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Cavitation dynamics in creeping flow
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We investigate the heterogeneous cavitation phenomenon in water when a spherical
surface is abruptly separated from a nearby flat substrate, at a distance of approximately
10 nm. By tracking the surface separation using Newton ring positions, and capturing
the bubble evolution with a high-speed camera on a microscope, we compare our
experimental findings with hydrodynamic predictions at low Reynolds numbers. Upon
upward movement of the spherical surface, the resulting bubble develops branched fingers
through the Saffman–Taylor instability. Simultaneously, negative liquid pressures in the
range ∼10 atm are observed. These large tension values occasionally lead to secondary
nucleation events. The bubble sizes satisfy a predicted Family–Vicsek scaling law where
the bubble area is proportional to the inverse bubble lifetime. The fact that creeping flow
cavitation bubbles are more short-lived the larger they are separates them from bubbles
that are governed by inertial dynamics.
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1. Introduction

Cavitation is a ubiquitous and sometimes destructive, phenomenon with important
consequences in nature and technology. The so-called tribonucleation of vapour bubbles
has been proposed to be responsible for the cracking sound produced by the manipulation
of human synovial joints (Brujan 2011; Wildeman et al. 2014; Kawchuk et al. 2015;
Chandran Suja & Barakat 2018), the collapse of cavitation bubbles near surfaces is known
to induce damage (Movahed et al. 2016; Sagar & el Moctar 2020), and cavitation in
bearings increases wear and affects the load capacity of lubricants (Taylor 1963; Dowson
& Taylor 1979), a problem that has inspired a series of classical works on nucleation
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conditions in lubricating films (Reynolds 1886; Taylor 1963; Campbell 1968; Dowson &
Taylor 1979; Chandran Suja & Barakat 2018).

However, studies of the formation and collapse of cavitation bubbles, such as those
generated by ultrasound near a flat surface (Guo 2018) or a corner geometry (Tagawa &
Peters 2018), or at the tip of a propagating fracture (Kundu & Crosby 2009; Hutchens,
Fakhourib & Crosby 2016; Brantut 2020), have largely focused on dynamic processes that
are governed by inertial effects (Brenner, Hilgenfeldt & Lohse 2002; Kundu & Crosby
2009; Hutchens et al. 2016; Guo 2018; Tagawa & Peters 2018). This is particularly the
case for a range of studies (Seddon et al. 2012; Mansoor et al. 2014, 2016; de Graaf
et al. 2015), that focus on rigid spheres impacting a layer of viscous liquid. In contrast,
the understanding of this phenomenon under creeping flow conditions is largely lacking,
although cavitation bubbles have been observed between separating parallel plates (Poivet
et al. 2003; Lindner, Derks & Shelley 2005; Moffatt, Guest & Huppert 2021), the so-called
‘lifted Hele-Shaw cell’.

In the present study, we show, by a combination of theory and experiments, how
branching cavitation bubbles may form from the small Reynolds number flow of water
between a surface and a sphere of radius R, moving away from it. Surprisingly, the
predicted and measured maximum area covered by the bubble scales as the inverse of
its lifetime, a behaviour that is fundamentally different from that of inertial bubbles where
the radius scales linearly with the lifetime (Kim, Franc & Karimi 2014). The maximum
area predicted by our theory also scales as R3/2, and this curvature dependence of the
bubble size points to a different dynamical process than for the cavitation bubbles that
form between flat plates (R → ∞). Also, the low Reynolds number cavitation bubbles
observed between such plates show no sign of the Saffman–Taylor instability (Poivet et al.
2003; Moffatt et al. 2021).

2. Experimental set-up

The experimental set-up that we introduce in the present paper is shown in figure 1, and
typical results in figure 2, along with supplementary movies in § 4 (available at https://doi.
org/10.1017/jfm.2024.937). It uses a piezoelectric element to control the surface separation
between a glass lens and a glass window, and images the cavitation bubbles and Newton
rings with a camera at 2–3 × 104 frames per second (fps). This technique determines
changes in the smallest surface separation h with accuracy ±1 nm. A plano-convex lens
with curvature radius R = 6.2 mm was glued to the mobile part of a piezo screw actuator
(P-854-PI) that was attached to an aluminium frame. The piezo actuator theoretically
imposes a displacement of the lens with respect to the glass window, but the piezo/frame
assembly is not perfectly rigid and was responsible for the oscillations of the separation
distance in figure 2. It is worth noting that the eigenfrequency of these oscillations is
much lower than that of the cavitation, ensuring that these oscillations are not perturbing
the signal of interest. An oxygen plasma treated 150 μm thick glass window was glued to
the frame. The thickness of this glass is sufficient to keep it from bending significantly.
Using standard results of linear elasticity of a clamped plate along with our hydrodynamic
calculation of the pressure forces, the plate radius of curvature is found to exceed 1 km,
which is 5–6 orders of magnitude larger than R. A drop of de-ionized and degassed
(milli-Q) water was placed between the window and the lens. Assembly was performed
under a laminar airflow bench to prevent dust from entering the space between the lens
and the window. Experiments were performed in the couple of days following the plasma
treatment to ensure that the window and the plano-convex lens were hydrophilic. We used
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Figure 1. Experiment overview. (a) Principal sketch of the experimental set-up. The spherical lens submerged
in degassed water is forced upwards by a piezoelectric element (PZT). Images of the cavitation bubbles were
obtained with a high-speed camera (Fast cam) looking through a microscope objective. (b) Geometry of the
spherical lens separating from a glass surface, with symbols used in the text.

an inverted microscope (Olympus IX81) with a 20× objective, fitted with a mercury
lamp and a narrow band filter (550 nm centre wavelength, 50 nm full width at half
maximum). The microscope was also fitted with a fast camera (Fastcam mini WX –
Photron). The screw control of the piezo actuator was applied to adjust the initial distance
h to between 5 and 20 nm (closest distance with a destructive interference ring in the
centre), taking great care that the two surfaces do not come into contact to avoid scratches.
The experimental results presented here were acquired in two different series, using two
different, but identical, sets of lenses and glass windows. For each series, all experiments
were performed at the same place on the glass window. The piezo actuator was controlled
by function generators (Tektronix AFG1000 or TiePie Handyscope HS5) with electrical
potentials amplified by a broadband amplifier (AE Techron 7228) at maximum gain
(20 V/V) before being sent to the actuator. The pre-amplified signals were fast ramps
(250–9000 V s−1) followed by a waiting stage at the maximum potential (0.1–2.3 V), and
a slow ramp down to come back to the initial position (see figure 2). Experimentally,
the control parameters were the duration of the ramp and its final value. The slow ramp
was used for both bringing back the experiment into its initial state and to know without
ambiguity the order of the Newton rings in the waiting phase. This is needed as during
the fast ramp, the Newton rings imaged in two successive images would not necessarily
be of consecutive order (i.e. the phase increment would be more than 2π) leading to an
ambiguity during computation of the separation h.

The separation h between the plano-convex lens and the window was recovered from
the intensity of the Newton rings formed by the light reflected from the bottom of the lens
and the top of the window. Since the lens is spherical with radius R, the surface separation
as function of radius r � R in the image plane is h + �h, where �h = r2/(2R) – which
is easily derived by noting that the angle α is present at two places of the geometry – and
h is the smallest surface separation (see figure 1b). The intensity distribution I(r) in the
entire image is used to determine h via the relation

I(r) = I0 − I1 cos
(

4π(h + r2/(2R))γ

λ

)
. (2.1)
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Figure 2. Typical measurements. (a) Example of the measured surface separation evolution (dots and line).
The arrows denote the start and end of the pulling phase which starts at t = 10 ms. (b) Close-up of (a) during
the cavitation event (note that a vertical logarithmic scale is used), alongside the evolution of the measured
area of the bubble (blue dots and dashed line) and the parabolic fit used to determine the cavitation time tc and
the collapse time tc + tl. For both, the colours of the dots encode the area of the bubble. (c) Selected snapshots
at times that are indicated in (a,b) showing the cavitation event and concentric Newton rings (for frames (1),
(2) and (4)), which are used to extract the separation h. Note that the contrast is adjusted separately for each
picture, and as a consequence of the brightness of the bubble, the Newton rings are not visible in frame (3).
Scale bar is 20 μm.

Here, I0 is the background intensity, I1 is the interference contrast, and λ = 550 nm is
the wavelength of the light used. As explained in Kohler, Pierre-Louis & Dysthe (2022),
γ = 1.64 is a prefactor taking into account the refractive index of water and the effective
numerical aperture of the objective. As the initial separation is below λ/4, the central
dark region is the first destructive Newton ring (see figure 2c). Phase unwrapping was
performed to restore the correct multiple of 2π to each interferometric phase image.

The bubble images were identified as those with a mean value of the local contrast level
(edges), computed as the discrete Laplacian of the pixel field (Marr & Hildreth 1980),
above a given threshold. The pixels of the cavitation bubbles were then identified by
standard thresholding using the Otsu method (Otsu 1979). In the few cases where several
bubbles were present, the biggest one was selected and considered for analysis.

In order to overcome the time resolution imposed from the imaging system, and recover
precise experimental nucleation time tc and lifetimes tl of the cavitation bubbles, parabolic
fits were performed on the area versus time curves. In cases where the lowest root of this
fit was in between the time where a bubble was first visible and the preceding frame, this
was considered to be the nucleation time tc. Otherwise, tc was considered to be the last
frame with no bubble present. A similar scheme was applied for the collapse time of the
bubble tc + tl.

Figures 2(c) and 3 show the formation and collapse of the cavitation bubble with the
viscous fingering interface structure as well as the Newton rings.
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20 µm
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Figure 3. Evolution of cavitation bubble during surface separation. The wavelength of the unstable gas–liquid
interface increases with h and decreasing speed of the interface. The black dots inside the bubble at later times
are water droplets. Note that the contrast is adjusted separately for each picture to better display the cavitation
event, and as a consequence, the Newton rings are not apparent.

3. Theory

Classical nucleation theory for homogeneous nucleation yields nucleation rates that
are much too small to explain nucleation at our pressure and time scales. Only at
negative pressures two orders of magnitude larger than in our experiment do bubbles
nucleate in the bulk (Menzl et al. 2016). This leaves heterogeneous nucleation that may
be caused by geometric or chemical impurities as the only viable explanation for our
observed phenomenon. The different ramp speeds, which vary by a factor 36, will cause
a corresponding range of ḣ values. The value of ḣ determines the height hc at which
cavitation happens as well as the size of the bubbles. Since the presence of impurities
as well as the random thermal fluctuations may vary between experiments, so will the
onset of cavitation at a given ḣ.

The theory deals with the evolution after nucleation has taken place, and aims to reveal
the hydrodynamics of the subsequent process. It will be on the assumptions of either
constant or measured values of ḣ.

3.1. Evolution of a circular bubble
To establish a theoretical understanding of the bubble evolution, we will also assume a
circular bubble, an assumption that may be partly justified by the a posteriori observation
that the amplitude of the branching structures is significantly smaller than the scale over
which the pressure field varies. Before the bubble is formed, mass conservation of the
liquid implies that the added volume under the ball as it is rising must be balanced by a
corresponding influx. We may write the volume change within a radius r as

V̇(r) = πr2ḣ = 2πr(h + �h) u(r). (3.1)

The increase in separation �h = r2/(2R) follows from the geometric observation that the
angle α in figure 1(b) occurs in several places. This implies that the gap-averaged fluid
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velocity takes the form

u(r) = − ḣr/2
h + r2/(2R)

. (3.2)

This velocity decays to 0 at r = 0 for symmetry reasons, and has a maximum at r = √
2hR.

Using the corresponding maximum velocity um = ḣ
√

R/(8h) and separation h = 1 μm
(see figure 2b), we may compute the upper bound of the Reynolds number Re = umh/ν <

0.5, where ν is the kinematic viscosity of water, and ḣ and h are estimated from figure 2(b).
Since Re is small, we may take the Stokes equation to govern the fluid pressure P(r).

Moreover, since the radius of curvature of the streamlines ∼R is much larger than the gap,
we may apply a lubrication limit of this equation. This equation will rely on the velocity
field of (3.2), and may be written as

∂P
∂r

= 6μḣ
r

(h + r2/(2R))3 , (3.3)

where μ is the dynamic viscosity. Integrating this from r to ∞, where the fluid has the
atmospheric background pressure P0, yields

P(r) = P0 − 3μRḣ
h2(1 + r2/(2Rh))2 (3.4)

for the pressure field that exists before the bubble is formed.
Once a bubble of radius rc(t) is formed, the conservation of liquid volume inside a radius

r may be described as

V̇(r) = π(r2 − r2
c )ḣ = 2πrc(h + �h(rc))ṙc − 2πr(h + �h(r))u, (3.5)

where we have neglected the mass loss due to the vapour that is formed inside the bubble.
This gives the velocity

u(r) = h + r2
c/(2R)

h + r2/(2R)

rc

r
ṙc − (r2 − r2

c )ḣ/(2r)
h + r2/(2R)

. (3.6)

With this velocity field the lubrication approximation of the Stokes equation becomes

∂P
∂r

= 6μ
(
(r2 − r2

c )ḣ − 2rcṙc(h + r2
c/(2R))

)
(h + r2/(2R))3r

. (3.7)

Since the vapour pressure at room temperature is ∼0.03 atm, which will turn out to be
three orders of magnitude smaller than the typical liquid pressures, we take it to be zero
and integrate (3.7) from r = rc, where P = 0, to r = ∞, where P = P0.

Following ch. 11.2 in Israelachvili (2011), the order of magnitude of the van der Waals
forces between a sphere of radius R and a surface may be estimated as ∼1 μN if the
separation is taken as h = 10 nm. The vertical force on the plate due to surface tension
is 2πrc ∼ 4 μN if rc = 10 μm. On the other hand, the local forces due to the negative
water pressures P ∼ −10 atm is FP ≈ πr2

c P ∼ 100 μN, so that the hydrodynamic force
dominates the van der Waals and capillary forces by two orders of magnitude as the bubble
is first recorded.

However, the capillary pressure drop Pc across the water vapour interface – which is
due to the surface tension and the curvature in the vertical direction, and depends on the
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dynamic wetting angle αw ≈ 50◦ of the water – is not negligible at the very start of the
bubble growth. The pressure Pc = 2σ cos αw/h ≈ 15 atm when h = 40 nm, corresponding
to frame (2) of figure 2(c), quickly drops to Pc ≈1 atm somewhere between the h values
of frames (2) and (3) of figure 2(c). For simplicity, we will neglect Pc in the calculation
of the rc(t) evolution. As we will see, this limits the model to describe the later part of
the bubble evolution (shown in frames (2)–(4) of figure 2c) when the capillary pressure
becomes small compared to the viscous pressure drop.

Integration then gives

P0R
6μḣ

= K(rc) − I(rc)

(
r2

c

R2 + 2rcṙch
R2ḣ

(
1 + 1

xc

))
, (3.8)

where we have introduced the integrals

I(rc) = R3
∫ ∞

rc

dr
r(h + r2/(2R))3 = 1

2

(
R
h

)3

g(xc),

K(rc) = R
∫ ∞

rc

dr r
(h + r2/(2R))3 = 2

(
R
rc

)4 1
(xc + 1)2 ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.9)

where xc = 2Rh/r2
c = 2πRh/A, A(t) = π r2

c (t), and we have introduced the function

g(xc) = ln(xc + 1) − xc
1 + 3xc/2
(xc + 1)2 . (3.10)

An equation similar to (3.8) has been derived for the lubrication flow between parallel
plates by Tirumkudulu & Russel (2003). Now, solving (3.8) for ṙc brings it to the form
ṙc = F(h, ḣ, rc), which allows us to solve the numerical scheme

rc → rc + F(h, ḣ, rc) dt, (3.11)

where h = h(t) and ḣ = ḣ(t) are the measured values. The result of such a calculation for
a single experiment is shown in figure 4(a), while figure 4(b) shows the early-time result
for all experiments.

3.2. Pressure field
With the values of rc(t) at hand, (3.7) may be used to calculate the pressure field P(r) for
r > rc. Integrating this equation from r to ∞ gives

P(r) = P0 − 6μ

((
K(r) − I(r)

r2
c

R2

)
ḣ
R

− 2rcṙch
R3 I(r)

(
1 + 1

xc

))
, (3.12)

where the argument r in I and K means that x = 2Rh/r2 must be used in place of xc in
(3.9).

3.3. Scaling behaviour from constant ḣ theory
The rather weak agreement between theory and measurement that is displayed in
figure 4(a) is greatly improved by the introduction of non-dimensional variables and the
consideration of their scaling behaviour.
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Figure 4. (a) The bubble radius as a function of time when h(t) and ḣ are taken as the measured values from
a typical experiment (dots) along with the calculation based on (3.11) (line). Cavitation time tc is estimated as
the lowest root of a parabolic fit of the data. (b) Comparison between the measured and calculated values of
the first recorded bubble radii from all the experiments; the first value is shown by blue dots, and the second by
green triangles. The red line has slope 1.

The extension of a piezoelectric element has a linear relationship with the applied
voltage, and in the experiments, this voltage is increased linearly with time during the
initial ramp. Therefore, the height h would increase linearly in time as well, save for
the effects of elastic deformations of the support system. Such an elastic response is
clearly present, as is evident from the oscillations in h(t), shown in figure 2(a). However,
figure 2(b) shows that during the existence of the bubble, a linear increase of h(t) may be
a reasonable approximation, which we will apply in the following. This is also justified by
the possibility of constructing future, more rigid experimental set-ups.

Introducing the characteristic time scale

�t =
√

12μR
P0ḣ

(3.13)

and area

A0 = 24μ

P0 �t
πR2, (3.14)

we may rewrite (3.8) in terms of the dimensionless variables t′ = t/�t and A′ = A/A0.
The point of doing this is (i) to establish a dynamic equation with relevant dimensionless
groups, (ii) to obtain the scaling behaviour relating the control parameters to the bubble
area and lifetime, and (iii) to identify the limits to this scaling behaviour.

By assumption, h(t) = ḣt, so the theoretical time of cavitation is

tc = hc

ḣ
. (3.15)
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Cavitation dynamics in creeping flow

In terms of the dimensionless variables, the different terms of (3.8) then take the form

P0R
6μḣ

= 8
(

πR2

A0

)2

,

2rcṙch
R2ḣ

= A0

πR2 t′
dA′

dt′
,

r2
c

R2 = A0

πR2 A′,

xc = t′

A′ ,

K(xc, A′) = 2
(

πR2

A0

)2 1
A′2(xc + 1)2 ,

I(xc) = 4
(

πR2

A0

)3 g(xc)

t′3
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.16)

Combining the above results, (3.8) may be written as

dA′

dt′
= t′

t′ + A′

(
t′2

g(xc)

(
1

2(t′ + A′)2 − 2
)

− A′

t′

)
, (3.17)

where all dimensional quantities, such as P0, R and μ, have dropped out.
This equation may be solved numerically subject only to the initial condition A′(t′c) =

A′
c. The dependence on A′

c may be neglected as long as Ac ∼ h2
c ; replacing Ac by its Ac →

0 limit changes the subsequent A(t) values by less than 1 %.
The non-dimensionalized initial times t′c = hc/(ḣ �t), which are obtained from the

experiments, are shown in figure 5(b). Using the extreme values of this figure, t′c = 0.035
and 0.15 (neglecting only the single t′c = 0.25 point), we obtain the non-dimensionalized
areas A′(t′) shown by the red and green curves in figure 6. For the smaller t′c values, when
t′c ≤ 0.001, A′ has essentially converged to its t′c → 0 limit.

Figure 6 shows that A′(t′) varies significantly with t′c over the experimental range
t′c = 0.035−0.15, and when t′c becomes larger than these values, the bubble will simply
not grow. However, when the area (see figure 7) is normalized by its maximum value
Am, rather than A0, and the time is normalized by the bubble lifetime tl, rather than �t,
the dependence on t′c becomes much smaller. This is illustrated in figure 8(a) where the
predicted variation of A(t)/Am with t′c is less than 5 % over the full experimental range.
This variation is smaller than the experimental uncertainty, so the prediction is that the
area may be written in the form

A(t)
Am

= f
(

t − tc
tl

)
(3.18)

for a curve f (x), which is the same for all the cavitation bubbles within the experimental
uncertainty. The predicted data collapse of A(t)/Am is shown in figure 8(a), using the
experimental data of figure 7.

The normalized bubble lifetime value t′l = 0.770 is obtained by inspection of the t′c <

0.01 graphs in figure 6. However, when t′c � 0.01, t′l and the maximum value A′
m will
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Figure 5. (a) The pulling velocity ḣ = dh/dt at the point of cavitation, along with the corresponding height
h. The blue dots show the initial h measurements, and the green dots show the values at the time immediately
before the bubble is observed. The black dots show the values immediately after cavitation, and the red line is
a linear fit to the latter data to guide the eye. (b) The effective non-dimensionalized initial time t′c = hc/(ḣ �t)
as a function of hc.
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Figure 6. Normalized bubble area versus normalized time for the extreme t′c values shown in figure 5(b), as
well as the values t′c = 0.01−0.0001.

depend on t′c. The corresponding maximum area is

Am = A0 A′
m(t′c) = A′

m(t′c)
24μπR2

P0

1
�t

, (3.19)

where the replacement �t = tl/t′l gives

Am = A′
m(t′c) t′l(t

′
c)

24μπR2

P0

1
tl
. (3.20)

In the limit when t′c � 0.01, we may replace A′
m(t′c) t′l(t

′
c) → 0.0524, and we are left with

the asymptotic scaling Am ∝ 1/tl.
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Figure 7. Bubble area versus the post nucleation time tc. A parabolic fit to each of the data series from the 37
experiments yielded bubble nucleation times, maximum areas, and bubble lifetimes tl. All the data were then
rescaled to give the plot in figure 8(a).
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Figure 8. (a) Collapse of normalized bubble area versus normalized bubble lifetime for experimental data
(dots) and theory (lines). The theory is shown for both the smallest and largest measured values of t′c =
hc/(ḣ �t). (b) Maximum bubble area versus bubble lifetime from experimental data (dots), a linear fit to data
of slope −1.0 (solid black line), the theory given by (3.19) (solid red line), and the theory using the asymptotic
value A′

m = 0.0698 (dashed black line). Note that the experimental areas and lifetimes have been computed by
the maximum value and the difference of the roots of a quadratic fit of the experimental data.

On the other hand, we may also use (3.13) to express Am by ḣ and R. This yields

Am = 4A′
mπ

√
3μḣ
P0

R3/2, (3.21)

which shows how the maximum bubble area depends on the radius of curvature of the
lens. This is of some significance relative to the ‘lifted Hele-Shaw cell’ experiments for
which R → ∞. In this case, the prediction is that the bubble would always extend beyond
the finite boundaries of the cell.
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Figure 8(b) shows to what extent the predicted Am ∝ 1/tl scaling is fulfilled in the
experiment. The theoretical prediction, which is shown in figure 8(b) (red line), is given by
(3.19), which is obtained by setting hc = 30 nm and varying ḣ to get a range of values for
�t and t′c as given by (3.13) and (3.14), respectively. The corresponding asymptotic t′c → 0
result, which is shown by the dashed line, is given by (3.20). The solid black line which is
a linear fit to the experimental data of slope −1.0, seems to indicate agreement with the
asymptotic result. However, the uncertainty in the tl � 1 ms data may also yield agreement
with the non-asymptotic theory (red line). The uncertainty is caused mainly by the fact that
the experimental lifetimes are extracted from the curves of figure 7 by fitting these curves
to parabolas and defining the lifetimes as the distance between their roots. This procedure
may cause errors, in particular for longer lifetimes. However, for the t′c values where A′

m
and t′l have converged, i.e. when tl � 1 ms, the predicted asymptotic scaling behaviour of
Am is well satisfied by the experiments.

3.4. Pressure field and secondary nucleation
Figure 9 shows the pressure in the water outside the growing bubble at subsequent times. It
is calculated from (3.12), using the measured values of ḣ and the corresponding calculated
values of ṙc. During the early expansion phase, figure 9 shows how the pressure outside
the bubble occasionally falls below the initial cavitation pressure given by (3.4), and
sometimes not. This variability in the water tension, and the fact that defects or impurities
away from the centre may cause nucleation at pressures less negative than that required at
the centre, may explain the occasional secondary nucleation events. However, the radius
at which this outside pressure reaches its minimum is approximately rc ∼ 20 μm, a size
that is reached within ∼0.05 ms. On the other hand, figure 2(b) shows that the largest
initial ḣ values exist for a time ∼0.5 ms. Hence the time available for secondary nucleation
is an order of magnitude smaller than the time available for the primary nucleation, an
observation that agrees well with the fact that only occasionally is such a secondary bubble
observed in the experiments, as is illustrated in figure 9.

3.5. Saffman–Taylor instability
As the bubble grows, a less viscous fluid (the water vapour) displaces the more viscous
water, creating the conditions for the Saffman–Taylor instability to develop. Linear
stability analysis (Feder, Flekkøy & Hansen 2022) predicts that the fastest-growing
perturbation has wavelength

λm = π(h + �h)

√
σ

μṙc
, (3.22)

where h + �h is the local gap width at r = rc. Figure 10 shows λm as a function of h for
all the experiments, using the ṙc values obtained from (3.11) along with the measured h
values, and viscosity μ = 10−3 Pa s. Since the time step used in that calculation is smaller
than the time between the frames at which h is measured, the calculated ṙc value that
enters in (3.22) evolves numerically between each recorded h value. This is why there are
several λm values for each h value, effectively providing a measure of uncertainty in the
predicted λm values. The red dots, which are obtained by estimating the finger number
from figure 3, fall below the approximately linear trend shown by the grey dots. The sign
of this discrepancy is the same as that found by Lindner et al. (2005).
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Figure 9. (a,b) The water pressure outside the expanding bubble as a function of r > rc for the two different
measured time series h(t). Red curve: earliest rc value. Dashed curves: when the bubble has reached rc =
2.5 μm, 5 μm, 7.5 μm, . . . , and ṙc > 0. The blue dots represent the pressure given by (3.4) with r = 0 at the
time when the cavitation bubble is formed. (c) Image of a cavitation bubble with a secondary bubble nucleated
outside the main bubble. Scale bar is 20 μm.
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Figure 10. The dominant Saffman–Taylor wavelength as a function of h. The blue and grey dots show the λm
values given by (3.22) using the ṙc values computed from (3.11) and all the experimental h values, with the
blue dots corresponding to the experiment shown in figure 3. The red dots show the actual wavelength that is
determined by counting the fingers in figure 3.

However, initially at small h values, there is an approximate agreement between the
measured and predicted λm values, which strongly suggests that the finger structure is
indeed caused by the Saffman–Taylor instability. At later times, the smaller λm fingers
will already have grown to a point where they will dominate the larger λm perturbations,
which come to have the larger growth rates too late to dominate the earlier growth.

4. Discussion and conclusion

Figure 4(a) shows the result of applying the numerical scheme of (3.11) starting from a
small bubble with rc(0) = h0, the initial separation, and integrating (3.8). The values of
rc are calculated using the measured values of h(t) and ḣ(t), not a constant ḣ, at this point.
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Figure 4(a) also shows a comparison between the circular bubble calculations and a single
experimental time series for the rc(t) values. The discrepancy that is seen between the
calculated and measured values is most likely caused by the development of branching
structures that start immediately after the bubble cavitates, while the theory assumes
a circular bubble. Except for the last value, the experimental rc values fall under the
theoretical prediction. This is to be expected as the formation of vapour fingers will tend to
reduce the pressure gradients in the liquid left between them. This pressure screening is a
well-known effect in viscous fingering structures that grow radially in a porous medium or
Hele-Shaw cell, as noted by Måløy, Feder & Jøssang (1985). As a result, only part of the
liquid surrounding the growing bubble is subject to a significant outward driving force.
By contrast, around a circular bubble, the pressure gradient is everywhere in the radial
direction, and is at its largest at the interface.

In figure 7, the projected area A(t) of the growing and collapsing bubble is shown.
While the lifetime tl varies by factor 10, the rise velocity ḣ varies by a factor ∼36, which
is the variation of the ramp speed. Hence the data collapse, and Am ∝ 1/tl scaling seen in
figure 8 is supported by a relatively wide range of experimental conditions.

Assuming the cavitation bubble to have a circular shape resulting from a constant pulling
speed is clearly not realistic. However, the length scale

√
2Rh over which the pressure

decays theoretically (see figure 9) is significantly larger than the bubble radius, indicating
that the large-scale pressure gradients are insensitive to the local interface perturbations.
Since these long-range gradients are the driving force behind the bubble collapse, it is not
surprising that general features, such as the exponent governing the Family–Vicsek scaling
(Vicsek & Family 1984), which is predicted in (3.18), survive the model simplifications.

Figure 5(a) shows a certain correlation between the pulling velocity ḣ at the point of
cavitation and the corresponding height hc. It displays a variation of ḣ by factor 30. The
initial time t′c that is shown in figure 5(b), on the other hand, displays a variation by less
than factor 2 around its mean value �0.1tl. This means that the description provided by
the non-dimensionalized equation (3.17), along with the initial condition at tc, is close to
common for all the experiments despite the great variability in the pulling speed ḣ.

Figures 8(a) and 8(b) are based on the determination of Am from the fluctuating
experimental data. The measured A(t) curve was fitted to a parabola, and the value of Am
was taken as the maximum of this parabola, and the nucleation and collapse times were
identified as its zero points. The non-parabolic component in the data causes the parabolic
fit to underestimate the maximum by 5 %–10 %, hence the maximum value in the A(t)/Am
curve overshoots 1 correspondingly.

The scaling behaviour that is predicted by (3.20) amounts to stating that the larger
the bubble, the shorter it lives. This counter-intuitive result is seen to describe both the
idealized circular bubbles and the experimental ones: figure 8(b) shows the predicted
and measured maximum area that is reached by the bubbles, as a function of tl; the
experimental data are well fitted by a straight line of slope −1. However, the theory
predicts a maximum area of about three times the measured values. This discrepancy is
likely caused by the fingering at the interface, the fact that ḣ is not constant but increases
right after cavitation, and the neglect of capillary forces in the theory. Given the upward
moving boundary, there is no reason for the flow around the bubble to be reversible. It
is therefore to be expected that the branched interface takes longer to collapse back into
a point than the circular one. On the other hand, the effect of the neglected capillary
pressure would be to accelerate the process and reduce the bubble lifetime. Qualitatively,
the unknown contribution from the capillary forces could be included in the theory by an
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increase in the driving pressure P0 in (3.13), from which it is clear that the bubble lifetime
decreases as P0 increases.

The fact that Am increases with decreasing lifetime is perhaps most easily understood
physically, or intuitively, by noting that ḣ sets the speed of the entire process, and that when
ḣ becomes sufficiently small, cavitation will not happen at all. When the whole process is
fast, it is reasonable that the bubble lifetime is short, and only above some critical ḣ will
Am be finite, starting at some small value. As ḣ increases, so will Am, and as a combined
result, there is an inverse relationship between Am and tl, which by analysis turns out to
be governed by an exponent −1. The Am ∝ 1/tl scaling behaviour is in strong contrast
to that observed for inertia-dominated cavitation bubbles, such as those observed around
propellers, where the lifetime scales as tl ∝ Rmax, the maximum bubble radius; see ch. 15
in Kim et al. (2014).

In summary, we have established an experimental technique that resolves the boundary
separation between a sphere and a flat surface on the nanometre scale and allows
the detailed observation of ∼10 μm size cavitation bubbles formed by creeping flow
hydrodynamics. Contrary to the much-studied cavitation processes governed by inertia,
these bubbles exhibit a scaling behaviour where their lifetime is inversely proportional
to their maximum size. Although the interface develops Saffman–Taylor fingers and a
branched structure, this scaling exponent is captured by a theory relying on the assumption
that bubbles are circular.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.937.

Funding. This work was partly supported by the Research Council of Norway through its Centers of
Excellence funding scheme, project no. 262644. T.C. was supported by the UiO:LifeScience grant Abino.

Declaration of interests. The authors report no conflict of interest.

Author ORCID.
Thomas Combriat https://orcid.org/0000-0001-7991-3774.

REFERENCES

BRANTUT, N. 2020 Dilatancy-induced fluid pressure drop during dynamic rupture: direct experimental
evidence and consequences for earthquake dynamics. Earth Planet. Sci. Lett. 538, 116179.

BRENNER, M.P., HILGENFELDT, S. & LOHSE, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys.
74, 425.

BRUJAN, E.-A. 2011 Cavitation in Non-Newtonian Fluids. Springer.
CAMPBELL, J. 1968 The tribonucleation of bubbles. J. Phys. D: Appl. Phys. 1 (8), 1085–1088.
CHANDRAN SUJA, V. & BARAKAT, A.I. 2018 A mathematical model for the sounds produced by knuckle

cracking. Sci. Rep. 8 (1), 1–9.
DOWSON, D. & TAYLOR, C.M. 1979 Cavitation in bearings. Annu. Rev. Fluid Mech. 11, 35–66.
FEDER, J., FLEKKØY, E.G. & HANSEN, A. 2022 Physics of Flow in Porous Media. Cambridge University

Press.
DE GRAAF, K.L., BRANDNER, P.A., PEARCE, B.W. & LEE, J.Y. 2015 Cavitation due to an impacting sphere.

J. Phys.: Conf. Ser. 656, 012014.
GUO, C. 2018 The relationship between the collapsing cavitation bubble and its microjet near a rigid wall

under an ultrasound field. In Cavitation – Selected Issues (ed. W. Borek, T.A. Tański & M. Król),
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