 𝑗 , i.e. 𝑉⊤
𝑗
𝑟 𝑗+1 = 0.

(2) ∥𝑟 𝑗+1∥2 = min𝑦 ∥ − 𝑓 (𝑥 𝑗) + [𝐽]𝑃 𝑗 𝑦∥2 = min𝑦 ∥ − 𝑓 (𝑥 𝑗) +𝑉 𝑗 𝑦∥2.
(3) ⟨𝑣 𝑗+1, 𝑟 𝑗+1⟩ = ⟨𝑣 𝑗+1 , 𝑟 𝑗⟩.
(4) 𝑦 𝑗 = 𝑉⊤

𝑗
𝑟 𝑗 = ⟨𝑣 𝑗 , 𝑟 𝑗⟩𝑒𝑚 𝑗

−𝑉⊤
𝑗
𝑧 𝑗 where 𝑒𝑚 𝑗

= [0, 0, . . . , 1]⊤ ∈ R𝑚 𝑗 .

Property (4) and equation (7.14) suggest that when 𝑧 𝑗 is small, then 𝑦 𝑗 will have
small components everywhere except for the last component. This happens when
the model is close to being linear or when it is nearing convergence.

7.4. Connections with multisecant methods

The update at step 𝑗 of nlTGCR can be written as

𝑥 𝑗+1 = 𝑥 𝑗 + 𝑃 𝑗𝑉
⊤
𝑗 𝑟 𝑗 = 𝑥 𝑗 + 𝑃 𝑗𝑉

⊤
𝑗 (− 𝑓 (𝑥 𝑗)),

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

876 Y. Saad

showing that nlTGCR is a multisecant-type method in which the inverse Jacobian
at step 𝑗 is approximated by

𝐺 𝑗+1 ≡ 𝑃 𝑗𝑉
⊤
𝑗 . (7.15)

This approximation satisfies the multisecant equation

𝐺 𝑗+1𝑣𝑖 = 𝑝𝑖 for [𝑗 − 𝑚 + 1] ≤ 𝑖 ≤ 𝑗 . (7.16)

Indeed, 𝐺 𝑗+1𝑣𝑖 = 𝑃 𝑗𝑉
⊤
𝑗
𝑣𝑖 = 𝑝𝑖 = 𝐽(𝑥𝑖)−1𝑣𝑖 for [𝑗 −𝑚 + 1] ≤ 𝑖 ≤ 𝑗 . In other words

𝐺 𝑗+1 inverts 𝐽(𝑥𝑖) exactly when applied to 𝑣𝑖 .
If we substitute 𝑝𝑖 with Δ𝑥 𝑗 and 𝑣𝑖 with Δ 𝑓 𝑗 we see that equation (7.16) is just the

constraint (5.10) we encountered in Broyden’s second update method. In addition,
the update 𝐺 𝑗+1 also satisfies the ‘no-change’ condition

𝐺 𝑗+1𝑞 = 0 for all 𝑞 ⊥ 𝑣𝑖 , for [𝑗 − 𝑚 + 1] ≤ 𝑖 ≤ 𝑗 . (7.17)

The usual no-change condition for secant methods is of the form

(𝐺 𝑗+1 − 𝐺 [𝑗−𝑚+1])𝑞 = 0 for 𝑞 ⊥ Δ 𝑓𝑖 ,

which in our case would become (𝐺 𝑗+1−𝐺 [𝑗−𝑚+1])𝑞 = 0 for 𝑞 ⊥ 𝑣𝑖 for [𝑗−𝑚+1] ≤
𝑖 ≤ 𝑗 . This means that we are in effect updating 𝐺 [𝑗−𝑚+1] ≡ 0. Interestingly,
𝐺 𝑗+1 satisfies an optimality result that is similar to that of other secant-type and
multisecant-type methods. This is stated in the following proposition, which is
easy to prove; see He et al. (2024).

Proposition 7.2. The unique minimizer of the optimization problem

min{∥𝐺∥𝐹 , 𝐺 ∈ R𝑛×𝑛 subject to 𝐺𝑉 𝑗 = 𝑃 𝑗} (7.18)

is the matrix 𝐺 𝑗+1 = 𝑃 𝑗𝑉
⊤
𝑗

.

The condition𝐺 𝑗+1𝑉 𝑗 = 𝑃 𝑗 is the same as the multisecant condition𝐺 𝑗F 𝑗 = X 𝑗

of equation (6.40) discussed when we characterized AA as a multisecant method.
In addition, recall that the multisecant version of the no-change condition, as
represented by equation (6.41), is satisfied. This is the same as the no-change
condition seen above for nlTGCR.

Therefore we see that the two methods are quite similar, in that they are both
multisecant methods defined from a pairing of two sets of vectors: 𝑉 𝑗 , 𝑃 𝑗 for
nlTGCR on the one hand, and F 𝑗 , X 𝑗 for AA on the other. From this viewpoint,
the two methods differ mainly in the way in which the sets F 𝑗/𝑉 𝑗 and X 𝑗/𝑃 𝑗 are
defined. Let us use the more general notation 𝑉 𝑗 , 𝑃 𝑗 for both pairs of subspaces.

In both cases, a vector 𝑣 𝑗 is related to the corresponding 𝑝 𝑗 by the fact that

𝑣 𝑗 ≈ 𝐽(𝑥 𝑗)𝑝 𝑗 . (7.19)

Looking at line 9 of Algorithm 6 indicates that before the orthogonalization step
in nlTGCR (lines 10–12), this relation becomes an equality, or aims to be close to
an equality, by employing a Fréchet differentiation. Thus the process introduces a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 877

pair 𝑝 𝑗 , 𝑣 𝑗 to the current paired subspaces where 𝑝 𝑗 is accurately mapped to 𝑣 𝑗 by
𝐽(𝑥 𝑗); see (7.19). In the case of AA we have 𝑣 𝑗 = Δ 𝑓 𝑗−1 = 𝑓 𝑗 − 𝑓 𝑗−1, and write

𝑓 𝑗 ≈ 𝑓 𝑗−1 + 𝐽(𝑥 𝑗−1)(𝑥 𝑗 − 𝑥 𝑗−1) → Δ 𝑓 𝑗−1 ≈ 𝐽(𝑥 𝑗−1)Δ𝑥 𝑗−1, (7.20)

which is an expression of the form (7.19) for index 𝑗 − 1.
An advantage of nlTGCR is that relation (7.19) is a more accurate representation

of the Jacobian than relation (7.20), which can be a rough approximation when 𝑥 𝑗
and 𝑥 𝑗−1 are not close to each other. This advantage comes at the extra cost of an
additional function evaluation, but this can be mitigated by an adaptive scheme, as
was seen at the end of Section 7.2.

7.5. Numerical illustration: nlTGCR and Anderson

We now return to the numerical examples seen in Section 6.6 to test nlTGCR
along with Anderson acceleration. As mentioned earlier, we can run nlTGCR in
different modes. We can adopt a ‘linear’ mode, which is simply an inexact Newton
approach where the Jacobian systems are solved with a truncated GCR method.
It is also possible to run an ‘adaptive’ algorithm, as described earlier, where we
switch between the linear and nonlinear residual modes with the help of a simple
criterion; see the end of Section 7.2. Figure 7.1 reproduces the curves of RRE(5)
and AA(5,10), and AA-TGS(5,.) shown in Section 6.6, and adds results with
nlTGCR Ln(5,.), nlTGCR Ad(5,.), the linear and adaptive versions of nlTGCR
respectively. As before, the parameter 5 for these two runs represents the window
size. What is shown is similar to what we saw in Section 6.6, and the parameters,
such as residual tolerance and maximum number of iterations, are identical. One
difference is that because the methods perform very similarly at the beginning,
we do not plot the initial part of the curves, that is, we omit points for which the
number of function evaluations is less than 100.

Because nlTGCR Ln is in effect an inexact Newton method, one can expect a
superlinear convergence if a proper strategy is adopted when solving the Jacobian
systems. These systems are solved inexactly by requiring that we reduce the (linear)
residual norm by a certain tolerance 𝜏 where 𝜏 is adapted. Table 7.1 illustrates the

Table 7.1. The superlinear convergence of nlTGCR Ln
for the Lennard-Jones example.

Its ∥∇𝐸 ∥2 Inner 𝜂

7 1.894e+00 10 4.547e-02
8 6.376e-02 22 1.337e-02
9 3.282e-04 47 1.020e-03

10 7.052e-09 59 2.386e-05

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

878 Y. Saad

100 200 300 400 500

Func. evaluations

10
-15

10
-10

10
-5

 |
|
re

s
.

||

RRE(5)

AA(5,10)

nlTGCR_Ln(5,.)

nlTGCR_Ad(5,.)

AA-TGS(5,.)

(a)

100 150 200 250 300

Func. evaluations

10
-8

10
-6

10
-4

10
-2

 |
|

j |

|

RRE(5)

AA(5,10)

nlTGCR_Ln(5,.)

nlTGCR_Ad(5,.)

AA-TGS(5,.)

(b)

Figure 7.1. Comparison of five different methods for the Bratu problem (a) and the
Lennard-Jones optimization problem (b).

superlinear convergence of the linear, i.e. inexact, Newton version of nlTGCR, as
observed for the Lennard-Jones problem. The algorithm takes 10 outer (Newton)
iterations to converge but we only show the last four iterations (as indicated by the
column ‘Its’). The second column shows the progress of the norm of the gradient,
which is nearly quadratic, as can be seen. The third column shows the number
of inner steps needed to reduce the residual norm by 𝜂 at the given Newton step,
where 𝜂 is shown in the fourth column. This tolerance parameter 𝜂 is determined
according to the Eisenstat–Walker update; see Kelley (1995) for details. This update
scheme works by trying to produce a quadratically decreasing residual based on
gains made in the previous step.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 879

8. Acceleration methods for machine learning
We conclude this article with a few preliminary thoughts on how acceleration meth-
ods might be put to work in a world that is increasingly driven by machine learning
(ML) and artificial intelligence (AI). Training deep neural networks models is ac-
complished with one of a number of known iterative procedures. What sets these
procedures apart from their counterparts in physical simulations is their reliance
on stochastic approaches that exploit large datasets. This presents a completely
new landscape for acceleration methods, one for which they were not originally
designed. It is too early to definitively say whether or not acceleration methods
will be broadly adopted for ML/AI optimization, but it is certainly time to start
investigating what modifications to traditional acceleration approaches might be
required to deploy them successfully in this context.

Training an AI model is highly demanding, in terms of both memory and com-
putational power. The idea of resorting to acceleration in deep learning is a rather
natural one when considering that standard approaches may require tens of thou-
sands of iterations to converge. Anderson acceleration for deep learning tasks
was discussed in a number of recent articles; see e.g. Pasini, Yin, Reshniak and
Stoyanov (2021, 2022), Sun et al. (2021) and Shi et al. (2019), among others. Most
of these papers advocate some form of regularization to cope with the varying/
stochastic nature of the optimization problem.

Before reviewing the challenges posed by stochastic techniques to acceleration
methods, we briefly describe the stochastic gradient descent (SGD) algorithm, one
of the simplest methods employed to train DNN models. In spite of its simplicity,
SGD is a good representative of iterative optimization algorithms in deep learning,
because its use is rather widespread and because it shares the same features as those
of the more advanced algorithms.

8.1. Stochastic gradient descent

The classical (deterministic) gradient descent (GD) method for minimizing a convex
function 𝜙(𝑤) with respect to 𝑤 was mentioned in Section 4.2; see equation (4.10).
If 𝜙 is differentiable, the method consists of taking the iterates

𝑤 𝑗+1 = 𝑤 𝑗 − 𝜂 𝑗∇𝜙(𝑤 𝑗), (8.1)

where 𝜂 𝑗 is a scalar termed the step-size or learning rate in machine learning.
The above algorithm is well understood for functions 𝜙 that are convex. In this
situation, the step-size 𝜂 𝑗 is usually determined by performing a line search, i.e.
by selecting the scalar 𝜂 so as to minimize, or reduce in specific ways, the cost
function 𝜙(𝑤 𝑗 − 𝜂∇𝜙(𝑤 𝑗)) with respect to 𝜂. It was Cauchy (1847) who invented
the method for solving systems of equations; see also Petrova and Solov’ev (1997)
for details on the origin of the method.

In data-related applications,𝑤 is a vector of weights needed to optimize a process.
This often amounts to finding the best parameters to use, say in a classification

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

880 Y. Saad

method, so that the value of 𝜙 at sample points matches some given result across
items of a dataset according to a certain measure. Here we simplified notation by
writing 𝜙(𝑤) instead of the more accurate 𝜙(𝑥 |𝑤), which is to be read as ‘the value
of 𝜙 for 𝑥 given the parameter set 𝑤’.

In the specific context of deep learning, 𝜙(𝑤) is often the sum of a large number
of other cost functions, that is, we often have

𝜙(𝑤) =
𝑁∑︁
𝑖=1

𝜙𝑖(𝑤) → ∇𝜙(𝑤) =
𝑁∑︁
𝑖=1

∇𝜙𝑖(𝑤). (8.2)

The index 𝑖 here refers to the samples in the training data. In the simplest case
where a mean square error (MSE) cost function is employed, we would have

𝜙(𝑤) =
𝑛∑︁
𝑖=1

∥ �̂�𝑖 − 𝜙𝑤(𝑥𝑖)∥2
2, (8.3)

where �̂�𝑖 is the target value for item 𝑥𝑖 and 𝑦𝑖 = 𝜙𝑤(𝑥𝑖) is the result of the model
for 𝑥𝑖 given the weights represented by 𝑤.

Stochastic gradient descent (SGD) methods are designed specifically for the
common case where 𝜙(𝑤) is of the form (8.2). It is usually expensive to compute
∇𝜙 but inexpensive to compute a component ∇𝜙𝑖(𝑤). As a result, the idea is to
replace the gradient ∇𝜙(𝑤) in the gradient descent method by ∇𝜙𝑖 𝑗 (𝑤 𝑗), where 𝑖 𝑗
is drawn at random at step 𝑗 . The result is an iteration of the type

𝑤 𝑗+1 = 𝑤 𝑗 − 𝜂 𝑗∇𝜙𝑖 𝑗 (𝑤 𝑗). (8.4)

The step-size 𝜂 𝑗 , called the ‘learning rate’ in this context, is rarely selected by a
line search but it is determined adaptively or set to a constant. Convergence results
for SGD have been established in the convex case; see Bubeck (2015), Robbins
and Monro (1951), Hardt, Recht and Singer (2016) and Gower et al. (2019). The
main point, going back to the seminal work by Robbins and Monro (1951), is that
when gradients are inaccurately computed, then if they are selected from a process
whose noise has a mean of zero then the process will converge in probability to the
root.

A straightforward SGD approach that uses a single function 𝜙𝑖 𝑗 at a time is
seldom used in practice because this typically results in a convergence that is too
slow. A common middle ground solution between the one-subfunction SGD and
the full gradient descent algorithm is to resort to mini-batching. In short, the idea
consists of replacing the single function 𝜙𝑖 𝑗 by an average of few such functions,
again drawn at random from the full set.

Thus mini-batching begins by partitioning the set {1, 2, . . . , 𝑁} into 𝑛𝐵 ‘mini-
batches’ B 𝑗 , 𝑗 = 1, . . . , 𝑛𝐵, where

𝑛𝐵⋃
𝑗=1

B 𝑗 = {1, 2, . . . , 𝑁}, with B 𝑗

⋂
B𝑘 = ∅ for 𝑗 ≠ 𝑘 .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 881

Here, eachB 𝑗 ⊆ {1, 2, . . . , 𝑛} is a small set of indices. Then, instead of considering
a single function 𝜙𝑖 , we will consider

𝜙B 𝑗
(𝑤) ≡ 1

|B 𝑗 |
∑︁
𝑘∈B 𝑗

𝜙𝑘(𝑤). (8.5)

We will cycle through all mini-batches B 𝑗 of functions, each time performing a
group-gradient step of the form

𝑤 𝑗+1 = 𝑤 𝑗 − 𝜂∇𝜙B 𝑗
(𝑤 𝑗), 𝑗 = 1, 2, . . . , 𝑛𝐵. (8.6)

If each set B 𝑗 is small enough, computing the gradient will be manageable and
computationally efficient. One sweep through the whole set of functions as in
(8.6) is termed an epoch. The number of iterations of SGD and other optimization
learning in deep learning is often measured in terms of epochs. It is common to
select the partition at random at each new epoch by reshuffling the set {1, 2, . . . , 𝑁}
and redrawing the batches consecutively from the resulting shuffled set. Models
can be expensive to train: the more complex models often require thousands or
tens of thousands of epochs to converge.

Mini-batch processing in the random fashion described above is advantageous
from a computational point of view since it typically leads to fewer sweeps through
each function to achieve convergence. It is also mandatory if we wish to avoid
reaching local minima and overfitting. Stochastic approaches of the type just
described are at the heart of optimization techniques in deep learning.

8.2. Acceleration methods for deep learning: The challenges

Suppose we want to apply some form of acceleration to the sequence generated by
the batched gradient descent iteration (8.6). There is clearly an issue in that the
function changes at each step by the nature of the stochastic approach. Indeed, by
the definition (8.5), it is as if we are trying to find the minimum of a new function at
each new step, namely the function (8.5), which depends on the batch B 𝑗 . We could
use the full gradient, which amounts to using a full batch, i.e. the whole data set, at
each step. However, it is often argued that in deep learning an exact minimization
of the objective function using the full dataset at once is not only difficult but also
counter-productive. Indeed, mini-batching serves other purposes than just better
scalability. For example, it helps prevent ‘overfitting’: using all the data samples
at once is similar to interpolating a function in the presence of noise at all the data
points. Randomization also helps the process escape from bad local minima.

This brings us to the second problem, namely the lack of convexity of the
objective functions invoked in deep learning. This means that all methods that
feature a second-order character, such as a quasi-Newton approach, will have both
theoretical and practical difficulties. As was seen earlier, Anderson acceleration can
be viewed as a secant method similar to a quasi-Newton approach. These methods
will potentially utilize many additional vectors but result in little or no acceleration,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

882 Y. Saad

if not in a breakdown caused by the non-SPD nature of the Hessian. The lack of
convexity and the fact that the problem is heavily over-parametrized means that
there are many solutions to which the algorithms can converge. Will acceleration
lead to a better solution than that of the baseline algorithm being accelerated? If
we consider only the objective function as the sole criterion, one may think that the
answer is clear: the lower the better. However, practitioners in this field are more
interested in ‘generalization’ or the property to obtain good classification results on
data that is not among the training data set. The problem of generalization has been
the object of numerous studies; see e.g. Zhang et al. (2021), Li et al. (2018), Wu,
Zhu and E (2017) and Zhou et al. (2020), among many others. Zhang et al. (2021)
show by means of experiments that looking at DL from the angle of minimizing
the loss function fails to explain generalization properties. They show that they can
achieve a perfect loss of zero in training models on well-known datasets (MNIST,
CIFAR10) that have been modified by randomly changing all labels. In other
words, one can obtain parameters whose loss function is minimum but with the
worst possible generalization, since the resulting classification would be akin to
assigning a random label to each item. A number of other papers (Zhou et al.
2020, Neyshabur, Tomioka and Srebro 2015, Li et al. 2018, Wu et al. 2017) have
explored this issue further by attempting to explain generalization with the help of
the ‘loss landscape’, the geometry of the loss function in high-dimensional space.
What can be understood from these works is that the problem is far more complex
than just minimizing a function. There are many minima, and some are better than
others. A local minimum that has a smaller loss function will not necessarily lead
to better inference accuracy, and the random character of the learning algorithms
plays a central role in achieving a good generalization. This suggests that we should
study mechanisms that incorporate or encourage randomness. An illustration will
be provided in the next section.

The third challenge is that acceleration methods tend to be memory-intensive,
requiring storage of possibly tens of additional vectors to be effective. In deep
learning this is not an affordable option. For example, a model such as ChatGPT-3
has 175B parameters, while the more recent Llama 3 involves 450B parameters.
This is the main reason why simple methods such as SGD or Adam (Kingma and
Ba 2015) are favoured in this context.

8.3. Adapting acceleration methods for ML

Given the discussion of the previous section, one may ask what benefits can be
obtained by incorporating second-order information in stochastic methods. In-
deed, Bottou, Curtis and Nocedal (2018) discuss the applicability of second-order
methods for machine learning and, citing previous work, point out that the conver-
gence rate of a quasi-Newton-type ‘stochastic iteration . . . cannot be faster than
sublinear’. However, Bottou and Le Cun (2005) state that if the Hessian approx-
imation converges to the exact Hessian at the limit, then the rate of convergence of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 883

SGD is independent of the conditioning of the Hessian. In other words, second-
order information makes the method ‘better equipped to cope with ill-conditioning
than SGD’. Thus careful successive rescaling based on (approximate) second-order
derivatives has been successfully exploited to improve convergence of stochastic
approaches.

The above discussion may lead the potential researcher to dismiss all acceleration
methods for deep learning tasks. There are a few simple variations to acceleration
schemes to cope with some of the issues raised in Section 8.2. For example, if
our goal is to accelerate the iteration (8.6) with a constant learning rate 𝜂, then we
could introduce inner iterations to ‘iterate within the same batch’. What this means
is that we force the acceleration method to act on the same batch for a given number
of inner iterations. For example, if we use RRE (see Section 2.6), we could decide
to restart every 𝑘 iterations, each of which is with the same batch B 𝑗 . When the
next batch is selected, we replace the latest iterate with the result of the accelerated
sequence. We found with simple experiments that a method such as RRE will work
very poorly without such a scheme.

On the other hand, if we are to embrace a more randomized viewpoint, we could
adopt a mixing mechanism whereby the subspaces used in the secant equation
evolve across different batches. In other words we no longer force the accelerator
to work only on the same batch. Thus the columns of the X 𝑗 ,F 𝑗 in (6.5) of
Anderson acceleration are now allowed to be associated with different batches. In
contrast with RRE, our preliminary experiments show that for AA and AA-TGS
this in fact works better than adding an inner loop.

Here is a very simple experiment carried out with the help of the PyTorch library
(Paszke et al. 2019). We train a small multilayer perceptron (MLP) model (see
e.g. Murphy 2022), with two hidden layers to recognize handwritten images from
the dataset MNIST (60 000 samples of images of handwritten digits for training,
10 000 samples for testing). We tested four baseline standard methods available in
PyTorch: SGD, Adam, RMSprop and AdaGrad. Each of these is then accelerated
with RRE (RRE), Anderson acceleration (AAc) or Anderson-TGS (TGS). Here we
show the results with SGD only. AA and AA-TGS use a window size of 3 and a
restart dimension of 10. Both implement the batch-overlapping subspaces discussed
above (no inner loop). In contrast, RRE incorporates an inner loop of five steps
(without which it performs rather poorly). The restart dimension for RRE is also
set to 5, to match the number of inner steps. We train the model five times using a
different randomly drawn subset of 2000 items (out of the 60 000 MNIST training
set) each time. With each of the five runs we draw a test sample of 200 (out of the
10 000 MNIST test set) to test the accuracy of the trained model. The accuracy is
then averaged across the five runs. For each run the accuracy is measured as just
100 times the ratio of the number of correctly recognized digits over the total in
the test set (200). We show the loss function for each of the training algorithms
in Figure 8.1(a). Two versions of the baseline algorithm (SGD) are tested, both of
which use the same learning rate 𝜂 = 0.001. The first, labelled SGD bas, is just the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

884 Y. Saad

Figure 8.1. Comparison of various techniques for a simple MLP model on the set
MNIST.

standard SGD, while the second, SGD inn, incorporates the same inner iteration
scheme as RRE (five inner steps). This performs slightly better than the original
scheme, sometimes markedly better than with the other optimizers.

One can see a big improvement in the convergence of all the accelerated al-
gorithms. Other tests indicated that adding an inner loop to avoid mixing the sub-
spaces from different batches is detrimental to both AA and AA-TGS, especially
when comparing the accuracy. While the improvement in accuracy is significant,
we should point out that SGD has not yet fully converged, as we limited the number
of epochs to 150. In other tests, e.g. with Adam, we often saw a small improve-
ment in accuracy but not as pronounced. However, in all cases, the accelerated
algorithms reach a higher precision much earlier than the baseline methods.

The second remedy addresses the issue of memory. When training AI models,
we are limited to a very small number of vectors that we can practically store. So
methods such as a restarted RRE, or Anderson, must utilize a very small window
size. Note that a window size of 𝑚 will require a total of ≈ 2𝑚 vectors for most
methods we have seen. This is the reason why a method such as AA-TGS or nlTGCR
can be beneficial in deep learning. For both methods, there is a simplification in the
linear symmetric case, as was seen earlier. This means that in this special situation
a very small window size (𝑚 = 3 for AA-TGS, 𝑚 = 2 for nlTGCR) will essentially
be equivalent to a window size of𝑚 = ∞, potentially leading to a big advantage. In
a general nonlinear optimization situation the Hessian is symmetric, so when the
iterates are near the optimum and a nearly linear regime sets in, then the process
should benefit from the short-term recurrences of AA-TGS and nlTGCR. In fact
this may explain why AA-TGS does so much better at reducing the loss than AA
with the same parameters in the previous experiment; see Figure 8.1. From this
perspective, any iteration involving a short-term recurrence is worth exploring for
machine learning.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 885

What is clear is that acceleration methods of the type discussed in this paper have
the potential to emerge as powerful tools for training AI models. While adapting
them to the stochastic framework poses challenges, it also offers a promising
opportunity for future research.

Acknowledgements
This work would not have been possible without the invaluable collaborations I
have had with several colleagues and students, both past and ongoing. I would like
to extend special thanks to the following individuals: Claude Brezinski, Michela
Redivo-Zaglia, Yuanzhe Xi, Abdelkader Baggag, Ziyuan Tang and Tianshi Xu. I
am also grateful for the support provided by the National Science Foundation (grant
DMS-2208456).

References
A. Aitken (1926), On Bernoulli’s numerical solution of algebraic equations, Proc. Roy.

Soc. Edinburgh 46, 289–305.
D. G. Anderson (1965), Iterative procedures for non-linear integral equations, Assoc.

Comput. Mach. 12(547), 547–560.
O. Axelsson (1980), Conjugate gradient type-methods for unsymmetric and inconsistent

systems of linear equations, Linear Algebra Appl. 29, 1–16.
A. Blair, N. Metropolis, J. von Neumann, A. H. Taub and M. Tsingou (1959), A study of

a numerical solution to a two-dimensional hydrodynamical problem, Math. Comp. 13,
145–184.

L. Bottou and Y. Le Cun (2005), On-line learning for very large data sets, Appl. Stoch.
Models Bus. Ind. 21, 137–151.

L. Bottou, F. Curtis and J. Nocedal (2018), Optimization methods for large-scale machine
learning, SIAM Rev. 60, 223–311.

C. Brezinski (1975), Généralisation de la transformation de Shanks, de la table de Padé et
de l’𝜀-algorithme, Calcolo 12, 317–360.

C. Brezinski (1977), Accélération de la Convergence en Analyse Numérique, Vol. 584 of
Lecture Notes in Mathematics, Springer.

C. Brezinski (1980), Padé-Type Approximation and General Orthogonal Polynomials,
Birkhäuser.

C. Brezinski (2000), Convergence acceleration during the 20th century, J. Comput. Appl.
Math. 122, 1–21.

C. Brezinski and M. Redivo-Zaglia (1991), Extrapolation Methods: Theory and Practice,
North-Holland.

C. Brezinski and M. Redivo-Zaglia (2019), The genesis and early developments of Aitken’s
process, Shanks’ transformation, the 𝜖-algorithm, and related fixed point methods,
Numer. Algorithms 80, 11–133.

C. Brezinski and M. Redivo-Zaglia (2020), Extrapolation and Rational Approximation:
The Works of the Main Contributors, Springer.

C. Brezinski, S. Cipolla, M. Redivo-Zaglia and Y. Saad (2022), Shanks and Anderson-type
acceleration techniques for systems of nonlinear equations, IMA J. Numer. Anal. 42,
3058–3093.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

886 Y. Saad

C. Brezinski, M. Redivo-Zaglia and A. Salam (2023), On the kernel of vector 𝜖-algorithm
and related topics, Numer. Algorithms 92, 207–221.

P. N. Brown and Y. Saad (1990), Hybrid Krylov methods for nonlinear systems of equations,
SIAM J. Sci. Statist. Comput. 11, 450–481.

P. N. Brown and Y. Saad (1994), Convergence theory of nonlinear Newton–Krylov al-
gorithms, SIAM J. Optim. 4, 297–330.

S. Bubeck (2015), Convex optimization: Algorithms and complexity, Found. Trends Mach.
Learn. 8, 231–357.

S. Cabay and L. W. Jackson (1976), A polynomial extrapolation method for finding limits
and antilimits of vector sequences, SIAM J. Numer. Anal. 13, 734–752.

A. L. Cauchy (1847), Methode générale pour la résolution des systèmes d’équations simul-
tanées, Comp. Rend. Acad. Sci. Paris 25, 536–538.

M. Chupin, M.-S. Dupuy, G. Legendre and E. Séré (2021), Convergence analysis of adaptive
DIIS algorithms with application to electronic ground state calculations, ESAIM Math.
Model. Numer. Anal. 55, 2785–2825.

J. Degroote, K.-J. Bathe and J. Vierendeels (2009), Performance of a new partitioned
procedure versus a monolithic procedure in fluid–structure interaction, Computers &
Structures 87(11), 793–801.

R. S. Dembo, S. C. Eisenstat and T. Steihaug (1982), Inexact Newton methods, SIAM J.
Numer. Anal. 18, 400–408.

P. A. M. Dirac (1929), Quantum mechanics of many-electron systems, Proc. R. Soc. Lond.
A123, 714–733.

R. P. Eddy (1979), Extrapolation to the limit of a vector sequence, in Information Linkage
Between Applied Mathematics and Industry (P. C. C. Wang, ed.), Academic Press,
pp. 387–396.

R. P. Eddy and P. C. C. Wang (1979), Extrapolating to the limit of a vector sequence,
in Information Linkage between Applied Mathematics and Industry, Academic Press,
pp. 387–396.

S. C. Eisenstat and H. F. Walker (1994), Globally convergent inexact Newton methods,
SIAM J. Optim. 4, 393–422.

S. C. Eisenstat, H. C. Elman and M. H. Schultz (1983), Variational iterative methods for
nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20, 345–357.

C. Evans, S. Pollock, L. G. Rebholz and M. Xiao (2020), A proof that Anderson acceleration
improves the convergence rate in linearly converging fixed-point methods (but not in
those converging quadratically), SIAM J. Numer. Anal. 58, 788–810.

V. Eyert (1996), A comparative study on methods for convergence acceleration of iterative
vector sequences, J. Comput. Phys. 124, 271–285.

H. Fang and Y. Saad (2009), Two classes of multisecant methods for nonlinear acceleration,
Numer. Linear Algebra Appl. 16, 197–221.

G. E. Forsythe (1951), Gauss to Gerling on relaxation, Mathematical Tables and Other
Aids to Computation 5, 255–258.

G. E. Forsythe (1953), Solving linear algebraic equations can be interesting, Bull. Amer.
Math. Soc. 59, 299–329.

G. Gamov (1966), Thirty Years That Shook Physics: The Story of Quantum Theory, Dover.
B. Germain-Bonne (1978), Estimation de la limite de suites et formalisation de procédés

d’accélération de convergence. PhD thesis, Université des Sciences et Techniques de
Lille.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 887

G. H. Golub and C. F. Van Loan (2013), Matrix Computations, fourth edition, Johns
Hopkins University Press.

G. H. Golub and R. S. Varga (1961), Chebyshev semi-iterative methods, successive over-
relaxation iterative methods, and second order Richardson iterative methods, Numer.
Math. 3, 157–168.

R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin and P. Richtárik (2019),
SGD: General analysis and improved rates, in International Conference on Machine
Learning, PMLR, pp. 5200–5209.

R. Haelterman, J. Degroote, D. V. Heule and J. Vierendeels (2010), On the similarities
between the quasi-Newton inverse least squares method and GMRES, SIAM J. Numer.
Anal. 47, 4660–4679.

M. Hardt, B. Recht and Y. Singer (2016), Train faster, generalize better: Stability of
stochastic gradient descent, in Proceedings of The 33rd International Conference on
Machine Learning (M. F. Balcan and K. Q. Weinberger, eds), Vol. 48 of Proceedings of
Machine Learning Research, PMLR, pp. 1225–1234.

H. He, Z. Tang, S. Zhao, Y. Saad and Y. Xi (2024), nlTGCR: A class of nonlinear
acceleration procedures based on conjugate residuals, SIAM J. Matrix Anal. Appl. 45,
712–743.

M. R. Hestenes and E. L. Stiefel (1952), Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Standards 49, 409–436.

M. R. Hestenes and J. Todd (1991), Mathematicians learning to use computers. NIST
Special Publication 730, NBS-INA – The Institute for Numerical Analysis – UCLA
1947–1954.

N. J. Higham and N. Strabić (2016), Anderson acceleration of the alternating projections
method for computing the nearest correlation matrix, Numer. Algorithms 72, 1021–1042.

J. Jacobsen and K. Schmitt (2002), The Liouville–Bratu–Gelfand problem for radial oper-
ators, J. Differential Equations 184, 283–298.

K. Jbilou (1988), Méthodes d’extrapolation et de projection: Applications aux suites de
vecteurs. PhD thesis, Université des Sciences et Techniques de Lille.

K. Jbilou and H. Sadok (1991), Some results about vector extrapolation methods and related
fixed point iteration, J. Comput. Appl. Math. 36, 385–398.

K. Jbilou and H. Sadok (2000), Vector extrapolation methods: Application and numerical
comparison, J. Comput. Appl. Math 122, 149–165.

K. C. Jea and D. M. Young (1980), Generalized conjugate gradient acceleration of non-
symmetrizable iterative methods, Linear Algebra Appl. 34, 159–194.

S. Kaniel and J. Stein (1974), Least-square acceleration of iterative methods for linear
equations, J. Optim. Theory Appl. 14, 431–437.

C. T. Kelley (1995), Iterative Methods for Linear and Nonlinear Equations, Vol. 16 of
Frontiers and Applied Mathematics, SIAM.

T. Kerkhoven and Y. Saad (1992), Acceleration techniques for decoupling algorithms in
semiconductor simulation, Numer. Math. 60, 525–548.

D. P. Kingma and J. Ba (2015), Adam: A method for stochastic optimization, in 3rd
International Conference on Learning Representations (ICLR 2015). Conference Track
Proceedings.

C. Kittel (1986), Introduction to Solid State Physics, Wiley.
W. Kohn and L. J. Sham (1965), Self-consistent equations including exchange and correl-

ation effects, Phys. Rev. 140, A1133–A1138.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

888 Y. Saad

C. Lanczos (1950), An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators, J. Res. Nat. Bur. Standards 45, 255–282.

C. Lanczos (1952), Solution of systems of linear equations by minimized iterations, J. Res.
Nat. Bur. Standards 49, 33–53.

H. Li, Z. Xu, G. Taylor, C. Studer and T. Goldstein (2018), Visualizing the loss landscape
of neural nets, in Advances in Neural Information Processing Systems 31 (S. Bengio
et al., eds), Curran Associates, pp. 6391–6401.

M. Mešina (1977), Convergence acceleration for the iterative solution of the equations
𝑋 = 𝐴𝑋 + 𝑓 , Comput. Methods Appl. Mech. Engrg 10, 165–173.

G. Meurant and J. D. Tebbens (2020), Krylov Methods for Nonsymmetric Linear Systems:
From Theory to Computations, Vol. 57 of Springer Series in Computational Mathemat-
ics, Springer.

L. Meyer, C. Barrett and P. Haasen (1964), New crystalline phase in solid argon and its
solid solutions, J. Chem. Phys. 40, 2744–2745.

A. Mohsen (2014), A simple solution of the Bratu problem, Comput. Math. Appl. 67,
26–33.

K. P. Murphy (2022), Probabilistic Machine Learning: An Introduction, MIT Press.
Y. Nesterov (2014), Introductory Lectures on Convex Optimization: A Basic Course, first

edition, Springer.
B. Neyshabur, R. Tomioka and N. Srebro (2015), In search of the real inductive bias: On

the role of implicit regularization in deep learning, in 3rd International Conference
on Learning Representations (ICLR), Workshop Track Proceedings (Y. Bengio and
Y. LeCun, eds).

J. M. Ortega and W. C. Rheinbolt (1970), Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press.

C. C. Paige (1971), The computation of eigenvalues and eigenvectors of very large sparse
matrices. PhD thesis, Institute of Computer Science, University of London.

C. C. Paige (1980), Accuracy and effectiveness of the Lanczos algorithm for the symmetric
eigenproblem, Linear Algebra Appl. 34, 235–258.

M. L. Pasini, J. Yin, V. Reshniak and M. Stoyanov (2021), Stable Anderson acceleration
for deep learning. Available at https://dblp.org/rec/journals/corr/abs-2110-14813.bib.

M. L. Pasini, J. Yin, V. Reshniak and M. K. Stoyanov (2022), Anderson acceleration for
distributed training of deep learning models, in SoutheastCon 2022, IEEE, pp. 289–295.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al. (2019), PyTorch: An imperative style, high-performance
deep learning library, in Advances in Neural Information Processing Systems 32 (H. Wal-
lach et al., eds), Curran Associates.

S. S. Petrova and A. D. Solov’ev (1997), The origin of the method of steepest descent, Hist.
Math. 24, 361–375.

S. Pollock and L. G. Rebholz (2021), Anderson acceleration for contractive and noncon-
tractive operators, IMA J. Numer. Anal. 41, 2841–2872.

B. Pugachëv (1977), Acceleration of the convergence of iterative processes and a method of
solving systems of non-linear equations, USSR Comput. Math. Math. Phys. 17, 199–207.

P. Pulay (1980), Convergence acceleration of iterative sequences. the case of SCF iteration,
Chem. Phys. Lett. 73, 393–398.

P. Pulay (1982), Improved SCF convergence acceleration, J. Comput. Chem. 3, 556–560.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://dblp.org/rec/journals/corr/abs-2110-14813.bib
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

Acceleration methods for fixed-point iterations 889

I. Ramière and T. Helfer (2015), Iterative residual-based vector methods to accelerate fixed
point iterations, Comput. Math. Appl. 70, 2210–2226.

J. K. Reid (1971), On the method of conjugate gradients for the solution of large sparse
systems of linear equations, in Large Sparse Sets of Linear Equations (J. K. Reid, ed.),
Academic Press, pp. 231–254.

L. F. Richardson (1910), The approximate arithmetical solution by finite differences of
physical problems involving differential equations with an application to the stresses to
a masonry dam, Philos. Trans. Roy. Soc. A 210, 307–357.

H. Robbins and S. Monro (1951), A stochastic approximation method, Ann. Math. Statist.
pp. 400–407.

T. Rohwedder (2010), An analysis for some methods and algorithms of quantum chemistry.
PhD thesis, Technische Universität Berlin, Fakultät II - Mathematik und Naturwis-
senschaften.

W. Romberg (1955), Vereinfachte numerische Integration, Norske Vid. Selsk. Forh. 28,
30–36.

Y. Saad (2003), Iterative Methods for Sparse Linear Systems, second edition, SIAM.
Y. Saad (2011), Numerical Methods for Large Eigenvalue Problems, Vol. 66 of Classics in

Applied Mathematics, SIAM.
Y. Saad (2022), The origin and development of Krylov subspace methods, Comput. Sci.

Engrg 24, 28–39.
Y. Saad and M. H. Schultz (1986), GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7, 856–869.
Y. Saad, J. Chelikowsky and S. Shontz (2009), Numerical methods for electronic structure

calculations of materials, SIAM Rev. 52, 3–54.
D. Shanks (1955), Non-linear transformations of divergent and slowly convergent se-

quences, J. Math. Phys. 34, 1–42.
J. W. Sheldon (1955), On the numerical solution of elliptic difference equations, Mathe-

matical Tables and Other Aids to Computation 9, 101–112.
W. Shi, S. Song, H. Wu, Y.-C. Hsu, C. Wu and G. Huang (2019), Regularized Anderson ac-

celeration for off-policy deep reinforcement learning, in Advances in Neural Information
Processing Systems 32 (H. Wallach et al., eds), Curran Associates.

G. H. Shortley (1953), Use of Tschebyscheff-polynomial operators in the solution of
boundary value problems, J. Appl. Phys. 24, 392–396.

A. Sidi (2012), Review of two vector extrapolation methods of polynomial type with
applications to large-scale problems, J. Comput. Sci. 3, 92–101.

A. Sidi, W. F. Ford and D. A. Smith (1986), Acceleration of convergence of vector se-
quences, SIAM J. Numer. Anal. 23, 178–196.

D. A. Smith, W. F. Ford and A. Sidi (1987), Extrapolation methods for vector sequences,
SIAM Rev. 29, 199–233.

K. Sun, Y. Wang, Y. Liu, B. Pan, S. Jui, B. Jiang, L. Kong et al. (2021), Damped Anderson
mixing for deep reinforcement learning: Acceleration, convergence, and stabilization, in
Advances in Neural Information Processing Systems 34 (M. Ranzato et al., eds), Curran
Associates, pp. 3732–3743.

Z. Tang, T. Xu, H. He, Y. Saad and Y. Xi (2024), Anderson acceleration with truncated
Gram–Schmidt, SIAM J. Matrix Anal. Appl. 45, 1850–1872.

A. Toth and C. T. Kelley (2015), Convergence analysis for Anderson acceleration, SIAM J.
Numer. Anal. 53, 805–819.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

890 Y. Saad

D. Vanderbilt and S. G. Louie (1984), Total energies of diamond (111) surface reconstruc-
tions by a linear combination of atomic orbitals method, Phys. Rev. B 30, 6118–6130.

P. K. W. Vinsome (1976), ORTHOMIN: An iterative method for solving sparse sets of
simultaneous linear equations, in Proceedings of the Fourth Symposium on Reservoir
Simulation, Society of Petroleum Engineers of AIME, pp. 149–159.

H. F. Walker and P. Ni (2011), Anderson acceleration for fixed-point iterations, SIAM J.
Numer. Anal. 49, 1715–1735.

L. Wu, Z. Zhu and W. E (2017), Towards understanding generalization of deep learn-
ing: Perspective of loss landscapes. Available at https://dblp.org/rec/journals/corr/
WuZE17.bib.

P. Wynn (1956), On a device for computing the 𝑒𝑚(𝑠𝑛) transformation, Mathematical
Tables and Other Aids to Computation 10, 91–96.

P. Wynn (1962), Acceleration techniques for iterated vector and matrix problems, Math.
Comp. 16, 301–322.

D. Young (1954), On Richardson’s method for solving linear systems with positive definite
matrices, J. Math. Phys. 32, 243–255.

C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals (2021), Understanding deep
learning (still) requires rethinking generalization, Commun. Assoc. Comput. Mach. 64,
107–115.

J. Zhang, B. O’Donoghue and S. Boyd (2020), Globally convergent type-I Anderson
acceleration for nonsmooth fixed-point iterations, SIAM J. Optim. 30, 3170–3197.

P. Zhou, J. Feng, C. Ma, C. Xiong, S. C. H. Hoi and W. E (2020), Towards theoretically
understanding why SGD generalizes better than Adam in deep learning, in Advances in
Neural Information Processing Systems 33 (H. Larochelle et al., eds), Curran Associates,
pp. 21285–21296.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000096
Downloaded from https://www.cambridge.org/core. IP address: 10.3.152.44, on 28 Jul 2025 at 23:51:24, subject to the Cambridge Core terms of use, available at

https://dblp.org/rec/journals/corr/WuZE17.bib
https://dblp.org/rec/journals/corr/WuZE17.bib
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000096
https://www.cambridge.org/core

	Historical perspective and overview
	Extrapolation methods for general sequences
	Accelerators for linear iterative methods
	Accelerating the SCF iteration
	Inexact and quasi-Newton approaches
	A detailed look at Anderson acceleration
	Nonlinear truncated GCR
	Acceleration methods for machine learning
	References

