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In psychometrics, the canonical use of conditional likelihoods is for the Rasch model in measurement.
Whilst not disputing the utility of conditional likelihoods in measurement, we examine a broader class
of problems in psychometrics that can be addressed via conditional likelihoods. Specifically, we consider
cluster-level endogeneity where the standard assumption that observed explanatory variables are indepen-
dent from latent variables is violated. Here, “cluster” refers to the entity characterized by latent variables
or random effects, such as individuals in measurement models or schools in multilevel models and “unit”
refers to the elementary entity such as an item in measurement. Cluster-level endogeneity problems can
arise in a number of settings, including unobserved confounding of causal effects, measurement error, ret-
rospective sampling, informative cluster sizes, missing data, and heteroskedasticity. Severely inconsistent
estimation can result if these challenges are ignored.
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1. Introduction

As is often the case for concepts in statistics, the term “conditional likelihood” has many
meanings. It has, for instance, been used to refer to likelihoods where conditioning is on (1)
exogenous explanatory variables (e.g., Gourieroux & Monfort, 1995), (2) latent variables (e.g.,
Aigner et al., 1984), (3) the outcome variable, for instance in capture-recapture modeling of
population size (e.g., Sanathanan, 1972) and ascertainment correction in biometrical genetics
(e.g., Pfeiffer et al., 2001), (4) previous outcomes, for instance in autoregressive time-series
models (e.g., Box & Jenkins, 1976) and peeling in phylogenetics (e.g., Felsenstein, 1981), (5)
order statistics (e.g., Kalbfleisch, 1978), or (6) sufficient statistics.

In this address we follow the seminal theoretical work of Andersen (1970, 1973a) and
Kalbfleisch and Sprott (1970) and let a conditional likelihood be obtained by conditioning on
sufficient statistics for incidental parameters in order to eliminate these parameters. In the con-
text of latent variable or mixed effects modeling, the incidental parameters are the values taken
by latent variables for a set of clusters, for example individuals or organizational units.
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In psychometrics, the canonical use of conditional likelihoods is in measurement relying on
the Rasch model (Rasch, 1960) and its extensions. As demonstrated by Rasch, estimation of item
parameters can in this case be based on a conditional likelihood where the person parameters
are eliminated by conditioning on their sufficient statistics. It is often argued that Rasch models
and conditional maximum likelihood (CML) estimation are advantageous in measurement (e.g.,
Fischer, 1995a). Indeed, Molenaar (1995) closes his excellent overview of estimation of Rasch
models in the following way:

“Unless there are clear reasons for a different decision, the present author would
recommend to use CML estimates.”

Conditional likelihoods have been used for a variety of problems in measurement; see Fischer
(1995b; 1995c), Formann (1995), Maris and Bechger (2007), Verhelst (2019), von Davier and
Rost (1995), and Zwitser and Maris (2015) for a small selected sample.

We are certainly not disputing the utility of CML estimation in measurement. However, we
will argue that conditional likelihoods perhaps have a more important role to play in address-
ing endogeneity problems in psychometrics. Focus will be on cluster-level endogeneity, where
covariates and latent variables are dependent, a problem ignored by popular methods which can
therefore produce severely inconsistent estimates. Fortunately, CML estimation, an instance of
what is referred to as “fixed-effects estimation” in econometrics, can rectify this problem.

Our plan is as follows. First we introduce some latent variable models and discuss the cluster-
level endogeneity problem whose origins, effects and alleviation we will examine. We proceed to
delineate the ideas of protective and mitigating estimation of target parameters before describing
the incidental parameter problem of joint maximum likelihood (JML) estimation. Two approaches
that address that problem are discussed: marginal maximum likelihood (MML) and conditional
maximum likelihood (CML) estimation. We demonstrate that CML estimation, in contrast to
MML estimation, handles cluster-level endogeneity, and describe an endogeneity-correcting fea-
ture ofMMLestimation for large clusters. The scope of CML estimation is then extended followed
by a discussion of MML estimation of augmented models that can accommodate cluster-level
endogeneity. Several reasons for cluster-level endogeneity are investigated (unobserved cluster-
level confounding of causal effects, cluster-specific measurement error, retrospective sampling,
informative cluster sizes, missing data, and heteroskedasticity) and we show how different esti-
mators perform in these situations. Thereafter, we discuss latent variable scoring before closing
the paper with some concluding remarks.

2. Clustered Data

We consider data consisting of clusters j ( j = 1, . . . , N ) that contain units i j (i = 1, . . . , nj ).
Units are typically exchangeable within clusters in cross-sectional multilevel designs. An example
is students i j nested in schools j , where the index i associated with the students within a school
is arbitrary.

Units are non-exchangeable within clusters in two settings: (a) longitudinal designs where
i is the chronological sequence number of the time-point when a subject was observed and (b)
measurement designs where i is the item (or question) responded to by a subject. In the non-
exchangeable case, when i corresponds to the same time-point or item across subjects j , we will
refer to i as an “item.” The different kinds of clustered data are illustrated in Fig. 1.
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Figure 1.
Illustration of clustered data for N = 3 clusters and n = 2 units per cluster. Exchangeable units (upper panel) and
non-exchangeable units (lower panel).

3. Latent Variable Model

We consider generalized linear mixed models (GLMMs) with canonical link functions (see,
e.g., Rabe-Hesketh&Skrondal, 2009).Given the cluster-specific latent variables or randomeffects
ζ j , the model for an outcome yi j is a generalized linear model (GLM) with three components
(e.g., Nelder & Wedderburn, 1972): a linear predictor νi j , a link function g(μi j ) = νi j that links
the linear predictor to the conditional expectation μi j of the outcome, and a conditional outcome
distribution from the exponential family.

For a GLMM, we express the linear predictor as

νi j = x′
i jβ + v′

jγ + z′
i jζ j , (1)

where:

• β is a vector of parameters for the unit-specific vector xi j . For exchangeable units β

are regression coefficients for unit-specific covariates xi j . For non-exchangeable units
β contains a vector of item-specific intercepts and a vector of regression coefficients.
Correspondingly, xi j includes an elementary vector (where one of the elements is 1 and
the other elements are 0) that picks out the intercept for item i , and item-specific and/or
unit-specific covariates.

• γ is a vector of parameters for the cluster-specific vector v j . For non-exchangeable units
γ are regression coefficients for cluster-specific covariates v j . For exchangeable units γ

includes an overall intercept and regression coefficients for the cluster-specific covariates
in v j , and v j includes a 1 and cluster-specific covariates.

• ζ j is a vector of cluster-specific latent variables or random intercept and possibly random
coefficients for the vector zi j of item-specific and/or unit-specific covariates (that are often
partly overlapping with xi j )

The conditional expectation of the outcome, given the covariates and latent variables, is

μi j ≡ E(yi j |xi j , zi j , v j , ζ j ) = g−1(νi j ),

and the conditional outcome distribution can be written as

p(yi j |xi j , zi j , v j , ζ j ) = exp

{
yi jνi j − b(νi j )

φ
+ c(yi j , φ)

}
, (2)
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where φ is the scale or dispersion parameter, and b(·) and c(·) are functions depending on the
member of the exponential family.

We confine our treatment to three GLMs:

(i) Normal distribution (where φ=σ 2) and identity link for continuous outcomes,
p(yi j |xi j , zi j , v j , ζ j ) = (σ

√
2π)−1 exp{− 1

2σ 2 (yi j − νi j )
2} and g(μi j ) = μi j

(ii) Bernoulli distribution and logit link for binary outcomes,

p(yi j |xi j , zi j , v j , ζ j ) = μ
yi j
i j (1 − μi j )

1−yi j and g(μi j ) = log

{
μi j

1−μi j

}

(iii) Poisson distribution and log link for counts,
p(yi j |xi j , zi j , v j , ζ j ) = exp[− exp(νi j )] exp(νi j )yi j /yi j ! and g(μi j ) = log(μi j )

Other members of the exponential family include the gamma and inverse-Gaussian distributions.
For simplicity we concentrate on a special case of (1) with linear predictor

νi j = x′
i jβ + v′

jγ + ζ j . (3)

It should be emphasized that this model encompasses popular latent variable or mixed models,
such as generalized linear random-intercept (multilevel or hierarchical)models, andRaschmodels
(Rasch, 1960) and their extensions such as “explanatory” IRT (De Boeck & Wilson, 2004).

We will in the sequel also use extensions of GLMMs such as generalized linear latent and
mixed models (GLLAMMs) of Rabe-Hesketh et al. (2004) and Skrondal and Rabe-Hesketh
(2004).

4. Cluster-Level Exogeneity and Endogeneity

Our focus is on the challenges that arise in estimation of latent variable models when there
is cluster-level endogeneity. Before embarking on the challenges we must explicitly define what
we mean by this term. Let wj represent all observed covariates for cluster j . We say that there is
cluster-level exogeneity if all covariates are independent of the cluster-specific intercepts;wj |� ζ j .
In contrast, cluster-level endogeneity occurs if at least one covariate in wj is not independent of
ζ j ; wj ��|� ζ j .

The definitions of cluster-level exogeneity and cluster-level endogeneity are represented in
the graphs in the left and right panels of Fig. 2, respectively. This kind of graph, which we find
useful and will use throughout, resembles traditional directed acyclic graphs (DAGs) but nodes
can represent vectors of random variables here. An arrow between two nodes means that the
probability distribution of the node that the arrow points to depends on the value taken by the
emanating node. The undirected arc between ζ j and w j in the right panel indicates that there is
dependence between ζ j and at least one element of w j .

When exploring reasons for cluster-level endogeneity in Section 12 we will rather informally
rely on the d-separation criterion (e.g., Verma & Pearl, 1988) and the equivalent moralization
criterion (Lauritzen et al., 1990) to infer cluster-level endogeneity from graphs of latent vari-
able models, assuming “stability” or “faithfulness” to preclude dependence paths cancelling out.
Sometimes wewill examine likelihood contributions to show how cluster-level endogeneity arises
and the consequences.
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Figure 2.
Cluster-level exogeneity (left panel) and cluster-level endogeneity (right panel).

5. Protective and Mitigating Estimation of Target Parameters

In this address we will focus on the performance of point estimators under cluster-level
endogeneity as the number of clusters N becomes large, whereas the cluster sizes n j are fixed
and could be small. A classical goal in statistical modeling is (weak) consistency of estimators for
all model parameters as N → ∞. However, this typically requires a correctly specified model,
an assumption that we often deem to be naive.

A less ambitious but more realistic goal is protective estimationwhich is consistent for target
parameters but possibly inconsistent for other parameters (Skrondal & Rabe-Hesketh, 2014). Our
target parameters throughout will be the subset of coefficients in β corresponding to the unit-
specific covariates xi j in (3). These covariates could be time-varying variables in a longitudinal
study, characteristics of units i j in a multilevel study, or attributes of items i or item-subject
combinations i j in measurement.

An even less ambitious goal is what we will refer to as mitigating estimation where it is
likely (but not guaranteed) that estimation of the target parameters β is less inconsistent than
conventional estimation that ignores misspecification. Although mitigation in this sense cannot
be formally proved, it can be made plausible by theoretical arguments and based on evidence from
simulations. The hope is that “almost consistent” estimators (e.g., Laisney & Lechner, 2003) can
be obtained. In reality, mitigating estimation will sometimes be the most realistic goal.

6. Incidental Parameter Problems and Their Solutions

The distinction between structural parameters and incidental parameters was introduced in
a seminal paper by Neyman and Scott (1948). For linear predictor (3), the structural parameters
ϑ include β and γ (and σ 2 if relevant), whereas the ζ j are incidental parameters because their
number increases in tandem with the number of clusters N . In econometrics a structural param-
eter is usually a causal parameter and for this reason Lancaster (2000) used the term “common
parameter”.

Let y and w denote all outcomes and covariates for the sample, respectively. Assume that
the outcomes y j for the clusters are conditionally independent across clusters and the outcomes
yi j for cluster j are conditionally independent, given the covariates and latent variable ζ j . The
joint likelihood for the structural parameters ϑ and the latent variables ζ1, . . . , ζN (here treated
as unknown parameters) becomes

p(y|w;ϑ, ζ1, . . . , ζN ) =
N∏
j=1

n j∏
i=1

p(yi j |w j ;ϑ, ζ j ). (4)
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The incidental parameter problem (Neyman & Scott, 1948; see also Lancaster, 2000) refers
to the fact that joint maximum likelihood (JML) estimation of both structural and incidental
parameters need not be consistent for the structural parameters ϑ as N → ∞ for fixed cluster
sizes n j . The problem arises because estimation of each ζ j must often rely on a small number of
units n j in the cluster. Viewing the cluster sizes as produced by n j = n × m j , where m j has a
mean of 1, the inconsistency in estimating ϑ for the models considered here is of order n−1 (e.g.,
Arellano & Hahn, 2007). Note that JML estimation has also been referred to as unconditional
maximum likelihood estimation (e.g., Wright & Douglas, 1977) and unconstrained maximum
likelihood estimation (e.g., de Leeuw & Verhelst, 1986) in psychometrics.

There is no incidental parameter problem when the joint likelihood can be factorized into
two components, one just containing structural parameters and the other just incidental param-
eters. Such likelihood orthogonality (e.g., Lancaster, 2000) occurs for linear predictor (3) with
(a) identity link and normal conditional distribution (e.g., Chamberlain, 1980) and (b) log link
and Poisson conditional distribution (e.g., Cameron & Trivedi, 1999). For these models JML
estimation is consistent for β when N → ∞ for fixed nj .

In general, consistent JML estimation can be achieved under a double-asymptotic scheme
where both the number of units per cluster increases n → ∞ and the number of clusters increases
N → ∞. In psychometrics, a classical result is that β̂

JML
is consistent for the Rasch model in this

case if N
n → ∞ (Haberman, 1977). Based on simulation evidence, Greene (2004) observed that

β̂
JML

appears to be consistent for many latent variable models used in econometrics under double
asymptotics. However, appealing to double asymptotics is unconvincing when n is not large.

For the simple Rasch model, the inconsistency of JML estimation can be derived and cor-
rected. When n = 2, Andersen (1973a) showed that plim β̂

JML = 2β as N → ∞, so 1
2 β̂

JML

is consistent. For general n, Wright and Douglas (1977) observed that the finite sample bias is
approximately 1

n−1 β and discussed the bias correction n−1
n β̂

JML
. Andersen (1980, Theorem 6.1)

stated the same result for inconsistency. For more complex models, methods that reduce inconsis-
tency from order n−1 to n−2 are discussed in Arellano and Hahn (2007). For instance, a modified
profile likelihood where the incidental parameters ζj are “profiled out” of the joint likelihood has
been used for models with linear predictors such as (3) by Bellio and Sartori (2006) and Bartolucci
et al. (2016). This approach can produce mitigating estimation.

An approach usually called marginal maximum likelihood (MML) estimation in psycho-
metrics is the most popular for linear predictor (3). Here, ζj is treated as a random variable
and “integrated out” of the joint likelihood, as proposed in early work by Kiefer and Wolfowitz
(1956). Note that the statistical literature typically refers to this likelihood as integrated and that
their marginal likelihood “transforms away” incidental parameters (e.g., Kalbfleisch & Sprott,
1970). The terms unconditional maximum likelihood estimation (e.g., Bock & Lieberman, 1970)
and, simply, maximum likelihood estimation (e.g., Holland, 1990) have also been used in psycho-
metrics. Under assumptions including cluster-level exogeneity, MML is consistent for all model
parameters.

Alternatively, conditional maximum likelihood (CML) estimation can be used where ζj is
treated as a fixed parameter and “conditioned out” of the joint likelihood. The idea of CML
estimation was discussed already by Bartlett (1936, 1937a), the eminent British statistician whose
name is associated with factor scores in psychometrics (e.g., Bartlett, 1937b). We will see that
CML can yield protective estimation of β under cluster-level endogeneity.

7. Marginal Maximum Likelihood (MML) Estimation

Inmarginal maximum likelihood (MML) estimation the cluster-specific intercept ζj is treated
as a random variable in estimation. The following assumptions are usually made:

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 13:43:56, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


ANDERS SKRONDAL, SOPHIA RABE-HESKETH 805

[A.1] Cluster independence: p(y|w, ζ1, . . . , ζN ;ϑ) = ∏N
j=1 p(y j |wj , ζ j ;ϑ)

[A.2] Conditional unit independence: p(y j |w j , ζ j ;ϑ) = ∏n j
i=1 p(yi j |wj , ζ j ;ϑ)

[A.3] Strict exogeneity conditional on the latent variable:
p(yi j |wj , ζj ;ϑ) = p(yi j |xi j , vj , ζj ;ϑ); i.e., given the latent variable, the outcome for a
unit only depends on covariates for that unit
[A.4] Correct conditional distribution: p(yi j |xi j , vj , ζj ;ϑ) follows (2) and (3)
[A.5] Cluster-level exogeneity: p(ζj |wj ) = p(ζj )
[A.6] Latent variable normality: p(ζ j ) = φ(ζ j ; 0, ψ); a normal density with zero expec-
tation and variance ψ

Using [A.2]-[A.6], themarginal likelihood contribution of cluster j simplifies in the following
way:

LMML
j ≡ p(y j |wj ;ϑ) =

∫
ζj

p(y j |wj , ζj ;ϑ) p(ζj |wj ) dζj

=
∫

ζj

{ n j∏
i=1

p(yi j |xi j , vj , ζj ;ϑ)

}
φ(ζ j ; 0, ψ) dζj ,

where we see that ζ j is marginalized over or integrated out of the joint likelihood.
φ(ζ j ; 0, ψ) can be interpreted as the density of a cluster-specific disturbance in a data-

generating mechanism or as a superpopulation density of clusters in survey sampling. That the
ζ j are independently and identically distributed random variables can be motivated by exchange-
ability of the clusters (e.g., Draper, 1995).

Using [A.1], MML estimation proceeds by maximizing the likelihood LMML = ∏N
j=1 LMML

j

w.r.t. β, γ and ψ (and σ 2 if relevant). If the above assumptions are satisfied, MML estimators are
consistent as N → ∞ for fixed nj for all parameters under appropriate regularity conditions (e.g.,
Butler & Louis, 1997). Importantly, standard MML estimation becomes inconsistent, possibly
severely, for all link functions when the exogeneity assumptions are violated. As we will see
momentarily, inconsistency due to violation of [A.5] can arise because MML estimation of β

exploits both within-cluster and between-cluster information, and the latter can be contaminated
by cluster-level endogeneity.

7.1. MML Estimation for Identity Link and Normal Distribution

It is instructive to consider the linear predictor (3) with an identity link and a normal condi-
tional distribution that can be written as

yi j = x′
i jβ + v′

jγ + ζj + εi j , (5)

where εi j is an additive normally distributed unit-level error term, p(εi j |xi j , vj , ζj ) =
φ(εi j ; 0, σ 2).

For identity links the assumptions given above are stricter than necessary for consistent
MML estimation. First, for identity and log links, [A.4] can be replaced by the more lenient
assumption that μi j is correctly specified (and the domain of yi j for the assumed exponential
family distribution encompasses the domain of the correct distribution). This extends the idea of
pseudo maximum likelihood (PML) estimation (Gourieroux et al., 1984) to what we may call
pseudo marginal maximum likelihood estimation in the latent variable setting. For the identity
link, [A.3], [A.4], and [A.5] can be replaced by (5) with a weaker set of assumptions where
normality is relaxed for ζj and εi j , E(εi j |wj , ζj ) = 0 (a mean-independence version of “unit-level
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exogeneity”), and E(ζj |wj ) = 0 (e.g., Wooldridge, 2010, p. 292). Second, for the identity link,
consistent estimation of β and γ neither requires assumption [A.2], see Zeger et al. (1988), nor
assumption [A.6], see Verbeke and Lesaffre (1997).

We now outline how MML estimation relies on both between-cluster and within-cluster
information, for simplicity omitting v′

jγ from model (5) and letting nj = n. The total sum of
squares of yi j can then be decomposed into two contributions:

Tyy = N
	
j=1

n
	
i=1

(yi j − y··)2 = N
	
j=1

n
	
i=1

(yi j − y· j )2 + N
	
j=1

n
	
i=1

(y· j − y··)2 = Wyy + Byy , (6)

where Wyy represents the within-cluster variation and Byy the between-cluster variation. We use
similar decompositions of Txx into Wxx and Bxx, and Txy into Wxy and Bxy . For known variance
components ψ and σ 2, the MML estimator is the generalized least squares (GLS) estimator that
Maddala (1971) shows can be expressed as

β̂
GLS = (Wxx + ωBxx)

−1(Wxy + ωBxy), (7)

where ω ≡ σ 2

σ 2+nψ
is the weight given to the between-cluster variation. The GLS estimator in

essence combines the between-cluster and within-cluster estimators of β by weighting them in
inverse proportion to their respective variances. Fuller and Battese (1973) demonstrate that the
GLS estimator can be obtained by using ordinary least squares (OLS) for the transformed data
ỹi j = yi j − θ y· j and x̃i j = xi j − θx· j , where θ = 1 − √

ω. The probability limit of β̂
GLS

as
N → ∞ can be expressed as

plim β̂
GLS = β + ω 	−1

x̃ 	xζ , (8)

where 	x̃ is the covariance matrix of x̃i j , and 	xζ is the covariance matrix of xi j with ζj . Impor-
tantly, the estimator is inconsistent if cluster-level exogeneity [A.5] is violated because this implies
that 	xζ �= 0.

Analytical integration is trivial for models with conjugate latent variable densities for which
LMML can be written in closed form. For a GLMMwith linear predictor (3) and identity link,LMML

simply takes the form of the (ordinary) likelihood of a multivariate normal regression model with
E(y j |w j ) = X jβ + (1nj ⊗ v′

j )γ (where x′
1 j , . . . , x

′
n j j

are the rows of X j ) and Var(y j |w j ) =
ψ1nj 1

′
nj +σ Inj .MML estimation of linearmixedmodels when variance components are unknown

is discussed by Laird and Ware (1982) using the EM algorithm and by Goldstein (1986) using
iterative generalized least squares (IGLS).

7.2. MML Estimation for Logit Link and Bernoulli Distribution or Log Link and Poisson
Distribution

Because μi j is nonlinear in ζj for log and logit links, LMML cannot be expressed in closed
form andmaximization is usually based on numerical integration (e.g., Rabe-Hesketh et al., 2005)
or Monte Carlo integration (e.g., Booth & Hobert, 1999).

Unfortunately, it is difficult to assess the normality assumption for the latent variables [A.6]
for logit links. However, MML estimators for regression coefficients are almost consistent if
[A.6] is violated, whereas estimators for intercepts and random effect variances can be severely
inconsistent if the correct latent variable density is highly skewed (e.g., Neuhaus et al., 1992).
The threats posed by violation of the cluster-level exogeneity assumption [A.5] persist.
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8. Conditional Maximum Likelihood (CML) Estimation

We retain assumptions [A.1]-[A.4] stated for MML estimation but now relax assumptions
[A.5] and [A.6] regarding the latent variable distribution.

Using the exponential family distribution (2) in conjunction with linear predictor (3), we
obtain

p(y j |w j ;ϑ, ζ j ) ∝ exp

{
β ′

n j∑
i=1

xi j yi j + (ζ j +γ ′vj )
n j∑
i=1

yi j −
n j∑
i=1

b(νi j )

}
.

It follows from the Neyman-Fisher factorization theorem (e.g., Pawitan, 2001, Theorem 3.1) that
for known β, the cluster-specific sumscore of the outcomes,

∑n j
i=1 yi j , is a sufficient statistic for

ζ j + γ ′v j (and that
∑n j

i=1 xi j yi j is a sufficient statistic for β).

The conditional likelihood contribution of cluster j , given τ j ≡ ∑n j
i=1 yi j , can be expressed

as

LCML
j ≡ p(y j |τ j ,w j ;ϑ, ζ j ) =

∏n j
i=1 p(yi j |xi j , vj ;ϑ, ζ j )

p(
∑n j

i=1 yi j |xi j , vj ;ϑ, ζ j )
.

Importantly, the cluster-specific term ζ j + v′
jγ cancels out of the numerator and denominator of

LCML
j and the latent variable assumptions [A.5] and [A.6] are therefore no longer required.

CML estimation proceeds by maximizing the conditional likelihood LCML = ∏N
j=1 LCML

j

w.r.t. ϑ , where ϑ is a vector containing β (and σ 2 if relevant) here. If the above assumptions
are satisfied together with appropriate regularity conditions, CML estimators are consistent as
N → ∞ for fixed n j (e.g., Andersen, 1970, 1973a).

The conditional likelihood LCML is almost invariably derived by treating the cluster-specific
latent variable ζ j as a fixed parameter, although Sartori and Severini (2004) show that the same
LCML results if ζ j is treated as a random variable. ζ j is usually interpreted as fixed when using
CML estimation in psychometrics (e.g., Holland, 1990), whereas the “fixed effects framework”
of econometrics interprets ζ j as a random variable that can have arbitrary dependence with the
covariates (e.g., Wooldridge, 2010, p. 286).

In contrast toMMLestimation,CMLestimation is based on solelywithin-cluster information.
A great advantage of CML estimation is therefore that it is protective for the target parameters
β if [A.1]-[A.4] are satisfied, regardless of the latent variable distribution and even if there is
cluster-level endogeneity. It is usually not recognized that CML estimation also has a role to play
under exogeneity because performance does not rely on v′

jγ being the correct specification of the
functional form for v j .

A cost of CML estimation is that it can be inefficient because it just exploits within-cluster
information. Inefficiency is particularly acute when there is little within-cluster variation in the
unit-specific covariates. Hence, CML estimationmay have larger mean squared errors for estimat-
ing β thanMML estimation, even under cluster-level endogeneity (e.g., Palta &Yao, 1991). Also,
using CML estimation to remove cluster-specific slopes can lead to pronounced inefficiency.

CML estimation is primarily useful if the coefficients β of unit-specific covariates are the
target parameters because the coefficients γ of cluster-specific covariates and the covariance
parameters of random effects cannot be estimated. In our view, this may actually be beneficial
because these parameters are inconsistently estimated by standard MML if there is cluster-level
endogeneity.
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Interactions between cluster-specific and unit-specific covariates become elements of β and
can be estimated by CML for models with cluster-specific intercepts. For instance, the treatment-
by-time interaction is often the target parameter in longitudinal datawith time-invariant treatments.
In models with cluster-specific random coefficients, the vectors xi j and zi j often include com-
mon variables and the corresponding elements of β are conditioned away by CML. Hence, the
treatment-by-time interaction parameter cannot be estimated by CML in a model with cluster-
specific slopes of time (e.g., Liang & Zeger, 2000).

In some situations covariate measurement error or misclassification problems can be more
serious for CML than MML estimation (e.g., Griliches & Hausman, 1986; Frisell et al., 2012).
However, CML estimation is immune to such problems for v j and we will later show that cluster-
specific covariate measurement error for xi j is handled.

We now show the form taken by the conditional likelihood contribution LCML
j for identity,

logit and log links.

8.1. CML Estimation for Identity Link and Normal Distribution

Using that the sum of conditionally independent normally distributed random variables has
a normal distribution, the conditional likelihood contribution for cluster j in model (5) becomes
(e.g., Chamberlain, 1980)

LCML
j = n1/2j (

√
2πσ)−(n j−1) exp

{
− 1

2σ 2

n j∑
i=1

[
(yi j −y· j )−(xi j −x· j )′β

]2}
.

We see that the cluster-level component ζ j+v′
jγ has cancelled out of LCML

j and that a cluster does
not contribute to estimation of β if the xi j do not vary within the cluster.

For the identity link, assumption [A.2] is not required for consistent estimation, and [A.4]
can be replaced by Cor[(xi j −x· j ), (εi j −ε· j )] = 0. The effects of violating this zero-correlation
assumption can in some cases be more severe for CML than MML estimation (e.g., Bound &
Solon, 1999; Frisell et al., 2012). This can be addressed by using instrumental variables (IV)
estimation if plausible instruments are available (e.g., Ebbes et al., 2004). Chamberlain (1984,
1985) proposes tests of [A.3] for the identity link (and the probit link) and Sjölander et al. (2016)
derive the inconsistency produced by various violations of [A.2] and [A.3] for the identity link
(and the logit link for some instances) in sibling designs.

For the identity link there are several alternative ways of implementing CML estimation of
β. We will briefly describe them below because they provide insight into basic features of CML
estimation and its connection to other estimation methods in this particular case.

8.1.1. Cluster-Mean Centering and Maximum “Marginal” Likelihood Estimation in Statistics
Consider the cluster-mean centered or within-cluster model

yi j − y· j = (xi j − x· j )′β + (εi j − ε· j ), (9)

which is an example of a “workingmodel” derived from the assumed data-generating mechanism.
We see that ζ j is swept out of the model and any misspecification related to ζ j is therefore
immaterial. However, v′

jγ (and actually any cluster-specific function of v j ) is also swept out
which precludes estimation of γ . On the other hand, MML estimation of γ is inconsistent if either
xi j or v j are cluster-level endogenous as is estimation of both β and γ if the functional form v′

jγ

is incorrect.
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Themaximum likelihood (ML) estimator ofβ in thismodel coincideswith theCMLestimator,
which it not surprising given the resemblance of (9) with the argument of the exponential function
in LCML

j . Furthermore, the CML estimator of β is the within-cluster ordinary least squares (OLS)
estimator

β̂
CML = W−1

xx Wxy,

which is the special case of (7) where ω = 0 and between-cluster information is hence ignored.
Using standard terminology in statistics (e.g., Pawitan, 2001), the likelihood based on (9)

can be viewed as a marginal likelihood that “transforms away” the nuisance parameters (here
the incidental parameters ζ j ) by considering the implied model for the deviations from cluster
means yi j − y· j . The canonical example of a marginal likelihood in the statistical sense is the
restricted or residual likelihood of Patterson and Thompson (1971) for variance components
in linear mixed models, where regression coefficients are nuisance parameters. Recall that this
meaning of “marginal” is different from that in psychometrics where it refers to a likelihoodwhere
random ζ j are “integrated out”.

Goetgeluk and Vansteelandt (2008) use cluster-mean centering to consistently estimate β

under cluster-level endogeneity by conditional generalized estimating equations (CGEE), an esti-
mator that can also be used for log links.

8.1.2. Cluster-Specific Dummy Variables and JML Estimation Alternatively, we can use JML
estimation for β in a workingmodel that includes dummy or indicator variables with fixed cluster-
specific coefficients ζ j

yi j = x′
i jβ +

∑
N
r=1 dr jζr + εi j , (10)

where the dr j take the value 1 if r = j and 0 otherwise. Note that v′
jγ is omitted because v j is

collinear with the dummy variables dr j . JML estimation of β can simply proceed by using OLS
to estimate (10).

The use of a fixed parameter for each cluster explains why CML and related estimators
are often referred to as fixed-effects estimators in econometrics. In that literature, MML and
related estimators that assumecluster-level exogeneity are referred to as random-effects estimators,
although the estimands are not the random effects.

By explicitly controlling for clusters in this way we are estimating pure within-cluster effects.
The clusters are said to act as their own controls, and estimation is therefore immune to cluster-
level endogeneity. As mentioned earlier, there is no incidental parameter problem in this case
and β̂

JML = β̂
CML

is consistent as N → ∞ for fixed n j . Consistency of ζ̂ JML
j requires a double-

asymptotic scheme where both n j → ∞ and N → ∞.

8.1.3. Auxiliary Linear Projection and MML Estimation In the Mundlak-device (Mundlak,
1978) the cluster means x· j of the unit-specific covariates xi j are included in the model. This can
be viewed as handling violation of [A.5] by considering an auxiliary linear projection

ζ j = x′· jδ + u j , (11)

where Cov(x· j , u j ) = 0 per construction. Substituting the linear projection in (5), we obtain

yi j = x′
i jβ + x′· jδ + v′

jγ + u j + εi j ,
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which can be expressed as the following model that is estimated in the “hybrid method” of Allison
(2009):

yi j = (x′
i j −x′· j )β + x′· j (β+δ) + v′

jγ + u j + εi j . (12)

For the identity link, MML estimation (or ML/OLS estimation treating the composite error
terms u j + εi j as independent) of these working models produces the consistent CML estimator
of β, even if the linear projection does not coincide with the correct auxiliary statistical model
or “data-generating mechanism”. Contrary to common belief (e.g., Allison, 2009), the hybrid
method is inconsistent for γ (andψ) even if vj is cluster-level exogenous because δ absorbs some
of the effects of the cluster-level covariates vj (Castellano et al., 2014).

8.1.4. Including Deviations fromClusterMeans and E-Estimation In the vector version of (12)
for cluster j , the matrix of cluster mean deviations X j − 1n j ⊗ x′· j is orthogonal to 1n j ⊗ v′

j and
1n j ζ j , so the CML estimator for β is obtained by estimating the simplified working model

yi j = (x′
i j −x′· j )β + εi j ,

by ML/OLS.
This can be viewed as a variant of E-estimation of β (e.g., Robins et al., 1992). Here, spec-

ification of a correct model for the association between the outcome and possibly unknown
cluster-level covariates in the “outcome model” is avoided by breaking the correlation between
the unit-level covariates (“exposures” xi j ) and cluster-level variables ζ j and v j in the “exposure
model” through the inclusion of x· j (see also Goetgeluk & Vansteelandt, 2008).

8.1.5. Using Deviations from Cluster Means as Instrumental Variables Because xi j − x· j is
correlated with xi j whereas X j − 1n j ⊗ x′· j is orthogonal to 1n j ζ j by construction, xi j − x· j
can serve as instrumental variable for xi j in the outcome model (5). Instrumental variables (IV)
estimators, such as two-stage least squares (2SLS), are then identical to the CML estimator for β.

8.2. CML Estimation for Logit Link and Bernoulli Distribution

We now consider linear predictor (3) with a logit link and a Bernoulli conditional distribution.
The conditional likelihood contribution for cluster j can be expressed as (e.g., Chamberlain, 1980)

LCML
j =

∏n j
i=1 exp(x

′
i jβ)yi j∑

d∈B j

∏n j
i=1 exp(x

′
i jβ)di

. (13)

Here,

B j =
{
d=(d1, . . . , dn j )

′ : di ∈{0, 1},
∑ n j

i=1 di =τ j

}
(14)

is the set of all
(n j
τ j

)
permutations of zeros and ones whose sum equals τ j , the observed value of

the sufficient statistic for ζ j .
We note that ζ j +v′

jγ has cancelled out of LCML
j . Also, a cluster does not contribute to the

conditional likelihood if its outcomes yi j are all 0 or all 1, or xi j does not vary in the cluster.
CML estimation appears computationally demanding but is feasible even for large n j by using
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recursive algorithms (e.g., Howard, 1972; Gustafsson, 1980) or Markov chain Monte Carlo (e.g.,
Rice, 2004). For very large n j , approximations can be based on composite conditional likelihoods
(e.g., Liang, 1987) or random sampling of permutations inB j (e.g., D’Haultfæuille & Iaria, 2016).
For n= 2, LCML

j simplifies to the standard likelihood contribution of a logistic regression model
with binary outcome equal to 1 if (y1 j =0, y2 j =1) and equal to 0 if (y1 j =1, y2 j =0), and with
covariates x2 j −x1 j .

Several other models have likelihood contributions that take a similar form as (13):

(i) Case-control studies: LCML
j corresponds to the conditional likelihood contribution for

matched set j in conditional logistic regression for matched retrospective case-control
designs, were the indicator yi j takes the value 1 if unit i is one of a fixed number of
τ j cases and 0 if unit i is one of n j − τ j controls. LCML

j then represents the conditional
probability of the n j observed covariate vectors in set j , given all potential allocations
of the covariate vectors to cases and controls (e.g., Prentice & Breslow, 1978).

(ii) Survival analysis with ties: LCML
j corresponds to the “discrete” or “exact” partial likeli-

hood contribution for the j th ordered survival time in a Cox proportional-hazards model
with tied survival times (Cox, 1972). At the j th survival time, the indicator yi j takes the
value 1 if unit i is one of the τ j units in the risk set who experienced the event and B j

is defined as in (14) for the n j units in the risk set.
When there are no ties, the standard partial likelihood contribution for an event occurring
at the j th survival time can be expressed as

exp(x′
iβ)∑

d∈R j
exp(x′

dβ)
, (15)

the conditional probability that a particular unit i experiences the event at the j th survival
time, given that exactly one unit in the risk set R j experiences the event. The risk sets
are not disjoint because a unit in R j belongs to all risk sets for earlier events and the
term “partial likelihood” is used (Cox, 1975).

(iii) Discrete choice: The conditional likelihood contribution for individual j in the condi-
tional logit model for discrete choice takes the form of the standard partial likelihood
contribution (15). Here, the likelihood contribution is the conditional probability that a
particular alternative i is chosen by individual j , given that exactly one alternative is
chosen from the individual-specific alternative set R j (e.g., McFadden, 1974).

We also note that LCML
j is identical to the conditional likelihood contribution produced by instead

conditioning on the order statistic y(1) j , . . . , y(n j ) j (e.g., Chen, 2007).
The basic idea of standardCMLestimation is extended in exact conditional logistic regression

(e.g., Cox, 1970;Mehta et al., 1995) with linear predictor (3). Here, each element in β is estimated
by conditioning on sufficient statistics for not just ζ j (as in standard CML estimation) but also
for the remaining elements of β. For small or unbalanced datasets this approach can mitigate
separation problems where outcomes are perfectly predicted and standard conditional likelihoods
therefore do not exist (e.g., Albert & Anderson, 1984). Moreover, inferences for β are based on
permutation distributions of the sufficient statistics that do not rely on asymptotics.

Nonparametric marginal maximum likelihood (NPMML) estimation (e.g., de Leuuw & Ver-
helst, 1986) leaves the latent variable distribution p(ζ j ) unspecified. NPMML estimation can be
implemented by treating the latent variable as discrete and choosing the number of mass points to
yield the highest likelihood. For concordant Rasch models that fit the observed sumscore distri-
bution exactly, Lindsay et al. (1991) show that NPMML and CML estimation produce identical
estimates of the item parameters β. Rice (2004) provides conditions ensuring that marginal and
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conditional likelihoods are equal. We note that standard NPMML estimation does not address the
cluster-level endogeneity problem.

For a GLMM with linear predictor (1), the sufficient statistic for the latent variable vector
ζ j is

∑n j
i=1 zi j yi j . For the logit link and the Bernoulli distribution, the conditional likelihood

contribution then takes the same form as (13), with the difference that
∑n j

i=1 zi j di = ∑n j
i=1 zi j yi j

now replaces
∑n j

i=1 di = ∑n j
i=1 yi j in the definition of the permutation set. In a panel data setting,

Thomas (2006) considered the special case of a logit model with a cluster-specific intercept and
a cluster-specific slope of time.

8.3. CML Estimation for Log Link and Poisson Distribution

Consider linear predictor (3) with a log link and a Poisson conditional distribution. Using
that the sum of conditionally independent Poisson random variables has a Poisson distribution,
the conditional likelihood contribution for cluster j becomes (e.g., Hausman et al., 1984)

LCML
j = (

∑n j
i=1 yi j )!∏n j
i=1 yi j !

n j∏
i=1

(
exp(x′

i jβ)∑n j
=1 exp(x

′
jβ)

)yi j

.

Again ζ j +v′
jγ has cancelled out of LCML

j . We see that the product in LCML
j that contains β is

identical to the likelihood contribution for a unit j in a standard multinomial logit model with n j

alternatives, except that it is not required that yi j ∈ {0, 1} or ∑n j
i=1 yi j = 1 here.

Recall that there is no incidental parameter problem for the model with log link and a Poisson
conditional distribution, and CML estimation and JML estimation with dummy variables for
clusters produce identical estimates of β. For the log link, assumption [A.2] is not required for
consistent estimation and [A.4] can be relaxed by assuming that μi j is correctly specified (e.g.,
Wooldridge, 1999).

Thomas (2006) derived the CML estimator for a Poisson regression model with a cluster-
specific intercept and a cluster-specific slope of time, and pointed out that there is no incidental
parameter problem in this case either.

8.4. CML Estimation Beyond GLM Link Functions

It is worth noting that CML estimation can be used not just for GLMMs with continuous,
binary, and count outcomes that we have investigated so far but also for other combinations of
outcomes and latent variable models.

(a) Binary yi j ∈ {0, 1}: Stratified linear odds-ratio models with cluster-specific parameters
ζ j (e.g., Storer et al., 1983)

p(yi j = 1|xi j , vj ;ϑ, ζ j ) = exp{ζ j }(1 + x′
i jβ + v′

jγ )

1 + exp{ζ j }(1 + x′
i jβ + v′

jγ )
.

(b) Ordinal yi j ∈ {0, . . . , K }: Adjacent category logit models with cluster-specific param-
eters ζ j (e.g., Heinen, 1996, p.124)

p(yi j = k|xi j , vj ;ϑ, ζ j ) = exp{αki + x′
i jβ + v′

jγ + kζ j }∑K
c=0 exp{αci + x′

i jβ + v′
jγ + cζ j }

,
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where we explicitly let αki denote unit and category-specific intercepts (no intercepts in
β here), with α0i =0. Seminal special cases in psychometrics include the partial credit
model (Masters, 1982) that has no covariates, and the rating scale model (Andrich,
1978) where additionally the item parameters are decomposed as αki = αi + κk . For
the exchangeable case, αki is replaced by αk with α0=0.
Approximate CML estimation can be obtained via data expansion for cumulative logit
models (Mukherjee et al., 2008), of which the logistic graded response model of Same-
jima (1969) is a special case, and for continuation-ratio logit models, as shown for
sequential item response models by Tutz (1990).
Kelderman and Rijkes (1994) discuss CML estimation for a range of Rasch-type item
response models for ordinal responses.

(c) Nominal yi j ∈ {0, . . . , K }: Multinomial logit models with cluster and category specific
parameters ζk j (e.g., Chamberlain, 1980; Conaway, 1989; Lee, 2002)

p(yi j = k|x0i j , . . . , xKi j , xi j , v j ;ϑ, ζ0 j , . . . , ζK j ) =
exp{αki + x′

ki jβ + x′
i jβk + v′

jγ k + ζk j }∑K
c=0 exp{αci + x′

ci jβ + x′
i jβc + v′

jγ c + ζcj }
,

where αki are item and category-specific intercepts (no intercepts in β or βk here), with
α0i =0 and αk1=0, and we let β0=0 and γ 0=0. Special cases in psychometrics (e.g.,
Rasch, 1961; Andersen, 1973b) do not include covariates. For the exchangeable case,
αki is replaced by αk with α0=0.

(d) Survival times t : Stratified Cox-regressionwith cluster-specific baseline hazard function
h0j (t) (e.g., Chamberlain, 1985; Lancaster, 1990; Ridder & Tunali, 1999)

hi j (t) = h0j (t) exp{x′
i jβ + v′

jγ },

where hi j (t) is the continuous time hazard function for unit i in cluster j . Estimating
the models by maximum partial likelihood yields fixed-effects estimators in the spirit
of CML estimation.

9. MML Becomes CML for Large Clusters

Increasing the sample size usually does not improve estimation of misspecified models.
However, standard MML estimation that ignores cluster-level endogeneity approaches CML esti-
mation, and hence becomes more robust against cluster-level endogeneity, as the cluster sizes
increase.

We first consider linear predictor (3) with an identity link. For known variance components,
the generalized least squares (GLS) estimator is the MML estimator. Maddala (1971) showed that
limn→∞ β̂

GLS = β̂
CML

for fixed N , see also (6) where ω ≡ σ 2

σ 2+nψ
→ 0 when n → ∞. Hence,

GLS approaches CML estimation of β as the cluster sizes increase, makingGLS estimation robust
against cluster-level endogeneity without any ameliorating model extensions. Moreover, γ can
in this case be consistently estimated if v j is exogenous. It is clear from the IGLS formulae in
Breusch (1987) that large-cluster robustness also applies to MML estimation.

Does the robustness extend beyond identity links? To shed some light on this, we performed
a simulation study with exchangeable units to investigate the behaviour of MML estimation under
cluster-level endogeneity for binary outcomes with a logit link and a normal latent variable distri-
bution. For N =1,000,000 clusters, we gradually increased the cluster sizes n from 2 to 1,000.We
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Figure 3.
Automatic inconsistency correction of MML estimation for logistic random-intercept model as a function of cluster size
n. Cor(ζ j , xi j ) = .4 (solid curve) and Cor(ζ j , xi j ) = .2 (dashed curve) for N = 1,000,000 clusters.

simulated multivariate normal (x1 j , x2 j , x3 j , x4 j , ζ j ) with Var(xi j ) = 1 and Cor(xi j , xi ′ j ) = 0.2
and parameter values γ = 0, β = 1, ψ = 1.

In Fig. 3 we show the similarity of the MML estimator and the consistent (as N → ∞) CML

estimator by plotting β̂MML

β̂CML against n for Cor(ζ j , xi j ) = 0.4 (solid curve) and Cor(ζ j , xi j ) = 0.2
(dashed curve). We see that the large-cluster robustness of MML estimation extends to the logit
link and that larger cluster sizes are required to approach consistency when the cluster-level
endogeneity is more severe.

10. Extending the Scope of CML Estimation

For non-exchangeable data it is often plausible that the coefficients of the covariates xi j
and v j are item-specific. Considering small to moderate cluster sizes, we now propose a useful
extension of the model class for which CML estimation is applicable. Specifically, we generalize
the GLMM in (1) by replacing β and γ by item-specific coefficients β i and γ i

νi j = x′
i jβ i + v′

jγi + zi jζ j . (16)

Letting nmax denote the maximum cluster size, the linear predictor (16) can be re-expressed
as

νi j =
nmax∑
r=1

(drix′
r j )βr +

nmax∑
r=1

(driv′
j )γr + zi jζ j ,

where xr j and v j are now defined as in the exchangeable case. We see that this model includes
solely unit-specific covariates drixr j and driv j and that both variable types have item-invariant
coefficients. This is exactly the situation for GLMMs where CML estimation is traditionally
employed, and CML estimation can therefore also be used for model (16) in a straightforward
manner. Consistent estimation results for the regression coefficients in β i and the differences
γ i − γ i ′ for i

′ �= i .
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The validity of the traditional and rather restrictive model with invariant coefficients β and
γ can now be investigated by contrasting it with the more general model (16), for instance by
using conditional likelihood-ratio tests (Andersen, 1971) and fit measures based on conditional
likelihoods. We refer to Maris (1998) for an insightful discussion of confidence intervals and
hypothesis testing based on CML estimation.

CML estimation can also be used for models with crossed latent variables, such as panel
models with both individual and year effects. For the identity link, Balazsi et al. (2017) review
fixed-effects approaches, and for the logit link, Charbonneau (2017) and Kertesz (2017) use CML
estimation by repeatedly conditioning on sufficient statistics to eliminate crossed latent variables
one at a time. Generalized additive mixed models (GAMMs) with cluster-specific intercepts were
estimated using CML by Zhang and Davidian (2004).

For models with several levels of nested latent variables, CML estimation is simply imple-
mented by conditioning on the sufficient statistics for the latent variables at the lowest level.

11. Mimicking CML by MML Estimation of Augmented Models

How can we proceed if CML estimation is not possible for the model of interest? A subset of
the parameters can in some instances be treated as known to produce a model that lends itself to
CML estimation. Verhelst and Glas (1995) proposed the one parameter logistic model (OPLM)
where discrimination parameters are taken to be “fixed constants supplied by hypothesis”, making
CML estimation feasible forβ. However, we usually prefer approaches that can provide protective
or mitigating estimation in general settings without treating parameters as known.

A model closely resembling that of interest can sometimes be found. The most obvious
example is use of the logit link instead of the very similar probit link which cannot be used
in CML estimation. Another example is dynamic (or autoregressive) logit models with cluster-
specific intercepts for binary binary outcomes. In this case Bartolucci and Nigro (2010) used
a quadratic exponential model (Cox & Wermuth, 1994) to address the limitations of the CML
estimator of Honoré and Kyriazidou (2000).

In this section we consider a general approach where we mimick CML estimation by MML
estimation of augmented models that can handle cluster-level endogeneity. The first variant uses
an auxiliarymodel that specifies how the latent variable depends on the endogenous covariates and
the second variant uses a joint model where the endogenous covariates are treated as outcomes.
Both variants can accommodatemultidimensional latent variables and, in contrast toCML,models
with factor loadings or discrimination parameters and non-canonical link functions. For notational
simplicity, we henceforth omit reference to parameters in all distributions.

11.1. Auxiliary Modeling of ζ j Given w j

Cluster-level endogeneity can be addressed by using an auxiliary statistical model for
p(ζ j |w j ). We describe two alternative methods: using a GLLAMM and using a reduced-form
GLMM.

11.1.1. Using GLLAMM A GLLAMM (e.g., Rabe-Hesketh et al., 2004; Skrondal & Rabe-
Hesketh, 2004) is composed of a response model for the outcomes given the covariates and
latent variables and a structural model for the latent variables given the covariates. Conditional
on latent variables, the response model is an extended GLM that accommodates more outcome
types and different outcome types for different units. The linear predictor generalizes that of
the GLMM in (1) by, for instance, allowing factor loadings or discrimination parameters for the
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latent variables. Conditional on observed covariates, the structural model is a multilevel structural
equation model for the latent variables with normally distributed disturbance terms.

In the present setting, we can use a simple special case of a GLLAMM where the linear
predictor of the response model is specified as (3) and the structural model is specified as the
chosen auxiliary model. A Mundlak-inspired auxiliary model is

ζ j = x′· jδ + u j , (17)

and for non-exchangeable units we can use themore flexible Chamberlain auxiliarymodel (Cham-
berlain, 1980, 1984)

ζ j =
∑ n j

r=1 x
′
r jδr + u j . (18)

In (17) it is assumed that E(ζ j |w j ) = x′· jδ, and u j is homoskedastic, normal and independent of

x· j , and in (18) we assume that E(ζ j |w j ) = ∑n j
r=1 x

′
r jδr , and that u j is homoskedastic, normal

and independent of the xi j (Chamberlain, 1984).
Estimating the GLLAMM by MML provides consistent estimators for all parameters if the

auxiliary and outcome models are correctly specified. MML estimation is mitigating for β if
the auxiliary model is a reasonable approximation of the correct model. Note that the assumed
auxiliary models can be viewed as linear projections for the identity link (see Sect. 8.1.3).

Invoking the GLLAMM framework makes it straightforward to consider useful model exten-
sions. For non-exchangeable units, it may be plausible that the observed covariates have item-
specific coefficients β i and γ i , and that the latent variable has item-specific factor loadings or
discrimination parameters λi . We can then use the following linear predictor for the response
model:

νi j = x′
i jβ i + v′

jγ i + λiζ j . (19)

The model can, for instance, be extended to include multidimensional latent variables ζ j and
ultimately extended to the full GLLAMM response model (see e.g., Rabe-Hesketh et al., 2004).

11.1.2. Using Reduced-Form GLMM Alternatively, the auxiliary model can be substituted
into (3) to yield a reduced-form working GLMM. Substituting model (17), we obtain

g{E(yi j |xi j , v j , u j )} = x′
i jβ + v′

jγ + x′· jδ + u j ,

which can be rearranged to get

g{E(yi j |xi j , v j , u j )} = (xi j − x· j )′β + x′· j (β+δ) + v′
jγ + u j . (20)

In general, MML estimation of these models produces mitigating estimation for β, with the
exception of identity links where we have pointed out that the consistent CML estimator is
obtained.

Neuhaus andMcCulloch (2006) considered (20)without cluster-level covariates v j and called
it a “between-withinmodel”. They referred toMMLestimation of (20) as the “poor-man’s approx-
imation to the conditional likelihood approach” because it is straightforward to implement in
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Figure 4.
Protective MML estimate for simulated data with correct auxiliary model for logit link as a function of N . Cor(xi j , ζ j ) =
0.4 and n = 4.

practice. Brumback et al. (2010) extended the poor-man’s approximation by considering nonlin-
ear functions of the cluster-means. Note that, although X j − 1n j ⊗ x′· j is orthogonal to 1n j ⊗ v′

j ,
omitting v j if γ �=0 is likely to produce some additional inconsistency for models with logit links
because odds ratios are not collapsible (e.g., Gail et al., 1984).

For non-exchangeable units, we can substitute model (18) in (19) with λi = 1 to obtain

g{E(yi j |xi j , v j , u j )} = x′
i jβ i + v′

jγ i +
∑ n j

r=1x
′
r jδr + u j .

In contrast to the GLLAMM approach, factor loadings or discrimination parameters are not
accommodated.

We conducted a Monte Carlo experiment to study the performance of MML estimation for
a random-intercept binary logit model with a correctly specified auxiliary model for exchange-
able data. To investigate consistency as N → ∞ for n = 4, we simulated multivariate normal
(x1 j , x2 j , x3 j , x4 j , ζ j ) with Var(xi j ) = 1, Cor(xi j , xi ′ j ) = 0.2 and Cor(xi j , ζ j ) = 0.4 for all i
and parameter values γ = 0, β = 1, and ψ = 1. The cluster mean x · j was used in the auxiliary
model.

Figure 4 plots the ratio of estimates β̂MML

β̂CML against N . Because this ratio seems to converge

to 1 as N → ∞ for fixed n and we know that β̂
CML

is consistent, we conclude that β̂
MML

also
appears to be consistent. MML estimation using a correct auxiliary model is therefore protective
in this case.

11.2. Joint Modeling of y j and w j

We can also handle cluster-level endogeneity by specifying a joint statistical model p(y j ,w j )

for the outcomes y j and covariates w j . For continuous outcomes we discuss joint modeling via
conventional structural equation modeling (SEM) and for other outcome types we briefly describe
joint modeling using GLLAMMs.

11.2.1. Using Conventional SEM In conventional SEM with identity links and normal condi-
tional distributions, analytic integration over the latent variables is straightforward. In this case

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 13:43:56, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


818 PSYCHOMETRIKA

Figure 5.
JointmodelingusingSEMfor identity link andnormal conditional distribution. Path diagrams (n = 3) for standard random-
intercept model where Cor(xi j , ζ j )= 0 and Cor(v j , ζ j )= 0 (left panel) and joint SEM specifying Cor(xi j , ζ j ) �= 0 and
Cor(v j , ζ j )=0 (right panel).

joint models are usually expressed as

p(y j ,w j ) =
∫

ζ j

p(y j |w j , ζ j )p(w j , ζ j ) dζ j ,

which requires specification of a model for p(w j , ζ j ). Specifically, a SEM that includes covari-
ances between xi j and ζ j is specified and estimated by MML (e.g., Teachman et al., 2001; Bollen
& Brand, 2010). In this case consistency requires a correctly specified covariance structure, but
does not rely on normality (e.g., Browne, 1974), and the approach can be viewed as an instance
of pseudo maximum (marginal) likelihood estimation (e.g., Arminger & Schoenberg, 1989).

Figure 5 shows path diagrams for a SEM representation of a standard random-intercept model
with exogenous unit-specific covariate xi j and exogenous cluster-specific covariate v j (left panel)
and a joint SEM for the same model but allowing the random intercept to be correlated with xi j
to accommodate cluster-level endogeneity (right panel).

MML estimation of the joint model in the right panel produces CML estimates of β. In
contrast to CML estimation, the joint MML approach is also consistent for γ when v j is cluster-
level exogenous (as in the figure). Because all the bells and whistles of SEMs are available, it
is straightforward to include, for instance, factor loadings in the models. Note that appropriate
parameter restrictions should be imposed for exchangeable data (Sim, 2019).

11.2.2. Using GLLAMM The SEM approach outlined above is not feasible beyond the identity
link, and joint models in biometrics and statistics are typically formulated as (e.g., Neuhaus &
McCulloch, 2006)

p(y j ,w j ) =
∫

ζ j

p(y j |w j , ζ j )p(w j |ζ j )p(ζ j ) dζ j ,

which requires specification of a model for p(w j |ζ j ). In this case a GLLAMM response model
such as (19) with different outcome types for different units is specified for both the outcome
model p(y j |w j , ζ j ) and the covariate model p(w j |ζ j ).
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Figure 6.
Unobserved cluster-level confounding. Cluster-level unobserved confounder u j (left panel) and resulting cluster-level
endogeneity (right panel).

MML estimation for joint models is consistent for all model parameters if the model for
p(w j |ζ j ) is correctly specified, in addition to a correct outcome model for p(y j |w j , ζ j ) and a
correct p(ζ j ).

11.3. Auxiliary or Joint Modeling?

Both auxiliary and joint modeling are useful for mimicking protective CML estimation of
the target parameters β when there is cluster-level endogeneity. However, it seems unlikely that
auxiliary models represent plausible data-generating mechanisms (e.g., Goetgeluk & Vanstee-
landt, 2008), whereas joint models may do so, for instance when there is unobserved cluster-level
confounding (see Sect. 12.1). In the unlikely event that the entire joint model is correctly specified,
MML estimation will be consistent for allmodel parameters. Neuhaus andMcCulloch (2006) dis-
cuss conditions for consistent estimation of β using auxiliary modeling when the data-generating
mechanism is a joint model. Auxiliary modeling can be implemented in standard GLMM soft-
ware, and very flexible nonlinear parametric models can be used for p(ζ j |w j ), whereas modeling
of p(w j |ζ j ) requires specification of an appropriate link function and conditional distribution
for each covariate. Joint modeling in effect assumes a particular dependence structure for the
covariates but accommodates covariates missing at random. We advocate performing sensitivity
analysis by using both auxiliary and joint modeling.

Finally, it should be kept in mind that the choice between CML estimation and MML esti-
mation of augmented models may in practice involve a trade-off between inconsistencies due to
CML estimation of overly simple models (e.g., without discrimination parameters) and misspec-
ified endogeneity models.

12. Reasons for Cluster-Level Endogeneity

Cluster-level endogeneity can arise for a variety of reasons, including unobserved cluster-
level confounding, covariate measurement error, retrospective sampling, informative cluster sizes,
missing data, and heteroskedasticity.

12.1. Unobserved Cluster-Level Confounding of Causal Effects

Recall that consistent MML estimation in general requires cluster-level exogeneity as shown
in the left panel of Fig. 2. Consider now the case where the data-generating mechanism contains
an unobserved cluster-level confounder u j as in the left panel of Fig. 6 (where the cluster-level
error term is now denoted ζ ∗

j ).
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In a statisticalmodelwith linear predictor such as (3), the unobserved cluster-level confounder
u j becomes absorbed by the cluster-level error term ζ j = ζ ∗

j +u j as displayed in the right panel of
Fig. 6. It is evident that unobserved cluster-level confounding leads to cluster-level endogeneity.

Use of the term confounding presupposes that regression coefficients represent causal effects
that can be confounded. Lancaster (2000, p. 296) points out that econometricians emphasize
that some or all covariates may be “chosen” by an individual j in light of his knowledge of
ζ j (e.g., attending a training program, xi j = 1 rather than xi j = 0, because ability ζ j is low).
Hence, economic theory provides a presumption that ζ j and xi j are dependent in the population.
Lancaster concludes that “This point plays absolutely no role in the statistics literature”,where ζ j is
invariably, and usually implicitly, either assumed to be independent or uncorrelated with random
covariates or assumed to not depend on the values taken by fixed covariates. Here, regression
coefficients merely represent associations between included variables, or linear projections in the
case of linearmodels, inwhich case the error terms are orthogonal to the covariates by construction.
Spanos (2006) contrasts the conventional meaning of models in econometrics and statistics.

Importantly, CML estimation can be consistent for causal effects even when there is unob-
served cluster-level confounding. Under assumptions [A.1]-[A.4], β̂CML for a treatment xi j in (3)
can be interpreted as estimating a causal effect that is homogeneous in the population. However,
causal effects are usually viewed as heterogeneous and the estimand taken to be some average
causal effect (ACE) in the modern literature on causal inference.

For the identity link, β̂CML represents an estimated ACE for the subpopulation of clusters
where the treatment varies between the units (e.g., Imai & Kim, 2019; Petersen & Lange, 2020).
Sobel (2012) and Wooldridge (2010: sect. 21.6.4) explore causal effects that can be estimated by
fixed-effects methods for different treatment regimes and state assumptions required for identifi-
cation. For the logit link, there is no simple interpretation of β̂CML when the causal odds ratio is
heterogeneous (Sjölander et al., 2012; Petersen & Lange, 2020).

12.2. Cluster-Specific Measurement Error

Sometimes variables are fallibly measured with cluster-specific measurement errors (e.g.,
Wang et al., 2012). Examples include teacher-specific bias in ratings of students and laboratory
tests analyzed in batches.

12.2.1. Covariate Measurement Error We now consider the following version of linear pre-
dictor (3):

νi j = βxi j + v′
jγ + ζ j , (21)

where the unit-specific covariate xi j is continuous.
If xi j were observed and cluster-level exogenous, consistent estimation of all model parame-

ters could proceed by MML estimation. The new feature is that xi j is latent and fallibly measured
by a continuous variable mi j with additive cluster-specific covariate measurement error δ j

mi j = xi j + δ j .

Rearranging this classical covariate measurement model as xi j = mi j − δ j , we substitute it
in (21) to obtain a working model with linear predictor

νi j = βmi j + v′
jγ + ζ ∗

j ,
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where ζ ∗
j ≡ ζ j − βδ j . Having replaced the latent covariate xi j by the fallibly observed covariate

mi j , we see that ζ j has been replaced by a composite cluster-specific error term. Unfortunately,
even if xi j is cluster-level exogenous, the fallibly observed covariate mi j becomes cluster-level
endogenous. This is because the component βδ j of ζ ∗

j is not independent of mi j .
MML estimation would be inconsistent for β in the working model. Joint modeling of the

outcomes yi j andmeasuresmi j would enable consistentMMLestimation of all model parameters,
but only if the entire model is correctly specified. In contrast, CML estimation is protective for
β. In this case parametric assumptions are not required for the distributions of ζ j or δ j , and these
terms could even be dependent, producing a form of differential measurement error. Moreover,
xi j could be cluster-level endogenous. CML estimation remains protective if several continuous
unit-specific covariates are measured with covariate- and cluster-specific errors.

12.2.2. Latent-Response Measurement Error Consider now the class of GLMMs that can be
expressed as latent response models

y∗
i j = x′

i jβ + v′
jγ + ζ j + εi j . (22)

For instance, models with logit links for binary outcomes yi j arise if εi j has a standard logistic
density and the observed outcome is produced by thresholding the latent response y∗

i j as yi j =
I(y∗

i j > 0).
If y∗

i j is contaminated by cluster-specific additive error δ j , we obtain y•
i j = y∗

i j + δ j yielding
observed outcomes yi j = I(y•

i j > 0). Substituting the latent response model (22) we see that ζ j
is replaced by a composite cluster-specific intercept ζ •

j = ζ j + δ j .
Again, CML estimation is protective for β and parametric assumptions are not required for

ζ j and δ j . Moreover, differential measurement error, in the sense that δ j depends on xi j , v j and
ζ j , is accommodated.

12.3. Retrospective Sampling

Wewill discuss two kinds of retrospective sampling schemes that produce cluster-level endo-
geneity, the first by sampling units and the second by sampling clusters.

12.3.1. Case-Control and Choice-Based Sampling of Units Case-control sampling is very
useful for rare binary outcomes y j when obtaining one or more of the covariates is expensive or
invasive (e.g., Breslow, 1996). Examples include drawing blood samples from individuals and
conducting comprehensive psychiatric interviews with patients.

The basic idea of case-control designs is to under-sample units i with outcome yi j = 0. This
is an example of retrospective sampling because the probability of being sampled depends on
the value taken by an outcome variable. Letting Si j be an indicator variable for sampling unit i
in cluster j , the probability of selecting the unit is then dependent on whether the unit is a case
(yi j = 1) or control (yi j = 0):

p(Si j =1|yi j ) ≡ π(yi j ).

We assemble the selection indicators for the units in cluster j in the selection vector s j . In a
cumulative case-control study (e.g., Rothman et al., 2008, p. 125), the researcher samples all
cases, π(1) = 1, whereas π(0) is small in order to under-sample controls.

In choice-based sampling individuals are sampled retrospectively by stratifying on their
individual choices (e.g., Manski, 1981), in which case the marginal distribution of the choices in
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Figure 7.
Retrospective sampling of units. Unselected population (left panel) and selected sample (right panel).

the selected sample typically differs from the corresponding population distribution. A canonical
example is choice of transport mode (such as bus, plane or train) where travelers are interviewed
at their chosen mode.

The anatomy of retrospective sampling of units is depicted in the left panel of Fig. 7, where
we see that the probability of selecting a unit depends on the outcome of that particular unit.
Importantly, the outcomes y j are colliders because they are affected by both ζ j and w j . The
elements of s j are descendants of the colliders in y j and conditioning on s j (performing selection)
therefore induces cluster-level endogeneity as illustrated in the right panel of Fig. 7 (conditioning
is henceforth signalled by placing variables in grey background in the figures). The produced
dependence between the “parents” ζ j andw j is due to “moralization” according to the terminology
of Lauritzen et al. (1990).

Applications proceed with the logit link

logit{p(yi j =1|xi j , v j , ζ j )} = αi + x′
i jβ + v′

jγ + ζ j , (23)

where we temporarily denote the intercept for unit i as αi (no intercepts in β here).
The model is often estimated by standard MML but the marginal likelihood contribution is

misspecified for the selected sample (where we denote the outcome vector as ysel
j )

p(ysel
j |s j ,w j ) =

∫
ζ j

{∏
i

p(yseli j |Si j =1, xi j , v j , ζ j )

}
p(ζ j |s j ,w j ) dζ j

�=
∫

ζ j

{∏
i

p(yseli j |xi j , v j , ζ j )

}
p(ζ j ) dζ j

We see that the correct contribution in the first line differs from the standard marginal likelihood
contribution in the second line in two ways: (1) the correct conditional outcome distribution
p(yseli j |Si j = 1, xi j , v j , ζ j ) differs from the naive one p(yseli j |xi j , v j , ζ j ) and the correct latent
variable distribution p(ζ j |s j ,w j ) differs from the naive one p(ζ j ). The fact that the correct latent
variable distribution becomes p(ζ j |s j ,w j ) corresponds to the dependence between ζ j and w j

seen in the right panel of Fig. 7. As a result, standard MML estimation leads to inconsistent
estimation of β, an instance of collider-stratification bias (e.g., Greenland et al., 1999).

It is important to note that the logit link is preserved in selected samples

logit{p(yseli j =1|Si j =1, xi j , v j , ζ j )} = αsel
i + x′

i jβ + v′
jγ + ζ j ,

where αsel
i = αi + log[π(1)/π(0)]. It follows that standard CML estimation is protective. Prentice

(1976) argues that protective estimation of the coefficient β for a binary xi j can alternatively be
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Figure 8.
Retrospective sampling of clusters. Unselected population (left panel) and selected sample (right panel).

achieved by CML estimation of a retrospective logit model with cluster-specific effects where xi j
is the outcome and β is now the coefficient of yi j . In contrast, MML estimation with an auxiliary
model produces inconsistent estimation of the intercepts but protective or mitigating estimation
of the coefficients of covariates, depending on whether the auxiliary model is correct or not.

12.3.2. Sumscore-Based Sampling of Clusters For rare binary outcomes y j , clusters where
many of the outcomes take the value zero are sometimes under-sampled. For instance, in a genetic
study a family j could be more likely to be ascertained if one or more members of the family has
a particular disease.

Here we consider the case where the probability of sampling a cluster j is a function of the
sumscore or number of “successes” in the cluster (e.g., Neuhaus & Jewell, 1990)

p(S j =1|y j ) = f

(
n j

	
i=1

yi j

)
.

The structure of retrospective sumscore-based sampling is shown in the left panel of Fig. 8.
Importantly, we see from the right panel that conditioning on the cluster-selection indicator S j

induces cluster-level endogeneity because S j is a descendant of the colliders in y j .
We proceed with a logit link as we did for retrospective sampling of units. The standard

marginal likelihood contribution is now misspecified in the selected sample

p(ysel
j |S j =1,w j ) =

∫
ζ j

p(ysel
j |S j =1, xi j , v j , ζ j )p(ζ j |S j =1,w j ) dζ j

�=
∫

ζ j

{ n j∏
i=1

p(yseli j |xi j , v j , ζ j )

}
p(ζ j ) dζ j ,

which yields inconsistent MML estimation of β. In contrast to retrospective sampling of units,
p(ysel

j |S j = 1, xi j , v j , ζ j ) is no longer a product of conditionally independent logit models, but
rather corresponds to the Rosner (1984) model for correlated data. MML estimation based on
an auxiliary model therefore produces inconsistent estimation of β. Fortunately, standard CML
estimation is once again protective for β (Neuhaus & Jewell, 1990).

12.4. Informative Cluster Sizes

It is sometimes plausible that the cluster sizes n j depend on a cluster-specific latent variable
ζ j and cluster-specific covariates v j . For example, for a clinical psychologist j , the patient volume
n j may depend on his latent skill ζ j and whether he works in a public or private hospital z j . The
patient outcomes y j may depend on ζ j , z j , and observed individual patient characteristics x j .
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Figure 9.
Informative cluster-sizes.

This situation is shown in Fig. 9, where c j is included to signify that x j and v j are typically
dependent.

A joint model can be specified for the outcomes y j and cluster size n j , the latter part typically
a Poisson model with log link

p(y j , n j |x j , v j ) =
∫

ζ j

p(n j |v j , ζ j )

{ n j∏
i=1

p(yi j |xi j , v j , ζ j )

}
p(ζ j ) dζ j .

MML estimation of the joint model is consistent if the cluster-size model p(n j |v j , ζ j ) is correctly
specified in addition to the outcome model p(yi j |xi j , v j , ζ j ) and the mixing distribution p(ζ j ).

Researchers occasionally condition on n j by including it as a covariate in the model (e.g.,
Seaman et al., 2014). The standard marginal likelihood contribution in this case is misspecified

p(y j |x j , v j , n j ) =
∫

ζ j

{ n j∏
i=1

p(yi j |xi j , v j , ζ j , n j )

}
p(ζ j |x j , v j , n j ) dζ j

=
∫

ζ j

{ n j∏
i=1

p(yi j |xi j , v j , ζ j , n j )

}
p(ζ j |v j , n j ) dζ j

�=
∫

ζ j

{ n j∏
i=1

p(yi j |xi j , v j , ζ j , n j )

}
p(ζ j ) dζ j .

It is evident from Fig. 9 that n j is a collider and that conditioning on n j opens a confounding
path between ζ j and x j that makes x j cluster-level endogenous. However, also conditioning on v j

blocks this path, in which case x j remains cluster-level exogenous, whereas v j becomes cluster-
level endogenous. The latent-variable distribution becomes p(ζ j |v j , n j ) (shown in the second
line of the likelihood contribution above), which differs from the assumed p(ζ j ) in naive MML
estimation.

For the identity link,MML estimation is consistent for β under cluster-level exogeneity what-
ever the distribution of ζ j (e.g., Verbeke & Lesaffre, 1997), but this is not the case for other links.
Naive MML estimation that includes n j as a covariate therefore gives protective estimation of β

for the identity link, but otherwise inconsistent estimation, albeit mildly inconsistent according
to simulations. Fortunately, standard CML estimation is protective for β for all canonical links
because n j is a cluster-level characteristic. Important advantages of this approach are that we
neither need to know about the relevant v j nor specify a correct model for the dependence on n j .

In practice, the cluster size n j is often ignored in the estimating model. From Fig. 9 we
see that conditioning on v j makes n j and x j conditionally independent. This implies that MML
estimation for the identity link remains protective for β. For the logit link, the estimator of β for
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Figure 10.
Outcome dependent missingness. Current outcome dependent missingness (left panel) and lag(1) dependent missingness
for n = 4 (right panel).

the model that ignores n j has a probability limit that differs from the inconsistent MML estimator
for the model where n j is included as a covariate because odds-ratios are not collapsible (e.g.,
Gail et al., 1984). It is extremely unlikely that this estimator is consistent. For the log link, the
inconsistency is expected to be mild. Fortunately, standard CML estimation remains protective
for β for all canonical links.

Neuhaus and McCulloch (2011) considered a restrictive version of the model in Fig. 9 where
the cluster size just depends on ζ j . Here, there is no collider problem and the correct mixing
distribution becomes p(ζ j |n j ). The conclusions reported above for MML and CML estimation
persist.

12.5. Data Missing Not at Random

12.5.1. Outcome-Dependent Missingness Missingness of outcomes that depends on the values
taken by the outcomes violates the missing at random assumption (e.g., Seaman et al., 2013) and
is therefore referred to as not missing at random (NMAR).

In the longitudinal non-exchangeable setting, current-outcome dependent missingness occurs
if the probability that an outcome is missing at an occasion i , Si j = 1, depends on the value taken
by the outcome for that particular occasion yi j . An example would be when the outcome is a
disease symptom that makes it more difficult to visit a clinic for an assessment. The structure of
current-outcome dependent missingness is shown in the left panel of Fig. 10, which is identical
to that previously shown for retrospective sampling of units in Fig. 7.

Conditioning on the selection indicators Si j leads to cluster-level endogeneity, as shown in the
right panel of Fig. 7, because the Si j are decendants of the colliders yi j . For the non-exchangeable
case, it is plausible that the missingness probabilities will differ between units i , πi (yi j ).

For exchangable units, outcome-dependent missingness only makes sense if the probability
that an outcome yi j is missing for a unit, Si j = 1, depends on the value taken by the outcome
for that particular unit. In contrast, for longitudinal data we can also consider lag(1) outcome-
dependent missingness where the probability that an outcome is missing at an occasion, Si j = 1,
depends on the previous outcome yi−1, j . Such a process is shown in the right panel of Fig. 10 for
the case of n = 4. This can occur if an outcome, such as a diagnosis, only affects missingness
after having been relayed to the subject. Again, missingness produces cluster-level endogeneity.

Hausman andWise (1979) and Diggle and Kenward (1994) usedMML to estimate joint mod-
els where linear predictor (3) with an identity link for the outcome is combined with probit/logit
models for current-outcome dependent and current plus lag(1) outcome-dependent missingness,
respectively. MML estimation is consistent for all parameters under correct model specification,
but this approach has been criticized for relying heavily on unverifiable distributional assumptions
(e.g., Little, 1985). Standard MML estimation (ignoring the missingness) suffers from collider-
stratification bias and is inconsistent for β.

Skrondal and Rabe-Hesketh (2014) obtain several useful results for model (23). For current
outcome-dependent missingness, CML estimation is protective for β. MML estimation using an
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Figure 11.
Latent-variable and covariate dependent missingness. Unselected population (left panel) and selected sample (right panel).

auxiliary model yields protective estimation of β if that model is correct andmitigating estimation
otherwise. For lag(1) outcome-dependent missingness, CML estimation stratified on the missing-
ness pattern is protective. If missingness depends on both the current and all lagged outcomes
(whether observed or missing), CML estimation is protective only if complete data are analyzed
stratified on judiciously chosen values of the sufficient statistic. Note that none of these results
hinge on specification of a parametric or nonparametric model for missingness.

12.5.2. Latent-Variable and Covariate Dependent Missingness Missingness of outcomes can
depend on the latent variable in addition to the covariates and is in this case also not missing
at random (NMAR). For example, the probability of visiting a clinic/answering an item could
depend on the unobserved frailty/ability ζ j of the subject as well as his observed characteristics
w j .

The structure shown in Fig. 11 is similar to that previously discussed for informative cluster-
sizes but here s j could also depend on x j , so conditioning on v j does not block the confounding
path to give protective estimation of β.

Joint modeling can be performed with “shared-parameter” models (e.g., Wu&Carroll, 1988;
Ten Have et al., 1998) where the outcome and missingness processes share latent variables in
addition to observed covariates. MML estimation is consistent for all parameters if the joint model
is correctly specified, but note that such models rely on unverifiable distributional assumptions
(e.g., Little, 1985). Standard MML estimation that ignores missingness suffers from collider-
stratification bias and is inconsistent. CML estimation is protective for β for identity and log
link functions because it can be cast as JML estimation of models with cluster-specific dummy
variables.

For the logit link, Skrondal and Rabe-Hesketh (2014) prove that CML estimation is protective
for β, even when missingness also depends on missing outcomes (in addition to the latent vari-
able and covariates). Again, this does not require specification of a parametric or nonparametric
missingness model.

The case where missingness just depends on the latent variable is shown in Fig. 12. Here the
shape of the latent variable distribution is changed from p(ζ j ) to p(ζ j |s j ) but there is no collider
problem. For the identity link, standard MML estimation is now protective for β. In contrast,
standard MML estimation of β for the logit link is just mitigating, but with mild inconsistency
(e.g., Neuhaus et al., 1992). CML estimation remains protective for β.

12.6. Heteroskedastic Latent Variable

Cluster-level endogeneity occurs if the variance of the latent variable distribution depends
on cluster-level covariates v j . For example, Heagerty (1999) considered a longitudinal study of
schizophrenia where the latent variable variance depends on gender. Such heteroskedasticity is
illustrated in Fig. 13 where v j is a subset of w j .
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Figure 12.
Latent-variable dependent missingness.

Figure 13.
Heteroskedastic latent variable.

For the identity link, standard MML estimation remains consistent under this misspecifica-
tion. For the logit link, Heagerty and Kurland (2001) demonstrated that standardMML estimation
becomes inconsistent for all parameters. If the structure of the heteroskedasticity is known, consis-
tent MML estimation can be achieved if an appropriate heteroskedasticity model can be specified,
for instance by using a GLLAMM. Fortunately, standard CML estimation is protective for β, and
does not require additional modeling or even knowing the variables that induce heteroskedasticity.

13. Latent Variable Scoring

When considering a latent variable model without an incidental parameters problem, it is
straightforward to obtain estimates of ζ j by JML estimation using (4). In general, this scoring
method can work well for large cluster sizes n j .

CML estimation is of limited value if the target of inference is the value of the latent variable
ζ j . However, we can estimate the cluster-specific component u j ≡ ζ j + h(v j ) that is eliminated
in CML estimation by maximizing the scoring likelihood

n j∏
i=1

p(yi j |xi j ; ϑ̂
CML

, u j )

with respect to u j . The estimated scores ûML
j can then be plugged in to obtain predictions of out-

comes p(yi j |xi j ; ϑ̂
CML

, ûML
j ). Improvements of theML estimator, such as variants of the weighted

likelihood method of Warm (1989), can also be employed.
If CML estimation is mimicked by MML estimation of augmented models, we can use

empirical Bayes (EB) prediction that performs partial pooling of information from other clusters
and is therefore more precise. For instance, for joint modeling (see Sect. 11.2) the predictions can
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be obtained as:

ζ̃ j =
∫
ζ j

ζ j p(y j |w j , ζ j ; ϑ̂
MML

)p(w j |ζ j ; ϑ̂
MML

)φ(ζ j ; 0, ψ̂MML) dζ j∫
ζ j

p(y j |w j , ζ j ; ϑ̂
MML

)p(w j |ζ j ; ϑ̂
MML

)φ(ζ j ; 0, ψ̂MML) dζ j
.

The performance of EB prediction in this case also relies on correct specification of p(w j |ζ j ;ϑ).
Parametric assumptions are moreover made regarding the latent variable distribution unless non-
parametric marginal maximum likelihood ((NPMML) is used (Rabe-Hesketh et al., 2003). How-
ever, simulation studies suggest that violations of the distributional assumptions may have a
modest impact on the mean squared error of prediction unless the assumed distribution has more
limited support than the correct distribution, the latent variable variance is large, or the cluster
sizes are large (e.g., McCulloch & Neuhaus, 2011a; 2011b).

We refer to Skrondal and Rabe-Hesketh (2009) for latent variable scoring and various kinds
of prediction of outcomes in GLMMs and related models with multidimensional latent variables.

14. Concluding Remarks

We have demonstrated that conditional likelihoods have an important role to play in latent
variable modeling that extends well beyond Rasch models for measurement. For the class of
models considered here, a great advantage of CML estimation is that it can simultaneously handle
cluster-level endogeneity problems induced by, for instance, unobserved cluster-level confounding
of causal effects, cluster-specific measurement error, retrospective sampling, informative cluster
sizes, missing data, and heteroskedasticity.

Although randomized experimental designs ensure that there is no confounding of treatment
effects, there could be cluster-level endogeneity due to, for instance, covariate measurement error
and data not missing at random. The famous Hausman (1978) specification test that compares
fixed-effect estimates (e.g., from CML estimation) with random-effects estimates (e.g., from
MML estimation) is routinely used in the context of model (3). Contrary to common belief, a
significant test cannot be interpreted as flagging unobserved confounding because cluster-level
endogeneity can arise for a variety of reasons.

In psychology, split-plot analysis of variance (ANOVA) is sometimes used for repeated
measures designs. The hypothesis test for a within-subject effect is in this case robust against
cluster-level endogeneity. However, the focus is traditionally solely on hypothesis testing and not
estimation of parameters or effect sizes.Avery similar fixed-effects approach known as difference-
in-differences in economics is popular for estimating effects in natural/quasi experiments (e.g.,
Angrist & Pischke, 2009).

Hybrid estimation approaches can be obtained by combining CML with other estimation
methods:

(a) CML and MML (and related) estimation:
In a Rasch context, Andersen andMadsen (1977) used CML to estimate item parameters
β and subsequently MML to estimate the expectation and variance of a parametric
person distribution, given β̂

CML
. For a linear mixed model with random slopes, Verbeke

et al. (2001) used a conditional likelihood to eliminate the cluster-specific intercept ζ j
(and γ ), and MML or restricted maximum likelihood (REML) to estimate β, σ 2 and
the covariance matrix of the slopes in ζ j . Tibaldi et al. (2007) combined CML and
composite-likelihood estimation of crossed random-effects models with identity and
logit links.
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(b) CML and instrumental variables (IV) estimation:
For model (3) with identity link, Hausman and Taylor (1981) proposed a multi-stage
estimation approach where CML is used to estimate β (and σ 2) followed by IV estima-
tion of γ (and the variance of ζ j ) for given β̂

CML
. The instruments are internal in the sense

that they are constructed from the covariates xi j and v j in the model. All parameters can
be consistently estimated if one can correctly designate which unit- and cluster-specific
covariates are cluster-level endogenous. In a panel data setting with identity link, Lee
(2002) used first differencing to remove cluster-specific intercepts. Subsequently, he
used IV methods to estimate β, where various exogeneity assumptions for the εi j dic-
tate if covariates at an occasion can serve as internal instruments for covariates at other
occasions.

(c) CML and Bayes estimation:
Conditional likelihoods have been used in conjunction with prior distributions for model
parameters in Bayesian inference. This was motivated by Diggle et al. (2000) to handle
retrospective sampling and by Lancaster (2004) to handle unobserved confounding. It
is worth pointing out that standard Bayesian inference that ignores cluster-level endo-
geneity performs similarly to standard MML estimation.

(d) Mixed-type ML estimation:
Cook and Farewell (1999) discussed the construction of mixed-type likelihoods where
the likelihood contributions are of different types for different clusters. They considered
a version of linear predictor (3) with a logit link, where conditional likelihoods were
used for small clusters whereas joint likelihoods were used for large clusters.

An interesting recent development is the use of conditional likelihoods in double-robust
estimation. Zetterquist et al. (2019) consider model (3) with a logit link and a binary treatment xi j
of interest. They argue that consistency for the corresponding β can be achieved if at least one of
the following approaches is consistent for β: i) CML estimation of β in the prospective model (3)
for yi j or ii) CML estimation of β as the coefficient of yi j in a retrospective logit model for xi j
with a cluster-specific intercept. One need not know which of the models is correct so there are
in this sense two opportunities of getting it right.

In closing, it is evident that we have drawn on and extended results not just from psycho-
metrics but also from other “ics”, such as econometrics, biometrics and statistics, in this address.
Unfortunately, progress in psychometrics has been hampered by a paucity of cross-fertilization
from the other “ics” — but the opposite is certainly also true! A case in point is the extensive
literature on covariate measurement error where the psychometric wheel is regularly reinvented,
albeit often in a somewhat square fashion.We endwith a perceptive citation from aPsychometrika
article by the renowned econometrician Arthur Goldberger (Goldberger, 1971, p. 83):

“Economists and psychologists have been developing their statistical techniques quite
independently formanyyears. From time to time, a hardy soul strays across the frontier
but is not met with cheers when he returns home.”
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