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Cubic Twin Prime Polynomials are Counted
by a Modular Form

Lior Bary-Soroker and Jakob Stix

Abstract. We present the geometry behind counting twin prime polynomials in Fq[T] in general.
We compute cohomology and explicitly count points by means of a twisted Lefschetz trace formula
applied to these parametrizing varieties for cubic twin prime polynomials. _e elliptic curve X3

=

Y(Y − 1) occurs in the geometry, and thus counting cubic twin prime polynomials involves the
associated modular form. In theory, this approach can be extended to higher degree twin primes,
but the computations become harder.

_e formula we get in degree 3 is compatible with the Hardy–Littlewood heuristic on average,
agrees with the prediction for q ≡ 2 (mod 3), but shows anomalies for q ≡ 1 (mod 3).

1 Introduction

One of the most exciting open problems in number theory is the twin prime conjec-
ture, predicting inûnitely many twin primes, i.e., pairs (n, n + 2) with both n, n + 2
being primes. _ere is nothing special about the diòerence being 2 or about pairs,
and indeed, one can easily state a general conjecture for k-tuples of the form n + h i
for a ûxed set of shi�s h1 < h2 < ⋅ ⋅ ⋅ < hk . Applications o�en necessitate a quantitative
version of the twin prime conjecture. Hardy and Littlewood made a precise quanti-
tative conjecture in [HL23, §5_eorem X1]1, which essentially means that the events
that ‘n is prime’ and ‘n+ 2 is prime’ are independent up to a precise correlation factor
S(0, 2) ≈ 1.32032363169 . . . .

Conjecture 1.1 (Hardy–Littlewood Prime Tuple Conjecture) Let h = (h1 , . . . , hk) ∈

Zk be a k-tuple of pairwise distinct integers. _en in the limit x →∞,

(1.1)
1
x
#{x ≤ n < 2x ∶ n + h1 , . . . , n + hk are prime} =S(h) 1

(log x)k (1 + o(1)),

where, with νp(h) denoting the number of residues covered by h1 , . . . , hk modulo p, we
have

S(h) = ∏
p prime

1 − νp(h)p−1

(1 − p−1)k .
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Note that a local obstruction occurs if there is a prime p with νp(h) = p. _en the
conjecture trivially holds, because both sides of (1.1) are zero. If there are no local ob-
structions, the singular series S(h) can be shown to converge to a positive constant.

_ere have beenmany attempts to solve this conjecture that, in spite of failing, pro-
duced exciting results. In his seminal work, Brun [Bru19] was the ûrst to apply sieve
methods to the twin prime problem and showed that the sum of reciprocals of twin
primes converges. Brun also showed that there are inûnitely many pairs (n, n + 2)
with at most 16 prime factors. Chen [Che66] gave the state-of-the-art result in this
direction, proving that there exist inûnitelymany primes p such that p+2 is a product
of at most 2 primes. In their famous theorem about arithmetic progression of primes,
Green and Tao [GrT08] andGreen, Tao, and Ziegler [GTZ12] tackled the easier prob-
lem when onemore degree of freedom is added. More recently, Zhang [Zha14]made
a breakthrough by showing that there exist inûnitelymany prime pairswith bounded
distance. _e bound was improved by Polymath [Pol14], and later Maynard [May15]
generalizedZhang’s result to k-tuples for any ûxed k > 0. See the survey paper [Gra15]
for more details.

_e objective of this paper is to give more evidence for the Hardy–Littlewood
prime tuple conjecture by studying its function ûeld analog. For a ûnite ûeld Fq we
take the set Md ,q = { f (T) ∈ Fq[T] ; monic of deg( f ) = d} as the analog of the
interval [x , 2x) with qd = #Md ,q playing the role of x ∼ #{x ≤ n < 2x}. _e goal is
now, to give, for a k-tuple of pairwise distinct polynomials h = (h1 , . . . , hk) ∈ Fq[T]

with deg h i < d, precise asymptotics in the limit qd →∞ for

π(d , q; h) = #{ f ∈ Md ,q ; f + h1 , . . . f + hk are irreducible}.

If we ûx h, this only makes sense with ûxed q and d → ∞, and this case should be
considered an analog of Conjecture 1.1 for the ûeldFq(T). If h = (0, 1), or ifwe expect
some uniformity in h, thenwe can also ask for the asymptotics for d ûxed and q →∞.

Hall [Hal06] proved that for any ûxed q > 3 there exist inûnitely many d’s and
f ∈ Md ,q such that f and f + 1 are prime. _is proof is elementary and extends to
k-tuples with scalar shi�s if q is suõciently large with respect to k and using the Rie-
mann hypothesis for curves. _e sequence of d’s in Hall’s proof grows exponentially
fast and hence is very sparse. Adapting Maynard’s result to function ûelds, Castillo
et al. [Cas15] extended Hall’s result, for suõciently large ûxed q, to any d in an ex-
plicit arithmetic progression and gave a lower bound on the number of pairs of the
right order ofmagnitude. However, this method seems to fail when the shi� is not a
monomial.
Another approach taken in recent studies is to let q → ∞ and control π(d , q; h)

as an application of the Lang–Weil bounds. _is direction proved successful, as the
analogue of the Hardy–Littlewood prime tuple conjecture was completely resolved;
see Bender and Pollack [BeP09] for pairs in odd characteristic, the ûrst author [Bar12]
for general tuples in odd characteristic. Carmon [Car15] applied the method of the
ûrst author in even characteristic and established the following for all cases in the limit
q →∞, with error term E(d , q; h) ≪d ,k q−1/2:

(1.2) π(d , q; h) = qd

d k Sq(h)(1 + E(d , q; h)).
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Note that the size of the error term depends on the tuple h only through its degree
bound d. We discuss the function ûeld analog Sq(h) of the Hardy–Littlewood sin-
gular series in Section 2.

One may naively expect a square root cancellation, namely a bound for the error
term of the form

E(d , q; h) ≪ q−d/2+є .

Some results give better error terms than (1.2) on average [KRG16], based on vari-
ance computations [KeR14] and equidistribution results byKatz [Kat12a,Kat12b]. See
[HM17] for a geometric interpretation of [KeR14]. _e asymptotic formula (1.2) has
inspired more work; see [ABR15, BaB15, BSF18, Ent14]. _e downside of (1.2), is that
the error termisnot small enough for us to see the “arithmetic”, due to the dependence
on h. Pollack [Pol08, Appendix] computed that

Sq(h) = 1 + O(q−1),

so in the limit q →∞, the events that the f +h i are irreducible are indeed independent.
In this paper we give an exact formula for π(d , q; h) when d ≤ 3 and h = (0, 1).

_e case of d = 1 is trivial and le� to the reader. _e case d = 2 is straightforward,
using Weil’s bounds on exponential sums. We use the technique of the present paper
to deduce the d = 2 case in Example 3.2 as (3.3):

π(2, q; (0, 1)) = 1
4
q2 ⋅

⎧⎪⎪
⎨
⎪⎪⎩

1 − (2 − (−1)(q−1)/2) ⋅ q−1 if q is odd,
1 − 2q−1 if q is even.

For d = 3, the formula depends onwhether or not the characteristic is 3. If 3 ∣ q,we
get a polynomial formula, while if 3 ∤ q, our formula involves the number of rational
points in the reduction of the elliptic curve E with Weierstraß-equation

X3 = Y(Y − 1).

Recall that if 3 ∤ q, the curve E has good reduction, and by theHasse bound

(1.3) ∣q + 1 − #E (Fq)∣ ≤ 2
√q.

_eorem 1.2 Let q be a prime power. _en we have

(1.4) π(3, q; (0, 1)) = 1
9
q3 ⋅

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 − q−1 − 3q−2 if q ≡ 0 (mod 3),
1 + (c2q − 3) ⋅ q−1 − 2q−2 if q ≡ 1 (mod 3),
1 − q−1 − 2q−2 if q ≡ 2 (mod 3),

where cq ∶=
1+q−#E (Fq))

√q , so that 0 ≤ c2q ≤ 4 by (1.3).

We will discuss the comparison with the prediction by the analog of the Hardy–
Littlewood conjecture in Section 2.

Remark 1.3 Since every elliptic curve overQ is modular, there is a newform fE (q)
associated with the elliptic curve E with Weierstraß-equation X3 = Y(Y − 1). _e
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newform can easily be determined being the only newform of weight 2 and level 27
(see the database [LMFDB, Elliptic Curve 27.a4]),

fE (q) =∑
n≥1
anqn = q − 2q4 − q7 + 5q13 + 4q16 − 7q19 + O(q20).

_is means that for all prime numbers p not divisible by 3 we have, by the Eichler–
Shimura congruence relation,

ap = 1 + p − #E (Fp) = αp + βp ,

where αp , βp are the eigenvalues of Frobenius, i.e., the roots of

T2 − apT + p = 0.

For both λ = αp or βp , the sequence (λm)m belongs to the 2-dimensional vector space
V of all sequences (bm)m satisfying

bm+1 = apbm − pbm−1 .

Moreover, due to the relations among the various Hecke operators, for 3 ∤ p the co-
eõcients of fE (q) satisfy the recursion apm+1 = apapm − papm−1 for all m ≥ 1; see,
for example, [Ser73, §VII.5.4]. Hence, (apm)m and (apm−1)m (the latter suitably in-
terpreted as 0 for m = 0) also belong to V . It follows easily that for q = pm and all
m ≥ 1,

1 + q − #E (Fq) = (αp)
m + (βp)

m = 2apm − apapm−1 = 2aq − apaq/p .

In conclusion, the term c2q in _eorem 1.2 can be computed as

c2q =
1
q
⋅ (2aq − apaq/p)

2

as a combination of q-expansion coeõcients of the newform fE (q).

_e geometric description of the parametrizing variety and thus also the computa-
tion of its cohomology can be adapted easily to the case of general scalar shi�s h ∈ F×q .
_e resulting fomula involves the cubic twist Eh/Fq of the elliptic curve E ⊗Z[1/3] Fq
over Fq given by

hX3 = Y(Y − 1).

We set

cq ,h ∶=
1 + q − #Eh(Fq)

√q

so that 0 ≤ c2q ,h ≤ 4 by (1.3). Note also that cq ,h only depends on h modulo cubes: the
class of h in F×q /(F×q)3.
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_eorem 1.4 Let q be a prime power. For all h ∈ Fq , h /= 0, we have

π(3, q; (0, h)) =

1
9
q3 ⋅

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − q−1 − 3q−2 if q ≡ 0 (mod 3),
1 + (c2q − 3) ⋅ q−1 − 2q−2 if q ≡ 1 (mod 3) and h is a cube in Fq ,
1 + cq ⋅ cq ,h ⋅ q−1 − 8q−2 if q ≡ 1 (mod 3) and h is not a cube in Fq ,
1 − q−1 − 2q−2 if q ≡ 2 (mod 3).

On average over all h ∈ F×q , we obtain the predicted asymptotic up to O(q−2) in
the error term:

1
q − 1

∑
h∈F×q

π(3, q; (0, h)) = 1
9
q3 ⋅

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 − q−1 − 3q−2 , if q ≡ 0 (mod 3),

1 − q−1 − 6q−2 , if q ≡ 1 (mod 3),

1 − q−1 − 2q−2 , if q ≡ 2 (mod 3).

Method _e proof of _eorem 1.2 will be given at the end of Section 5.3 when
enough of the geometry and cohomology of the problemhave been explained. It then
follows by combining the twisted Lefschetz trace formula of Proposition 3.1, which
reduces the counting to the problem of determining the eòect of Frobenius and the
twisting 3-cycle on cohomology,with the explicit computation of the respective traces
that is completed in Proposition 5.10.

We will study the Fq-variety parametrizing pairs of algebraic elements over Fq
of general degree d such that the respective minimal polynomials diòer by 1 . We
count these pairs by means of the Lefschetz trace formula in étale cohomology. _is
strategy is applicable in principle for all d, butwe succeed in pursuing it only for d ≤ 3,
because here we manage to compute the respective cohomology as a representation.
To summarize, the geometry for d = 3 is as follows.

_eorem 1.5 Let q be a prime power and 3 ∤ q. Roots of Cubic twin prime polynomial
pairs in Fq[T] are parametrized by a variety that is an Fq-form of a variety which is an
A1-bundle over the complement of an explicit divisor on an explicit hyperelliptic surface.

Proof _is is the geometric content of Section 4. _e hyperelliptic surface is covered
by E × E for the elliptic curve E ∶ X3 = Y(Y − 1), and the divisor to be removed is
T +H, in the notation of Section 4.

Outline In Section 3 we recall how to count rational Fq-points of a Galois-twisted
variety and describe the variety Uτ over Fq that enumerates twin prime polynomial
pairs of any degree d over Fq . In Section 4 we analyse its geometry in the case where
d = 3 with special emphasis on the action of a 3-cycle τ. Section 5 is devoted to the
computation of (total) étale cohomology with compact support as a virtual represen-
tation in a Grothendieck-group of Galois representations together with an action by
τ. In the penultimate Section 5.3 we then evaluate the trace of the twisted Frobenius
and derive the formula of_eorem 1.2.
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2 The Singular Series for Function Fields

Since we are interested in studying the number of prime polynomials of ûxed de-
gree d as a function of the number of elements in the ûeld q, we denote by πd(q) =
π(d , q; (0)) the number of primes of Fq[T] of degree d. Wewould like to express the
Hardy–Littlewood singular series for the function ûeld Fq(T),

Sq((0, 1)) = ∏
p prime of Fq[T]

(
1 − 2N(p)−1

(1 − N(p)−1)2 ) =∏
d≥1

(
1 − 2q−d

(1 − q−d)2 )
πd(q)

as the value of a convergent power series S(u) ∈ Q[[u]] in u = q−1. Here S(u) will
be independent of q and thus is uniquely determined if it exists. _is can be done
as follows. First, for q = 2 we have a local obstruction at places of degree 1, hence
S2((0, 1)) = 0. _erefore, we assume from now on that q ≥ 3.

Lemma 2.1 For all d ≥ 1 there is a polynomial Pd(u) ∈ Q[u] such that for all prime
powers q,

Pd(q−1) = πd(q) ⋅ q−d .
Moreover, we have ∣Pd(t)∣ ≤ 1 for all complex ∣t∣ ≤ 1.

Proof _is follows from Gauß’s formula πd(q) = 1
d ∑k∣d µ(k)qd/k . Concretely, we

have
Pd(u) =

1
d ∑k∣d

µ(k)ud−d/k .

_e estimate is trivial, because there are at most d summands.

Lemma 2.2 _e following power series is convergent for ∣u∣ < 1/2:

λ(u) ∶=∑
k≥2

2 − 2k

k
uk−1 ∈ u ⋅Q[[u]].

For all 0 < t0 < 1/2 there is a constant c = c(t0) such that ∣λ(t)∣ ≤ c ⋅ ∣t∣ for all complex
∣t∣ ≤ t0.

Proof _e power series is an expansion of log(1−2u)−2 log(1−u)
u ,which is holomorphic

in ∣u∣ < 1/2, hence its radius of convergence is 1/2.
_e existence of a constant c(t0) and the estimate follow, because λ(u)/u is con-

tinuous and thus bounded on the compact ball of radius t0.

Since λ(ud) is divisible by ud , the following sum formally converges:

S(u) ∶= exp ( ∑
d≥1

Pd(u) ⋅ λ(ud)) ∈ Q[[u]].

Proposition 2.3 _e power series S(u) converges for ∣u∣ < 1/2. For all prime powers
q ≥ 3, we have

S(q−1) =Sq((0, 1)).
In particular, the product deûning the function ûeld singular series converges absolutely.
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Proof It suõces to show that the sumof holomorphic functions∑d≥1 Pd(u) ⋅ λ(ud)
converges uniformly on any ball of radius t0 < 1/2. _is follows at once from the
estimates in Lemmas 2.1 and 2.2.

In order to ûnd the value S(q−1), we instead compute its logarithm, as follows:

log S(q−1) =∑
d≥1

Pd(q−1) ⋅ λ(q−d) =∑
d≥1

πd(q)q−d ⋅
log(1 − 2q−d) − 2 log(1 − q−d)

q−d

=∑
d≥1

πd(q) ⋅ log (
1 − 2q−d

(1 − q−d)2 ) = log∏
d≥1

(
1 − 2q−d

(1 − q−d)2 )
πd(q)

= logSq((0, 1)).

Remark 2.4 In order to analyse S(u) at u = 1/2, we use P1(u) = 1 and split the
factor corresponding to d = 1 by writing

S(u) = (1−2u)2 ⋅exp (∑
k≥1

(2k+1(
1
k
−

1
k + 1

) +
2

k + 1
)uk) ⋅exp ( ∑

d≥2
Pd(u) ⋅ λ(ud)) .

_e factor exp(∑d≥2 Pd(u) ⋅ λ(ud)) converges for u < 1/
√

2, and the middle factor
can be dealt with at u = 1/2 by Abel’s theorem on converging power series on their
radius of convergence. Hence the series S(u) converges at u = 1/2 and takes the value
S(1/2) = 0 there. _is agrees with S2((0, 1)) = 0.

Remark 2.5 It is not diõcult to calculate the low degree terms of the power series
S(u). For all m ≥ 1, we have in Q[[u]], by truncating all of the power series in the
deûnition, that

S(u) =
m
∑
ν=0

1
ν!

(
m
∑
d=1

Pd(u)
⌊1+ m

d ⌋

∑
k=2

2 − 2k

k
ud(k−1))

ν
+O(um+1).

Concretely, using SageMath, we obtain

S(u) = 1−u−2u2 −u3 −2u4 +2u5 +6u7 +7u8 + 13u9 +20u10 +32u11 +41u12 +O(u13).

Remark 2.6 When analysing the asymptotic q →∞ for ûxed d, then of course the
primes of degree > d do not pose any constraints in the heuristic. Consequently, the
correlation factorSq((0, 1)) should skip these primes. Ifwe use the truncated power
series

S(u) = Sd(u) +O(ud+1),

with a polynomial Sd(u) of degree ≤ d, then it is easy to see that primes of degree
greater than d do not in�uence Sd(u). Moreover, in order to take into account the
translation invariance for h = (0, 1),we should rather truncatemodulo ud . Hence,we
propose to compare the actual count with the truncated series (qd/d2) ⋅ Sd−1(q−1):

π(d , q; (0, 1)) =
qd

d2 ⋅ Sd−1(q−1) ⋅ ( 1 + E(d , q; (0, 1))) .
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Here are the predictions and error terms accordingly:

d prediction q π(d , q; (0, 1)) E(d , q; (0, 1))

1 q q 0

2 q2

4 (1 − q−1) ≡ 0 (2) q2

4 (1 − 2q−1) q−1 +O(q−2)

≡ 1 (4) q2

4 (1 − q−1) 0
≡ 3 (4) q2

4 (1 − 3q−1) 2q−1 +O(q−2)

3 q3

9 (1 − q−1 − 2q−2) ≡ 0 (3) q3

9 (1 − q−1 − 3q−2) q−2 + O(q−3)

≡ 1 (3) q3

9 (1 − (c2q − 3)q−1 − 2q−2) (2 − c2q)q−1 +O(q−2)

≡ 2 (3) q3

9 (1 − q−1 − 2q−2) 0

_us, if d = 3 and q /≡ 1 (mod 3), then (1.4) is consistentwith square root cancellation
in (1.2). When q ≡ 1 (mod 3), the coeõcient of q−1 varies with q. We will now argue
that at least on average among those q this coeõcient is again −1. _ere are unique
angles ϑq ∈ [0, π] such that cq = 2 cos(ϑq). Since E is a CM-curve, its L-function
can be expressed in terms of a Hecke character following Deuring [Deu53]. In this
case, Hecke [Hec18] already showed that for primes split in the ûeld of multiplica-
tion, hereQ(

√
−3) = Q(ζ3), the distribution of angles is uniform with respect to the

measure 1
π dϑ; see Section 2.4 of the survey by Sutherland [Su17] for more details and

references. Hence, the value of c2q on average is

1
π ∫

π

0
4 cos2(ϑ)dϑ = 2,

and the average value of the coeõcient of q−1 becomes again −1.

3 Parametrizing Irreducible Polynomials

In this sectionwe describe the geometry of the parametrizing varieties of twin primes.

3.1 Rational Points of Twists

Let Fq be an algebraic closure of Fq . Let X0/Fq be a variety and denote by X =

X0 ×Fq Fq , or by the usual notation, X0,Fq
, the base change to Fq . _e Fq-linear geo-

metric q-Frobenius map F ∶ X → X raises coordinates (deûned over Fq , i.e., coordi-
nates of X0) to q-th powers. Hence, the set of Fq-rational points of X0 is the set of
Frobenius ûxed points of X,

X0(Fq) = {x ∈ X(Fq) ; F(x) = x},

and counted by the Lefschetz trace formula in étale cohomology with compact sup-
port for ℓ /= p as

(3.1) #X0(Fq) = tr(F∣H∗

c (X ,Qℓ)) ∶=
2 dim X
∑
i=0

(−1)i tr(F∣Hi
c(X ,Qℓ)) .
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For background on étale cohomology and a proof of the Lefschetz trace formula, we
refer the reader to [FK88].
Forms of X0 over Fq are obtained by Galois descent via a twisted Galois action on

X by means of a continuous 1-cocycle σ ↦ aσ

a ∶ Gal(Fq/Fq)Ð→ Aut(X/Fq)

with values in theGal(Fq/Fq)-moduleAut(X/Fq); see, for example, [Sk01, §2]. Being
a cocycle means for all σ , π ∈ Gal(Fq/Fq) that aσπ = aσ ○ σ(aπ). Equivalently, the
map

σ z→ aσσ ∈ Aut(X/Fq)

deûnes another Galois action on X. _e a-twist of X0/Fq is deûned as the quotient of
X by the twisted Galois action and is here denoted by Xa/Fq . Let φ ∈ Gal(Fq/Fq) be
the arithmetic q-Frobenius map φ(z) = zq . _e 1-cocycle a is uniquely determined
by its value α = a(φ). _e Frobenius of X arising from the new Fq-structure Xa is
nothing but Fa = αF . It follows that Fq-rational points of the twist are described by

(3.2) Xa(Fq) = {x ∈ X(Fq) ; Fa(x) = x} = {x ∈ X(Fq) ; F(x) = α−1(x)}

and counted as

#Xa(Fq) = tr(αF∣H∗

c (X ,Qℓ)) .

3.2 Twisting Varieties of Polynomials

Monic polynomials of degree d:

f (T) = Td + a1Td−1 + ⋅ ⋅ ⋅ + ad−1T + ad

with coeõcients a i ∈ Fq are parametrized by d-dimensional aõne space as

f = (a1 , . . . , ad) ∈ Ad(Fq).

We have a ûnite branched Sd-cover s ∶ Ad → Ad ,

s(x1 , . . . , xd) = ( − σ1(x), . . . , (−1)dσd(x)) =
d
∏
i=1

(T − x i)

whose coordinates are given by the elementary symmetric polynomials in x =
(x1 , . . . , xd),

σr(x) = ∑
1≤i1<⋅⋅⋅<ir≤n

x i1 ⋅ ⋅ ⋅ x ir .

_e ramiûcation locus of s is given by the vanishing locus of the discriminant

∆x ∶= ∏
i /= j

(x i − x j) ∈ Z[a1 , . . . , ad] ⊆ Z[x1 , . . . , xd],

that is the locus of polynomials with multiple roots.
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We consider the twist2 of Ad by the 1-cocycle τ determined by its value on Frobe-
nius being the d-cycle

τ(φ) = (123 . . . d) ∈ Sd
with respect to the permutation representation

Sd Ð→ GLd(Fq)Ð→ Aut(Ad).
As described in (3.2), rational points of the twist are those points x = (x1 , . . . , xd) in
Ad(Fq) invariant under the twisted Frobenius (with indices consideredmodulo d):

(Ad)τ(Fq) = {x ∈ Ad(Fq) ; xq
i = x i+1 for all i = 1, . . . , d} .

Being Sd-invariant, the cover s becomes a cover sτ ∶ (Ad)τ → Ad . Rational points of
the twist outside of the discriminant locus map under s to polynomials whose roots
are all distinct and cyclically permuted by q-Frobenius, hence exactly to irreducible
polynomials. Every unramiûed point f ∈ Ad(Fq) in the image of themap

sτ ∶ (Ad)τ(Fq)Ð→ Ad(Fq)

has d preimages, because each preimage in (Ad)τ(Fq) is determined by its x1 ∈ Fq ,
which can be any of the d distinct roots of the irreducible polynomial f .

3.3 Parametrizing Twin Prime Polynomials

Let M be the Fq-vector space with generators

x1 , . . . , xd , y1 , . . . , yd , z
and the only relation σ1(x) = σ1(y). _e corresponding projective space

P(M) = Proj(Sym● M)

is the hyperplane V(σ1(x) = σ1(y)) in P2d , the projective space with homogeneous
coordinates

[x1 ∶ . . . ∶xd ∶ y1 ∶ . . . ∶ yd ∶z].
In P(M) we consider the subvariety

X = V(σ2(x) − σ2(y), . . . , σd−1(x) − σd−1(y), σd(x) − σd(y) + (−z)d) ⊆ P(M).

On the distinguished open z /= 0, wemap a point [x ∶ y ∶1] to the pair of polynomials

f (T) =
d
∏
i=1

(T − x i), g(T) =
d
∏
j=1

(T − y j)

by means of which the deûning equations for X take the simple form

g(T) = f (T) + 1.

Let ∆x (resp. ∆y) denote the discriminant in terms of the tuple of variables x (resp.
y). Let U ⊆ X be the open

U = X ∩ {∆x ⋅ ∆y ⋅ z /= 0},
2Because of the general theorem Hilbert 90, H1

(Fq ,GLd) = 1, the twisted Ad is isomorphic to Ad .
_is fact leads to good asymptotic formulae for the number of irreducible polynomials in Fq[X] of
degree d.

1332

https://doi.org/10.4153/CJM-2018-018-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-018-9


Cubic Twin Prime Polynomials are Counted by aModular Form

i.e., the locus where the description is by separable polynomials.
We let Sd act diagonally on M by permuting blockwise both tuples of variables

x and y, keeping z ûxed. _is induces actions on P(M), X, and U , respectively. It
follows from Section 3.2 and the notation introduced there that rational points of the
twist Uτ are

Uτ(Fq) = {(x1 , . . . , yd) ∈ F
2d
q ; f and g aremonic, irreducible and g(T) = f (T)+1}.

_erefore, we have proved the following proposition as a consequence of (3.1). Recall
that we denote by UFq

the base change U ×Fq Fq .

Proposition 3.1 _e number of twin prime polynomial pairs in Fq[T] of degree d is

π(d , q; (0, 1)) = 1
d2 ⋅ #Uτ(Fq) =

1
d2 tr( τF∣H

∗

c (UFq
,Qℓ)) .

We are le� with the task of understanding H∗

c (UFq
,Qℓ) as an Sd × Gal(Fq/Fq)-

module. Since we are only interested in a certain trace, it suõces to determine coho-
mology in a Grothendieck group of virtual representations.

Example 3.2 We compute the case d = 2 using the above notation along the strategy
for the d = 3 case to be treated in Section 4. _e variety X is given in P4 by the
equations

x1 + x2 = y1 + y2 ,

x1x2 = y1 y2 − z2 .

Using a = x1 − y2, b = x2 − y2, c = y1 − y2, and z we can express these as

a + b = c and ab = −z2 ,

so that the complement of⋆M ∶= [1 ∶1 ∶1 ∶1 ∶0] in X forms anA1-bundle over the smooth
conic

P1 ≃ Y = V(z2 + ab) ⊆ P2 .

_e open U = X ∩ {(x1 − x2)(y1 − y2)z /= 0} is the preimage in this A1-bundle of

V = Y ∩ {(a − b)(a + b)z /= 0} .

In coordinates [a ∶b ∶z], this removes the following set of points D from Y :
● If the characteristic is 2, the points D = {P1 , P2 , P3} with

P1 = [0 ∶1 ∶0], P2 = [1 ∶0 ∶0], P3 = [1 ∶1 ∶1].

● If the characteristic is not 2, the points D = {P1 , P2 ,Q+ ,Q− , R+ , R−} with

P1 = [0 ∶1 ∶0], P2 = [1 ∶0 ∶0],
Q+ = [1 ∶1 ∶ i], Q− = [−1 ∶ − 1 ∶ i],
R+ = [1 ∶ − 1 ∶1], R− = [−1 ∶1 ∶1].

Here i denotes a square root of −1, possibly in a quadratic extension of Fq .
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_e involution τ deûned by x1 ↔ x2, y1 ↔ y2 acts via a ↦ −a and b ↦ −b, hence the
points Pk , for k = 1, . . . , 3, are ûxed while the points with index ± are swapped. _e
action of Frobenius on these points is only nontrivial for Q±, swapping these points,
if −1 is not a square in Fq , i.e., if the Jacobi-symbol ⎧⎪⎪⎩

−1
q
⎫⎪⎪⎭
= (−1)(q−1)/2 equals −1 (here

q is odd).
In summary, we can evaluate the trace formula of Proposition 3.1 as

π(2, q; (0, 1)) = 1
4
tr( τF∣H∗

c (UFq
,Qℓ)) =

1
4
q ⋅ tr( τF∣H∗

c (VFq
,Qℓ))(3.3)

=
1
4
q ⋅ ( tr( τF∣H∗(P1

Fq
,Qℓ)) − tr( τF∣H∗(DFq

,Qℓ)))

=
1
4
q ⋅ ( 1 + q − #Dτ(Fq))

=
1
4
q2 ⋅

⎧⎪⎪
⎨
⎪⎪⎩

1 − (2 − ⎧⎪⎪⎩
−1
q
⎫⎪⎪⎭
)q−1 if q is odd,

1 − 2q−1 if q is even.

4 Geometry

We keep the notation of Section 3.3 but specialize to d = 3. Moreover, we consider
variables

x = (x0 , x1 , x∞) and y = (y0 , y1 , y∞)

in order to simplify notation when dealing with symmetries. _e reader is advised to
consult Figure 4.7, which provides a visualization of the construction.

4.1 Linear Projection

Recall that M is the Fq-vector space spanned by x0 , x1 , x∞ , y0 , y1 , y∞ , z subject to the
relation σ1(x) = σ1(y). We introduce the subspaces M ⊇ N ⊇ L with L generated by
the images of x i − y j for all i , j ∈ {0, 1,∞} and N generated by L and the image of z.
_e space L has a basis a, b, c, d given by thematrix entries of

(
a b
c d) = (

y∞ − x1 x∞ − y1
x0 − y1 y0 − x1

) .

Lemma 4.1 Wewill need the following descriptionswith respect to the basis a, b, c, d:

x∞ − y∞ = d − c x∞ − y0 = a − c x∞ − y1 = b
x0 − y∞ = d − b x0 − y0 = a − b x0 − y1 = c
x1 − y∞ = −a x1 − y0 = −d x1 − y1 = b + c − a − d

y∞ − y1 = b + c − d y∞ − y0 = a − d
x∞ − x1 = a + d − c y0 − y1 = b + c − a
x∞ − x0 = b − c x0 − x1 = a + d − b

Proof _is is elementary; for example, recall that σ1(x) = σ1(y), hence

x∞ − y∞ = y0 + y1 − x0 − x1 = d − c.
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Moreover, the symmetry x i ↔ y i for i = 0, 1,∞ translates to the involution

a ←→ b and c ←→ d .

_is helps deducing other linear combinations from known ones.

In each step of M ⊇ N ⊇ L, the dimension drops by 1 and the induced rational
maps

P(M) P(N) P(L)
are each deûned outside one point. More precisely, let

⋆M = [1 ∶1 ∶ ⋅ ⋅ ⋅ ∶1 ∶0]

be the point in P(M) ⊆ P6 where all linear coordinates in N vanish; then linear
projection is a geometric line bundle (Zariski-locally isomorphic to P(N) ×A1),

P(M) ∖ ⋆M → P(N).

_e equations for X ⊆ P(M) allow the following manipulations: under the as-
sumption σi(x) = σi(y) for i = 1, 2, a quick calculation shows that we have

σ3(x) = σ3(y) + z3(4.1)

⇐⇒ (T − y0)(T − y1)(T − y∞) = z3 + (T − x0)(T − x1)(T − x∞)

⇐⇒ (x∞ − y0)(x∞ − y1)(x∞ − y∞) = z3

⇐⇒ (a − c)b(d − c) = z3 .

Moreover, we ûnd

det( a bc d ) = (y∞ − x1)(y0 − x1) − (x∞ − y1)(x0 − y1)(4.2)

= y∞y0 − x1(y∞ + y0) + x2
1 − y2

1 − x∞x0 + y1(x∞ + x0)
= σ2(y) − σ2(x) + (x1 + y1)(σ1(x) − σ1(y))
= σ2(y) − σ2(x).

Hence, we deûne Y ⊆ P(N) by the equations

Y ∶= V((a − c)b(d − c) = z3 , ad − bc = 0) ⊆ P(N).

Proposition 4.2 _e restriction of the linear projection P(M) ⇢ P(N) to Y is a
geometric line bundle

prN ∶ X ∖ ⋆M Ð→ Y .

Proof _is is immediate from computations (4.1) and (4.2).

4.2 A Torsor

We now analyse the second linear projection prL ∶ P(N) ⇢ P(L), which in coordi-
nates [a ∶b ∶ c ∶d ∶z] is deûned outside of the point

⋆N = [0 ∶ ⋅ ⋅ ⋅ ∶0 ∶1].
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Because ⋆N ∉ Y (the cubic equation fails), the second linear projection restricts to a
ûnitemap

j = prL ∣Y ∶ Y → Z ∶= V(ad − bc = 0) ⊆ P(L).
_e quadric Z is isomorphic to P1 × P1 by the isomorphism

P1 × P1 ∼

Ð→ Z
([u ∶v], [r ∶ s]) z→ ( a bc d ) = (u

v) ⋅ (r, s).

For later use we also record the inversemap as

(4.3) [u ∶v] = [a ∶ c] = [b ∶d], [r ∶ s] = [a ∶b] = [c ∶d].

_e map j ∶ Y → Z has the structure of a ramiûed µ3-torsor on Z deûned by the
equation

z3 = (a − c)b(d − c).
_e µ3-action is given by z ↦ ζ ⋅ z for ζ ∈ µ3. In the bihomogeneous coordinates
[u ∶v], [r ∶ s], the equation for the torsor becomes

z3 = (ur − vr)us(vs − vr) = uv(u − v) ⋅ rs(s − r).

_is allows us to read oò the branch locus as

S = {0, 1,∞} × P1 ∪ P1 × {0, 1,∞} ⊆ P1 × P1

and that j induces an isomorphism

(4.4) j∣T ∶ T ∶= j−1(S)red
∼

Ð→ S .

of S with the reduced preimage in Y of the branch locus.

4.3 Symmetries and Automorphisms of the Projective Line

We consider the symmetric group S3 as the group of permutations of the set {0, 1,∞}.
It actsnaturally on variables x (homogeneous linear coordinate functions) by the right
action

(4.5) σ∗(x i) = xσ−1(i)

and similarly for y. Since we let z be ûxed by S3, we obtain induced S3-actions on
L ⊆ N ⊆ M and furthermore on

X ∖ ⋆M Ð→ Y Ð→ Z .

_ere is also a natural S3-action on P1 by projective linear transformations permuting
the subset {0, 1,∞} ⊆ P1(Fq) accordingly. For example, the 3-cycle τ = (01∞) acts
on a parameter λ for P1 as

(4.6) τ∗(λ) = 1
1 − λ

.

Since counting cubic twin prime polynomials requires control of the eòect on coho-
mology of the 3-cycle τ, we compute its eòect on geometrymore explicitly in coordi-
nates.
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Lemma 4.3 _e 3-cycle τ = (01∞) acts on X, Y , and Z = P1 × P1, respectively as

τ([x0 ∶x1 ∶x∞ ∶ y0 ∶ y1 ∶ y∞ ∶z]) = [x∞ ∶x0 ∶x1 ∶ y∞ ∶ y0 ∶ y1 ∶z],

τ([a ∶b ∶ c ∶d ∶z]) = [−c ∶ − d ∶a − c ∶b − d ∶z],(4.7)

τ([u ∶v], [r ∶ s]) = ([−v ∶u − v], [r ∶ s]) .

In particular, τ acts on Z by τ × id for the natural action of τ on P1.

Proof _is follows from (4.5) and Lemma 4.1:

τ∗(a) = τ∗(y∞ − x1) = y1 − x0 = −c,
τ∗(b) = τ∗(x∞ − y1) = x1 − y0 = −d ,
τ∗(c) = τ∗(x0 − y1) = x∞ − y0 = a − c,
τ∗(d) = τ∗(y0 − x1) = y∞ − x0 = b − d .

For Z ≃ P1 × P1, we use rational parameters (see (4.3)),

(4.8) λ = u
v
=
a
c
=
b
d
, µ =

r
s
=
a
b
=
c
d

for the two factors P1:

λ z→ τ∗(a)
τ∗(c)

=
−c
a − c

=
−v

u − v
=

1
1 − λ

= τ∗(λ),

µ z→ τ∗(a)
τ∗(b)

=
−c
−d

= µ.

4.4 Enter the Elliptic Curve

_e cubic curve E given by the cubic equation

E = {w3 = uv(u − v)}

is a branched µ3-torsor (with ζ ∈ µ3 acting by w ↦ ζw)

π ∶ E → P1 , π([u ∶v ∶w]) = [u ∶v].

_e curve E is an elliptic curve unless p = 3 when it is rational. In any case, there
are unique Fq-rational points P0 , P1 , P∞ ∈ E(Fq) with π(Pi) = i for all i ∈ {0, 1,∞}.
_ese points all lie on the line w = 0:

P0 = [0 ∶1 ∶0], P1 = [1 ∶1 ∶0], P∞ = [1 ∶0 ∶0].

Proposition 4.4 Let p /= 3, and consider E as an elliptic curve with P0 as the 0 for the
group law.
(i) P1 and P∞ are 3-torsion elements with P∞ = 2P1.
(ii) Translation by P1 deûnes an isomorphism τE ∶ E → E of order 3:

τE([u ∶v ∶w]) = [−v ∶u − v ∶w],

li�ing τ ∶ P1 → P1, the action by the 3-cycle τ = (01∞) deûned by (4.6).
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(iii) _e µ3-torsor E → P1 ramiûes exactly in {P0 , P1 , P∞}, i.e., we have a ûnite étale
covering

π ∶ E ∖ {P0 , P1 , P∞}Ð→ P1 ∖ {0, 1,∞}.

Proof (i) _e line w = 0 intersects E in the divisor P0 + P1 + P∞, thus P∞ = −P1
with respect to the group law with P0 = 0. _e map π ∶ E → P1 is totally ramiûed in
0, 1,∞. Hence, for all i , j ∈ {0, 1,∞}, the divisor 3(Pi − Pj) is a diòerence of ûbres
and thus linearly equivalent to 0. It follows that with respect to the group structure
on E, we have 3P1 = 3P∞ = 0 and P∞ = 2P1.

(ii) _e points P0 , P1 , P∞ are µ3-invariant. _erefore, µ3 acts via automorphisms
of E as a group and translation by P1 commutes with the action by µ3. Hence, there is
a unique commutative square

E τE //

π
��

E

π
��

P1 τ̃ // P1

Since τE permutes P0 ↝ P1 ↝ P∞ ↝ P0, the induced map τ̃ does likewise with
0↝ 1↝∞↝ 0 and thus agrees with τ acting by (4.6) on P1.

We now determine the formula for τE . _e Weierstraß-equation of the elliptic
curve E has the form

y2 − y = x3

with x = −w/u and y = v/u. In these coordinates P0 = [0 ∶1 ∶0] becomes the point at
inûnity. Additionwith P1 = (0, 1) in xy-coordinates takes the form (see [Sil09] group
law algorithm 2.3 for formulas)

τE([u ∶v ∶w]) = τE(x , y) = ( −
x
y
, 1 −

1
y
) = (

−w
−v

,
u − v
−v

) = [−v ∶u − v ∶w].

(iii) _is is clear: by the Riemann–Hurwitz formula, there is no ramiûcation le�.

We now consider a second copy of E with coordinates [r ∶ s ∶ t] and equation
t3 = rs(r − s).

_e µ3-torsor j ∶ Y → Z is dominated by the (branched) µ3 × µ3-torsor

π × π ∶ Y ′ ∶= E × E Ð→ P1 × P1 ≃ Z
by means of themap j′ ∶ Y ′ → Y in [a ∶b ∶ c ∶d ∶z]-coordinates
(4.9) j′([u ∶v ∶w], [r ∶ s ∶ t]) = [ur ∶us ∶vr ∶vs ∶ −w t].
_is identiûes Y with the quotient by the antidiagonal µ3-action on Y ′ = E × E, i.e.,
with respect to ζ ∈ µ3 acting by

([u ∶v ∶w], [r ∶ s ∶ t])z→ ([u ∶v ∶ ζw], [r ∶ s ∶ ζ−1 t]).
We let τ act on E × E by

τ ∶= τE × id = (([u ∶v ∶w], [r ∶ s ∶ t])z→ ([−v ∶u − v ∶w], [r ∶ s ∶ t])) .
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Corollary 4.5 Let p /= 3. _emap j′ ∶ Y ′ → Y is τ-equivariant.

Proof _is follows from (4.7), (4.9), and Proposition 4.4((ii)).

_e reduced preimage in Y ′ = E × E of the branch locus is

T ′ = j′−1(T)red = (π × π)−1(S)red = {P0 , P1 , P∞} × E ∪ E × {P0 , P1 , P∞} ⊆ E × E .

4.5 The Open Part

We are ultimately interested in twists of

U = X ∖ {∆x ⋅ ∆y ⋅ z = 0}.

Because of Lemma 4.1, we set

V ∶= Y ∖ V((b − c)(a + d − c)(a + d − b)(a − d)(b + c − d)(b + c − a)z = 0) ,

and immediately obtain the following corollary from Proposition 4.2.

Corollary 4.6 _e linear projection P(M)⇢ P(N) restricts to a geometric line bun-
dle prN ∶ U → V .

_e image of V ⊆ Y in Z ≃ P1 × P1 can best be described in terms of rational
parameters λ and µ; see (4.8). _e locus z = 0 is the preimage of S. _e locus ∆x = 0
is given by the equation

0 = ∆x = (b − c)(a + d − c)(a + d − b) = (us − vr)(ur + vs − vr)(ur + vs − us)

which adds the following divisors outside of S:

{µ = λ}, { µ =
1

1 − λ
} , { µ = 1 −

1
λ
} .

In addition, for ∆y = 0 we obtain

{ µ =
1
λ
} , {µ = 1 − λ}, { µ =

λ
λ − 1

} .

_ese are the graphs Γσ ⊆ P1 × P1 ≃ Z of all the automorphisms σ ∶ P1 → P1 for all
σ ∈ S3 with respect to the action recalled in Section 4.3. We set

Γ = ⋃
σ∈S3

Γσ .

NowV is the preimage under j ∶ Y → Z of the openW ∶= Z∖(S∪Γ).We furthermore
set

H = ⋃
σ∈S3

Hσ , with Hσ ∶= j−1(Γσ)red ,

and similarly H′ and H′

σ as reduced preimages of H and Hσ under j′ ∶ E × E → Y .

Lemma 4.7 For all σ ∈ S3, we have

τ(Hσ) = Hστ−1 and τ(Γσ) = Γστ−1 .

Proof _is is a consequence of abstract nonsense on graphs.
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4.6 Intersections of Components

For the curves C = S , Γ, T ,H, T ′, and H′ we denote by C0 the subvariety of points
that lie in at least two components. For a point P ∈ Γ0 ∖ S, we set

nP ∶= #{σ ; P ∈ Γσ}.

Moreover, we set as reduced subvarieties

Γn = ⋃
P∈Γ0∖S , nP=n

P.

Although the individual P might not be deûned over Fq , their union with a ûxed
number nP is.

Lemma 4.8 In rational parameters λ, µ of Z = P1 × P1, we have the following de-
scription of Fq-rational points:

Γ2(Fq) =

⎧⎪⎪
⎨
⎪⎪⎩

{−1, 1
2 , 2} × {−1, 1

2 , 2} for p /= 2, 3,
∅ for p = 2, 3,

Γ3(Fq) =

⎧⎪⎪
⎨
⎪⎪⎩

{−ζ3 ,−ζ2
3} × {−ζ3 ,−ζ2

3} for p /= 3,
∅ for p = 3,

Γ6(Fq) =

⎧⎪⎪
⎨
⎪⎪⎩

∅ for p /= 3,
{(−1,−1)} for p = 3,

and Γn(Fq) = ∅ for n = 4, 5, and n ≥ 7.

Proof If P = (λ0 , µ0) ∈ Γσ ∩ Γσ ′ with σ /= σ ′, then σ ′(λ0) = µ0 = σ(λ0). Hence,
λ0, and therefore µ0 are ûxed points for non-trivial elements of the natural S3 action
on P1. _e ûxed points are easily listed and catalogued according to the size of the
stabilizer as given in the lemma.

In the same way we deûne nP ∶= ∣{σ ; P ∈ Hσ}∣ for a point P ∈ H0 ∖ T and set as
reduced subvarieties

Hn = ⋃
P∈H0∖T , nP=n

P.

Since Hσ = j−1(Γσ), we ûnd nP = n j(P) for all P ∈ H0 ∖ T ; in particular,

Hn = j−1(Γn).

Lemma 4.9 Let p /= 3. _en, in terms of coordinates ξ = z/(vs), λ = u/v , µ = r/s,

H3(Fq) ≃ {−1,−ζ3 ,−ζ2
3} × {−ζ3 ,−ζ2

3} × {−ζ3 ,−ζ2
3}.

_e induced action of τF on H3(Fq) has no ûxed points.

Proof _e ûbres above (λ, µ) with λ, µ /=∞ are roots of

ξ3 = λ(λ − 1) ⋅ µ(1 − µ).
Evaluating for (λ, µ) ∈ {−ζ3 ,−ζ2

3} × {−ζ3 ,−ζ2
3} results in each case in the equation

ξ3 = −1, hence the description of H3 as given in the lemma.
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_e points λ = −ζ3 ,−ζ2
3 are the ûxed points for τ acting on P1. _e action on ξ is

as follows:

τ∗(ξ) = τ∗(z)
τ∗(vs)

=
z

(u − v)s
= ξ v

u − v
= ξ 1

λ − 1
.

For λ = −ζ3 ,−ζ2
3 , the factor 1/(λ− 1) equals −λ ∈ µ3. If (ξ, λ, µ) is a ûxed point under

τF, then
(ξ, λ, µ) = τF(ξ, λ, µ) = τ(ξq , λq , µq) = (−λq ξq , λq , µq).

Hence, λq = λ, i.e., ζ3 ∈ F×q , hence also ξq = ξ, and therefore equating the ûrst coordi-
nate yields λ = −1, a contradiction.

4.7 Summary

Here is a diagram summarizing the varieties and maps considered above. Note that

P(M)

��

⊇ X ∖ ⋆M

prM

��

⊇ U

��

Y ′ = E × E

π×π

��

j′

xx

⊇ V ′

||

T ′ ∪H′

P(N)

��

⊇ Y

j
��

⊇ V

��

T ∪H

P(L) ⊇ Z ≃ P1 × P1 ⊇ W S ∪ Γ

Figure 1: Diagram of varieties used to describe U .

the 3-cycle τ = (01∞) acts in a compatible way on the diagram, including compati-
bility with the torsor structures.

5 Cohomology

5.1 Cohomology with Values in a Grothendieck Group

_e 3-cycle τ = (01∞) generates the alternating group A3 ⊆ S3. We consider co-
homology by formally taking the alternating sum as an object in the Grothendieck
group of A3 ×Gal(Fq/Fq)-representations with Qℓ-coeõcients: for any variety over
Fq with A3-action, we set

H∗

c (−) ∶=∑
i
(−1)i[ Hi

c(−Fq
,Qℓ)]

as a virtual A3 × Gal(Fq/Fq)-representation. Here we denote by [−] the class of a
representation in the Grothendieck group. Recall that the cohomology of A1 agrees
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with the inverse of the Tate twist

H∗

c (A
1) = [ H2

c(A
1
Fq
,Qℓ)] = [Qℓ(−1)] ,

moreover, since the generator in degree 2 is the fundamental class, it has trivial τ-
action.

Lemma 5.1 H∗

c (U) = [Qℓ(−1)] ⋅ ( H∗

c (Y) −H∗

c (S) −H∗

c (H ∖ T)) .

Proof _e constructible decomposition V ∪ (H ∖ T) ∪ T = Y shows

H∗

c (V) = H∗

c (Y) −H∗

c (T) −H∗

c (H ∖ T).

Since T ≃ S by (4.4), we are le� to prove

H∗

c (U) = [Qℓ(−1)] ⋅H
∗

c (V).

_is holds more generally for any geometric line bundle, and the argument is recalled
for the convenience of the reader. _e assertion is localwith respect to a constructible
decomposition of the baseV . We can therefore assume that the bundle is trivial. _en
the Künneth formula yields

H∗

c (U) = H∗

c (A
1 × V) = H∗

c (A
1) ⋅H∗

c (V) = [Qℓ(−1)] ⋅H
∗

c (V).

We denote the µ3-invariants on cohomology for the antidiagonal µ3-action on E×
E by

H∗

c (E × E)µ3 =
4

∑
i=0

(−1)i[ Hi
c ((E × E)Fq

,Qℓ)
µ3
] ,

and similarly for µ3-stable and τ-stable locally closed subvarieties deûned over Fq .
Since the torsor action commutes (resp. is Galois conjugated) with the action by A3

(resp. Galois action by Gal(Fq/Fq)), we obtain a well deûned object in the Grothen-
dieck group.

Lemma 5.2 We have the following identities:
(i) If p /= 3, then H∗

c (Y) = H∗

c (E × E)µ3 .
(ii) If p = 3, then H∗

c (Y) = H∗

c (P1 × P1).

Proof (i) Let p /= 3. _e µ3-torsor Y ′ = E × E → Y is ûnite étale outside the set
of ûxed points T ′

0. (Note that having ramiûcation only in codimension 2 is no con-
tradiction, since Y is not regular in the branch points of j′ ∶ Y ′ → Y .) _us, pullback
identiûes H∗

c (Y ∖ T0) andH∗

c (E × E ∖ T ′

0)
µ3 . We therefore have

H∗

c (Y) = H∗

c (Y ∖ T0) +H∗

c (T0) = H∗

c (E × E ∖ T ′

0)
µ3 +H∗

c (T0)

= H∗

c (E × E)µ3 −H∗

c (T ′

0)
µ3 +H∗

c (T0) = H∗

c (E × E)µ3 .

(ii) Let p = 3. _e µ3-torsor Y → Z is now purely inseparable, and the claim
follows from topological invariance of étale cohomology.

Let us abbreviate for all σ ∈ S3 the smooth part of the divisor Hσ as part of the
divisor H ∪ T (this is actually an irreducible component, but we don’t need that) by

H0
σ ∶= Hσ ∖ (T ∪H0).

1342

https://doi.org/10.4153/CJM-2018-018-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-018-9


Cubic Twin Prime Polynomials are Counted by aModular Form

Similarly, Γ0
σ denotes the smooth part Γσ ∖ (S ∪ Γ0) of Γσ as a component of S ∪ Γ.

Lemma 5.3 We have the following identities:
(i) If p /= 3, then

H∗

c (H ∖ T) = ∑
σ∈S3

H∗

c (H0
σ) +∑

n≥2
H∗

c (Hn).

(ii) If p = 3, then

H∗

c (H ∖ T) = ∑
σ∈S3

H∗

c (Γ
0
σ ) +∑

n≥2
H∗

c (Γn).

Proof (i) _is is obvious from the constructible decomposition

H ∖ T = ⋃
σ∈S3

H0
σ ∪ ⋃

n≥2
Hn .

Assertion (ii) follows by the same argument applied to Γ∖S using thatH∗

c (H∖T) =
H∗

c (Γ ∖ S) by topological invariance of étale cohomology.

5.2 Cohomology of the Elliptic Curve

Let p /= 3. _e elliptic curve E/Fq is the base change E = E ⊗Z[1/3]⊗Fq of the smooth
integral model over Spec(Z[1/3])

E = {Y(Y − Z)Z = X3} ⊆ P2
Z[1/3] .

_e generic ûbre EQ is an elliptic curve over Q with CM by Z[ζ3]. First, we con-
sider cohomology of the geometric generic ûbre as µ3 ⊆ Aut(E )-module and as
Gal(Q/Q)-module. For this purpose,we recall some CM-theory for the convenience
of the reader. Complex uniformisation yields

E (C) ≃ C/Z[ζ3],

which follows from CM by Z[ζ3], since Q(ζ3) has class number 1, and hence all lat-
tices with an action by Z[ζ3] are isomorphic to Z[ζ3]. _is computes

Z[ζ3]⊗Qℓ ≃ H1(EQ ,Qℓ)

as µ3-module. It follows that a�er ûxing a faithful character ψ ∶ µ3 ↪ Q
×

ℓ , we have
1-dimensional eigenspaces for r = 1, 2

H(ψr) ⊂ H1(EQ ,Qℓ)

on which µ3 acts by character ψr , and

H1(EQ ,Qℓ) = H(ψ)⊕H(ψ2)

Now σ ∈ Gal(Q/Q) either ûxes the eigenspaces H(ψr) if σ(ζ3) = ζ3 or interchanges
the summands if σ(ζ3) = ζ−1

3 . _is means that there are characters (these are the
Hecke characters of Remark 2.6)

α, β ∶ Gal(Q/Q(ζ3))Ð→ Q
×

ℓ
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such that Gal(Q/Q(ζ3)) acts by α on H(ψ) and by β on H(ψ2). We rename the
eigenspaces as

Hα = H(ψ) and Hβ = H(ψ2),

with the bar indicating that on this summand µ3 acts via ψ = ψ2.
Note that ifwe take the inverse µ3-action, i.e., by precomposingwith ζ ↦ ζ−1, then

we have
H1(EQ ,Qℓ) = Hα ⊕Hβ ,

according to the bar-convention for indicating the character by which µ3 acts.

Lemma 5.4 Let µ3 act antidiagonally on E × E . _en

Hi(EQ × EQ ,Qℓ)
µ3 =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Qℓ for i = 0,
0 for i = 1, 3, and i ≥ 5,
Qℓ(−1)⊕ (Hα ⊗Hα)⊕ (Hβ ⊗Hβ)⊕Qℓ(−1) for i = 2,
Qℓ(−2) for i = 4,

as Gal(Q/Q(ζ3))-representation.

Proof _is follows from the Künneth formula together with the discussion above
for H1 and the well known and µ3-invariant H0(EQ ,Qℓ) = Qℓ and H2(EQ ,Qℓ) =

Qℓ(−1).

For p /= 3, ℓ, the Galois representation of the geometric generic ûbre

ρ ∶ Gal(Q/Q)Ð→ GL(H1(EQ ,Qℓ))

is unramiûed in p, hence there is awell deûned action of Frobenius ρ(Frobp). Cospe-
cialisation induces an isomorphism for all i,

Hi(EQ ,Qℓ) ≃ Hi(EFq
,Qℓ)

compatible with action of Frobenius by ρ(Frobp)
e and F, where q = pe .

Proposition 5.5 Let p /= 3, and let α, β be the eigenvalues of Frobenius ρ(Frobp) on
H1(EFq

,Qℓ). _en we have for q = pe ,

tr( τF∣H∗

c (E × E)µ3) = (1 + q)2 + (αe + βe)2 − q( 1 + ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
).

Moreover, for q with ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= −1, we have αe + βe = 0.

Proof First, since τ acts on the abelian surface E ×E by translation with (P1 , 0), it is
part of a connected group of endomorphisms and, by homotopy invariance, it acts as
identity on cohomology. Wemay therefore ignore τ.

If ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= −1, then F interchanges Hα andHβ , and consequently

tr(F∣(Hα ⊗Hα)⊕ (Hβ ⊗Hβ)) = 0.
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With F also ρ(Frobp) interchanges Hα and Hβ , hence its trace on H1(EFq
,Qℓ) van-

ishes and α = −β. Moreover, e must be odd, so that in this case

αe + βe = 0.

_e trace of F on the remaining cohomology (see Lemma 5.4) is easily computed as
(1 + q)2 from which the claim follows.

If ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= 1, then F preserves the two eigenspaces and acts by amatrix

F ∼ (
αe

βe)

on H1(EFq
,Qℓ) that ,without loss of generality, has eigenvalue αe on Hα and eigen-

value βe on Hβ . It follows that

tr(F∣(Hα ⊗Hα)⊕ (Hβ ⊗Hβ)) = α2e + β2e .

Since αβ = p, we ûnd the following using Lemma 5.4:

tr( τF∣H∗

c (E×E)µ3) = (1+q)2+α2e +β2e = (1+q)2+(αe +βe)2−q( 1+⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
) .

Corollary 5.6 Let p /= 3, and let q = pe . With cq as in _eorem 1.2, we have

tr( τF∣H∗

c (E × E)µ3) = (1 + q)2 + q ⋅ ( c2q − 1 − ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
) .

Moreover, for q with ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= −1, we have cq = 0.

Proof _is follows immediately from Proposition 5.5 and the deûnition of
cq = (αe + βe)/√q.

5.3 Traces of Frobenius

If τ permutes varieties deûned over Fq , then cohomology becomes an inducedmod-
ule with respect to at least the τ-action. But then τF has trace 0 on these parts. We
will make use of this observation repeatedly in what follows.

Lemma 5.7 tr(τF∣H∗

c (S)) = 3(1 + q).

Proof We compute

tr(τF∣H∗

c (S))

= tr( τF∣ ∑
i∈{0,1,∞}

H∗

c (P
1 × {i}) +H∗

c ({i} × P1)) − tr(τF∣H∗

c (S0))

= 3 ⋅ tr(τF∣H∗

c (P
1)) + tr(τF∣ indA3

1 H∗

c (P
1)) − tr(τF∣ indA3

1 H∗

c ({0, 1,∞}))

= 3 ⋅ tr(F∣H∗

c (P
1)) = 3(1 + q),

because τ acts trivially on cohomology of P1.

Lemma 5.8 We have the following traces of Frobenius:
(i) If p /= 3 and n ≥ 2, then tr(τF∣H∗

c (Hn)) = 0.
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(ii) If p = 3, then

tr( τF∣H∗

c (Γn)) =

⎧⎪⎪
⎨
⎪⎪⎩

0 for n /= 6,
1 for n = 6.

Proof (i) By Lemma 4.8 we have only to consider n = 2 and n = 3. By the
Lefschetz trace formula, these traces of Frobenius are the τF-ûxed points of Hn(Fq).
For n = 3, Lemma 4.9 shows that there are no ûxed points. For n = 2 this is obvious,
because any ûxed point of Hn(Fq) lies over a ûxed point of Γn(Fq). _e description
of Γ2(Fq) shows that there are none since τ acts on Z as τ × id and thus permutes the
entries {1/2, 2,−1} in the ûrst coordinate cyclically, see Lemma 4.3.

(ii) By Lemma 4.8we have only to consider n = 6. Here there is a single point that
is clearly τF-invariant.

Lemma 5.9 We have the following traces of Frobenius:
(i) If p /= 3 and n ≥ 2, then tr(τF∣H∗

c (H ∖ T)) = 0.
(ii) If p = 3, then tr(τF∣H∗

c (H ∖ T)) = 1.

Proof _e sumof cohomologies ofH0
σ (resp. of Γ0

σ ) yields inducedmoduleswith re-
spect to the τ action compatiblewith Frobenius, because τ permutes the components
without ûxed points; see Lemma 4.7.

(i) We can compute by Lemma 5.3((i)) and Lemma 5.8((i)):

tr(τF∣H∗

c (H ∖ T)) = tr( τF∣∑
σ

H∗

c (H0
σ)) +∑

n≥2
tr( τF∣H∗

c (Hn)) = 0.

(ii) Analogously, we can compute by Lemma 5.3((ii)) and Lemma 5.8((ii)):

tr( τF∣H∗

c (H ∖ T)) = tr( τF∣∑
σ

H∗

c (Γ
0
σ )) +∑

n≥2
tr( τF∣H∗

c (Γn)) = 1.

Proposition 5.10 We have the following traces of Frobenius:
(i) If p /= 3, then

tr( τF∣H∗

c (U)) = q(q2 + q( c2q − 2 −
⎧⎪⎪⎪⎪⎪⎩

−3
q

⎫⎪⎪⎪⎪⎪⎭
) − 2) .

(ii) If p = 3, then
tr( τF∣H∗

c (U)) = q(q2 − q + 3).

Proof By Lemma 5.1 we have in both cases

tr(τF∣H∗

c (U))

= tr(τF∣H∗

c (A
1)) ⋅ ( tr( τF∣H∗

c (Y)) − tr( τF∣H∗

c (H ∖ T)) − tr(τF∣H∗

c (S)))

= q ⋅ ( tr(τF∣H∗

c (Y)) − 3(1 + q) −
⎧⎪⎪
⎨
⎪⎪⎩

0 p /= 3
1 p = 3

) .

Here we also used Lemmas 5.7 and 5.9.
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(i) We compute further by Lemma 5.2((i)) and Corollary 5.6 that

tr(τF∣H∗

c (U)) = q( tr(τF∣H∗

c (E × E)µ3) − 3(1 + q))

= q((1 + q)2 + q( c2q − 1 −
⎧⎪⎪⎪⎪⎪⎩

−3
q

⎫⎪⎪⎪⎪⎪⎭
) − 3(1 + q))

= q(q2 + q( c2q − 2 −
⎧⎪⎪⎪⎪⎪⎩

−3
q

⎫⎪⎪⎪⎪⎪⎭
) − 2) .

(ii) We compute further by Lemma 5.2((ii)), that

tr(τF∣H∗

c (U)) = q((1 + q)2 − 3(1 + q) − 1) = q(q2 − q − 3).

Proof of_eorem 1.2 _e formula for cubic twin prime polynomial pairs now fol-
lows immediately by combining Proposition 3.1 with Proposition 5.10, and by noting

⎧⎪⎪⎪⎪⎪⎩

−3
q

⎫⎪⎪⎪⎪⎪⎭
=
⎧⎪⎪⎪⎩

q
3
⎫⎪⎪⎪⎭
=

⎧⎪⎪
⎨
⎪⎪⎩

1 if q ≡ 1 (mod 3),
−1 if q ≡ 2 (mod 3),

by quadratic reciprocity, and cq = 0 if q ≡ 2 (mod 3) as in Corollary 5.6.

5.4 General Scalar Shift

We now count prime polynomial pairs with diòerence h ∈ F×q beyond the case h = 1.
_e corresponding parametrizing variety is the open Uh = Xh ∩ {∆x ⋅ ∆y ⋅ z /= 0} in
the cubic twist

Xh = V(σ2(x) − σ2(y), σ3(x) − σ3(y) − hz)3) ⊆ P(M)

of the variety X = X1 parametrizing prime polynomial pairs of degree 3 and shi� 1.
In the following, we will decorate the notation with an index h for the corresponding
twisted geometric object.

_e geometric description ofUh is analogous to that ofU . Wehave a geometric line
bundle Uh → Vh , due to translation invariance. _ere is a compactiûcation Vh ⊆ Yh
and a µ3-torsor jh ∶ Yh → Zh given in bihomogeneous coordinates [u ∶v], [r ∶ s] for
Zh = Z = P1 × P1 by the equation

hz3 = uv(u − v) ⋅ rs(s − r).

_e branch locus of the torsor jh is still Sh = S.
Let E/Fq be the elliptic curve {w3 = uv(u − v)} as before, and let ht3 = rs(r − s)

be the equation of its cubic twist Eh/Fq . _e arithmetic of the µ3-cover j′ ∶ E×E → Y
necessary to compute cohomology (as virtual A3×GalFq -representation) is twisted to
the torsor j′h ∶ Y

′

h = E × Eh → Yh given by

j′h([u ∶v ∶w], [r ∶ s ∶ t]) = [ur ∶us ∶vr ∶vs ∶ −w t].

Let α, β be the eigenvalues of p-Frobenius on H1(EFq
,Qℓ), and let q = pe as usual.

_en there is a cube root of unity ζ , with ζ = 1 if and only if h is a cube in F×q , such
that

ζαe , q ⋅ (ζαe)−1 = ζ2βe
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are the eigenvalues of q-Frobenius on H1(Eh ,Fq
,Qℓ). _e Lefschetz trace formula

shows
ζαe + ζ2βe = 1 + q − #Eh(Fq) =∶

√q ⋅ cq ,h ,
with cq = cq ,h if h is a cube in F×q . We get that

ζα2e + ζ2β2e

q
= cq ,h ⋅ cq − (ζ + ζ2)(5.1)

=

⎧⎪⎪
⎨
⎪⎪⎩

c2q − 2 if h is a cube, hence ζ = 1,
cq ,h ⋅ cq + 1 if h is not a cube, hence ζ /= 1.

For q = pe not divisible by 3, we will need the trace tr(τF∣H∗

c (E × Eh)
µ3), which

we compute as in Proposition 5.5. If ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= −1 and with the notation of loc. cit. used

analogously, we have

tr(F∣(Hα ⊗Hα)⊕ (Hβ ⊗Hβ)) = 0.

If ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= 1, we have to take into account that the second factor of E × Eh is twisted,

hence the eigenvalues of Frobenius aremultiplied by cubic roots of unity as explained
above. We obtain

tr(F∣(Hα ⊗Hα)⊕ (Hβ ⊗Hβ)) = ζα2e + ζ2β2e .

Consequently, the analogue of Corollary 5.6 based on (5.1) is

tr( τF∣H∗

c (Eh × E)µ3)(5.2)

= (1 + q)2 + tr(F∣(Hα ⊗Hα)⊕ (Hβ ⊗Hβ))

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(1 + q)2 if ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= −1,

(1 + q)2 + q ⋅ (c2q − 2) if ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= 1 and h is a cube,

(1 + q)2 + q ⋅ (cq ,h ⋅ cq + 1) if ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= 1 and h is not a cube.

For the point counting we also need tr( τF∣H∗

c (H3,h)) , which is best computed,
as in Lemma 4.9, by counting the τF-ûxed points of

H3,h(Fq) ≃ {ξ ; hξ3 = −1} × {−ζ3 ,−ζ2
3} × {−ζ3 ,−ζ2

3}.

Here F acts as q-Frobenius, and τ ûxes the second and third component, while in the
ûrst component, we have (for λ = −ζ3 ,−ζ2

3 the factor 1/(λ − 1) equals −λ ∈ µ3)

τ∗(ξ) = ξ 1
λ − 1

= −λξ.

_erefore, (ξ, λ, µ) ∈ H3,h(Fq) is ûxed by τF if and only if

(ξ, λ, µ) = τF(ξ, λ, µ) = τ(ξq , λq , µq) = (−λq ξq , λq , µq).

If τF-ûxed points in H3,h(Fq) exist, we must have λq = λ, i.e., ζ3 is ûxed under
q-Frobenius. _at means ζ3 ∈ F×q and furthermore 1 = ⎧⎪⎪⎩

−3
q
⎫⎪⎪⎭
. In this case, the tu-

ple (ξ, λ, µ) is a ûxed point if and only if

ξ/F(ξ) = −λ.
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Cubic Twin Prime Polynomials are Counted by aModular Form

Since hξ3 = −1, this happens if and only if h is not a cube in F×q . In that case, we have
three values of ξ, each determines a unique suitable value for λ, and µ can be arbitrary
in {−ζ3 ,−ζ2

3}. _is shows:

(5.3) tr( τF∣H∗

c (H3,h)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= −1,

0 if ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= 1 and h is a cube,

6 if ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= 1 and h is not a cube.

Proof of_eorem 1.4 For 3 ∣ q, twisting U to Uh has no eòect on the point count
because the relevant µ3-torsor ispurely inseparable. So in this case the formula follows
from _eorem 1.2.
For 3 ∤ q, we compute as in the proofs of _eorem 1.2 and of Proposition 5.10

based on (5.2) and (5.3):

π(3, q; (0, h)) = 1
9
tr(τF∣H∗

c (Uh))

=
q
9
⋅ ( tr(τF∣H∗

c (Yh)) − tr(τF∣H∗

c (Hh ∖ Th)) − tr(τF∣H∗

c (S)))

=
q
9
⋅ ( tr(τF∣H∗

c (Eh × E)µ3) − tr(τF∣H∗

c (H3,h)) − 3(1 + q))

=
q
9
⋅

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

q2 − q − 2 if ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= −1,

q2 + q ⋅ (c2q − 3) − 2 if ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= 1 and h is a cube,

q2 + q ⋅ cq ,h ⋅ cq − 8 if ⎧⎪⎪⎩
−3
q
⎫⎪⎪⎭
= 1 and h is not a cube.
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