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Abstract

Answer set programming is a well-understood and established problem-solving and knowledge
representation paradigm. It has become more prominent amongst a wider audience due to its
multiple applications in science and industry. The constant development of advanced program-
ming and modeling techniques extends the toolset for developers and users regularly. This paper
compiles and demonstrates different techniques to reuse logic program parts (multi-shot) by
solving the arcade game snake. This game is particularly interesting because a victory can
be assured by solving the NP-hard problem of Hamiltonian Cycles. We will demonstrate five
hands-on implementations in clingo and compare their performance in an empirical evaluation.
In addition, our implementation utilizes clingraph to generate a simple yet informative image
representation of the game’s progress.

KEYWORDS: answer set programming, multi-shot, Hamiltonian cycles, snakes

1 Introduction

Answer set programming (ASP) (Brewka et al., 2011) is an established declarative pro-

gramming paradigm based on stable model semantics (Gelfond and Lifschitz, 1988). It

combines attributes of different fields of computer science such as knowledge representa-

tion, logic programming and SAT solving and is suited for numerous tasks like planning

and configuration problems (Gebser et al., 2011). ASP is of interest as theoretical con-

cept for computer science. Its declarative way of describing problems in a rule-based

language allows for fast prototyping, offering great value for product applications as

well. The ability to solve hard, discrete optimization problems makes ASP appealing for

industrial applications. In recent years, different specialized ASP-tools such as clingo

(Gebser et al., 2019a), DLV (Adrian et al., 2018), WASP (Alviano et al., 2013), or alpha
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(Weinzierl, 2017) where introduced. clingo established itself as prominent choice, with

its various tools and in-depth documentation, continuous development and many publi-

cations on various problems (Gaggl et al., 2015; Takeuchi et al., 2023; Rajaratnam et al.,

2023).

With the growth of its applications, the implementation of advanced logic programs

gains traction. Traditionally, the clingo workflow grounds a logic program (i.e. replac-

ing variables by contents) and solves the resulting program afterwards. In an iterative

setting, this step is repeated for a similar, slightly different logic program. This opens

an opportunity to alter and re-solve the same logic program to reduce grounding and

solving overhead. Especially grounding often states a significant bottleneck (Besin et al.,

2023). Here, the so called multi-shot (Gebser et al., 2019b) solving is offered by clingo.

When implementing a multi-shot workflow, one inevitably has to choose how to influ-

ence the resulting answer sets. Facts, for once, permanently fix truth values of atoms,

whereas values of external atoms are fixed but can be altered between solve calls.

Furthermore, assumptions can be applied on regular atoms and in a more sophisticated

manner, even truth values of (negated) clauses of atoms can be influenced during the

solve call. The different manipulation techniques possess their own advantages and dis-

advantages, requiring background knowledge for an informed decision. A fitting choice

depends on the requirements and characteristics of the applications as well as the setup.

This paper aims to show different approaches to reuse logic programs on the showcase

example of the popular and easy to grasp game snake. The objective of the game is

to repeatedly finding a path from a snake to an apple on a grid. snake has an iterative

setting and can be encoded space efficient. Strategies to enforce winning the game include

solving the NP-hard (De Biasi and Ophelders, 2016) problem of Hamiltonian Cycles. Due

to matching complexity, this shows to be an interesting and suited example for an ASP

implementation. In the past, (multi-shot) ASP has been used to solve games such as

Ricochet Robots (Gebser et al., 2015) and games in general (Thielscher, 2009).

In this paper, we formalize the underlying problems and objectives to play snake and

introduce two strategies to enforce winning the game. Then, we propose, explain, and

analyze five approaches to implement one snake strategy. In an extensive empirical eval-

uation we compare differences among the approaches and share interesting insights to

develop multi-shot applications. Our software is available online1 and includes a visually

engaging image output of the game progression via clingraph (Hahn et al., 2022).

2 Preliminaries

2.1 Answer set programming

A (disjunctive) program Π in ASP is a set of rules r of the form:

a1; . . . ; am :− am+1, . . . , an, not an+1, . . . , not ao.

where each atom ai is of the form: p(t1, . . . , tk), p is a predicate symbol of arity k and

t1, . . . , tk are terms built using constants and variables. For predicates with arity k=0,

we will omit the parenthesis. A naf (negation as failure) literal is of the form a or

1 https://github.com/elbo4u/asp-snake-ms
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not a for an atom a. A rule is called fact if m=1 and o=0, normal if m=1 and integrity

constraint if m=0. Each rule can be split into a head h(r) = {a1, . . . , am} and a body

B(r) = {am+1, . . . , not ao}, which divides into a positive part B+(r) = {am+1, . . . , an}
and a negative part B−(r) = {an+1, . . . , ao}. An expression (i.e. term, atom, rule, pro-

gram, . . .) is said to be ground if it does not contain variables. Let M be a set of ground

atoms, for a ground rule r we say that M |= r iff M ∩ h(r) �= ∅ whenever B+(r)⊆M and

B−(r)∩M = ∅. M is a model of P if M |= r for each r ∈P. M is a stable model (also

called answer set) iff M is a ⊆-minimal model of the Gelfond-Lifschitz reduct of P w.r.t.

M . The reduct is defined as PM = {h(r)←B+(r)|M ∩B−(r) = ∅, r ∈P} (Gelfond and

Lifschitz, 1988).

To ease ASP programming, several language extensions such as conditional literals ,

cardinality constraints, and optimization statements were introduced (Calimeri et al.,

2019). Conditional literals are of the form a:b1, . . . , bm with naf-literals a and bi. They

allow the conditional inclusion of atoms a for condition b1, . . . , bm and are especially

useful in combination with variables. Cardinality constraints introduce compact counting

of atoms with an upper bound s and lower bound t. They are of the form s{d1; . . . ; dn}t
with conditional literals di. Optimization statements of the form #minimize{w1@p1, t1 :

c1; . . . ;wn@pn; tn : cn}. aim to minimize the sum over wi over a set of weighted tuples

(wi, ti) for priority level pi (default level 0) under the condition ci. Additionally, the

program clingo offers several extensions as well, such as ranges l..u, indicating any

integer between l and u, including both.

2.2 Multi-shot ASP in clingo

clingo provides an API (Gebser et al., 2019b) to access the functionality of an ASP

program within an imperative language such as python. The standard procedure is to

create a clingo control object in the wrapper program, assign one or more logic pro-

gram inputs, ground it, and solve it. This setup allows to alter and repeatedly run logic

programs (multi-shot).

Besides basic functionality, the clingo control object provides access to several

mechanics connected to the logic program. Parametrized subprograms allow grounding of

rules with values of constants determined at runtime, enabling flexible data management.

The solving is initialized via a solve call. The corresponding function accepts attributes

to influence the execution of the solving, such as assumptions . Assumptions are a list of

atom/truth value pairs, which state valid mappings for the current solve call. Another

mechanic to influence truth values of atoms are externals . They are declared in the form

#external a:b1, . . . , bm. with conditional literal a:b1, . . . , bm within the logic program.

An atom marked as external has a fixed truth value similar to a fact, except that in

between solve calls the actual value can be changed via the function assign external . It

is even possible to remove an external permanently by releasing it.

Next to assumptions and externals, there is also the possibility to directly influence

the ongoing search for models. During the solve call, truth values can be assigned to

(negated) conjunctions of atoms (clauses and nogoods). In clingo this functionality is

accessible by either implementing a custom propagator or indirectly through the context

of a model object. The model object can be obtained by providing a callback model

handling function to the solve call.

https://doi.org/10.1017/S1471068424000267 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000267


Winning Snake: Design Choices in Multi-Shot ASP 775

2.3 Graphs, paths, and Hamiltonian cycles

A grid graph G(n,m) is an undirected graph formed by a rectangular grid of vertices (Itai

et al., 1982). The grid consists of n rows and m columns, denoted as G(n,m) = (V, E),

where V represents the set of vertices with |V |= n·m and E ⊆ V×V represents the set

of edges. Each vertex v(x, y)∈ V corresponds to an intersection of a column x and a row

y, and each edge in E connects adjacent vertices in the horizontal or vertical direction.

A path p within a grid graph (V, E) is a sequence of adjacent vertices v1, . . . , vn denoted

as list [v1, . . . , vn], with pi = vi and |p|= n, such that for every i∈ {2, . . . , n} there exists
an edge (vi−1, vi)∈E. A subpath p′ of p covers a subsequence of vertices such that there

exists a c∈N, for which every p′i equals pi+c.

A Hamiltonian cycle (HC) (Itai et al., 1982) in a grid graph G(n,m) = (V, E) is a path

p of distinct vertices such that (pn·m, p1)∈E. Therefore, an HC is a cycle that passes

through every vertex of the graph without repetition, following the adjacent edges of the

grid structure. Only grid graphs with even numbers of vertices admit an HC (Itai et al.,

1982).

2.4 Snake game

The game snake is a classic arcade game, where the user steers a snake’s head on a grid

similar to a grid graph of dimension n×m. The snake can be interpreted as a list of

grid coordinates, for example = [(6, 2), (5, 2), (4, 2), (4, 3), (3, 3)] for Figure 1b starting

with the tail and ending with the head. Possible movements for the head are left, right,

up, and down to reach adjacent fields on the grid. The snake body follows the head

movement, meaning starting with after one step the new snakes ′ body elements
′
i−1 now equal i as illustrated in Figure 1(b) and (c).

A snake can increase its length by placing the head on a tile occupied by an apple

with coordinates , leading for the extended snake ′ to occupy the fields [ 1, . . . , | |, ]
as illustrated in Figure 1(d) and (e). Now the apple is consumed and another apple

appears on a random, unoccupied field. The game starts with a snake of length one in

the corner of the grid ( = [(1, 1)]) and one apple on a random, unoccupied field as

indicated in Figure 1(a). The maximal length of a snake is n·m, since the snake fills

all the fields and no apple can be placed, preventing any future growth of the snake as

shown in Figure 1(e). The game terminates if the head lands on a field of the body,

leaves the grid, or the snake reached its maximal length. For the latter the game is

considered won.

3 Formalizing and winning snake optimally with ASP

We introduced the preliminaries and the game snake. We will now move towards defining

the game objectives, then presenting strategies and their implementation in ASP.

Goal specification. The game itself invokes the implicit goal to maximize the snake

length before the game terminates. Our first objective is to guarantee winning the game.

This means at every point the snake is able to reach maximal length, independent of apple
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initial scenario

(a) (b) (c)

(d) (e) (f)

step - before step - after

apple - before apple - after maximal length

Fig 1. Examples for a snake on a 6× 6 grid generated by our software. The snake head is
marked with eyes.

placement (G1). Second, we aim to minimize the number of snake movements (steps) to

finish the game (G2). Third, we aim to minimize the computation time (G3).

3.1 Problem description for iterations

One snake game consists of n·m−2 iterations of searching a path from a given snake to

a given apple for given grid dimensions n×m. Therefore, we can formalize a problem

description for one iteration.

General Snake. Given a path , a goal vertex {∈� 1, · · · , | |} on a grid graph

G(n,m), derive a path = [ 1, · · · , | |, · · · , ]p , such that pa = iff a= |p| and for

every 1≤j<k<|p| with pj = pk, then k − j ≥ | |.
General Snake has three key points: the path has to start with , the vertex appears

exactly once at the end and if a vertex repeats, enough steps lie between repetitions

for the snake to move out of the way. General Snake covers all possible solutions for one

iteration of snake.

While this problem description is sound to solve a single iteration, it does not ensure

future iterations to be solvable (compare Figure 1(d) and (e)). To force a game to be won

(G1), each field has to be reachable in every iteration. An effective method to enforce
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HC input Generic HC MHS

(a) (b) (c)

Fig 2. Examples for a snake on a 6× 6 grid. Black lines indicate HCs.

reachability in all future iterations is deriving HCs, since the snake will visit each field

of the grid before reaching the field currently occupied by its tail. Hence, we define two

problems which include HCs as well, where the second is an extension of the first.

Hamiltonian snake (HS). Given a path for a grid graph G(n,m), derive an HC

on G starting with subpath .

Minimal Hamiltonian Snake (MHS). Given a path and a goal vertex with

{∈� 1, · · · , | |} for a grid graph G(n,m), derive an HC on G starting with subpath

which minimizes i for pi = .

An example of the problem and its (minimal) Hamiltonian snake can be seen in

Figure 2(a) and (b). Since HCs can only be derived for grid graphs with even numbers

of vertices (Itai et al., 1982), we will handle grids with even number of fields only.

Complexity. HS asks for a solution of an NP problem, putting in the complexity class

of nondeterministic polynomial Function Problems (FNP). MHS asks for a solution of

an NP problem for which no other solutions with certain properties exist, putting MHS

in the complexity class of FNP with NP oracle calls (FNPNP ). We decided to define

function problems, since strategies (see next paragraph) require actual paths as output.

3.2 Snake strategies

To solve a whole snakes game, we will iteratively solve its n·m−2 HS resp. MHS problems

(basic setup). Starting in the first iteration with = [(1, 1)], every iteration has a starting

snake and random apple coordinates {∈� 1, . . . , | |} as variable input. From the
output path p = [ 1, . . . , | |, . . . , pj , . . . , pnm] with pj = we can derive the snake
coordinates ′ for the next iteration: ′ = [pj−| |, . . . , pj ].
We will now introduce the naive strategy, which aims to finish the game consistently by

solving its HS problems. In the first iteration, the naive strategy derives an HC. This path

is followed repeatedly, removing the requirement to generate new HCs altogether. This

strategy takes on average (nm−| |+1)/2 steps per iteration. The first HC can be derived

in polynomial time, by replicating column two and three and row three from Figure 2(b)
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Algorithm 1. base logic program to solve one iteration of snakes

Input: grid dimension n× m, position of head (head/1) and apple (apple/1)
1 field((X,Y)) :- X=1..n, Y=1..m.

2 connected((X,Y1),(X,Y2)) :- |Y1-Y2|=1, field((X,Y1)), field((X,Y2)).

3 connected((X1,Y),(X2,Y)) :- |X1-X2|=1, field((X1,Y)), field((X2,Y)).

4 1 { next(XY,XY') : field(XY ), connected(XY,XY') } 1 :- field(XY').
5 1 { next(XY,XY') : field(XY'), connected(XY,XY') } 1 :- field(XY ).

6 path(XY) :- field(XY), head(XY).

7 path(Next) :- path(XY), next(XY,Next).

8 :- field(XY), not path(XY).

9 mark(XY) :- field(XY), head(XY).

10 mark(Next) :- mark(XY), next(XY,Next), not apple(XY).

11 #minimize{ 1,XY : mark(XY) }.

for arbitrary grid sizes.2 The number of steps per iteration is bound by the number of

fields, consequently putting the naive strategy in polynomial time as well.

The naive strategy aims playing safe (G1). To minimize the total number of steps

(G2) we introduce the conservative strategy, which allows the HC to change in between

iterations. Hence, we follow the basic setup and solve MHS problems. Solving MHS lies

in FNPNP , which places the conservative strategy in the same complexity class.

Addressing the computation time (G3) we have to discuss and compare different

implementations and design choices, which will be covered throughout this publication.

3.3 Multi-shot implementation approaches

By following the conservative strategy, playing snakes boils down to generating HCs

efficiently. ASP is well suited for this task, NP-Problems can be easily expressed.

Furthermore, snake can be implemented quite space efficient as well: Algorithm 1 shows

the base logic program for the initial iteration, with head/1 and apple/1 as variable

input. field/1 defines the nodes of the grid, connected/2 the edges, next/2 repre-

sent the path choices and path/1 ensures a closed cycle. Finally, with mark/1 the path

segment between head and apple is marked to be minimized in the last line. In latter

iterations, a snake body can be enforced by manipulating corresponding next/2 atoms.

ASP base Algorithm 1 can be utilized to iteratively solve snake in different ways. A

simple approach is to ground and solve the logical program for each iteration and discard

it afterwards (one-shot). However, there are several reasons to reuse a logic program. For

2 An HC can only be derived for grid graphs with even number of fields, therefore the grid is required
to have at least one even dimension.
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Algorithm 2. Main Algorithm for iteratively computing snake paths

Input: grid dimension n × m

Output: number of total steps
1 Π ← init(n, m) // ground Algorithm 1; apple & head as external

2 ← [(1, 1)] // starts at position (1,1) with | |=1

3 steps ← 0 // step counter

4 do :
5 ← generate apple((n, m), ) // place on random, non- field

6 Π ← set external(Π, apple( ),True) // set external atoms

7 Π ← set external(Π, head( | |),True)
8 Π, path ← retrieve(Π, ) // enforce onto next/2, generate path

9 Π ← set external(Π, apple( ),False) // undo external atoms

10 Π ← set external(Π, head( | |),False)
11 , s ← follow path( , path, ) // follows path until , s steps

12 steps ← steps + s // update step count

13 while | | < n · m and not path = {}
14 return steps

instance, time intense grounding or minimal changes can be exploited, especially for iter-

ative progressing problems. There are several approaches to reuse a logic program. Main

contribution of this work is a compilation and demonstration of different approaches.

Therefore, we will now introduce five different clingo implementations to solve snake.

Technically, they will mainly differ in the method to manipulate next/2 atoms.

An outline of the wrapper functionality for multi-shot approaches can be seen in

Algorithm 2, which implements the conservative strategy. In Lines 1-3 the logic program,

and step counter are initialized. The initialization (Line 1) for multi-shot approaches

includes grounding apple/1 and head/1 as externals:

#external apple(XY): field(XY).

#external head(XY) : field(XY).

Without these (external) atoms, the optimization statement can not be formulated. In

a loop, is picked at random (Line 5) and corresponding external values for the apple

position and snake head are set (Lines 6, 7, 9, 10). The main part is represented by he

retrieve function (Line 8). Here, the values of will be tied to corresponding next/2

atoms from the logic program. Furthermore, the solve process is started and resulting

models are managed and converted into paths. The implementation of the retrieve func-

tion depends on the approach (see Algorithms 3-8). In Line 11, the new snake position

is derived from the path. The for loop stops once reached maximal length or no path

could be derived.

One-shot. one-shot can be understood as the default approach for logic programs. Here,

the current position of the snake and the apple are introduced as facts, resulting in
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Algorithm 3. retrieve for one-shot

Input: program Π, snake position list
Output: program Π, path

1 for i = 1 .. | |−1 :
2 Π ← Π ∪ ground({next( i, i+1).}) // transfer values to next/2

3 model ← solve(Π) // generate model

4 return Π, extract path(model) // extract path out of model

permanently fixing the current values. Each iteration requires grounding and solving a

new logic program from scratch. While one-shot sounds rather wasteful (especially in an

iterative setting), it comes with clear advantages as well: There is no need to consider

mechanics of extending or manipulating logic programs, thus creating a simple, stable,

straight forward and easy to debug solution. Therefore one-shot is well suited for fast

development projects with easy code maintenance or noncritical execution times.

Implementing one-shot uses a similar outline as Algorithm 2, with small changes. Line

1 would be moved into the loop before the apple placement. Instead of setting externals

(Lines 6, 7, 9, 10), facts are added to the logic program before solving:

Π ← Π ∪ ground({apple( ). head( | |).}).
The retrieve function for one-shot is outlined in Algorithm 3. The function translates

into equivalent next atom facts to be added to Π. The program is subsequently solved

and the path derived from the model returned. To fit the interface of the multi-shot

algorithm, the program Π is returned as well.

Ad hoc. As for multi-shot implementations, adding and removing rules (Gebser et al.,

2015, 2019b) will be called the ad hoc variant. Adding rules is comparatively easy, as a

program is essentially a set of rules. To disable or remove rules, we utilize external atoms,

since their truth values are assigned outside of the logic program. Basically, an external

atom is introduced as guard to a temporary rule. Once the external guard is released,

the connected rules are released as well. Released externals can not be reused.

We will explain the mechanics through the implementation of the retrieve function

from Algorithm 4, fitting into Algorithm 2. In our case an atom of step/1 is declared

to be external (Line 1). Now constraints enforcing the current positions onto next/2

are added with the external as guard (Line 3). The external is set to True (Line 4) and

the program solved. To remove the current restrictions on Π, the external is released

afterward (Line 6) and Π is suited to be used in another iteration.

In current literature, usually ad hoc is utilized, since it allows adding of previously

unspecified rules and atoms. This comes in handy, especially for logic programs with rising

horizons. Therefore ad hoc (along with one-shot) is the most flexible of all approaches. On

the downside, expanding a ground logic program may require a deeper understanding of

its underlying dependencies, as existing rules need to be compliant with the added rules.
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Algorithm 4. retrieve for ad hoc; Input: Π, ; Output: Π, path

1 Π ← Π ∪ ground({#external step(| |).}) // introducing the guard

2 for i = 1 .. | |−1 :
3 Π ← Π ∪ ground({:- step(| |), not next( i, i+1).}) // adding rules

4 Π ← set external(Π, step(| |),True) // activating guard

5 model ← solve(Π)
6 Π ← release external(Π, step(| |)) // removing guard and its rules

7 Π ← cleanup(Π) // cleanup after release

8 return Π, extract path(model) // generate path out of model

Reducing the number of temporary rules (to streamline the solving process) poses another

challenge, since its realization usually adds complexity to maintain the code.

Preground. In a restricted setting, adding and removing rules might not be a required fea-

ture and would result in unnecessary computational overhead. Pregrounding all required

temporary rules might improve computation times, reduce complexity of the code and

introduces a neat interface between the wrapper program and the logic program. Each

temporary rule acquires at least one external predicate in the body to be switched on

and off again. Pregrounding does not include the option to add rules on the fly since

all possible changes are introduced once in the beginning. Additionally, a vast amount

of inactive rules might slow down the program as well. However, preground might per-

form well on compact programs with lots of iterations, since in comparison to ad hoc no

overhead is generated.

Algorithm 2 can be extended for preground by adding the following rules to the initial

grounding in Line 1:

#external prenext(X,Y) : connected(X,Y).

:- prenext(X,Y),not next(X,Y), connected(X,Y).

By setting the external prenext/2 to True, we can enforce the corresponding next/2

atom to be True as well. Algorithm 5 indicates the functionality of the retrieve function,

which boils down to translating the snake into corresponding prenext/2 atoms and

temporary activating them before solving.

Assume. Instead of handling externals and altering the logic program every time, we

can also fix truth values for non-external atoms via assumptions. This option is limited

to truth values of atoms, therefore in many cases the introduction of auxiliary rules

and atoms is advised, comparable to preground. Assumption atoms do not require to be

declared as such and they are provided as a list of atom/truth value assignments to the

solve call. In comparison to externals, assumptions are not persistent and have to be

formulated for every solve call, which may lead to a less organized setup in compari-

son to preground. The naming convention should also be considered: names of externals
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Algorithm 5. retrieve for preground; Input: Π, ; Output: Π, path

1 for i = 1..| | − 1 :
2 Π ← set external(Π, prenext( i, i+1),True) // enforce positions

3 model ← solve(Π)
4 for i = 1..| | − 1 :
5 Π ← set external(Π, prenext( i, i+1),False) // deactivate

6 return Π, extract path(model)

Algorithm 6. retrieve for assume; Input: Π, Output: Π, path

1 assume ← [ ] // start with empty list of assumptions

2 for i = 1..| | − 1 :
3 assume.append((next( i, i+1),True)) // add atom/value tuple

4 model ← solve(Π, assumption = assume)
5 return Π, extract path(model)

are usually picked for easy access in the wrapper program, whereas assumption require

to operate on predefined atom names. Handling atoms with complex terms in clingo

can become convoluted quite fast, decreasing the readability of the code. Assume and

preground compare in functionality, with preground contributing a simpler interface and

assume being more flexible.

The retrieve function for the assume approach is shown in Algorithm 6. In clingo

assumptions are provided as an attribute to the solve call. Enforcing the position via

assumptions does not require any alterations of the logic program.

Nogood. Next to assignments of truth values to (external) atoms, clingo also offers

mechanics to influence the search progress. During the search, proven sub-results are

stored in form of (negated) conjunctions of literals, which are called clauses and nogoods

(Weinzierl, 2017). Adding custom nogoods to an ongoing search can be utilized as multi-

shot approach. Comparable to assumptions, we are able to assign truth values to not

only atoms but clauses during a solve call. The nogood approach therefore can handle

rules similar to preground without prior definition, since truth values can be assigned to

arbitrary conjunctions of literals. In clingo nogoods require sophisticated knowledge to

access: either via a customized propagator or via accessing a model from the solve call.

We implemented the latter, which causes the issue of adding constraints after obtaining

the initial model. Like this, the first model does not respect the snake placement. This can

result in an unobtainable short path, which renders the subsequent optimization futile.

However, the system can be steered to generate a predefined model using heuristics as

described in the next paragraph.
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Algorithm 7. retrieve for nogood; Input: Π, ; Output: Π, path

1. model← solve(Π, on model =my func)
2. returnΠ, extract path(model)

Algorithm 8. my func - code snipped to add as search restriction

Input: model model

1 · · ·
2 if dummy ∈ model :
3 for i = 1..| | − 1 :
4 model.context.add clause(next( i, i+1),True)
5 · · ·

To manipulate nogoods, a function to process obtained models needs to be assigned in

the solve call (here: my func). The retrieve function boils down to assigning a function

for model handling as shown in Algorithm 7.

The function my func has access to the model object during the solve call. It is its only

argument. Additional objects can be provided via object oriented programming (Gebser

et al., 2015). A partial implementation of my func can be seen in Algorithm 8. At first,

the function checks if the current model is the first obtained model and compliant with

our not yet enforced restrictions. In our implementation, this model is marked with a

special atom (dummy). If this is the case, a clause is added to enforce the current snake

placement.

To summarize: The nogood approach combines the possible expressivity of preground

without the baggage of inactive rules with the flexibility of assumptions. However, access

to nogoods requires sophisticated knowledge of the clingo API. If the nogoods are set

via the model object, mechanics to enforce a predefined first model might be necessary.

Initial model via heuristics. For the introduced strategies, we can generate one HC from

the previous iteration or a generic HC for the first iteration (compare Figure 2(a)).

Therefore, we can jump-start the current solve process, guaranteeing at least one model

for the optimization in the conservative strategy. We can utilize heuristics (Gebser et al.,

2019a) to inject this dummy model within the logic program in clingo:

{dummy}.
#heuristic dummy. [99, true]

#external heur(X,Y) : connected(X,Y).

:- dummy, heur(X,Y), not next(X,Y).

For this, an independent dummy atom is introduced and marked with a high preference

to be set to True. Additional external atoms (i.e. heur/2) can be preset to influence the
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Table 1. (a) Average number of total steps per run. Outliers are underlined.
(b) Average total time per game in seconds, timeout 60 s, best value bold

n×m 6× 6 8× 8 10× 10 12× 12 14× 14 16× 16

One-shot 213 576 1235 2441 5519 10157
Ad hoc 208 572 1226 2411 4582 7445

(a) Preground 216 563 1236 2374 4540 7482
Assume 210 563 1234 2396 4508 7540
Nogood 212 559 1240 2428 4580 7523

One-shot 0.159 2.28 71.83 621 2216 4359
Ad hoc 0.066 3.42 90.07 674 1966 3869

(b) Preground 0.060 3.32 94.71 620 1978 3870
Assume 0.059 4.78 97.48 628 1944 3853
Nogood 0.061 3.16 94.70 702 1951 3877

actual effect of the dummy atom to the models where it is contained. We are now able to

set a dummy model, which benefits computation times and is required to implement the

nogood approach via model object.

4 Experimental evaluation

Setup. To compare performance of the different approaches, we implemented all five

approaches of the conservative strategy and let them solve 100 snake games for different

square grid sizes (n=m, n∈ {6, 8, 10, 12, 14, 16}). The experiments run on a MacBook

Pro (2017, 16GB RAM, Intel Core i7, 2.8GHz), with clingo v. 5.4.0 and python v. 3.7.4.

For each run, each of the n ·m−2 iterations has a 60 s timeout for the solve call. Image

generation via clingraph (Hahn et al., 2022) is disabled.

We utilize a symmetry breaking method to mirror the grid, such that the head always

lies in the first quadrant of the grid. We used ASP-Chef (Alviano et al., 2023) for

prototyping of the logic program. Our implementation and logfiles are available online.3

Evaluation. We expect snake to be feasible to a certain extend (E1). Furthermore, we

expect multi-shot and one-shot to differ performance wise (E2), and we expect multi-

shot to outperform one-shot due to the grounding bottleneck (E3). As educated guess,

we expect ad hoc to outperform preground based on unused externals (E4). Due to

implementation details, we expect assume to terminate slightly faster than nogood (E5).

According to our three objectives, we are interested in three features: the win/loose

ratio (G1), the number of total steps (G2) and the total time (G3). Since our strategy

uses the previous HC as starting model, there is a 100% win ratio and G1 is fully met. For

G2, we compare the total number of steps, which are listed in Table 1(a). For most grid

sizes the numbers do not vary significantly. This is not surprising, since they implement

the same algorithm. However one-shot falls behind for larger grid sizes (n≥ 14, E2).

3 Software: https://github.com/elbo4u/asp-snake-ms, logfiles: doi.org/10.5281/zenodo.13234723.

https://doi.org/10.1017/S1471068424000267 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000267


Winning Snake: Design Choices in Multi-Shot ASP 785

As for the total time (G3, Table 1(b)), the multi-shot approaches do not differ sig-

nificantly except for one-shot (E2). For grid 6×6, the grounding impacts the total time

negatively, placing one-shot last (E3). This changes for grid sizes 8×8 and 10×10, where
one-shot consistently leads in total time. For 12×12 time consumption is on par and for

larger grids (14×14, 16×16) one-shot has the highest total time.

The data hint a disadvantage for one-shot for larger grids, therefore we will analyze

the step count per iteration as seen in Figure 3. For each grid size, the average number

of steps to reach the apple is plotted against the iteration number, which equals the

current length of the snake. The expected step count for the naive strategy is hinted as

gray dotted line. For smaller grids (<12×12) all implementations perform on par and the

curves show roughly the same pattern. For grid 10×10 the curve pattern changes. This can

be explained with the timeout ratio (colored dashed line), meaning all approaches would

have required more time to finish the optimization in the first iterations. The timeout was

triggered for grid 8×8 as well, but seemed to mainly affect the last step of confirming the

optimum, while for 10×10 the timeout took place during the active optimization phase

(E1). For grid 12×12 the curves for the different approaches do not differ much. However,

for grids 14×14 and 16×16 the curve for one-shot differs significantly from the multi-shot

approaches: During the first iteration, all multi-shot approaches face the same timeout

rate and impact as one-shot. However, their performance improves substantially faster in

the following iterations. We assume the multi-shot advantage is based on utilizing past

search progress in form of learned nogoods and seems to increase for larger grid sizes.

The different multi-shot approaches operate on similar levels. Assume performed best

in terms of computation times. However, the differences are minor and vary for different

setups. As educated guess, we would expect an advantage of ad hoc over preground for high

amounts of temporary rules. Our preground implementation introduces a comparatively

small number of temporary rules, and the data do not support a disadvantage of preground

for this implementation (E4). Also, we expect assume to outperform nogood, since the

handling of the nogoods counts towards the solving time. This advantage is probably too

minor to manifest in the data (E5).

Summary. All approaches guarantee winning snakes. one-shot dominated the compari-

son, until resources were limited by the timeout. The other approaches struggled with the

timeout as well, but could utilize the previous solving history, leading to a reduction of

timeouts through the iterations. The multi-shot approaches performed on similar levels,

individual rankings were not consistent throughout different setups.

5 Related work

HCs for grid graphs are well studied (Itai et al., 1982). ASP was utilized to find HCs in

general graphs (Liu and Truszczynski, 2019; Hirate et al., 2023). Several implementations

for AI approaches on playing snake are available. A variety of search algorithms is used

to play snake, varying from basic strategies such as A∗ and HCs (Appaji, 2020)4,5 to

more sophisticated approaches (Yeh et al., 2016; Wei et al., 2018). To our knowledge no

4 https://johnflux.com/2015/05/02/nokia-6110-part-3-algorithms/
5 https://github.com/BrianHaidet/AlphaPhoenix/
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Fig 3. Average number of steps (solid lines) and timeout rate in percent (dashed lines) per
iteration for different grid sizes for timeout 60s. Dotted gray line is the expected step count for

the naive strategy (baseline).
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further snake implementation in logic programming has been proposed. However, multi-

shot ASP has been used to solve iterative games such as Towers of Hanoi (Gebser et al.,

2019b) and Ricochet Robots (Gebser et al., 2015). Several (iterative) games are already

implemented in ASP, such as Rush Hour (Cian et al., 2022), Sokoban (Gebser et al.,

2008) and Icosoku (Rizzo and Dovier, 2022).

Other solvers such as DLV2 support multi-shot as well (Calimeri et al., 2022).

6 Conclusion and future work

This paper aims to compile different ASP multi-shot approaches on an compact and

hands-on showcase. While one-shot is straightforward to implement, applications with

limited resources (such as timeouts) may substantially benefit from multi-shot implemen-

tations, as demonstrated in our evaluation. For our example, the grounding bottleneck

was not an issue due to a minimalistic implementation. one-shot outperformed the multi-

shot approaches as long as the timeout was not met. For harder problems, the timeout

had a huge impact on the performance. The multi-shot approaches could utilize the

search progress from previous solving attempts, reducing the impact of the timeout in

the following iterations and therefore outperforming one-shot. The different multi-shot

approaches possess varying characteristics, therefore the optimal choice depends on the

application and the setup. The approaches ad hoc and assume have indicated stable

performance and are comparatively easy to implement.

Future work might entail another showcase application to demonstrate performance

differences between the different multi-shot approaches. In addition, while the definition

of MHS is sound, a different problem description may lead to even shorter paths while still

guaranteeing winning the game. An example scenario can be seen in Figure 2(c), where

shorter paths to enforcing a win can be derived. For this more sophisticated problem only

the snake end positioning has to be able to form an HC. However, this new problem,

resulting strategies, extended implementations and additional evaluation go beyond the

scope of this paper. Also, the introduced strategies rely on a continuous setting, meaning

our strategies can not be started from an arbitrary snake placement as seen in Figure 1(d).

Strategies starting with random snake placements may be covered in the future.
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