COMPLETE SETS OF OBSERVABLES AND PURE
STATES

STANLEY P. GUDDER

1. Introduction. It was shown in (1) that a complete set of bounded
observables is metrically complete. However, an extra axiom was needed to
prove this result (1, footnote, p. 436). In this note we prove the above-
mentioned result without the extra axiom. We also show that there is an
abundance of pure states if A/ is closed in the weak topology and give a
necessary and sufficient condition for the latter to be the case.

2. Complete sets of observables. In this paper we shall assume that L
is an orthocomplemented partially ordered set or logic in which the following
axiom holds: if a, b, ¢ mutually split, then ¢ <> b V ¢. It can be shown (see
2) that this axiom holds if L happens to be a lattice and that the results in
(4) hold in logics satisfying this axiom. We draw freely from the definitions
and theorems in (1).

TuEOREM 2.1. A complete set K of bounded observables on L is a committa-
tive real Banach algebra with unity satisfying:
(1) |«?| = |x|? for all x in K,
(ii) x?is a continuous function of x,
(iti) |x? — 92| < max(|x2, [y?]).

Proof. It has been shown in (1) that K is a commutative normed algebra
with unity. The proofs of (i), (ii), and (iii) are straightforward and left to
the reader. We now show that K is metrically complete. Let x, be a Cauchy
sequence in K, let R(x,) denote the range of x,, » = 1,2,..., and let B
be the smallest Boolean sub c-algebra containing UR(x,). Notice that B
exists by Theorem 3.1 of (4). Since B is separable, there is an observable z
such that the range R(z) = B (4, Proposition 3.15). We now show that z € K.
Otherwise, there is an x € K and x <> 2. But since x <> x,, there is a Boolean
sub ¢- algebra B; which contains R(x) \J (UR(x,)). Then B; contains UR (x,)
but cannot contain B, which contradicts the minimality of B. Now, applying
Proposition 3.16 of (4), there exist real Borel functions #, such that x, = u,(2)
and since x, is Cauchy there are positive integers n(p), p = 1,2, ..., such
that #, m = n(p) implies |u,(2) — u,(2)| = p~1. Letting A(e) = {\: |\ £ ¢},
we have o[u,(2) — u,(2)] C A(p~') and

0 = [us(z) — un()]AP™)) = 2lw: [un(w) — un(w)] > p7
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for all n, m = n(p). Letting
N(p) = Ulo: [in(0) = un(0)| > p71, n,m 2 n(p)},

we have |, (w) — #n(w)| = p~1on N(p) forall n, m = n(p) and z[N(p)]=0.
Now if N = UN(p), then 2(N) = Vz[N(p)] = 0. We assert that u, is uni-
formly Cauchy on N’. Indeed, if ¢ > 0, then there is an integer ¢ such that
g ' < eand if n,m > n(g), we have |u,(0) — un(w)| < ¢! < e on N(g)’
and hence on N’. Therefore, %, converges uniformly on N’ to a Borel func-
tion #. We now show that u,(z) — «(2). For any ¢ > 0, if » is sufficiently
large, we have {w: |u,(w) — u(w)| > ¢} C N. Hence,

[, (z) — u(2)](Ae)’) = z{w: u,(0) — u(w) € Ae)'}
z{w: iy (w) — u(w)| > € = 0.

So for n sufficiently large, o[u,(2) — u(z)] C A(e) and |u,(z) — u(2)| < e
Since z € K, we have, of course, that #(z) € K and thus x, — u(2) € K and
K is metrically complete.

It

COROLLARY. A complete set of bounded obscrvables on L is isometrically
isomorphic to the continuous real-valued functions on a compact Hausdorff
space.

Proof. This follows from a theorem due to Segal (see 3, p. 933).

3. Pure states and the closure of M. Let M denote the set of all
states on L. A set of states My C M is said to be full in the following cases:

(i) if @ # 0, there is an m € M, such that m(a) = 1;

(ii) if @ 5 b, there is an m € M, such that m(a) # m(b).

A set of states M, C M is said to be quite full if m(b) = 1 whenever
m(a) = 1 for all m € M, implies ¢ = b. The following theorem was proved

in (1).

TaEOREM 3.1. If M is weakly closed, then M is the weakly closed convex hull
of its pure states.

Since the pure states are physically those in which we have a maximum
amount of information concerning the condition of the system, it is important
to show that there are a lot of pure states.

THEOREM 3.2. Suppose that M is weakly closed and M, is the set of pure staites.
If M s full [quite full], then M, is full [quite full]*

Proof. Suppose that M is full and a # b. If m(a) = m () for every m € M,
then convex combinations of pure states and limits of nets of convex com-
binations of pure states agree on ¢ and b. It follows from Theorem 3.1 that

*The author is indebted to Harry Mullikin for the proof of part of this theorem.
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m(a) = m(b) for all m € M, which is a contradiction. Now suppose that ¢ # 0
and let M, = {m € M:m(a) = 1}. Then M, is a non-empty subset of M
which is weakly closed. Thus M, is compact and convex and by the Krein-
Milman theorem it is the weakly closed convex hull of its extreme points.
Let mq be an extreme point of M,. To show that m, € M,, suppose that

my = My + (1 — N)yme for my, me € M, 0 <\ < 1.
Then
1 =mo(a) = Mni(a) + (1 — N)ymq(a).

Hence mi(a) = ms(a) = 1 and mq, ms € M,. Therefore m; = ms = m,. Thus
M,MN M, #8, and M, is full. Now suppose that M is quite full and that every
m € M, which satisfies m (¢) = 1 also satisfies m(b) = 1. Let M, = {m € M:
m(a) = 1} and M, = {m € M: m(b) = 1}. As before, M, [M,] is the weakly
closed convex hull of M, N\ M, [M, N\ M,]. Now since M, "\ M, C M, N\ M,
we must have M, C M, and hence ¢ < b. Thus, M, is quite full.

We now give an example which shows that M need not be weakly closed.
Let (2, 4) be a measurable space on which there is a finitely additive measure
w which is not countably additive. Now, bounded observables on A4 may be
identified with bounded measurable functions on (@, 4) (cf. 4, Proposition
3.3). Denote the set of bounded observables on 4 by X and the dual of X
by X’. If x € X and f is the corresponding measurable function, we define
p(x) = ff du, where the integral is defined in the same way as the Lebesgue
integral except that u is only finitely additive. It is easy to check that g,
defined in this way, is in X’. We now show that there is a net of states m,
such that mq(a) — u(a) for every a € A. Hence m, — u weakly and since
uw ¢ M, this would show that M is not weakly closed in X’. A finite col-
lection (ay, ..., a,) of disjoint sets in 4 is called a partition if @ = Ua,. If
p1, P2 are partitions, we write p; = p» if every set of p; is contained in some
set of p.. It is easy to see that the collection P of partitions is a directed

set. Now, associate with each partition p = (@, ..., a;) a set of points
{q1, . . -y qx} C Qsuchthatgq; € a;, ¢ =1,...,k If m, denotes the measure
concentrated at ¢;, then we associate with every partition p = (ay, ..., @)

a measure
13
my = Zl pladm,,.
i=
Since the m,, are states and
k
Z :u(a’t) = lv
i=1

we see that m, is a state. We claim that {m,: p € P} is a net which con-
verges weakly to p. Indeed, if ¢ = @ or a = ¢, then clearly m,(¢) — u(a).
Now, if ¢ # @, ¢, define the partition py = (a,a’). If p = (a1,...,ar) = po
reorder the a/'s if necessary, so that
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Then
my(a) = 33 w(adme (@) = 3 w(@) = u(@).

i=1
Therefore m,(a) = u(a) if p = po and hence m,(a) — u(a) for every a € 4.
We shall use some of the techniques in this example to prove Theorem 3.4.
Let X be the bounded observables on a logic L and X’ the dual of X. If
for f € X', m € M, and a real number ¢, we have f(x) = cm(x) for all x € X,
we write f = ¢m. A linear functional f on X is positive if f(x) = 0 whenever
a(x) = 0.

LeEMMA 3.3. Let f be a positive linear functional on X. Then (a) f ¢ X' and
(b) If] = 1if and only if f(1) = 1.

Proof. (a) If |x|] £ 1, we have |o(x)] = 1 and thus ¢(1 &= x) = 0. Thus
FA)£f(x) =f(1+x) =0 and [f(x)| £f(1). (b) Suppose that |f] = 1. Since
[1| = 1, we have f(1) = 1. But by part (a), [f(x)| = f(1) for all x with
x| £ 1. Thus f(1) = 1. The converse is similar.

A finite set of disjoint non-zero propositions {ai, ..., a,} is a partition of
a logic if Va,; = 1. If p; and p, are partitions, we write p; < p, if every
proposition in p, is = some proposition of p;. It is easily checked that the
partitions form a partially ordered set. We say that a logic L is directed if
the partitions form a directed set; that is, for any two partitions p1, p» there
is a partition p3 such that py £ ps, p2 = ps.

THEOREM 3.4. Let L be a directed logic with a full set of states M. Then M
is weakly closed if and only if every positive linear functional f on X has the
form f = [flm for some m € M.

Proof. To prove sufficiency, let m, be a net of states converging weakly
to f € X'. Since the m,’s are positive, it follows that f is positive and hence
f = |f|m for some m € M. Since m,(1) = 1, we have f(1) = 1 and by Lemma
3.3 (b), |f| = 1. Hence f = m and M is weakly closed. Conversely, suppose
M is weakly closed and f is a positive linear functional on X. If [f| = 0, the
proof is complete; so suppose |f| = 0 and let g = f/|f|. Now g is a positive linear
functional with |g| = 1 so by Lemma 3.3, g(1) = 1. Define m(a) = g(x,) for
all ¢ € L. It is easy to see, as in our previous example, that m generates a
continuous linear functional. We now show that m is a state. Clearly, m (1) =1.
For every partition p = {ay, ..., a,} of L define a set of states {m,,, . .., m,,}
such that mg, (a;) = 1 (here we use the fullness of M), and define

my = Z g(xai)mai‘

i=1

Notice that m, is a state. Indeed,
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;g(xai) = g<i2::1x,”> =g(1) = 1,

and 0 = g(x,;) = 1 since g is positive. Since the partitions form a directed
set, m, is a net of states. To show that m, converges weakly to m, let 0 # a € L
and let po = {a,a’}. If {a1,...,a,} = p = po, reorder the a/'s if necessary
so that ¢; <@, 1=1,...,j, a; =d, 1=7+1,...,n It easily follows
that V{a;,i=1,...,7} =a and Vi{a;, i =j+ 1,...,n} = d'. Then

j i i
mz)(a) = Zlg(xai)mai(a) = Z_:lg(xai) = g<LV=;1 xai> = g(xa) = m(a)
Thus m, — m weakly, and since M is weakly closed, m € M. Now
g(xa) = M(a') = f)\m[xa(d}\)]

forall a € L. If s = 3'i_1 ¢; x4, is a simple observable, we have

§6) = 3 eaen) = 3 o0 Nl @] = 3 comao).

i=1

Now there is an observable z and Borel sets E; such that x, = xz (2),
1=1,...,n Thus

[am[s@N)] = [Mm[(Zcixe:) (2) (@N)]
= [exm Nm[z(dN)] = Xeif x: (\)mlz(aN)]
= Zcim[z(Ei)] = Zcim(ai)-

Hence, g(s) = f)\m[s(d}\)] for simple observables. Now, if x is any bounded
observable, there is a sequence s;(x) of simple functions of x converging to
x in norm, where the s; are defined as in Lemma 7.1 of (1). Thus

Js:\mlx@\)] = g(s:) » g(x) as i— o,
But by definition of s; and the monotone convergence theorem,
fs,-()\)m[x(d)\)] —>f)\m[x(d>\)] as 71— o,
Thus g(x) = [Mm[x(@\)] = m(x) for all x € X. Hence f/|f| = ¢ = m and
f = |fm.
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