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Summary 

• Fall risk can be assessed using a range of both simple balance tests and advanced 

balance platforms 

• Balance test results can sometimes be contradictory, making it challenging to determine 

which results to trust. 

• Also, falls are multidimensional and can result from various factors, including sensory 

disorders, inattention, diseases, and medications. 

• Therefore, simpler methods are needed to estimate fall risk by evaluating multiple 

factors and providing a single result (there is a risk of falling or not). 

• In this study, machine learning was used to develop models that predict fall risk with 

high accuracy, based on individuals' comorbidities, balance tests, and physical 

characteristics. 
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Abstract 

Objective: This study aimed to predict the risk of falling using patient characteristics, 

computerized dynamic posturography, and functional balance tests (FBTs) in machine learning. 

Methods: One hundred twenty elderly individuals were included in this study. The fall status, 

physical characteristics, and medical history of individuals were investigated. Pure tone 

audiometry test, simple FBTs and sensory organization test (SOT) were applied to the 

individuals.  

Results: The machine learning model that incorporated comorbidities, physical characteristics, 

and functional balance tests achieved a 100% accuracy in predicting fall risk. Models using 

only comorbidities and physical characteristics, functional balance tests, or the SOT had 

accuracies of 87.5%, 83.34%, and 91.66%, respectively. 

Conclusion: Advanced balance systems are not always necessary to assess fall risk. Instead, 

fall risk can be effectively determined using simple balance tests, comorbidities, and patient 

characteristics in machine learning. 

Keywords: Elderly Individuals, Fall Risk, Machine Learning, Balance, Posturography 

  

https://doi.org/10.1017/S0022215124002160 Published online by Cambridge University Press

https://doi.org/10.1017/S0022215124002160


Introduction 

Aging, which causes biological, physical and functional changes, directly or indirectly causes 

deterioration in individuals. Approximately one-third of those aged 65 and above experience a 

fall once a year. This rate reaches 50% in individuals aged 80 and over.1 Falls in elderly 

individuals can cause superficial injuries or severe injuries, functional disabilities and deaths. 

90% of hip fractures occur as a result of falls, and 25% of elderly individuals who experience 

hip fractures die shortly after the accident.2 Even if injuries resulting from falls do not cause 

severe disabilities, they can cause fear of falling again, self-restraint, and anxiety. Thus, it may 

reduce the quality of life in elderly individuals. 

In order to maintain posture and maintain balance, signals from the visual, 

proprioceptive and vestibular systems must be quickly processed by the central nervous system, 

and the processed information must be accurately transferred to the musculoskeletal system via 

efferent pathways. Disruptions in any of these systems can cause imbalance, gait disturbance, 

dizziness, vertigo and falls in individuals. Whether it is a natural process due to ageing or 

diseases, deteriorations in balance systems are more common in older individuals.3 The best 

method to prevent undesirable consequences of imbalance (falls) is considered to be a multi-

component exercise program that includes strength, endurance and balance training.4 In 

addition, systematic fall risk assessment is crucial to reduce the prevalence of falls in older 

individuals.5 Various tests and scales, both with and without instruments, are generally used in 

these evaluations. The most well-known of these tests is computerized dynamic posturography 

(CDP), which evaluates all three balance systems. CDP is very sensitive for determining the 

risk of falling in elderly individuals, but it is difficult to obtain due to its cost.6 Functional tests 

such as the functional reach test (FRT), timed up and go test (TUG), and one-leg stand test 

(TADT) can be used to assess fall risk without the need for any equipment. However, these 

tests can give contradictory findings in some cases, and the sensitivity or specificity of some 
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tests is relatively low.7 Therefore, there is a need for more accurate and more accessible methods 

to assess fall risk. 

Artificial intelligence simulates human behaviour using computers and innovative 

technologies.8 Artificial intelligence (machine learning) has recently been used to diagnose 

diseases and determine disease prognosis.9 Large data sets regarding diseases or prognoses are 

provided to the system, and the effect of the data on diagnosis or prognosis is taught to the 

system. While machine learning algorithms process the inputs, they weigh the effect of the data 

on the output, which is insufficient to predict the result alone, and a model is created. Models 

are expected to predict the outcome based on the following inputs provided later with this 

weighted algorithm. Similarly, machine learning can be used to predict falls due to intrinsic and 

extrinsic factors. To our knowledge, there is no comprehensive literature study investigating 

the risk of falls in machine learning using CDP and functional balance tests. 

This study aims to predict the risk of falling by using patient characteristics, 

computerized dynamic posturography and functional balance tests in machine learning. 
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Material and Method 

Ethical Situation and Participants 

This study was conducted on elderly individuals aged 65-79. Individuals who underwent neuro-

otological examination and were referred to the hearing, balance and speech disorders unit were 

included in the study. Approval for the study was received from the XXXX University Faculty 

of Medicine Human Research Ethics Committee (2022000648-2022/648). Verbal and written 

permission was obtained from all individuals included in the study. 

One hundred twenty elderly individuals were included in the study. They were divided 

into two groups according to their fall status. 65 individuals without a history of falling were 

included in group I. Fifty-five elderly individuals who had a history of falling at least once 

within a year, regardless of any loss of consciousness or an identifiable cause (orthopaedic 

diseases, stroke, seizure or substance/alcohol use), were included in group II. Falls were defined 

as events in which the individual lost balance and came into contact with the ground. 

Criteria for Inclusion of Individuals in the Study 

• Age is between 65-79, 

• No history of head trauma, 

• Patients do not have complaints/history of vertigo due to diagnosed causes such as Meniere's 

disease, vestibular neuritis, BPPV, 

• Absence of musculoskeletal disorders, vision loss and neurological disease, 

• Mini-Mental State Examination score (MMSE)> 24.10 

Measurements and Procedure 

Medical history was taken from the participants, and the individual's demographic information, 

comorbidities, imbalance and fall conditions were questioned. A patient information form was 
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applied to all individuals, including the medications used. MMSE, audiological evaluation, 

Romberg test, FRT, TADT, TUG, visual analogue scale (VAS), Tinetti Balance and Gait Test 

(TBGT) and CDP were applied to all participants.  

Audiological Evaluation 

A pure tone audiometry test was performed on all individuals included in the study with an AC-

40 clinical audiometer (Interacoustics, Denmark) in a quiet cabin. Air conduction hearing 

thresholds of the participants were determined between 125-8000 Hz bilaterally using TDH 39 

supra-aural headphones, and bone conduction hearing thresholds were determined between 

500-4000 Hz bilaterally using radio ear B71 bone vibrator. Pure tone average (PTA) was 

calculated using the 500, 1000, 2000 and 4000 Hz averages. Hearing was considered normal if 

PTA was less than 20 dB. PTA between 20-40 dB is mild hearing loss, 41-55 dB is moderate 

hearing loss, 56-70 dB is moderate-severe hearing loss, 71-90 dB is severe hearing loss and > 

90 dB was considered profound hearing loss.11 A more than 15 dB difference between right and 

left ear PTAs was considered asymmetric hearing loss.12 Tympanometric measurements of the 

elderly individuals included in the study were performed with the GSI Tympstar Version 2 

(Grason Stadler Inc., MN, USA) device at 226 Hz probe tone. Participants' bilateral ipsilateral 

and contralateral acoustic reflex thresholds were determined in the 500-4000 Hz range. 

Evaluation of Functional Balance 

For the Romberg test, participants are asked to take off their shoes, put their feet together, close 

their eyes and stand in the desired position with their hands at the sides for 30 seconds (sec). 

The time individuals could stand was recorded with a stopwatch. The test was applied in 3 

different combinations: traditional romberg, foam pad romberg and tandem romberg.13 
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For the OLST, participants were asked to remove their shoes and raise their non-

dominant leg. The test was repeated with eyes open and closed. Individuals were expected to 

stand in the desired position (eyes open/closed) for 30 seconds without losing balance. The time 

to stay in balance was recorded with a stopwatch.14 

For FRT, participants were asked to stand with their feet shoulder-width apart and stand 

parallel to the wall where a tape measure was placed, not touching the wall. Individuals were 

asked to flex their shoulders on the side of the tape measure to 90 degrees and make a fist with 

their hands. The individual's 3rd inter-phalanx joint level was marked on the tape measure, and 

they were asked to lie forward as far as they could without moving their feet. The maximum 

distance the individual could reach was marked again on the tape measure. The difference 

between the first distance and the second distance was calculated .15 

For TUG, participants were asked to sit on a chair with a height of approximately 50 

cm, stand up with the "start" command, walk the 3-meter walking track quickly, return from 

the endpoint and quickly sit on the chair again. The individuals' time to complete the course 

was measured with a stopwatch.16 

TBGT was developed by Mary Tinnetti and consists of two parts.17 The first part 

consists of 13 items and includes balance; The second part consists of 9 items and evaluates 

walking. The total score is calculated out of 35 

Visual Analog Scale (VAS) 

The participants' imbalance severity was evaluated with VAS. The endpoints of a 10 cm line 

drawn on paper were numbered 0 (no imbalance) and 10 (extreme imbalance). Individuals were 

asked to mark a point on this line appropriate to their imbalance's severity.18 

Computerized Dynamic Posturography 
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CDP testing was performed with Smart Equitest Dynamic Posturography (NeuroCom Balance 

Manager Systems, Natus, USA). Participants were asked to wear safety vests to prevent falls, 

and the Sensory Organization Test (SOT) was applied to the individuals taken to the platform. 

SOT, each condition lasting 20 seconds; It evaluates six different situations, and three 

consecutive repetitions are made for each situation.19 

SOT 1: Eyes open, platform and surface stable. 

SOT 2: Eyes closed, platform and surface stable. 

SOT 3: Eyes open, platform moving and surface stationary. 

SOT 4: Eyes open, platform stationary and surface moving. 

SOT 5: Eyes closed, platform stationary and surface moving. 

SOT 6: Eyes open, platform and surface moving. 

 

Machine Learning and Feature Selection 

Python (Version 3.7) programming language was used for machine learning. Our study used 

supervised learning algorithms k-nearest neighbors (KNN), naive Bayes, decision trees, random 

forest, SVM, logistic regression, XGBoost and artificial neural networks (ANN). While 

modelling the algorithms, 96 (80%) of the data were used in the training process, and the 

remaining 24 (20%) were used in the testing process. Individuals' ages, demographic 

information, comorbidities, and balance tests were defined as input attributes. The patients' fall 

status was defined as output. A hyperparameter selection Grid Search method was used. A 

statistical analysis method was used to determine the study's input features. In statistical 

analysis, data with a significance level of p<0.05 were defined as attributes (variables with no 

significant difference between groups were not used in machine learning). Statistical analysis 

was performed with IBM SPSS 21. Student's T-test is used to compare groups when normality 

assumptions are met. In cases where the assumptions were not met, the Mann-Whitney U test 
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was used. The performances of the algorithms were evaluated with their success rates in the 

testing phase. The area under the ROC curve (AUC) was considered if the success rate was 

equal between the algorithms. In our study, five different models were created using five 

different feature groups. These models were MODEL-1 (anamnesis, diseases and physical 

characteristics data), MODEL-2 (functional balance tests data), MODEL-3 (MODEL-1 and 

MODEL-2), MODEL-4 (sensory organization test data) and total-MODEL (all features). The 

flow chart of the procedures and models applied to the participants is presented in Figure 1. 
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Results 

Of the individuals in Group I, 33 were female, 32 were male, and the average age was 

69.13±4.58. Of the individuals in Group II, 37 were female, 18 were male, and the average age 

was 70.20±4.70. There was no difference between the groups in terms of age and gender 

(p=0.175, 0.068, respectively).  

Individuals in Group II were shorter in height and had a higher BMI than those in Group 

I (p<0.05). Additionally, complaints of imbalance, severity of hearing loss, and the prevalence 

of diabetes mellitus and hypertension were higher in Group II than in Group I (p<0.05). 

Additionally, the severity and duration of imbalance in individuals in group II were greater than 

in individuals in group I (p<0.001). Eyes open and closed OLST, foam Romberg test, tandem 

Romberg test, FRT, TUG and all SOT scores of individuals in Group II were worse than those 

in Group I (p<0.001). The physical characteristics, comorbidities, functional balance tests and 

SOT scores of the participants according to the groups are presented in Table 1. According to 

SOT, the somatosensory, visual, vestibular and composite scores of individuals in Group II 

were worse than those in Group I (p<0.05). However, there was no difference between the 

groups in terms of visual preference (p>0.05). Somatosensory, visual, vestibular, composite and 

visual preference scores according to groups are presented in Figure 2. 

In MODEL-1, created using medical history and physical features, KNN, naive bayes, 

random forest, XGBoost and ANN reached the highest accuracy rate with 87.5%. The naive 

Bayes algorithm had the highest AUC-ROC value of 0.979 among the five algorithms. In 

MODEL-2, created using functional balance tests, naive bayes, KNN, SVM, ANN and logistic 

regression reached the highest accuracy rate of 83.5%. The logistic regression algorithm had 

the highest AUC-ROC value of 0.944 among the four algorithms. The SVM algorithm reached 
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the highest accuracy rate with 100% in MODEL-3, created using the features used to develop 

MODEL-1 and MODEL-2 together. In MODEL-4, created using SOT values, XGBoost 

reached the highest accuracy rate with 91.6%. In the total-MODEL created using all attributes, 

naive Bayes reached the highest accuracy rate with 100%. The test successes of the models are 

presented in Table 2. Confusion matrices and ROC curves of the best-performing algorithms 

according to the models are presented in Figure 3. 
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Discussion 

This study aimed to predict the risk of falling using patient characteristics, computerized 

dynamic posturography, and functional balance tests in machine learning. For this purpose, we 

created five different machine-learning models using different parameters. The model built 

using SOT data predicted fall risk with 91.6% accuracy (XGBoost/MODEL-4). The model 

created using individuals' comorbidities and physical characteristics predicted the risk of falling 

with 87.5% accuracy (Naive Bayes /MODEL-1). The model created using individuals' 

functional balance scores predicted the risk of falling with 83.3% accuracy (Logistic 

regression/MODEL-2). The model created using individuals' diseases, physical characteristics 

and functional balance scores predicted the risk of falling with 100% accuracy (SVM/MODEL-

3). 

It is known that the risk and prevalence of falls increase with ageing. Deterioration in 

the visual system, hearing loss, cognitive decline, and decreased muscle tone and reflexes 

caused by ageing increase the risk of falling. Approximately 30% of individuals over the age 

of sixty-five fall each year, and approximately half of these individuals experience relapses.20 

We included individuals aged 65-79 in our study and did not detect any difference in age 

between elderly individuals who fell and those who did not fall. This finding shows that the 

risk of falling does not change significantly between the ages of 65-79. 

It is known that women fall more than men and that women suffer from more fractures 

due to falls. Although the reason for this difference is not fully understood, various opinions 

have been put forward.21,22 Bone mineral density decreases in women due to menopause. 

Reduced bone mineral density may cause women to fall more frequently and cause more 

fractures due to falls.21 Similarly, our study found that women fell more than men (67.3% vs. 

50.4%), but this difference was not statistically significant.  
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Obesity and its complications cause many diseases and affect the daily lives of 

individuals. Moreover, obesity may increase the risk of falling in older individuals. Mijangos 

et al.23 reported that gait and balance deteriorate and falls increase as BMI increases. Similarly, 

in our study, the BMI of older people who fell was higher than that of those who did not. 

Increasing BMI can affect individuals' musculoskeletal systems and change the body's centre 

of gravity (geometry). Additionally, Son24 reported that the feet of obese individuals are 

exposed to too much force, and accordingly, the proprioceptive inputs in the feet become 

desensitized (plantar desensitization). However, in our study, there was no difference in weight 

between individuals who fell and those who did not. The difference in BMI between the groups 

was due to height, meaning that shorter ones had a higher risk of falling. Therefore, plantar 

desensitization cannot explain the observed falls in individuals with high BMI in our study. In 

our study, the possible reason for the higher risk of falling in individuals with high BMI was 

interpreted as changes in body geometry and gait. 

Risk factors for falls in older individuals are complex. In addition to known risk factors 

such as vertigo, musculoskeletal disorders and visual disorders, medications used or diseases 

that seem unrelated to falls can also cause falls. A combination of these risk factors often causes 

an individual's fall. Some diseases, such as arthritis, diabetes mellitus, hypertension, and 

chronic obstructive pulmonary disease, may increase the risk of falls in older individuals.25 In 

the literature, it has been stated that the use of certain medicines (opioids, benzodiazepines, 

diuretics, vasodilators, etc.) and the use of more than five (number of) medicines cause gait and 

balance disorders and increase the rate of repeated falls.26 Similar to the literature, our study 

determined that imbalance symptoms, hypertension, diabetes mellitus and hearing loss were 

risk factors for falls. However, there was no difference between the groups in terms of the total 

number of medications used, hyperlipidemia, depression, cardiovascular diseases, thyroid and 

prostate. The fact that the number of medicines used in our study did not pose a risk of falling 
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can be explained by our criteria for including individuals in the study. Our study included those 

who fell at least once in the last year. It is known that the total number of medicines used causes 

repeated falls, not single falls.26 

Studies on machine learning and falls in the literature generally focus on detecting falls 

(video cameras, etc.).27 In machine learning studies aiming to predict the risk of falling, 

electronic health records, surveys, scales, hospital admission evaluations, TUG and sit -to-stand 

tests were generally used.28 In a retrospective study by Thapa et al.29 using electronic health 

records, data from 2785 individuals were used. The fall risk of these individuals was estimated 

using machine learning with 68 attributes such as age, gender, diseases, and medications used. 

The study reported that Extreme Gradient Boosting predicted the risk of falling with 84.8% 

sensitivity and 70.6% specificity. However, it was reported that incomplete and unevenly 

distributed data limited the study. Ikeda et al.30 predicted fall risk with XGBoost and random 

forest algorithms using 14 attributes such as depressive symptoms, age, health status, and 

urinary incontinence. The authors reported that the XGBoost algorithm predicted falls with 88% 

accuracy. Fahimi et al.31 applied three functional tests (force production, postural sway and gait 

evaluation) to 80 elderly individuals and created machine learning models using the data of 

these tests. The authors reached the highest accuracy rate of 74.50% with the KNN algorithm. 

Ziegl et al.32 used TUG data of elderly individuals living in nursing homes in the random forest 

algorithm and stated that the model could predict falls with an ROC-AUC rate of 96.9%. In 

another study, Tongterm et al.33 used functional fitness tests in machine learning and aimed to 

predict the risk of falling with the decision tree. The authors determined the model's accuracy 

to be 0.95 and the specificity to be 0.55. To the best of our knowledge, no study in the literature 

detects fall risk using SOT data in machine learning. Unlike other studies, we used the features 

individually (SOT, functional balance and medical/physical features) and in combination when 

creating machine learning models. XGBoost, one of the algorithms created with SOT, 
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considered the gold standard test for evaluating balance, predicted the risk of falling with 91.6% 

accuracy (MODEL-4). SVM, one of the algorithms created using individuals' comorbidities, 

physical characteristics and simple, functional balance tests, predicted the risk of falling with 

100% accuracy (MODEL-3). Similarly, naive bayes, one of the algorithms in which all features 

(23 features) were used in machine learning (total-MODEL), predicted the risk of falling with 

100% accuracy. 

Falls in elderly individuals occur due to physical, perceptual and cognitive changes 

combined with diseases and an environment unsuitable for the safety of the elderly. Our study 

found that SOT administered with CDP is the most reliable test that can be used alone to predict 

fall risk. CDP is objective and evaluates all balance parameters. However, in addition to being 

a complex and expensive test, it also takes time. Moreover, our study found that the machine 

learning model (MODEL-3) created with simple, functional balance tests and 

comorbidities/physical characteristics detected the risk of falling at a higher rate than CDP. This 

shows that although balance tests used to assess fall risk are reliable, individuals' diseases and 

physical characteristics should also be taken into account. By using functional balance tests, 

individuals' comorbidities and physical characteristics in machine learning, the fall risk of 

elderly individuals can be predicted quickly and cheaply. This way, individuals at risk of falling 

can be identified early, and fall prevention strategies (exercise, awareness raising and 

ergonomics) can be recommended. 

There are several limitations to this study. First, the sample size included in the study is 

limited to 120 elderly individuals. The prospective nature of the research and the long duration 

of the tests limited the sample size. In future studies, larger sample groups can be examined 

with retrospective data. In addition, despite the success of MODEL-3 and its potential to be 

applied without requiring a special device, this study was tested on a limited sample. Studies 

with larger sample groups will allow a better assessment of the general applicability and 
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effectiveness of MODEL-3. Thus, an essential first step may have been taken in developing 

applicable methods to determine the global fall risk in elderly individuals. 

Conclusion 

Although balance tests to assess fall risk are reliable, individuals' diseases and physical 

characteristics should also be considered. Fall risk can be successfully predicted using simple, 

functional balance tests, comorbidities, and individuals' physical characteristics in the SVM 

algorithm. Moreover, machine learning-based websites or mobile applications can be 

developed with these models. In this way, elderly individuals can detect the risk of falling with 

online counselling without resorting to clinics. Similarly, online fall prevention strategies can 

be recommended to these individuals.  

Acknowledgment 

We acknowledge the volunteers for their contribution to this study. 

 

 

 

  

https://doi.org/10.1017/S0022215124002160 Published online by Cambridge University Press

https://doi.org/10.1017/S0022215124002160


References 

1. Burt CW, Fingerhut LA. Injury visits to hospital emergency departments: United States, 

1992-95. Vital Health Stat 1998;131:1-76 

2. Black SE, Maki BE,  Fernie GR. Aging, imbalance and falls. In: Barber H, Sharp HO (ed), 

The Vestibulo-ocular Reflex and Vertigo. Raven Press 1993;317–35 

3. Kerber KA, Enrietto JA, Jacobson KM. Baloh RW. Disequilibrium in older people: a 

prospective study. Neurology 1998;51: 574-80 

4. Cadore EL, Rodríguez-Mañas L, Sinclair A. Izquierdo M. Effects of different exercise 

interventions on risk of falls, gait ability, and balance in physically frail older adults: a 

systematic review. Rejuvenation Res 2013;16:105-114 

5. Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for 

prevention. Age Ageing 2006;35:37-41 

6. Müjdeci B, Aksoy S, Atas A. Evaluation of balance in fallers and non-fallers elderly. Braz 

J Otorhinolaryngol 2012;78:104-9. 

7. Kozinc Ž, Löfler S, Hofer C, Carraro U. Šarabon N. Diagnostic Balance Tests for Assessing 

Risk of Falls and Distinguishing Older Adult Fallers and Non-Fallers: A Systematic Review 

with Meta-Analysis. Diagnostics (Basel) 2020;10:667 

8. Amisha Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. 

J Family Med Prim Care 2019;8:2328-31 

9. Abbasgholizadeh Rahimi S, Légaré F, Sharma G, et al. Application of Artificial Intelligence 

in Community-Based Primary Health Care: Systematic Scoping Review and  Critical 

Appraisal. J Med Internet Res 2021;23:e29839 

10. Eker E, Yaşar R, Ertan T, Güngen C. Standardize mini mental test'in türk toplumunda hafif 

demans tanısında geçerlik ve güvenilirliği. Türk Psikiyatri Dergisi 2002;13(4): 273-81.  

https://doi.org/10.1017/S0022215124002160 Published online by Cambridge University Press

https://doi.org/10.1017/S0022215124002160


11. Ajmani S, Keshri A, Srivastava R, Aggarwal A Lawrence A. Hearing loss in ankylosing 

spondylitis. Int J Rheum Dis 2019;22:1202-8 

12. Noh H and Lee DH. Predictable Factors of People with Asymmetrical Hearing Loss 

Wearing a Hearing Aid in the Worse Ear Only. J Clin Med 2023; 14;12:2251 

13. Forbes J, Munakomi S,  Cronovich H. Romberg Test. In StatPearls. StatPearls Publishing 

Copyright 2023. https://www.ncbi.nlm.nih.gov/books/NBK563187/ 

14. Vellas BJ, Wayne SJ, Romero L, Baumgartner RN, Rubenstein LZ, Garry PJ. One-leg 

balance is an important predictor of injurious falls in older persons. J Am Geriatr Soc 

1997;45;735-8 

15. Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure 

of balance. J Gerontol 1990;45:192-7 

16. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for 

frail elderly persons. J Am Geriatr Soc 1991;39: 142-8 

17. Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J 

Am Geriatr Soc 1986;34:119-26 

18. Wewers ME Lowe NK. A critical review of visual analogue scales in the measurement of 

clinical phenomena. Res Nurs Health 1990;13:227-36 

19. Vanicek N, King SA, Gohil R, Chetter IC. Coughlin PA. Computerized dynamic 

posturography for postural control assessment in patients with intermittent claudication. J 

Vis Exp 2013:e51077 

20. Akyol AD. Falls in the elderly: what can be done? Int Nurs Rev 2007;54:191-6 

21. Gale CR, Cooper C, Aihie Sayer A. Prevalence and risk factors for falls in older men and 

women: The English Longitudinal Study of Ageing. Age Ageing 2016;45:789-94 

https://doi.org/10.1017/S0022215124002160 Published online by Cambridge University Press

https://www.ncbi.nlm.nih.gov/books/NBK563187/
https://doi.org/10.1017/S0022215124002160


22. Johansson J, Nordström A, Nordström P. Greater Fall Risk in Elderly Women Than in Men 

Is Associated With Increased Gait Variability During Multitasking. J Am Med Dir Assoc 

2016;17: 535-40 

23. Mijangos ADS, la Cruz PG, Alfaro LIS, Ribón TS. Factores de riesgo de caídas e índice de 

masa corporal en el adulto mayor hospitalizado. Revista Cuidarte 2019;10: e621 

24. Son SM. Influence of Obesity on Postural Stability in Young Adults. Osong Public Health 

Res Perspect 2016;7:378-381 

25. Sibley KM, Voth J, Munce SE, Straus SE Jaglal SB. Chronic disease and falls in 

community-dwelling Canadians over 65 years old: a population-based study exploring 

associations with number and pattern of chronic conditions. BMC Geriatr 2014;14;14:22  

26. Morris M, Osborne D, Hill K, Kendig H, Lundgren-Lindquist B, Browning C, et al. 

Predisposing factors for occasional and multiple falls in older Australians who live at home. 

Aust J Physiother 2004;50:153-9 

27. Usmani S, Saboor A, Haris M, Khan M, Park H. Latest Research Trends in Fall Detection 

and Prevention Using Machine Learning: A Systematic Review. Sensors 2021;21:5134 

28. Yadav P, Vijay V. Fall Prediction Using Machine Learning - A Systematic Review. Am J 

Biomed Sci & Res 2023;18: 637-46 

29. Thapa R, Garikipati A, Shokouhi S, Hurtado M, Barnes G, Hoffman J et al. Predicting Falls 

in Long-term Care Facilities: Machine Learning Study. JMIR Aging 2022;5:e35373 

30. Ikeda T, Cooray U, Hariyama M, Aida J, Kondo K, Murakami M, et al. An Interpretable 

Machine Learning Approach to Predict Fall Risk Among Community-Dwelling Older 

Adults: a Three-Year Longitudinal Study. J Gen Intern Med 2022;37:2727-35 

https://doi.org/10.1017/S0022215124002160 Published online by Cambridge University Press

https://doi.org/10.1017/S0022215124002160


31. Fahimi F, Taylor WR, Dietzel R, Armbrecht G, Singh N. Identifying Fallers Based on 

Functional Parameters: A Machine Learning Approach. 2021 IEEE Asia-Pacific 

Conference on Computer Science and Data Engineering (CSDE) 2021;1-6  

32. Ziegl A, Hayn D, Kastner P, Loffler K, Weidinger L, Brix B, et al. Machine Learning Based 

Walking Aid Detection in Timed Up-and-Go Test Recordings of Elderly Patients. Annu Int 

Conf IEEE Eng Med Biol Soc 2020;808-11 

33. Tongterm T, Suputtitada A, Lawsirirat C, Janwantanakul P. Functional fitness test for 

screening the risk of falls in the elderly: using decision tree technique. J Exer Physiol Online 

2015;18:104 

  

https://doi.org/10.1017/S0022215124002160 Published online by Cambridge University Press

https://doi.org/10.1017/S0022215124002160


Tables 

Table 1. Physical characteristics, comorbidities, functional balance tests and sensory 

organization test scores of the participants according to groups. 

  Group I, n=65 

Mean±SD or 

Median (Min-

Max) 

 

Group II, n=55 

Mean±SD or 

Median (Min-Max) 

 p 

Physical Properties       

Weight, kg  73.81±11.67  72.23±12.51  0.476d 

Height, cm  165.29±8.73  156 (143-182)  <0.001a 

Body mass index 

(BMI) 

 
27.10±4.50  29.04±4.97  0.027d 

Comorbidities and 

Medication 

 
     

Number of 

medications 

 0 (0-5)  1 (0-10)  0.144a 

Imbalance symptom, n 

(%) 

 15 (%23.1)  44 (%80.0)  <0.001b 

Imbalance Severity  0 (0-5)  4 (0-8)  <0.001a 

Duration of Imbalance 

(months) 
 0 (0-36)  10 (0-120)  <0.001a 

Diseases, n (%)       

Hypertension, n (%)  25 (%38.5)  32 (%58.2)  0.031b 
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Diabetes Mellitus, n 

(%) 

 10 (%15.4)  18 (%32.7)  0.025b 

Hyperlipidemia, n (%)  11 (%16.9)  12 (%21.8)  0.497b 

Cardiovascular 

Diseases, n (%) 
 8 (%12.3)  5 (%9.1)  0.572b 

Thyroid, n (%)  2 (%3.1)  2 (%3.6)  0.625c 

Major Depression 

Disorder, n (%) 

 2 (%3.1)  1 (%1.8)  0.660c 

Prostate, n (%)  1 (%1.5)  1 (%1.8)  0.709c 

Right Ear PTA (dB)  40 (12.5-75)  57.48±24.60  <0.001a 

Left Ear PTA (dB) 

 
41.25 (8.75-

98.75) 
 53.85±22.61  <0.001a 

Number of individuals 

with hearing loss n, 

(%) 

 51 (%78.5)  50 (%90.9)  <0.001b 

Mild  35 (%53.8)  13 (%23.6)   

Moderate  18 (%27.6)  12 (%21.8)   

Moderately severe  3 (%4.6)  19 (%34.5)   

Severe  0 (%0)  5 (%9.1)   

Profound  0 (%0)  1 (%1.8)   

Asymmetric Hearing 

Loss (n) 

 14 (%21.5)  18 (%32.7)  0.167b 

Functional Balance 

Tests 
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Romberg Test (sec)  30.00 (25.67-

30.00) 

 30.00 (15.05-30.00)  0.287a 

Foam Romberg (sec)  30.00 (5.42-

30.00) 

 11 (1.63-30.00)  <0.001a 

Tandem Romberg Test 

(sec) 

 13.54 (2.37-

30.00) 

 5.67 (1.11-30.00)  <0.001a 

One Leg Standing Test 

(sec) 

 

     

Open Eyes  16.82 (4.21-

30.00) 

 4.85 (1.52-30)  <0.001a 

Closed Eyes  5.74 (1.34-

30.00) 

 2.76 (0.30-16.15)  <0.001a 

Tine up and FO (sec)  8.34±1.36  10.08 (7.27-17.56)  <0.001a 

Functional Reach Test 

(cm) 

 

29.32±5.08  22.71±5.32  <0.001d 

Tinetti Balance and 

Gait Test 

 
35 (33-35)  33 (27-35)  <0.001a 

Sensory 

Organization Test 

 
     

SOT1  94.00 (88.34-

96.67) 
 91.33 (60.66-97.00)  <0.001 

SOT2  93.67 (85.67-

96.67) 

 89.34 (58.00-96.67)   <0.001 
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SOT3  92.00 (81.34-

97.34) 

 87.00 (0.00-95.67)  <0.001 

SOT4  79.07±7.45  68.00 (0.00-97.00)  <0.001 

SOT5  68.67 (39.34-

86.34) 
 44.36±24.04  <0.001 

SOT6  66.03±10.94  43.00 (0.00-93.00)  <0.001 
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Table 2. Test success of the models. 

Algorithms Precision Recall 

 

F1-score 

 

Accuracy 

 

ROC-AUC 

MODEL-1      

KNN 0.90 0.82 0.86 0.8750 0.933 

Naive Bayes 0.83 0.91 0.87 0.8750 0.979 

Decision Tree 0.73 0.73 0.73 0.7550 0.748 

Random Forest 0.91 0.91 0.91 0.8750 0.951 

SVM 0.82 0.82 0.82 0.8334 0.972 

Logistic Regression 0.82 0.82 0.82 0.8334 0.972 

XGBoost 0.90 0.82 0.86 0.8750 0.937 

Artificial neural 

networks 

0.82 0.82 0.82 0.8334 0.832 

MODEL-2      

KNN 0.82 0.82 0.82 0.8334 0.898 

Naive Bayes 0.77 0.91 0.83 0.8334 0.937 

Decision Tree 0.78 0.64 0.70 0.7500 0.842 

Random Forest 0.75 0.82 0.78 0.7916 0.951 

SVM 0.82 0.82 0.82 0.8334 0.930 

Logistic Regression 0.82 0.82 0.82 0.8334 0.944 

XGBoost 0.82 0.82 0.82 0.8334 0.881 

https://doi.org/10.1017/S0022215124002160 Published online by Cambridge University Press

https://doi.org/10.1017/S0022215124002160


Artificial neural 

networks 

0.80 0.73 0.76 0.7916 0.786 

MODEL-3      

KNN 1.00 0.82 0.90 0.9166 0.979 

Naive Bayes 0.85 1.00 0.92 0.9166 0.986 

Decision Tree 0.82 0.82 0.82 0.8334 0.832 

Random Forest 0.91 0.91 0.91 0.9166 0.972 

SVM 1.00 1.00 1.00 1.0000 1.000 

Logistic Regression 0.77 0.91 0.83 0.8334 0.965 

XGBoost 0.91 0.91 0.91 0.9166 0.940 

Artificial neural 

networks 

0.85 1.00 0.92 0.9166 0.923 

MODEL-4      

KNN 0.89 0.73 0.80 0.8334 0.825 

Naive Bayes 1.00 0.73 0.84 0.8750 0.930 

Decision Tree 0.89 0.73 0.80 0.8334 0.814 

Random Forest 0.89 0.73 0.80 0.8334 0.888 

SVM 0.88 0.64 0.74 0.7916 0.867 

Logistic Regression 0.88 0.64 0.74 0.7916 0.867 

XGBoost 1.00 0.82 0.90 0.9166 0.895 

Artificial neural 

networks 

0.90 0.82 0.86 0.8750 0.871 
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MODEL-5      

KNN 1.00 0.82 0.90 0.9166 0.909 

Naive Bayes 1.00 1.00 1.00 1.0000 1.000 

Decision Tree 1.00 0.91 0.95 0.9583 0.975 

Random Forest 0.90 0.82 0.86 0.8750 0.972 

SVM 0.89 0.73 0.80 0.8334 0.937 

Logistic Regression 0.78 0.64 0.70 0.7500 0.881 

XGBoost 0.91 0.91 0.91 0.9166 0.993 

Artificial neural 

networks 

1.00 0.73 0.84 0.8750 0.863 

Bold text: Algorithm with best success, KNN: K-nearest neighbor, SVM: Support vector 

machine, AUC-ROC: Area under the receiver operating characteristic curve 

 

Figure 1. The flow chart of the procedures and models applied to the participants. 
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Figure 2. Somatosensory, visual, vestibular, composite and visual preference scores 

according to groups. 

https://doi.org/10.1017/S0022215124002160 Published online by Cambridge University Press

https://doi.org/10.1017/S0022215124002160


 

 

Figure 3. Confusion matrices and ROC curves of the best-performing algorithms according 

to the models. 
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