Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T20:50:14.881Z Has data issue: false hasContentIssue false

Magnetic field considerations for a multi-cell Penning–Malmberg trap for positrons

Published online by Cambridge University Press:  14 September 2023

D.R. Witteman
Affiliation:
Department of Physics, University of California San Diego, San Diego, CA 92093, USA
M. Singer
Affiliation:
Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany Institute for Physics, University of Greifswald, 17489 Greifswald, Germany
J.R. Danielson
Affiliation:
Department of Physics, University of California San Diego, San Diego, CA 92093, USA
C.M. Surko*
Affiliation:
Department of Physics, University of California San Diego, San Diego, CA 92093, USA
*
Email address for correspondence: csurko@ucsd.edu

Abstract

Multi-cell positron traps have been proposed to accumulate and store large numbers of positrons (e.g. ${\ge }10^{10}$). This design arranges lines of Penning–Malmberg traps (‘cells’) on and off the magnetic axis in a vacuum chamber in a common, uniform magnetic field. Confinement considerations impose additional constraints on the magnetic field beyond the usual on-axis homogeneity requirements. These requirements are discussed. A prototype magnetic field and associated coil geometry is suggested to achieve good single-component plasma confinement in all cells. Experimental confinement data as a function of electrode alignment with respect to a nominally uniform magnetic field are also presented. These results are related to the field-alignment considerations of the magnet design study.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, J., Kiwamoto, Y., Soga, Y. & Sanpei, A. 2004 Novel application of electron vortex dynamics to the alignment of magnetic and cylinder axes. Japan. J. Appl. Phys. 43 (11A), 7777.CrossRefGoogle Scholar
Baker, C.J., Danielson, J.R., Hurst, N.C. & Surko, C.M. 2015 Electron plasma dynamics during autoresonant excitation of the diocotron mode. Phys. Plasmas 22, 022302.CrossRefGoogle Scholar
Blumer, P., Charlton, M., Chung, M., Cladé, P., Comini, P., Crivelli, P., Dalkarov, O., Debu, P., Dodd, L. & Douillet, A. 2022 Positron accumulation in the gbar experiment. Nucl. Instrum. Meth. Phys. Res. A 1040, 167263.CrossRefGoogle Scholar
Cassidy, D.B. 2018 Experimental progress in positronium laser physics. Eur. Phys. J. D 72, 53.CrossRefGoogle Scholar
Charlton, M. & van der Werf, D.P. 2015 Advances in antihydrogen physics. Sci. Prog. 98, 34.CrossRefGoogle ScholarPubMed
Danielson, J.R., Dubin, D.H.E., Greaves, R.G. & Surko, C.M. 2015 Plasma and trap-based techniques for science with positrons. Rev. Mod. Phys. 87, 247.CrossRefGoogle Scholar
Danielson, J.R., Hurst, N.C. & Surko, C.M. 2013 Progress towards a practical multicell positron trap. AIP Conf. Proc. 1521, 101.CrossRefGoogle Scholar
Danielson, J.R. & Surko, C.M. 2006 a Radial compression and torque-balanced steady states of single-component plasmas in penning-malmberg traps. Phys. Plasmas 13, 055706.CrossRefGoogle Scholar
Danielson, J.R., Weber, T.R. & Surko, C.M. 2006 b Plasma manipulation techniques for positron storage. Phys. Plasmas 13, 123502.CrossRefGoogle Scholar
Dorbin, I., Enache, D., Dorbin, A., Dumitru, G., Pintea, R., Popovici, I.R. & Zamfir, S. 2020 Numerical modeling and design of a superconducting solenoid generator of 6t magnetic flux density. UPB Sci. Bull. 82, 202210.Google Scholar
Driscoll, C.F., Fine, K.S. & Malmberg, J.H. 1986 Reduction of radial losses in a pure electron plasma. Phys. Fluids 29, 2015.CrossRefGoogle Scholar
Driscoll, C.F., Malmberg, J.H. & Fine, K.S. 1988 Observation of transport to thermal equilibrium in pure electron plasmas. Phys. Rev. Lett. 60, 1290.CrossRefGoogle ScholarPubMed
Dubin, D.H.E. & O'Neil, T.M. 1999 Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states). Rev. Mod. Phys. 71, 87.CrossRefGoogle Scholar
Eggleston, D.L., McMurtry, K.J., Kabantsev, A.A. & Driscoll, C.F. 2006 Effect of axial magnetic field variations on asymmetry-induced transport in a non-neutral plasma trap. Phys. Plasmas 13, 032303.CrossRefGoogle Scholar
Fajans, J. 2003 Non-neutral plasma equilibria, trapping, separatrices, and separatrix crossing in magnetic mirrors. Phys. Plasmas 10, 1209.CrossRefGoogle Scholar
Fajans, J., Bertsche, W., Burke, K., Chapman, S.F. & van der Werf, D.P. 2005 Effects of extreme magnetic quadrupole fields on penning traps, and the consequences for antihydrogen trapping. Phys. Rev. Lett. 95, 15501.CrossRefGoogle ScholarPubMed
Fajans, J., Gilson, E. & Friedland, L. 1999 Autoresonant (nonstationary) excitation of the diocotron mode in non-neutral plasmas. Phys. Rev. Lett. 82 (22), 4444.CrossRefGoogle Scholar
Fajans, J., Madsen, N. & Robicheaux, R. 2008 Critical loss radius in a penning trap subject to multipole fields. Phys. Plasmas 15, 032108.CrossRefGoogle Scholar
Fajans, J. & Surko, C.M. 2020 Plasma and trap-based techniques for science with antimatter. Phys. Plasmas 27, 030601.CrossRefGoogle Scholar
Fine, K.S. 1988 Experiments with the $l = 1$ diocotron mode. Thesis. University of California.Google Scholar
Fitzakerley, D.W., George, M.C., Hessels, E.A., Skinner, T.D.G., Storry, C.H., Weel, M., Gabrielse, G., Hamley, C.D., Jones, N., Marable, K., Tardiff, E., Grzonka, D., Oelert, W., Zielinski, M. & ATRAP Collaboration 2016 Electron-cooled accumulation of $4 \times 109$ positrons for production and storage of antihydrogen atoms. J. Phys. B: At. Mol. Opt. Phys. 49, 064001.CrossRefGoogle Scholar
Gidley, D.W., Chi, D.Z., Wang, W.D. & Vallery, R.S. 2006 Positron annihilation as a method to characterize porous materials. Annu. Rev. Mater. Sci. 36, 49.CrossRefGoogle Scholar
Goodbread, M. & Liu, Y.S. 2022 First-principles theory of the relativistic magnetic reconnection rate in astrophysical pair plasmas. Phys. Rev. Lett. 129, 265101.CrossRefGoogle Scholar
Hart, G.W. 1991 The effect of tilted magnetic field on the equilibrium of a pure electron plasma. Phys. Fluids B3, 2987.CrossRefGoogle Scholar
Heinzen, D.J., Bollinger, J.J., Moore, F.L., Itano, W.M. & Wineland, D.J. 1991 Rotational equilibria and low-order modes of non-neutral ion plasma. Phys. Rev. Lett. 66, 2080.CrossRefGoogle ScholarPubMed
Hurst, N.C., Danielson, J.R., Baker, C.J. & Surko, C.M. 2019 Confinement and manipulation of electron plasmas in a multicell trap. Phys. Plasmas 26, 013513.CrossRefGoogle Scholar
Jorgensen, L.V., Amoretti, M., Bonomi, G., Bowe, P.D., Canali, C., Carraro, C., Cesar, C.L., Charlton, M., Doser, M. & Fontana, A. 2005 New source of dense, cryogenic positron plasmas. Phys. Rev. Lett. 95, 025002.CrossRefGoogle ScholarPubMed
Kabantsev, A. & Driscoll, C.F. 2002 Trapped-particle modes and asymmetry-induced transport in single-species plasmas. Phys. Rev. Lett. 89, 245001.CrossRefGoogle ScholarPubMed
Li, D., Ren, Y. & Wang, H. 2020 Electromagnetic design of actively shielded mri magnet for dedicated mice imaging. Physica C 575, 1353657.CrossRefGoogle Scholar
Loney, S.T. 1966 Design of compound solenoids to produce highly homogeneous magnetic fields. J. Inst. Maths Applics 2, 111.CrossRefGoogle Scholar
Malmberg, J.H. & Driscoll, C.F. 1980 Long-time containment of a pure electron plasma. Phys. Rev. Lett. 44, 654.CrossRefGoogle Scholar
Malmberg, J.H., Driscoll, C.F., Beck, B., Eggleston, D.L., Fajans, J., Fine, K., Huang, X.P. & Hyatt, A.W. 1988 Experiments with pure electron plasmas. AIP Conf. Proc. 175 (1), 2874.CrossRefGoogle Scholar
Mitchell, T.R. 1993 Experiments on electron vortices in Malmberg-Penning trap. Thesis. University of California.Google Scholar
Mohamed, T., Mohri, A. & Yamazaki, Y. 2013 Comparison of non-neutral electron plasma confinement in harmonic and rectangular potentials in a very dense regime. Phys. Plasmas 20, 012502.CrossRefGoogle Scholar
Murphy, T.J. & Surko, C.M. 1992 Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules. Phys. Rev. A 46, 5696.CrossRefGoogle Scholar
National Academies of Sciences, Engineering, and Medicine 2021 Plasma Science: Enabling Technology, Sustainability, Security, and Exploration. National Academy Press.Google Scholar
Notte, J. & Fajans, J. 1994 The effect of asymmetries on non-neutral plasma confinement time. Phys. Plasmas 1, 1123.CrossRefGoogle Scholar
Pedersen, T.S., Danielson, J.R., Hugenschmidt, C., Marx, G., Sarasola, X., Schauer, F., Schweikhard, L., Surko, C.M. & Winkler, E. 2012 Plans for the creation and studies of electron–positron plasmas in a stellarator. New J. Phys. 14, 035010.CrossRefGoogle Scholar
Ren, Y., Wang, F., Chen, Z. & Chen, W. 2010 Mechanical stability of superconducting magnet with epoxy-impregnated. J. Supercond. Nov. Magn. 23, 1589.CrossRefGoogle Scholar
Schultz, P.J. & Lynn, K.G. 1988 Interaction of positrons beams with surfaces, thin films, and interfaces. Rev. Mod. Phys. 60, 701.CrossRefGoogle Scholar
Singer, M., Konig, S., Stoneking, M.R., Steinbrunner, P., Danielson, J.R., Schweikhard, L. & Pedersen, T.S. 2021 Non-neutral plasma manipulation techniques in development of a high-capacity positron trap. Rev. Sci. Instrum. 92, 123504.CrossRefGoogle ScholarPubMed
Singer, M., Danielson, J.R., König, S., Sunn Pedersen, T., Schweikhard, L. & Stenson, E.V. 2023 Multi-cell trap developments towards the accumulation and confinement of large quantities of positrons. J. Plas. Phys (submitted).CrossRefGoogle Scholar
Stoneking, M.R., Pedersen, T.S., Helander, P., Chen, H., Hergenhahn, U., Stenson, E.V., Fikse, G., Linden, J., Saitoh, H. & Surko, C.M. 2020 A new frontier in laboratory physics: Magnetized electron-positron plasmas. J. Plasma Phys. 86, 155860601.CrossRefGoogle Scholar
Surko, C.M. & Greaves, R.G. 2003 A multicell trap to confine large numbers of positrons. Radiat. Phys. Chem. 68, 419.CrossRefGoogle Scholar
Wahl, R.L. & Buchanon, J.W. 2002 Principles and Practice of Positron Emission Tomography. Lippincott Williams and Wilkins.Google Scholar
Westbrook, C. 2014 Handbook of MRI Technique. Wiley-Blackwell.Google Scholar