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DEPTHS IN RANDOM RECURSIVE METRIC SPACES

COLIN DESMARAIS ,∗ University of Vienna

Abstract

As a generalization of random recursive trees and preferential attachment trees, we con-
sider random recursive metric spaces. These spaces are constructed from random blocks,
each a metric space equipped with a probability measure, containing a labelled point
called a hook, and assigned a weight. Random recursive metric spaces are equipped with
a probability measure made up of a weighted sum of the probability measures assigned
to its constituent blocks. At each step in the growth of a random recursive metric space,
a point called a latch is chosen at random according to the equipped probability mea-
sure, and a new block is chosen at random and attached to the space by joining together
the latch and the hook of the block. We use martingale theory to prove a law of large
numbers and a central limit theorem for the insertion depth, the distance from the master
hook to the latch chosen. We also apply our results to further generalizations of random
trees, hooking networks, and continuous spaces constructed from line segments.
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1. Introduction

A well-studied class of random trees is random recursive trees, whereby a sequence of trees
T0, T1, T2, . . . is grown by attaching a new child to a vertex chosen uniformly at random to
construct the successor. In this work, we generalize the model by constructing a sequence
G0, G1, G2, . . . of metric spaces at random. At each step n in the growth process, a point
called a latch is chosen at random according to a probability measure on the space Gn−1. A
new randomly chosen metric space Bn called a block, equipped with a probability measure, is
attached to the latch via a labelled point in Bn, thereby creating a new metric space Gn with a
new probability measure defined as a weighted sum of the probability measures on Gn−1 and
Bn. Since the growth process generalizes the growth process of random recursive trees, we
call G0, G1, G2, . . . a sequence of random recursive metric spaces. These random recursive
metric spaces, defined more precisely below, resemble models of random metric spaces intro-
duced in [24], though in contrast to the present work, the blocks in [24] are renormalized by
a constant that vanishes with n. If each block consists of two vertices joined by an edge, and
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the attachment of the block is done by fusing one of the vertices of the block with the latch,
and the probability measure on the space is uniform on all vertices, then we construct random
recursive trees as discussed above.

Several previously studied generalizations of random recursive trees are encompassed in our
model as well. These include, for example, preferential attachment trees. Similar to random
recursive trees, the growth process is described by attaching an edge at each step by fusing
one vertex of the edge to a vertex v chosen at random, but in this case the choice of v is
made proportional to the outdegree of v. Another generalization of random recursive trees is
the weighted random recursive tree. In this context, every time a new vertex appears in the
tree it is assigned a random weight, and the choice of the new parent at each step is made
proportional to the weight of the vertex. If, instead of attaching a single edge at each step, an
entire new graph is attached, the resulting model is a hooking network. In all of these examples,
the insertion depth, that is, the distance to the root from the vertex chosen at random in each
step in the growth process, has been shown to follow a normal limit law once scaled by

√
ln n

(see, for example, [7, 8, 11, 16, 19, 20, 22, 25], and many more). The main result of this work is
Theorem 1, where we prove a law of large numbers and a central limit theorem for the insertion
depth in random recursive metric spaces.

In Sections 1.1 and 1.2, the description of the model introduced above is made more precise.
The main result of this work (Theorem 1) is stated in Section 1.3 along with a brief outline
of the proof method. Examples of our model, including random recursive trees, preferential
attachment trees, weighted random recursive trees, hooking networks, and constructions from
line segments, and how Theorem 1 applies, are included in Section 2. The proof of Theorem 1
is contained in Section 3.

1.1. Weighted hooked metric probability spaces

We define a weighted hooked (complete separable) metric probability space to be a five-
tuple (b, d, h, p, w) in the following way: (b,d) is a complete and separable metric space and
h is a point identified in b called a hook, p is a Borel probability measure on b, and w is a real
number called a weight. We wish to define a probability space of weighted hooked metric prob-
ability spaces. We start with the space X of equivalence classes under isomorphism (bijective
isometry) of (complete separable) metric measure spaces with full support (the support of the
measure is the whole space). Gromov proved [12] that X along with the Gromov–Prohorov
metric dGP is a complete separable metric space. We extend the Gromov–Prohorov metric by
first defining the hooked (or rooted) Gromov (pseudo)distance d•

GP on the space of hooked
metric measure spaces by

d•
GP((b1, h1, d1, p1), (b2, h2, d2, p2))

:= inf
E,φ1,φ2

max ((dP(φ1,#(p1), φ2,#(p2)), dE(φ1(h1), φ2(h2))),

where the infimum is taken over all complete separable metric spaces (E, dE) such that there
exist isometric embeddings φ1 : b1 → E and φ2 : b2 → E from the complete separable metric
spaces (b1, d1) and (b2, d2) to (E, dE). The points h1 and h2 are labelled points (hooks) in b1
and b2 respectively. The measures φ1,#(p1) and φ2,#(p2) on E are the push-forward measures
of p1 and p2 respectively, while dP is the Prohorov metric on the measures on E. Let X •
be the space of equivalence classes under hook-preserving isomorphisms of hooked metric
measure spaces with full support, that is, (b1, d1, h1, p1) and (b2, d2, h2, p2) belong to the same
equivalence class if there exists a bijective isometry φ : b1 → b2 such that φ(h1) = h2. By using
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similar arguments as for the Gromov–Hausdorff–Prohorov metric for rooted compact metric
measure spaces in [1], we can show that (X •, d•

GP) is a complete and separable metric space
(the only difference in the argument is that we can omit the ‘Hausdorff’ part). We use the
word ‘hook’ in this work, but it serves the same purpose as the ‘root’ in [1]. Finally, since X •
and R are Polish spaces, so is X • ×R, and so we can define a Borel probability measure on
this space. We may now define a random block B = (B, D′, H′, P′, W) as a random element of
X • ×R (according to some Borel probability measure).

1.2. Definition of random recursive metric spaces

Let B be a random block as defined in the previous section such that W ≥ 0 and
P(W = 0) < 1. For n ≥ 1, let Bn = (Bn, D′

n, H′
n, P′

n, Wn) be independent and identically dis-
tributed copies of B, and let B0 = (B0, D′

0, H, P′
0, W0) be a random block which may or may

not have the same distribution as B. We add the condition that W0 > 0; notice that W0 might
not have the same distribution as W.

Formally, random recursive metric spaces Gn = (Gn, Dn, H, Pn, Sn) are random ele-
ments from X • ×R constructed recursively from the blocks Bn. We start by setting G0 =
(G0, D0, H, P0, S0) = B0. The identified point H serves as the master hook of all following
random recursive metric spaces. At each step n ≥ 0, we grow Gn+1 from Gn by randomly
choosing a point vn+1 ∈ Gn called a latch according to the probability Pn. Next, we identify
together the latch vn+1 with the hook H′

n+1 to form Gn+1. We let Dn+1 be the concatenation
of the metrics Dn and D′

n+1 in the canonical way and set Sn+1 = Sn + Wn+1. Define Pn+1 to
be the weighted sum of the probabilities Pn and P′

n+1; more precisely, extend the probability

measures to all of Gn+1 such that, for any event A ⊆ Gn+1, the extensions P̂n and P̂′
n+1 satisfy

P̂n(A) = Pn(A ∩ Gn) and P̂′
n+1(A) = P′

n+1(A ∩ Bn+1), and define

Pn+1 = Sn

Sn+1
P̂n + Wn+1

Sn+1
P̂′

n+1. (1)

Set Gn+1 = (Gn+1, Dn+1, H, Pn+1, Sn+1).
By the recursive nature of (1), the probability measure Pn is a weighted sum of extensions

of the probability measures P′
k of the constituent blocks Bk that make up Gn. In a slight abuse

of notation, we will write

Pn =
n∑

k=0

Wk

Sn
P′

k.

Models with constructions similar to random recursive metric spaces have been studied.
These include models where the blocks consist of finite line segments [2, 3, 5, 13], and con-
structions of iterative gluing of metric spaces introduced by Sénizergues [24, 26]. In fact, the
notation for random recursive metric spaces presented in this paper is heavily inspired by the
notation introduced in [24]. In most of these models, the blocks are compact and scaled by
a factor of roughly n−α for some α > 0 as they are attached. Under certain assumptions, it is
shown that the probability measures Pn converge weakly to some limiting measure, and that
the limiting metric space is compact. Since our blocks are identically distributed, the growth
of the random recursive metric space is unbounded (and so do not have a compact limit).
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1.3. Main result

We start by defining the insertion depth of a block in a random recursive metric space, and
the random depth within a block.

Definition 1. For a sequence of random recursive metric spaces G0, G1, G2, . . ., define the
(random) insertion depth �n of the block Bn as the distance from the master hook to the nth
latch vn. That is, �n = Dn(H, vn).

Definition 2 Given the block Bn, define the random depth �′
n within Bn to be the distance

D′
n(H′

n, U) from the hook H′
n to a point U ∈ Bn chosen at random according to P′

n.

Note that, for n ≥ 1, all �′
n are identically and independently distributed to a random vari-

able �′. The distance functions Dn(H, x) and D′
n(Hn, x) are continuous functions on their

respective metric spaces, and so �n and �′
n are measurable random variables. We are now

ready to state the main result of this work.

Theorem 1. Suppose that E[W2], E[(W�′)2], and E
[
W(�′)2

]
are all finite. Then

�n

ln n

p−→ E
[
W�′]

E[W]
,

�n −E[W]−1E
[
W�′] ln n√

ln n

d−→N
(

0,
E
[
W(�′)2

]
E[W]

)
.

Remark 1. Note that we make no assumptions on E[(�′)2] or E[�′] for Theorem 1. Of course,
if W and �′ are independent, then moment conditions on �′ are required.

Remark 2. It may be tempting to hope for almost sure (a.s.) convergence instead of conver-
gence in probability in Theorem 1. But almost sure convergence doesn’t hold in even the
simplest case, random recursive trees. Devroye proved that for the insertion depth �n in ran-

dom recursive trees, �n/ ln n
p−→ 1 [8]. But it is well known that the degree of the root in

random recursive trees is unbounded, so �n = 0 occurs infinitely often. Even more, we know
that Hn = max{�0, �1, . . . , �n} satisfies Hn/ ln n

a.s.−→ e [23], and so almost sure convergence
of the insertion depth cannot hold.

To prove Theorem 1, we make use of an observation present in many works on insertion
depths in random recursive trees and their generalizations. For each n, define independent
Bernoulli random variables Yn,0, Yn,1, Yn,2, . . . , Yn,n−1 such that

Yn,k ∼ Be

(
1

k + 1

)
.

It was shown in [8] that the insertion depth �n of the nth vertex in a random recursive tree
is distributed as the number of records in a uniform random permutation, and so has distribu-
tion �n ∼∑n−1

k=0 Yn,k. An application of Lindeberg’s condition on the sum of the independent
random variables Yn,k yields a normal limit law for �n. The observation that the insertion
depth can be written as a sum of Bernoulli random variables appears in several works; see,
for example, [5, 9–11, 13, 15, 16, 22, 24, 25]. In this work, we show that the insertion depth
for random recursive metric spaces is a sum of a product of �′

n,k ∼ �′
k and Bernoulli random

variables Jn,k, this time with success probability Wk/Sk (see Lemma 1). We then approximate
these sums of random variables with martingales that satisfy the conditions necessary to apply
a martingale central limit theorem, specifically [14, Corollary 3.1].
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2. Applications of Theorem 1

In this section we outline how random recursive metric spaces generalize models of pref-
erential attachment trees, hooking networks, and constructions of iterative gluing of line
segments. We recover previous results on the insertion depths, and further generalize these
models in natural ways to prove new results. The applications listed here are by no means
exhaustive, but are meant to be illustrative of the generality of random recursive metric spaces
and of Theorem 1.

2.1. Models of random trees

Consider the following generalization of random recursive trees. Set α ≥ 0, let
A, A1, A2, A3, . . . be independent and identically distributed (i.i.d.) nonnegative random real
numbers such that P(A = 0) < 1, and let A0 be a strictly positive random real number. A
sequence of trees T0, T1, T2, . . . is constructed with an initial tree T0 consisting of a single
vertex v0 acting as the root of all trees that follow. At each step n ≥ 0 in the growth process,
given A0, A1, . . . , An and Tn, a vertex vk is chosen at random from Tn with probability

α deg+ (vk) + Ak∑n
i=0 (α deg+ (vi) + Ai)

, (2)

where deg+ (vi) is the number of children of vi, and an edge is drawn from vk to a new child
vertex vn+1 to form Tn+1. Since Tn has n + 1 vertices and n edges, the denominator of (2)
simplifies to αn +∑n

i=0 Ai.
If An = 1 for all n, then T0, T1, T2, . . . is a sequence of linear preferential attachment trees;

this class of random tree models includes random recursive trees (α = 0) and random plane-
oriented recursive trees (α = 1) [20, 27]. If the Ai are random and α = 0, then a sequence
of random weighted recursive trees is constructed as in [18, 22, 25]. Allowing α > 0 results
in a sequence of preferential attachment trees with additive i.i.d. random fitness (this model
appears, for example, in [17]).

We can further generalize these models of random trees by giving random lengths to the
edges, similar to models from [3, 4]. For a random variable L ≥ 0 such that P(L = 0) < 1,
when attaching the vertex vn to the tree, we can give a ‘length’ Ln ∼ L to the edge joining vn to
its parent. The insertion depth �n is then the sum of the lengths Lk along the path from the root
to vn. The random variable Ln can be independent of An, or we may have a joint distribution
on (An, Ln). The tree models described above correspond to the case L = 1.

We may construct these trees as random recursive metric spaces. For n ≥ 1, consider blocks
Bn where Bn is the graph K2 consisting of two vertices joined by an edge. One of the vertices is
labelled H′

n and we will call the other vertex vn. The metric D′
n on the vertices of Bn is defined

so that D′
n(H′

n, vn) = Ln. The probability measure P′
n is defined such that P′

n(H′
n) = α/(α + An)

and P′
n(vn) = An/(α + An). The weight of the block Bn is Wn = α + An. Define B0 with B0

consisting of a single vertex v0 with probability measure P′
0(v0) = 1. Set the weight of B0 to

be W0 = A0. This construction allows us to prove the following theorem.

Theorem 2. For α ≥ 0, let T0, T1, T2, . . . be preferential attachment trees with fitness distri-
bution A and random edge lengths with distribution L as described above, and let �n be the
insertion depth of the vertex vn. If E[A2], E[A2L2], and E[AL2] are all finite, then

�n

ln n

p−→ E[AL]

α +E[A]
,

�n − (α +E[A])−1E[AL] ln n√
ln n

d−→N
(

0,
E[AL2]

α +E[A]

)
.
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Proof. We start by showing that the random recursive metric spaces G0, G1, G2, . . . con-
structed from the blocks Bn above are distributed as the trees T0, T1, T2, . . .. First, we note that
Gn is a tree; every time a latch is attached with a hook, these two vertices are joined together,
leaving a new child adjacent to the latch. To see that the trees constructed coincide with the
random tree models described above, look at the vertex vk (belonging to the block Bk), and
suppose In,k ⊆ {k + 1, . . . , n} is the set of indices of blocks Bi whose hook H′

i is joined with
vk. Then the probability that vk is chosen as the latch to construct Gn+1, by the definition of Pn

as the weighted sum of the probability measures P′
0, P′

1, P′
2, . . ., is given by

Pn(vk) = Wk

Sn
P′

k(vk) +
∑
i∈In,k

Wi

Sn
P′

i

(
H′

i

)= 1

Sn

(
(α + Ak)

Ak

α + Ak
+
∑
i∈In,k

(α + Ai)
α

α + Ai

)

= α|In,k| + Ak

Sn
.

Since |In,k| = deg+ (vk) and Sn = A0 +∑n
k=1 (α + Ak) = αn +∑n

k=0 Ak, we see that Pn(vk) is
the same as in (2), and so the two models are equal in distribution.

Next, we evaluate W and �′. We see that E[W] = α +E[A] and E[W2] = α2 + 2αE[A] +
E[A2]. Conditioned on (An, Ln), the random variable �′

n has distribution

�′
n =

⎧⎪⎪⎨⎪⎪⎩
0 with probability

α

α + An
,

Ln with probability
An

α + An
,

and �′
0 = 0. Quick calculations yield E[W�′] =E[AL] and E

[
W(�′)2

]=E[AL2], as well as
E[(W�′)2] = αE[AL2] + αE[A2L2]. The moment conditions to apply Theorem 1 are satisfied
if E[A2], E[A2L2], and E[AL2] are all finite, proving the theorem. �

When L = 1 these results coincide with central limit theorems proved for random recursive
trees when α = 0 [8, 19], for random plane-oriented recursive trees when α = 1 [20], and for
random weighted recursive trees (where stronger results on the profile of vertices were proved
in [22, 25]). A weak law of large numbers was proved for specific cases of random recursive
trees with random edge lengths [3, 13], but the general result of Theorem 2 is new.

2.2. Hooking networks

For a graph G, let E(G) and V(G) be the edge set and vertex set of G respectively, and let
deg (v) be the degree of a vertex in G. Let C = {G1, G2, G3, . . .} be a collection of finite con-
nected graphs (self-loops and multi-edges are allowed) called blocks, each with an identified
vertex hi called a hook, and each associated with a positive probability pi such that

∑
pi = 1.

Let χ ≥ 0 and ρ ∈R be two parameters with the condition that χ + ρ > 0. The hooking net-
works H0,H1,H2, . . . are constructed by first setting H0 as an isomorphic copy of a graph
selected from C (at random or not). For n ≥ 0, Hn+1 is constructed from Hn by first selecting
a vertex v called a latch from Hn with probability

χ deg (v) + ρ∑
u∈V(Hn) (χ deg (u) + ρ)

. (3)

Once a latch is selected, a graph Gi is selected from C with probability pi, and an isomorphic
copy of Gi is attached by fusing the hook hi with the latch v. The selection probability in (3) is
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very similar to the selection probability (2) for trees. The difference arises from the fact that (3)
is a function of the vertex degree instead of the number of children, and the condition χ + ρ > 0
guarantees that this probability is positive and well defined. Hooking networks were introduced
in [21], where the set of blocks consisted of a single graph. The model was generalized in [6]
to allow for finitely many blocks in C.

We may generalize hooking networks further by replacing ρ with random fitnesses; when-
ever a graph Gi is attached to the hooking network, every vertex v �= hi from Gi is assigned a
random fitness ρv, such that χ deg (v) + ρv ≥ 0 and P(χ deg (v) + ρv = 0) < 1, independently
of the construction of the hooking networks so far (though not necessarily independently of
the other vertices within Gi). Then, for future hooking, the probability of selecting v ∈Hn to
be a latch is given by

χ deg (v) + ρv∑
u∈V(Hn) (χ deg (u) + ρu)

. (4)

We can construct random recursive metric spaces that are distributed as hooking networks.
For n ≥ 0, we define Bn so that Bn is a graph Gi selected at random from C with probability
pi, with an identified hook H′

n = hi, and D′
n is the standard graph metric on Bn. Let degBn

(v)
be the degree of v within Bn. Random fitnesses ρv are then assigned to each vertex v ∈ Bn such
that when v is not the hook, χ degBn

(v) + ρv ≥ 0 and P(χ degBn
(v) + ρv = 0) < 1, while for

the hooks we have the condition χ degB0
(H) + ρH > 0 when n = 0 and we set ρH′

n
= 0 when

n ≥ 1 (since a hook will be fused with a vertex in the hooking network and only contribute
χ degBn

(H′
n) to future hooking). The weight of Bn is given by

Wn =
∑

v∈V(Bn)

(χ degBn
(v) + ρv) = 2χ |E(Bn)| +

∑
v∈V(Bn)

ρv,

where the last equality follows from the handshaking lemma. The probability P′
n is defined such

that P′
n(v) = (χ degBn

(v) + ρv)/Wn. The condition χ degB0
(H) + ρH > 0 for n = 0 guarantees

that W0 > 0.
Given the definition of the blocks Bn, we can explicitly calculate the values E[W], E[W�′],

and E
[
W(�′)2

]
. To start, we have

E[W] =
∑
Gi∈C

pi

(
2χ |E(Gi)| +

∑
v∈V(Gi)

E[ρv]

)
. (5)

Conditioned on Bn, the distribution of �′
n is given by

P
(
�′

n = k | Bn
)= 1

Wn

∑
v∈V(Bn)

(
χ degBn

(v) + ρv
)
1{D′

n

(
H′

n,v
)
=k},

and so

E
[
Wn�

′
n | Bn

]= Wn

∞∑
k=0

kP
(
�′

n = k | Bn
)=

∑
v∈V(Bn)

D′
n

(
H′

n, v
)(

χ degBn
(v) + ρv

)
.

If we let δGi (v) be the distance from hi to v in the graph Gi then, by the law of total expectation,

E[W�′] =
∑
Gi∈C

pi

∑
v∈V(Gi)

δGi (v)
(
χ degGi

(v) +E[ρv]
)
, (6)
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and by a similar argument

E
[
W(�′)2]= ∑

Gi∈C
pi

∑
v∈V(Gi)

(δGi(v))2(χ degGi
(v) +E[ρv]

)
. (7)

We can also develop equations for E[W2] and E[(W�′)2], but we simply note that these expres-
sions are only dependent on C, the probabilities p1, p2, . . ., and the distributions of the ρv. We
know what conditions are needed to apply Theorem 1 to the random recursive metric spaces
G0, G1, G2, . . . constructed from the blocks Bn. We simply need to show that these random
recursive metric spaces are distributed as hooking networks. To avoid confusion with the blocks
Gi, we will write Gn = (Gn, Dn, H, Pn, Sn) for the random recursive metric spaces.

Theorem 3. Let C = {G1, G2, G3, . . .} be a set of finite graphs with probabilities
p1, p2, p3, . . . that sum to 1, and independently for each graph Gi, let ρv be a fitness distribu-
tion for each v ∈ Gi satisfying the conditions above. Let H0,H1,H2, . . . be hooking networks
constructed as above, and let �n be the insertion depth of the nth block. If E[W2], E[(W�′)2],
and E

[
W(�′)2

]
are all finite, then

�n

ln n

p−→ E[W�′]
E[W]

,
�n −E[W]−1E[W�′] ln n√

ln n

d−→N
(

0,
E
[
W(�′)2

]
E[W]

)
,

where E[W], E[W�′], and E
[
W(�′)2

]
are given in (5), (6), and (7) respectively.

Proof. Similar to the proof of Theorem 2, we only need to show that the selection of a latch
vn in the random recursive metric space Gn is made with probability (4) to prove they have the
same distribution. Let v be a vertex in Gn, and let k be the smallest value for which v belongs to
Bk (recall that all hooks other than H are fused with some other vertex in the hooking network).
Let In,v ⊆ {k + 1, . . . , n} be the set of indices of blocks Bi whose hook H′

i is fused with v. Since
ρH′

i
= 0 for all i ∈ In,v, the probability of selecting v as a latch to construct Gn+1 is given by

Pn(v) = Wk

Sn
P′

k(v) +
∑
i∈In,v

Wi

Sn
P′

i

(
H′

i

)= 1

Sn

(
χ degBk

(v) + ρv +
∑
i∈In,v

χ degBi

(
H′

i

))
.

Since fusing a hook H′
i to v increases the degree of v by degi

(
H′

i

)
in the hooking network,

then χ degBk
(v) + ρv +∑

i∈In,v
χ degBi

(
H′

i

)= χ deg (v) + ρv, where deg (v) is the degree of v
in Gn, which is the numerator in (4). Every time a block Bk is attached to the hooking network,
|E(Bk)| new edges are added, and using again that ρH′

n
= 0 for all n ≥ 1,

Sn =
n∑

k=0

Wk =
n∑

k=0

(
2χ |E(Bn)| +

∑
v∈V(Bk)

ρv

)
= 2χ |E(Gn)| +

∑
v∈V(Gn)

ρv.

By applying the handshaking lemma, Sn is the denominator in (4). Thus, the probability of
choosing any vertex v ∈ V(Gn) to be a latch is equal to (4), and the random recursive metric
spaces are distributed as hooking networks. Applying Theorem 1 completes the proof. �

The classic hooking networks are recovered if the ρv are all equal to a deterministic ρ for all
vertices v other than H′

n for n ≥ 1 (and ρH′
n
= 0). If C is also a finite collection of finite graphs,

then it is evident that the moment conditions of Theorem 3 are satisfied. When the weights Wn
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are deterministic, which holds, for example, when χ = 0 and all blocks have the same number
of vertices, or when ρ = 0 for all vertices and all blocks have the same number of edges, a
normal limit law for the insertion depth was proved in [7] (where the term affinity is used for
the weight of the blocks). Theorem 3 generalizes this result in the classic case by allowing
for blocks that produce random weights Wn. When ρv are random, the moment conditions
for Theorem 3 are also met if C is finite and if E[ρ2

v ] < ∞ and E[ρvρu] < ∞ for all u,v in a
graph Gi.

The set of blocks C can also be infinite. We present an example where the blocks are paths
of geometric lengths. Fix p ∈ (0, 1) and let χ = 0 and ρ = 1 (so latches are chosen uniformly
at random among all the vertices when growing the hooking network). Let Wn ∼ Ge(p), and
let Bn be a path of length Wn (with Wn + 1 vertices). Then the weight of this block is Wn and
P′

n(v) = 1/Wn for v �= H′
n (and P′

n(H′
n) = 0). Given Wn, the random variable �′

n is distributed as
P(�′

n = j) = 1/Wn for j = 1, 2, . . . , n. Quick calculations reveal that E[W] = 1/p, E[W�′] =
1/p2, and E

[
W(�′)2

]= (2 − p)/p3. Applying Theorem 3 gives

�n

ln n

p−→ 1

p
,

�n − (1/p) ln n√
ln n

d−→N
(

0,
2 − p

p2

)
.

We note that we may apply Theorem 1 to further generalizations of hooking networks;
for example, we may also assign random lengths to the edges (similar to the random lengths
added to edges of trees in Section 2.1), though we note that the shortest path from one vertex
to another may change depending on the edge lengths.

2.3. Constructions from line segments

In the applications we have seen so far, the blocks have been discrete metric spaces. But we
can certainly take continuous spaces as well. As a simple example, we present random trees
constructed from line segments similar to those in [2, 5, 13].

Let W, W1, W2, . . . be i.i.d. nonnegative random variables with P[W = 0] < 1, and let Bn

be a line segment of length Wn. We recursively construct the spaces T0, T1, T2, . . . in the
following way: T0 is the line segment B0 with one endpoint called a root, and for n ≥ 0, sample
a point v uniformly at random from Tn and glue the segment Bn to v. A law of large numbers
for the insertion depth was proved for the case W = 1 in [13]. We apply Theorem 1 to the more
general spaces Tn.

In the notation of random recursive metric spaces, define the blocks Bn in the following
way. Let Bn be a copy of the line segment [0, Wn] with Euclidean metric D′

n, and let the point 0
be the hook H′

n. Let P′
n be uniform on Bn (so P′

n has the same distribution as the uniform
distribution U[0, Wn]). Set the weight of Bn as Wn. We can show that the random recursive
metric spaces are distributed as Tn, and so we just need to find the moment conditions on W
needed to apply Theorem 1.

Theorem 4. Let T0, T1, T2, . . . be the random spaces defined above, and let �n be the distance
from the root to where the nth segment is glued. If E[W4] < ∞, then

�n

ln n

p−→ E[W2]

2E[W]
,

�n − 1
2 (E[W])−1E[W2] ln n√

ln n

d−→N
(

0,
E[W3]

3E[W]

)
.

Proof. It is evident that the random recursive metric spaces constructed from Bn are
distributed as T0, T1, T2, . . .; at each step n ≥ 0 we can sample v from Tn by first sampling
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the segment Bk with probability Wk/Sn and sampling a point uniformly in Bk. From the first
two moments of the uniform distribution we get that

E[Wn�
′
n | Wn] = W2

n

2
, E[Wn(�′

n)2 | Wn] = W3
n

3
, E[(Wn�

′
n)2 | Wn] = W4

n

3
,

and so, from the law of total expectation,

E[W�′] = E[W2]

2
, E

[
W(�′)2]= E[W3]

3
, E[(W�′)2] = E[W4]

3
.

Thus, we apply Theorem 1 if E[W4] < ∞, proving the theorem. �

3. Proof of Theorem 1

Given the blocks B0, B1, B2, . . ., for every n define for k = 0, 1, . . . , n − 1 the sequence of
independent (conditioned on the blocks) random variables Yn,k = Jn,k�

′
n,k, where

Jn,k ∼ Be

(
Wk

Sk

)
,

�′
n,k ∼ �′

k for k ≥ 1, and �′
n,0 ∼ �′

0. Notice that Jn,0 = 1. Conditioned on B0, B1, B2, . . .,
the random variables Jn,k and �′

n,k are taken to be independent (though of course Wk and
�′

n,k ∼ �′
k are dependent on the block Bk).

As mentioned in the introduction, several previous works have described the insertion depth
in related models as sums of Bernoulli random variables. Here, we provide a similar observa-
tion for random recursive metric spaces, in this case describing the insertion depth as the sum
of Yn,k. Let G0, G1, G2, . . . be random recursive metric spaces constructed from the blocks Bn.
By the definition of the probability measure Pn, we can choose the latch vn+1 by first choosing
a block Bk already attached to Gn with probability Wk/Sn, and then choosing the latch vn+1
within Bk according to P′

k. Once the new block Bn+1 is attached to vn+1, we will say that the
block Bn+1 is a child of the block Bk. Similarly define the notion of blocks as parents, descen-
dants, and ancestors. For a fixed n, let 0 = k0 < k1 < · · · < kt be all the values ki for which
Jn,ki = 1, and let kt+1 = n. We will develop a coupling between the collection of random vari-
ables Yn,k, Jn,k, �′

n,k and random recursive metric spaces, whereby Jn,k = 1 if and only if Bk is
an ancestor of Bn in the random recursive metric space and Dn(vki, vki+1 ) is distributed as �n,k′

i
for all i = 0, . . . , t. If this holds, then

�n =
t∑

i=0

Dn(vki , vki+1 ) ∼
n−1∑
k=0

Jn,k�
′
n,k =

n−1∑
k=0

Yn,k.

The following lemma is contained in the proof of [24, Lemma 3], but we provide a proof for
the sake of completeness.

Lemma 1. With Yn,k defined above, the insertion depth �n of the nth block added to a random
recursive metric space Gn is distributed as �n ∼∑n−1

k=0 Yn,k.

Proof. Fix the step n throughout this proof. For a sequence of blocks B0, B1, . . . , Bn, sam-
ple the random variables Jn,k, �′

n,k, and Yn,k as described above. We construct a sequence of
random recursive metric spaces G0, G1, . . . , Gn. Set G0 = B0. For k = 1, 2, . . . , n, choose the
latch vk by first choosing a block B�k in the following way:
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• If k = n or Jn,k = 1, then �k = max0≤k′<k{Jn,k′ = 1}. This is always defined since Jn,0 =
1. Next, choose the latch vk within B�k according to P′

�k
conditioned on D′

�k
(H′

�k
, vk) =

�′
n,�k

(this is well defined by the Radon–Nikodym theorem since {x ∈ B�k : D′
�k

(H�k , x) =
�′

n,�k
} is a closed set in B�k , and so belongs to the sigma algebra for which P′

�k
is defined).

• If k �= n and Jn,k = 0, then �k is chosen at random among 0, 1, 2, . . . , k − 1 with
probability W�k/Sk−1, and vk is chosen in B�k according to P′

�k
.

If 0 = k0 < k1 < · · · < kt are all the values ki for which Jn,ki = 1, notice that the parent of Bn

is Bkt , the parent of Bkt is Bkt−1 , and so on until B0. Conversely, if Jn,k = 0, then Bk cannot be
the parent of any of Bk1, Bk2, . . . , Bkt , Bn. Therefore, the block Bk is an ancestor of Bn if and
only if Jn,k = 1.

To prove that G0, Gn, . . . , Gn is distributed as random recursive metric spaces, we need
only show that the choice of �k is made with probability W�k/Sk−1. Indeed, we see that,
conditioned on the blocks B0, B1, . . . , Bn, for k < n, �k is chosen with probability

P(Jn,k = 1, Jn,�k = 1, Jn,�k+1 = · · · = Jn,k−1 = 0) + P(Jn,k = 0)
W�k

Sk−1
, (8)

and when k = n, �k < n − 1 is chosen with probability

P(Jn,�k = 1, Jn,�k+1 = · · · = Jn,k−1 = 0), (9)

and �k = n − 1 is chosen with probability P(Jn,n−1 = 1) = Wn−1/Sn−1 = W�k/Sk−1. Since,
conditioned on the blocks B0, B1, . . . , Bn, we have

P(Jn,�k = 1, Jn,�k+1 = · · · = Jn,k−1 = 0) = W�k

S�k

k−1∏
k′=�k+1

(
1 − Wk′

Sk′

)

= W�k

S�

k−1∏
k′=�k+1

Sk′−1

Sk′
= W�k

Sk−1
,

both (8) and (9) simplify to W�k/Sk−1. Therefore, we have indeed constructed a sequence
of random recursive metric spaces and, from the construction described, we see that �n =
Dn(H, vn) ∼∑n−1

k=0 Yn,k. �

We now introduce the martingales we will use to prove Theorem 1. For every n ≥ 1 and
k = 0, . . . , n − 1, let Fn,k be the σ -algebra generated by W1, . . . , Wk and all Ym,� defined for
m ≤ n, � ≤ k. Note that the filtrations (Fn,k)n−1

k=0 are nested (that is, Fn,k ⊆Fn+1,k). Define

Mn,k =
k∑

�=1

(Yn,� −E[Yn,� |Fn,�−1]), Ln,k =
k∑

�=1

E[Yn,� |Fn,�−1],

so that
∑k

�=0 Yn,� = Yn,0 + Mn,k + Ln,k. Then, by Lemma 1, �n ∼ Yn,0 + Mn,n−1 + Ln,n−1. We
will apply a martingale central limit theorem, namely [14, Corollary 3.1], to {Mn,k, 1 ≤ k <

n, n ≥ 2} scaled by
√

ln n to prove Theorem 1. We begin with some useful calculations.

Lemma 2. Suppose that E[W2], E[(W�′)2], and E
[
W(�′)2

]
are all finite. Then, for almost

every sequence B0, B1, B2, . . . of blocks, the following hold:

E[Yn,k |Fn,k−1] = E[W�′]
kE[W]

+ O(k−2), (10)
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E[(Yn,k −E[Yn,k |Fn,k−1])2 |Fn,k−1] = E
[
W(�′)2

]
kE[W]

+ O(k−2), (11)

E[Y2
n,k1{Yn,k>c} |Fn,k−1] = E[W(�′)21{�′>c}]

kE[W]
+ O(k−2), c > 0. (12)

Proof. Throughout this argument we use that for almost every sequence W1, W2, . . . of
weights, Sk = kE[W] + o(k3/4). This is guaranteed, for example, by the law of the iterated
logarithm, since the Wi are i.i.d. and have finite variances. Also note that given our conditions
E[W2] < ∞ and E[(W�′)2] < ∞, since W and �′ are nonnegative, we also have

E[W2�′] =E[W2�′1{�′≤1}] +E[W2�′1{�′>1}] ≤E[W2] +E[(W�′)2] < ∞.

Define F∗
n,k−1 = σ

(
Fn,k−1 ∪ σ

(
Wk, �′

n,k

))
. Then

E[Yn,k |F∗
n,k−1] = Wk

Sk−1 + Wk
�′

n,k = �′
n,k

(
Wk

Sk−1
− W2

k

S2
k−1 + Sk−1Wk

)
.

Since Sk−1 and Wk are nonnegative, the second term in the parentheses above is bounded by
W2

k S−2
k−1. From our approximation for Sk and since E[W2�′] < ∞, applying the tower rule

yields that, almost surely,

E[Yn,k |Fn,k−1] =E[E[Yn,k |F∗
n,k−1] |Fn,k−1] = E[W�′]

kE[W]
+ O(k−2),

which is (10). Similarly, we have the conditional expectation

E[Y2
n,k |F∗

n,k−1] = Wk

Sk−1 + Wk

(
�′

n,k

)2
,

and from our approximation for Sk and the assumption E[(W�′)2] < ∞, applying the tower
rule yields that, almost surely,

E[Y2
n,k |Fn,k−1] = E

[
W(�′)2

]
kE[W]

+ O(k−2).

Subtracting (E[Yn,k |Fn,k−1])2 = O(k−2) from the equation above yields (11). Finally, note that
Yn,k > c if and only if Jn,k = 1 and �′

n,k > c. Thus,

E
[
Y2

n,k1{Yn,k>c} |F∗
n,k−1

]= Wk

Sk−1 + Wk

(
�′

n,k

)21{
�′

n,k>c
}.

Using the tower rule once more provides that (12) holds almost surely. �

We are now ready to prove the main theorem of this work.

Proof of Theorem 1. We start by proving that {( ln n)−1/2Mn,k, 1 ≤ k < n, n ≥ 2} satisfies the
conditions necessary to apply [14, Corollary 3.1]. Note that

Mn,k − Mn,k−1 = Yn,k −E[Yn,k |Fn,k−1]. (13)
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We see immediately that E[Mn,k] = 0, and from (13) we have

E[Mn,k − Mn,k−1 |Fn,k−1] = 0.

From the moment conditions stated in Theorem 1, we also have E[M2
n,k] < ∞ for all n and k.

Thus, {( ln n)−1/2Mn,k, 1 ≤ k < n, n ≥ 2} is a zero-mean square-integrable martingale array.
For the conditional variance, we conclude from (11) and (13) that, almost surely,

n−1∑
k=2

E[(Mn,k − Mn,k−1)2 |Fn,k−1] =
n−1∑
k=2

E[(Yn,k −E[Yn,k |Fn,k−1])2 |Fn,k−1]

= E
[
W(�′)2

]
E[W]

ln n + O(1).

Therefore,
n−1∑
k=2

E

[(
Mn,k − Mn,k−1√

ln n

)2

|Fn,k−1

]
p−→ E

[
W(�′)2

]
E[W]

.

As for the conditional Lindeberg condition, we start by noting that, for any c > 0, (10)
guarantees that, almost surely, for large enough k we have E[Yn,k |Fn,k−1] < c. Thus, almost
surely, for large enough k, |Yn,k −E[Yn,k |Fn,k−1]| > c implies that Yn,k > c and that (Yn,k −
E[Yn,k |Fn,k−1])2 < Y2

n,k. Thus, from (12) and (13), almost surely,

n−1∑
k=2

E[(Mn,k − Mn,k−1)21{|Mn,k−Mn,k−1|>c} |Fn,k−1] <

n−1∑
k=2

E[Y2
n,k1{Yn,k>c} |Fn,k−1]

= E[W(�′)21{�′>c}]
E[W]

ln n + O(1).

For any ε > 0, since E
[
W(�′)2

]
< ∞, we have E[W(�′)21{�′>ε

√
ln n}] → 0. Thus,

n−1∑
k=2

E

[(
Mn,k − Mn,k−1√

ln n

)2

1{|Mn,k−Mn,k−1|>ε
√

ln n} |Fn,k−1

]
p−→ 0.

All the conditions of [14, Corollary 3.1] are satisfied, and so

Mn,n−1√
ln n

d−→N
(

0,
E
[
W(�′)2

]
E[W]

)
. (14)

By applying (10), we have, almost surely,

Ln,n−1 =
n−1∑
k=1

E[Yn,k |Fn,k−1] = E[W�′]
E[W]

ln n + O(1). (15)

Since �n ∼ Yn,0 + Mn,n−1 + Ln,n−1, we can conclude from (14) and (15) the central limit
theorem

�n −E[W]−1E[W�′]√
ln n

d−→N
(

0,
E
[
W(�′)2

]
E[W]

)
.
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As for the weak law of large numbers, we have Mn,n−1/ ln n
d−→ 0 from (14) and Slutsky’s

theorem. Since we have convergence in distribution to a constant, the convergence holds in

probability as well. From (15), we can conclude that Ln,n−1/ ln n
p−→E[W]−1E[W�′], and so

�n

ln n
= Yn,0 + Mn,n−1 + Ln,n−1

ln n

p−→ E[W�′]
E[W]

.

�
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