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Applying the complex formalism of Part I we investigate the transforma-
tion of the ellipticity and orientation distribution of elliptical background 
sources by local lensing. One important result is that we can apply the 
techniques from Part I directly in most parts of the cluster field from which 
we can also reconstruct the distribution of the background sources, without 
further information. Knowing the distribution we can apply the techniques 
from Part I everywhere. 

Observed arclets are in general not images of circular sources. Addition-
ally, the sources are distributed over a redshift range. Although the redshift 
distribution can be accounted for in the Beltrami equation we here assume 
for simplicity that all sources are at the same redshift. 

However, we can also describe the situation including intrinsic elliptici-
ties using the Beltrami equation introduced in Part I if a composed mapping 
h{z) = u(w(z)) is introduced. Λ is a composition of two mappings w and 
ω. The mapping w maps the observed elliptical arclets to the unknown 
real elliptical source and ω maps this source to a circle. The corresponding 
Beltrami parameters are μ^, μ w and μω, respectively. 

For simplicity we use now indices in parentheses to denote derivatives. 
For the Beltrami parameter of the composed mapping we find after some 
calculation 

W(*) + μων*<ζ) 

If we suppose now that we are in the linear regime of the mapping, we can 
always write 

ω = w + μωΨ, 0 < \μω\ < 1 and w = (1 - κ)ζ + ηζ . (2) 

Note that we do not have to restrict the lens equation to the case of real 7. 
However, the only difference would be a constant phase in the appropriate 
Beltrami parameter, which could also be attached afterwards. 
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Applying Eq . ( l ) we find 

Mw = ~7~^~ ? real ! (3) 

Ί + μω(1-κ) μν,+μω . . , . ν 
ßh = — - = and the inverse (4) 

1-κ + ημω 1 + μ*μω 

- μκ 
= 7 · ( θ ) 

/Αν/Μ - 1 W 

These equations describe the transformation of the Beltrami parameter 
under local lensing, given by We are now interested to see how the 
mean of a local distribution Φ of μω transforms under local lensing. This 
means how the statistical properties of a field of elliptical sources alter 
if mapped by a lens locally described by constant density and shear. For 
isotropical distributions we find 

Jo Uo M w f c + 1 

2π 

" Φ(\μω\)\μω\ dl/U (6) 

We therefore find for (μκ) using residue calculus for the integral in 
square brackets 

(MA) = Mw / | μ ω | Φ ( | μ ω | ) + (7) 
./ο 

— / \μ„\Φ(\μω\) ά\μω\ , (8) 
μ?ν J— 

\ M w / Jo r w 

= M w if Φ ( | μ α , | ) = 0ίθΓ | μ „ | > ^ · (10) 

Since \μω\ < 1 the last condition is fulfilled for | /x w | < 1, which is valid for a 
region where the lens mapping is orientation preserving (quasi conformai). 
This important results states that outside the critical curves (subcritical 
regions) the mean of the measured Beltrami parameter is only determined 
by the local lens. The bad news is that if we know that | ^ w | > 1 
from other (global) information, the mean axail ratio of the ob-
served arclets is influenced by the distribution of the intrinsic 
axial ratios. The good news is that we can conclude the intrinsic 
distribution from regions where the mapping is surely quasi con-
formai. For details see Schramm & Kayser 1994c in the reference list of 
Part I. 
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