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For λ ∈ (0, 1/2] let Kλ ⊂ R be a self-similar set generated by the iterated function
system {λx, λx + 1 − λ}. Given x ∈ (0, 1/2), let Λ(x) be the set of λ ∈ (0, 1/2] such
that x ∈ Kλ. In this paper we show that Λ(x) is a topological Cantor set having zero
Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any
y1, . . . , yp ∈ (0, 1/2) there exists a full Hausdorff dimensional set of λ ∈ (0, 1/2]
such that y1, . . . , yp ∈ Kλ.
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1. Introduction

For λ ∈ (0, 1/2] let Kλ be the self-similar set generated by the iterated function
system (simply called, IFS ) {fλ,d(x) = λx + d(1 − λ) : d = 0, 1} . Then Kλ is the
unique nonempty compact set satisfying (cf. [13])

Kλ = fλ,0(Kλ) ∪ fλ,1(Kλ) =

{
(1 − λ)

∞∑
n=1

inλn−1 : in ∈ {0, 1} ∀n � 1

}
. (1.1)

Clearly, 1 − λ is chosen so that the convex hull of Kλ is the unit interval [0, 1] for all
λ ∈ (0, 1/2]. Then 0 and 1 are common points of Kλ for all λ ∈ (0, 1/2]. For other
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x ∈ (0, 1) it is natural to ask how likely the self-similar sets Kλ, λ ∈ (0, 1/2] contain
the common point x? Or even ask how likely the self-similar sets Kλ, λ ∈ (0, 1/2]
contain any given points y1, . . . , yp ∈ (0, 1)? These questions are motivated by the
work of Boes, Darst and Erdős [4], in which they considered a class of fat Cantor sets
Cλ with positive Lebesgue measure. They showed that for a given point x ∈ (0, 1)
the set of parameters λ ∈ (0, 1/2) such that x ∈ Cλ is of first category.

Given x ∈ [0, 1], let

Λ(x) := {λ ∈ (0, 1/2] : x ∈ Kλ} . (1.2)

Then Λ(x) consists of all λ ∈ (0, 1/2] such that x is the common point of Kλ.
Note that Kλ is symmetric, i.e., x ∈ Kλ if and only if 1 − x ∈ Kλ. Then Λ(x) =
Λ(1 − x) for any x ∈ [0, 1]. So, we only need to consider x ∈ [0, 1/2]. Note that
Λ(0) = (0, 1/2], and Λ(1/2) = {1/2}. So, it is interesting to study Λ(x) for x ∈
(0, 1/2).

Recall that a set F ⊂ R is called a Cantor set if it is a non-empty compact
set containing neither interior nor isolated points. Our first result considers the
topology of Λ(x).

Theorem 1.1. For any x ∈ (0, 1/2) the set Λ(x) is a Cantor set with min Λ(x) = x
and max Λ(x) = 1/2.

By theorem 1.1 it follows that Λ(x) is a fractal set for any x ∈ (0, 1/2). Our next
result considers the Lebesgue measure and fractal dimension of Λ(x).

Theorem 1.2. For any x ∈ (0, 1/2) the set Λ(x) is a Lebesgue null set of full
Hausdorff dimension. Furthermore,

lim
δ→0+

dimH(Λ(x) ∩ (λ − δ, λ + δ)) =
log 2

− log λ
∀ λ ∈ Λ(x),

where dimH denotes the Hausdorff dimension.

In 1984, Mahler [18] proposed the problem on studying how well elements in
the middle third Cantor set K1/3 can be approximated by rational numbers in it,
and by rational numbers outside of it. Some recent progress on this problem can
be found in [10, 11, 16, 22] and the references therein. On the other hand, this
question also motivates the study of rational numbers in a fractal set (cf. [23, 26]).
As a corollary of theorem 1.2 we show that for Lebesgue almost every λ ∈ (0, 1/2)
the Cantor set Kλ contains only two rational numbers 0 and 1.

Corollary 1.3. For Lebesgue almost every λ ∈ (0, 1/2] the set Kλ \ {0, 1} con-
tains only irrational numbers.

Proof. By theorem 1.2 it follows that Λ(x) has zero Lebesgue measure for any
x ∈ (0, 1). But if Kλ \ {0, 1} contains a rational number, then λ ∈ ⋃x∈Q∩(0,1) Λ(x)
which has zero Lebesgue measure. �

Given y1, . . . , yp ∈ (0, 1/2), by theorems 1.1 and 1.2 it follows that the intersec-
tion

⋂p
i=1 Λ(yi) is small from the topological and Lebesgue measure perspectives.
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On the other hand, by using the thickness method introduced by Newhouse [19]
we can show that

⋂p
i=1 Λ(yi) contains a sequence of Cantor sets whose thickness

can be arbitrarily large, and from this we conclude that the intersection
⋂p

i=1 Λ(yi)
has full Hausdorff dimension.

Theorem 1.4. For any points y1, y2, . . . , yp ∈ (0, 1/2) we have

dimH

p⋂
i=1

Λ(yi) = 1.

Recently, the first three authors studied in [14] analogous objects but with dif-
ferent family of self-similar sets (their self-similar sets have different convex hulls).
Theorem 1.4 shows that the intersection of any finitely many Λ(yi) has full Haus-
dorff dimension, while in [14, Theorem 1.5] their method can only prove this result
for the intersection of two associated sets.

The rest of the paper is organized as follows. In § 2 we prove theorem 1.1 for the
topology of Λ(x); and in § 3 we investigate the local Hausdorff dimension of Λ(x)
and prove theorem 1.2. In § 4 we consider the intersection

⋂p
i=1 Λ(yi) and prove

theorem 1.4; and in the final section we make some further remarks.

2. Topological properties of Λ(x)

In this section we investigate the topology of Λ(x), and prove theorem 1.1. Given
x ∈ (0, 1/2), note by (1.1) that for each λ ∈ Λ(x) \ {1/2} there exists a unique
sequence (di) ∈ {0, 1}N such that x = (1 − λ)

∑∞
n=1 dnλn−1. We will show that Λ(x)

is homeomorphic to a subset in the symbolic space {0, 1}N, and then the topological
properties of Λ(x) can be deduced by studying the corresponding symbolic set.

First we recall some terminology from symbolic dynamics (cf. [17]). Let {0, 1}N

be the set of all infinite sequences of zeros and ones. For a word we mean a finite
string of zeros and ones. Let {0, 1}∗ be the set of all words over the alphabet {0, 1}
together with the empty word ε. For two words c = c1 . . . cm, d = d1 . . . dn from
{0, 1}∗ we write cd = c1 . . . cmd1 . . . dn for their concatenation. In particular, for
n ∈ N we denote by cn the n-fold concatenation of c with itself, and by c∞ the
periodic sequence with period block c. Throughout the paper we will use lexico-
graphical order ‘≺, �, �’ or ‘�’ between sequences and words. For example, for two
sequences (ci), (di) ∈ {0, 1}N, we say (ci) ≺ (di) if c1 < d1, or there exists n ∈ N

such that c1 . . . cn = d1 . . . dn and cn+1 < dn+1. For two words c, d, we say c ≺ d
if c0∞ ≺ d0∞.

Let λ ∈ (0, 1/2]. We define the coding map πλ : {0, 1}N → Kλ by

πλ((in)) = lim
n→∞ fλ,i1 ◦ fλ,i2 ◦ · · · ◦ fλ,in

(0) = (1 − λ)
∞∑

n=1

inλn−1. (2.1)

If λ ∈ (0, 1/2), then the IFS {fλ,d(x) = λx + d(1 − λ) : d = 0, 1} satisfies the strong
separation condition, and thus the map πλ is bijective. If λ = 1/2, then π1/2 is
bijective up to a countable set. The map πλ defined in (2.1) naturally induces a
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function with two parameters:

Π : {0, 1}N × (0, 1/2] → [0, 1]; ((in), λ) �→ πλ((in)). (2.2)

Note that the symbolic space {0, 1}N becomes a compact metric space under the
metric

ρ((in), (jn)) = 2− inf{n�1:in �=jn}. (2.3)

Equipped with the product topology on {0, 1}N × (0, 1/2] we show that Π is
continuous.

Lemma 2.1. The function Π is continuous. Furthermore,

(i) for λ ∈ (0, 1/2] the function Π(·, λ) is increasing with respect to the lexico-
graphical order, and is strictly increasing if λ ∈ (0, 1/2);

(ii) if 0∞ ≺ (in) � 01∞, then Π((in), ·) has positive derivative in (0, 1/2).

Proof. First we prove the continuity of Π. For any two points ((in), λ1), ((jn), λ2) ∈
{0, 1}N × (0, 1/2] we have

|Π((jn), λ2) − Π((in), λ1)|� |Π((jn), λ2) −Π((in), λ2)| + |Π((in), λ2) − Π((in), λ1)|.
(2.4)

Note that if ρ((jn), (in)) � 2−m, then |Π((jn), λ2) − Π((in), λ2)| � λm−1
2 � 21−m.

So the first term in (2.4) converges to zero as ρ((jn), (in)) → 0. Moreover, since the
series Π((in), λ) = (1 − λ)

∑∞
n=1 inλn−1 with parameter λ converges uniformly in

(0, 1/2], the second term in (2.4) also converges to zero as |λ2 − λ1| → 0. Therefore,
Π is continuous.

For (i) let λ ∈ (0, 1/2] and take two sequences (in), (jn) ∈ {0, 1}N. Suppose
(in) ≺ (jn). Then there exists m ∈ N such that i1 . . . im−1 = j1 . . . jm−1 and im <
jm. This implies that

Π((in), λ) = (1 − λ)
∞∑

n=1

inλn−1 � (1 − λ)

(
m∑

n=1

inλn−1 +
∞∑

n=m+1

λn−1

)

� (1 − λ)
m∑

n=1

jnλn−1

� Π((jn), λ),

where the second inequality follows from λ/(1 − λ) � 1 for λ ∈ (0, 1/2], and this
inequality is strict if λ ∈ (0, 1/2).

For (ii) let (in) ∈ {0, 1}N with 0∞ ≺ (in) � 01∞. Then i1 = 0. So for any λ ∈
(0, 1/2) we have Π((in), λ) = (1 − λ)

∑∞
n=2 inλn−1. This implies that

dΠ((in), λ)
dλ

=
∞∑

n=2

n

(
n − 1

n
− λ

)
inλn−2 > 0, (2.5)

where the strict inequality follows since λ < 1/2 and (in) � 0∞. This completes the
proof. �
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Note that the map Π defined in (2.2) is surjective but not injective. Given x ∈
[0, 1], for λ ∈ (0, 1/2] we consider the horizontal fibre

Γx(λ) := Π−1(x) ∩
(
{0, 1}N × {λ}

)

=

{
((in), λ) ∈ {0, 1}N × (0, 1/2] : (1 − λ)

∞∑
n=1

inλn−1 = x

}
.

Then Γx(λ) �= ∅ if and only if λ ∈ Λ(x). Furthermore, by lemma 2.1 (i) it follows
that for any λ ∈ Λ(x) ∩ (0, 1/2) the fibre set Γx(λ) consists of only one sequence;
and if λ = 1/2 ∈ Λ(x) then the set Γx(1/2) consists of at most two sequences. This
defines a map

Ψx : Λ(x) → {0, 1}N ; λ �→ Ψx(λ),

where Ψx(λ) denotes the lexicographically largest sequence in Γx(λ). The sequence
Ψx(λ) is also called the greedy coding of x in base λ.

Given x ∈ (0, 1/2), we reserve the notation (xn) := Ψx(1/2) for the greedy coding
of x in base 1/2. Then (xn) begins with 0 and does not end with 1∞.

Lemma 2.2. For any x ∈ (0, 1/2) the map Ψx : Λ(x) → Ω(x) is a decreasing
homeomorphism, where

Ω(x) :=
{

(in) ∈ {0, 1}N : (xn) � (in) � 01∞
}

.

Proof. Let x ∈ (0, 1/2). By lemma 2.1 it follows that Ψx is strictly decreasing.
Observe that x /∈ Kλ for any λ < x. Then Λ(x) ⊂ [x, 1/2]. Note that Ψx(x) = 01∞

and Ψx(1/2) = (xn). Since Ψx is monotonically decreasing, we have

(xn) � Ψx(λ) � 01∞ ∀ λ ∈ Λ(x).

So, Ψx(Λ(x)) ⊂ Ω(x).
Next we show that Ψx(Λ(x)) = Ω(x). Let (in) ∈ Ω(x). Then by lemma 2.1 it

follows that

Π
(

(in),
1
2

)
� Π

(
(xn),

1
2

)
= x and Π((in), λ) ↘ 0 < x as λ ↘ 0.

So, by the continuity of Π in lemma 2.1 there must exist λ ∈ (0, 1/2] such that

Π((in), λ) = x. (2.6)

If λ ∈ (0, 1/2), then (2.6) gives that Ψx(λ) = (in). If λ = 1/2, then by (2.6) and
using (in) � (xn) we still have Ψx(λ) = (in). This proves Ψx(Λ(x)) = Ω(x). Hence,
Ψx : Λ(x) → Ω(x) is a decreasing bijection.

To completes the proof it remains to prove the continuity of Ψx and its inverse
Ψ−1

x . Since the proof for the continuity of Ψ−1
x is similar, we only prove it for

Ψx. Take λ∗ ∈ Λ(x). Suppose Ψx is not continuous at λ∗. Then there exists
N ∈ N such that for any δ > 0 we can find λ ∈ Λ(x) ∩ (λ∗ − δ, λ∗ + δ) such that
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|Ψx(λ) − Ψx(λ∗)| � 2−N . Letting δ = 1/k with k = 1, 2, . . . , we can find a sequence
(λk) ⊂ Λ(x) such that

lim
k→∞

λk = λ∗ and |Ψx(λk) − Ψx(λ∗)| � 2−N ∀ k � 1. (2.7)

Write Ψx(λk) = (i(k)
n ) and Ψx(λ∗) = (i∗n). Then by (2.7) we have i

(k)
1 . . . i

(k)
N �=

i∗1 . . . i∗N for all k � 1. Note that ({0, 1}N
, ρ) is a compact metric space, where

ρ is defined in (2.3). So we can find a subsequence {kj} ⊂ N such that the limit
limj→∞(i(kj)

n ) exists, say (i′n). Then i′1 . . . i′N �= i∗1 . . . i∗N . Observe that

Π((i(kj)
n ), λkj

) = x = Π((i∗n), λ∗) ∀j � 1. (2.8)

Letting j → ∞ in (2.8), by (2.7) and lemma 2.1 it follows that

Π((i′n), λ∗) = x = Π((i∗n), λ∗). (2.9)

If λ∗ = 1/2, then λkj
� λ∗ for all j � 1. Since Ψx is decreasing, it follows that

Ψx(λkj
) � Ψx(λ∗) = (i∗n) for all j � 1, and thus (i′n) � (i∗n). Note that (i∗n) is the

greedy coding of x in base λ∗. Then by (2.9) it follows that (i′n) = (i∗n), leading to
a contradiction with i′1 . . . i′N �= i∗1 . . . i∗N . If λ∗ < 1/2, then (2.9) gives that (i′n) =
(i∗n). This again leads to a contradiction. Therefore, Ψx is continuous at λ∗. Since
λ∗ ∈ Λ(x) is arbitrary, Ψx is continuous in Λ(x). This completes the proof. �

Proof of theorem 1.1. Let x ∈ (0, 1/2). By lemma 2.2 it follows that min Λ(x) =
Ψ−1

x (01∞) = x and max Λ(x) = Ψ−1
x ((xn)) = 1/2. Observe that Ω(x) is a Cantor

set under the metric ρ defined in (2.3), which means that Ω(x) is a non-empty
compact, perfect and totally disconnected set under ρ. Then by lemma 2.2 we
conclude that Λ(x) is also a Cantor set. �

3. Lebesgue measure and Hausdorff dimension of Λ(x)

In this section we will prove theorem 1.2, which states that for any x ∈ (0, 1/2) the
set Λ(x) is a Lebesgue null set of full Hausdorff dimension. The key ingredient in our
proof of theorem 1.2 is proposition 3.1 (see below), which indicates that the local
Hausdorff dimension of Λ(x) at some λ0 ∈ Λ(x) is equal to the Hausdorff dimension
of the self-similar set Kλ0 . This property on the interplay between the ‘parameter
space’ (in this case, Λ(x)) and the ‘dynamical space’ (in our case Kλ) was first
observed by Douady [6] in the context of dynamics of real quadratic polynomials.
A similar result was proved by Tiozzo [24], who considers for c ∈ R the set of angles
of external rays which ‘land’ on the real slice of the Mandelbrot set to the right of
c (parameter space) and the set of external angles which land on the real slice of
the Julia set of the map z �→ z2 + c (dynamical space), showing that these two sets
have the same Hausdorff dimension. Some other similar results in different settings
can be found in [3, 5, 15, 25].

Proposition 3.1. Let x ∈ (0, 1/2). Then for any λ ∈ Λ(x) we have

lim
δ→0+

dimH(Λ(x) ∩ (λ − δ, λ + δ)) = dimH Kλ = − log 2
log λ

. (3.1)
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The second equality in (3.1) is obvious, since for any λ ∈ Λ(x) the self-similar set
Kλ is generated by the IFS {λx, λx + (1 − λ)} satisfying the open set condition
(cf. [13]). So it suffices to prove the first equality in (3.1).

Lemma 3.2. Let x ∈ (0, 1/2). Then for any λ ∈ (x, 1/2) we have

dimH(Λ(x) ∩ [x, λ]) � dimH Kλ.

Proof. Let λ ∈ (x, 1/2). Note by lemma 2.2 that πλ ◦ Ψx : Λ(x) ∩ [x, λ] → Kλ is
injective. By [7, Proposition 3.3] we only need to prove that the inverse map (πλ ◦
Ψx)−1 is Lipschitz. In other words, it suffices to prove that for any λ1, λ2 ∈ Λ(x) ∩
[x, λ] we have

|πλ(Ψx(λ1)) − πλ(Ψx(λ2))| � C|λ1 − λ2|, (3.2)

where C > 0 is a constant independent of λ1 and λ2.
Take λ1, λ2 ∈ Λ(x) ∩ [x, λ] with λ1 < λ2, and write Ψx(λ1) = (in), Ψx(λ2) =

(jn). By lemma 2.2 we have i1 = j1 = 0 and (in) � (jn). Then there exists m � 2
such that i1 . . . im−1 = j1 . . . jm−1 and im > jm. Note that

(1 − λ1)
∞∑

n=2

inλn−1
1 = x = (1 − λ2)

∞∑
n=2

jnλn−1
2 .

Then

x(1 − λ1 − λ2)
λ1λ2(1 − λ1)(1 − λ2)

(λ2 − λ1) =
x

λ1(1 − λ1)
− x

λ2(1 − λ2)

=
∞∑

n=2

inλn−2
1 −

∞∑
n=2

jnλn−2
2

�
m−1∑
n=2

inλn−2
1 +

∞∑
n=m

λn−2
1 −

m−1∑
n=2

inλn−2
2

�
∞∑

n=m

λn−2
1 =

λm−2
1

1 − λ1
,

where the first inequality follows by i1 . . . im−1 = j1 . . . jm−1, and the second
inequality follows by λ1 < λ2. This, together with λ1 < λ2 � λ, implies that

λm � λm−1
1 λ2 � x(1 − λ1 − λ2)

1 − λ2
(λ2 − λ1) � x(1 − 2λ)(λ2 − λ1).

Therefore,

|πλ(Ψx(λ1)) − πλ(Ψx(λ2))| = (1 − λ)
∞∑

n=1

inλn−1 − (1 − λ)
∞∑

n=1

jnλn−1

� (1 − λ)

(
λm−1 −

∞∑
n=m+1

λn−1

)

= (1 − 2λ)λm−1 � C|λ2 − λ1|,
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where C = x(1 − 2λ)2/λ > 0 (since λ < 1/2). This proves (3.2), and then completes
the proof. �

Lemma 3.3. Let x ∈ (0, 1/2). If λ ∈ Λ(x) \ {1/2} such that Ψx(λ) does not end
with 0∞, then for any δ > 0,

dimH(Λ(x) ∩ [λ, λ + δ]) � dimH Kλ.

Proof. Let λ ∈ Λ(x) \ {1/2} such that (cn) = Ψx(λ) does not end with 0∞. Take
δ > 0. We will construct a sequence of subsets in Λ(x) ∩ [λ, λ + δ] whose Hausdorff
dimension can be arbitrarily close to dimH Kλ.

Since λ < 1/2, by lemma 2.2 we have (cn) � Ψx(1/2) = (xn). Then there exists
n0 � 2 such that c1 . . . cn0−1 = x1 . . . xn0−1 and cn0 > xn0 . Since (cn) does not end
with 0∞, we can find an increasing sequence {nk} ⊂ N such that n0 < n1 < n2 <
· · · , and cnk

= 1 for all k � 1. Now for k � 1, we define

Ωλ,k :=
{
c1 . . . cnk−10i1i2 . . . : in+1 . . . in+k �= 0k ∀n � 0

}
. (3.3)

Note by lemma 2.2 that Ψx(Λ(x) ∩ [λ, 1/2]) = {(in) : (xn) � (in) � (cn)} . Then by
using cn0 > xn0 and cnk

= 1 it follows that

Ωλ,k ⊂ Ψx(Λ(x) ∩ [λ, 1/2]) for all k � 1. (3.4)

Since δ > 0, by (3.3), (3.4) and lemma 2.2 there exists N ∈ N such that

Λ(x) ∩ [λ, λ + δ] ⊃ Ψ−1
x (Ωλ,k) ∀k � N.

So, to finish the proof it suffices to prove that

lim
k→∞

dimH Ψ−1
x (Ωλ,k) � dimH Kλ. (3.5)

Take k � N , and consider the map πλ ◦ Ψx : Ψ−1
x (Ωλ,k) → πλ(Ωλ,k). Let λ1, λ2 ∈

Ψ−1
x (Ωλ,k) with λ1 < λ2, and write Ψx(λ1) = (in), Ψx(λ2) = (jn). Then (in), (jn) ∈

Ωλ,k. Since λ1 < λ2, by lemma 2.2 we have (in) � (jn). So there exists m > nk such
that i1 . . . im−1 = j1 . . . jm−1 and im > jm. Note that imim+1 . . . does not contain
k consecutive zeros. Then

x = (1 − λ1)
∞∑

n=1

inλn−1
1 > (1 − λ2)

∞∑
n=1

inλn−1
1 > (1 − λ2)

(
m∑

n=1

inλn−1
1 +λm+k−1

1

)
.

(3.6)
On the other hand,

x = (1 − λ2)
∞∑

n=1

jnλn−1
2 � (1 − λ2)

m∑
n=1

inλn−1
2 . (3.7)

Note that λ1, λ2 ∈ Λ(x) ∩ [λ, 1/2]. Then by (3.6) and (3.7) it follows that

λm+k−1 � λm+k−1
1 <

m∑
n=1

in(λn−1
2 − λn−1

1 )

<

∞∑
n=1

(λn−1
2 − λn−1

1 ) =
1

1 − λ2
− 1

1 − λ1
=

λ2 − λ1

(1 − λ1)(1 − λ2)
.

https://doi.org/10.1017/prm.2024.66 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.66


Self-similar sets with common points 9

This implies that

|πλ(Ψx(λ1)) − πλ(Ψx(λ2))| = (1 − λ)
∞∑

n=1

inλn−1 − (1 − λ)
∞∑

n=1

jnλn−1

� (1 − λ)
∞∑

n=m

λn−1

= λm−1 <
λ2 − λ1

λk(1 − λ1)(1 − λ2)
� 4

λk
(λ2 − λ1),

(3.8)

where the last inequality follows by λ1, λ2 � 1/2.
So, by (3.3) and (3.8) it follows that

dimH Ψ−1
x (Ωλ,k) � dimH πλ(Ωλ,k)

= dimH πλ

({
(in) : in+1 . . . in+k �= 0k ∀n � 0

})
� dimH πλ

({
(in) ∈ {0, 1}N : in = 1 for all n ≡ 0(mod k)

})

= − (k − 1) log 2
k log λ

→ log 2
− log λ

= dimH Kλ

as k → ∞. This proves (3.5), and then completes the proof. �

Proof of proposition 3.1. Take λ ∈ Λ(x). Note that Λ(x) ⊂ [x, 1/2] and x, 1/2 ∈
Λ(x). We will prove (3.1) in the following two cases.

Case I. λ ∈ Λ(x) ∩ [x, 1/2). Then by lemma 3.2 it follows that for any δ ∈
(0, 1/2 − λ),

dimH(Λ(x) ∩ (λ − δ, λ + δ)) � dimH(Λ(x) ∩ [x, λ + δ])

� dimH Kλ+δ =
log 2

− log(λ + δ)
.

This implies that

lim
δ→0+

dimH(Λ(x) ∩ (λ − δ, λ + δ)) � log 2
− log λ

= dimH Kλ. (3.9)

On the other hand, take δ > 0. Note by theorem 1.1 that Λ(x) is a Cantor set,
and λ ∈ Λ(x). Then we can find a sequence {λk} in Λ(x) ∩ (λ − δ, λ + δ) such that
each Ψx(λk) does not end with 0∞, and λk → λ as k → ∞. Therefore, by lemma
3.3 it follows that

dimH(Λ(x) ∩ (λ − δ, λ + δ)) � dimH(Λ(x) ∩ [λk, λ + δ])

� dimH Kλk
=

log 2
− log λk

→ log 2
− log λ

= dimH Kλ

as k → ∞. This, together with (3.9), proves (3.1).
Case II. λ = 1/2. The proof is similar to that for the second part of Case I. Let

δ > 0. Since Λ(x) is a Cantor set and max Λ(x) = 1/2, there exists a sequence {λk}
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in Λ(x) ∩ (1/2 − δ, 1/2) such that each Ψx(λk) does not end with 0∞, and λk ↗ 1/2
as k → ∞. Then by lemma 3.3 it follows that

dimH(Λ(x) ∩ (1/2 − δ, 1/2 + δ)) � dimH(Λ(x) ∩ [λk, λk+1])

� dimH Kλk
=

log 2
− log λk

→ 1 = dimH K1/2,

proving (3.1). �

As a direct consequence of proposition 3.1 we have the following result of Λ(x).

Corollary 3.4. Let x ∈ (0, 1/2). Then for any open interval I ⊂ R with Λ(x) ∩
I �= ∅ we have

dimH(Λ(x) ∩ I) = sup
λ∈Λ(x)∩I

dimH Kλ.

Proof of theorem 1.2. By corollary 3.4 it follows that

dimH Λ(x) = dimH(Λ(x) ∩ (x, 1/2)) = sup
λ∈Λ(x)∩(x,1/2)

dimH Kλ = 1.

Furthermore, for any n ∈ N the Hausdorff dimension of Λn(x) := Λ(x) ∩ [x, 1/2 −
1/n] is strictly smaller than one, and thus each Λn(x) has zero Lebesgue measure.
Since Λ(x) \ {1/2} =

⋃∞
n=1 Λn(x), the set Λ(x) also has zero Lebesgue measure.

This together with proposition 3.1 completes the proof. �

4. Hausdorff dimension of the intersection
⋂p

i=1 Λ(yi)

Given finitely many numbers y1, y2, . . . , yp ∈ (0, 1/2), we will show in this section
that the intersection

⋂p
i=1 Λ(yi) has full Hausdorff dimension (see theorem 1.4).

Note by theorem 1.1 that each set Λ(yi) is a Cantor set. We will construct in each
Λ(yi) a sequence of Cantor subsets C�(yi), � � 1, such that each C�(yi) has the
same maximum point 1/2, and the thickness of C�(yi) tends to infinity as � → ∞.
Then by using a result from Hunt, Kan and Yorke [12] (see lemma 4.2 below)
we conclude that the intersection

⋂p
i=1 Λ(yi) contains a sequence of Cantor subsets

whose thickness tends to infinity. This, together with lemma 4.1 (see below), implies
that

⋂p
i=1 Λ(yi) has full Hausdorff dimension.

4.1. Thickness of a Cantor set in R

First we recall the thickness of a Cantor set in R from Newhouse [19] (see [1] for
some recent progress). Let E be a Cantor set in R with its convex hull conv(E) = E0.
Then the complement E0 \ E =

⋃∞
n=1 Vn is the union of countably many disjoint

open intervals. The sequence V = (V1, V2, . . .) is called a defining sequence for E.
If moreover |V1| � |V2| � |V3| � · · · , where |V | denotes the diameter of a set V ⊂ R,
then we call V an ordered defining sequence for E. Let En := E0 \

⋃n
k=1 Vk. Then

En is the union of finitely many disjoint closed intervals. So, for any n � 1, the open
interval Vn is contained in some connected component of En−1, say E∗

n−1. Then
the set E∗

n−1 \ Vn is the union of two closed intervals LV (Vn) and RV (Vn), where
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we always assume that LV (Vn) lies to the left of RV (Vn). We emphasize that both
intervals LV (Vn) and RV (Vn) have positive length, since otherwise E will contain
isolated points which is impossible. Then the thickness of E with respect to the
defining sequence V is defined by

τV (E) := inf
n�1

min
{ |LV (Vn)|

|Vn| ,
|RV (Vn)|

|Vn|
}

, (4.1)

and the thickness of E is defined by

τ(E) := sup
V

τV (E), (4.2)

where the supremum is taken over all defining sequences V for E. It was shown in
[27] that τ(E) = τV (E) for every ordered defining sequence V for E.

The following lower bound for the Hausdorff dimension of a Cantor set in R in
terms of thickness was proven by Newhouse [20] (see also [21, P. 77]).

Lemma 4.1 [20, P. 107]. If E is a Cantor set in R, then

dimH E � log 2
log
(
2 + 1

τ(E)

) .
Two Cantor sets in R are called interleaved if neither set lies in the closure of a

gap of the other. The following result for the intersection of two interleaved Cantor
sets was shown by Hunt, Kan and Yorke [12].

Lemma 4.2 [12, Theorem 1]. There exists a function ϕ : (1 +
√

2, ∞) → (0, ∞)
such that for all interleaved Cantor sets E and F in R with τ(E), τ(F ) � t >
1 +

√
2, there exists a Cantor subset K ⊂ E ∩ F with τ(K) � ϕ(t).

Remark 4.3.

(i) In [12, P. 882] the authors pointed out that when t is sufficiently large, ϕ(t)
is of order

√
t. So, lemma 4.2 implies that if the thicknesses of two interleaved

Cantor sets E and F in R are sufficiently large, then the thickness of the
resulting Cantor set K ⊂ E ∩ F is also very large.

(ii) It is clear that if two Cantor sets E and F in R have the same maximum
point ξ, then they are interleaved. Furthermore, if the maximum point ξ is
also an accumulation point of E ∩ F , then from the proof of [12, Theorem 1]
(see also [12, P. 887]) it follows that the resulting Cantor set K ⊂ E ∩ F in
lemma 4.2 can be required to have the same maximum point ξ.

We first construct a sequence of disjoint Cantor subsets of Λ(x) whose thickness
tends to infinity. Then by the following lemma, we can construct a sequence of
Cantor subsets of Λ(x) with the same maximum point, whose thickness also tends
to infinity. These Cantor sets will be used to show that the intersection has full
Hausdorff dimension.
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Lemma 4.4. Let {Fk}∞k=1 be a sequence of Cantor sets with αk = min Fk and βk =
max Fk. Suppose that

(i) α1 < β1 < α2 < β2 < . . . < αk < βk < . . ., and β := limk→∞ βk;

(ii) limk→∞ τ(Fk) = +∞;

(iii)

lim
k→∞

βk − αk

αk+1 − βk
= +∞, lim

k→∞
β − αk+1

αk+1 − βk
= +∞.

Then

lim
�→∞

τ

( ∞⋃
k=�

Fk ∪ {β}
)

= +∞.

Proof. For k � 1, let Vk = {Vk,j}∞j=1 be an ordered defining sequence of the Cantor
set Fk, i.e.,

[αk, βk] \ Fk =
∞⋃

j=1

Vk,j (4.3)

with |Vk,1| � |Vk,2| � |Vk,3| � . . .. For � � 1, write

C� :=
∞⋃

k=�

Fk ∪ {β}.

Note by (i) that each C� is a Cantor set, and the convex hull of C� is [α�, β].
Moreover, we have

[α�, β] \ C� =
∞⋃

k=�

(βk, αk+1) ∪
∞⋃

k=�

∞⋃
j=1

Vk,j .

To estimate the thickness of C�, we enumerate the open intervals (βk, αk+1) and
Vj,k with k � �, j � 1 in the following way:

(4.4)

This means that we first remove from [α�, 1/2] the open interval (β�, α�+1), and
next remove V�,1, and then (β�+1, α�+2), V�+1,1, V�,2, (β�+2, α�+3), and so on.
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Figure 1. A defining sequence W� =
{
(βk, αk+1), Vk,j : k � �, j � 1

}
for the Cantor set

C� =
⋃∞

k=� Fk ∪ {β}, and for each k � � a defining sequence Vk =
{
Vk,j

}∞
j=1

for the

Cantor set Fk; see (4.3) and (4.4) for more explanation.

Thus, (4.4) gives a defining sequence W� = {(βk, αk+1), Vk,j : k � �, j � 1} for C�

(see Fig. 1).
For the defining sequence W� for C�, by (4.4) we have that

LW�

(
(βk, αk+1)

)
= [αk, βk], RW�

(
(βk, αk+1)

)
= [αk+1, β] for any k � �;

and

LW�
(Vk,j) = LVk

(Vk,j), RW�
(Vk,j) = RVk

(Vk,j) for any k � �, j � 1.

Note that τVk
(Fk) = τ(Fk). Then by (4.1) it follows that

τW�
(C�) = inf

k��,j�1
min

{
βk − αk

αk+1 − βk
,

β − αk+1

αk+1 − βk
,
|LVk

(Vk,j)|
|Vk,j | ,

|RVk
(Vk,j)|

|Vk,j |
}

= inf
k��

min
{

τ(Fk),
βk − αk

αk+1 − βk
,

β − αk+1

αk+1 − βk

}
.

Note that τ(C�) � τW�
(C�). We conclude by (ii) and (iii) that lim�→∞ τ(C�) = +∞.

�

4.2. Construction of Cantor subsets of Λ(x)

Let x ∈ (0, 1/2). We will construct a sequence of Cantor subsets {Fk(x)}∞k=1 of
Λ(x) satisfying the assumptions (i)–(iii) in lemma 4.4. Note by lemma 2.2 that

Ψx(Λ(x)) = Ω(x) = {(in) : (xn) � (in) � 01∞} ,

where (xn) = Ψx(1/2). Moreover, Ψx is a decreasing homeomorphism from Λ(x) to
Ω(x). Based on this, our strategy to construct these Cantor subsets {Fk(x)}∞k=1 in
Λ(x) is to construct a sequence of Cantor subsets {Ωk(x)}∞k=1 in the symbolic space
Ω(x).

Note by the definition of (xn) = Ψx(1/2) that x1 = 0 and (xn) does not end with
1∞. Denote by {nk} the set of all indices n > 1 such that xn = 0. Then xnk

= 0 for
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any k � 1, and xn = 1 for any nk < n < nk+1. For k � 1, we define

Ωk(x) := {(in) : x1 . . . xnk−110∞ � (in) � x1 . . . xnk−11∞} . (4.5)

Then Ωk(x) ⊂ Ω(x), which implies that

Fk(x) := Ψ−1
x (Ωk(x)) ⊂ Λ(x). (4.6)

Note by (4.5) that for each k � 1 the set (Ωk(x), ρ) is a topological Cantor set,
where ρ is the metric defined in (2.3). By lemma 2.2 it follows that each Fk(x) is a
Cantor subset of Λ(x).

Write αk = min Fk(x) and βk = max Fk(x). Clearly, αk and βk depend on x. For
simplicity we will suppress this dependence in our notation if no confusion arises.
Since Ψx is decreasing by lemma 2.2, by (4.5) and (4.6) we have

αk = Ψ−1
x (x1x2 . . . xnk−11∞), βk = Ψ−1

x (x1x2 . . . xnk−110∞).

Note that x1x2 . . . xnk+1−11∞ = x1x2 . . . xnk−101∞ ≺ x1x2 . . . xnk−110∞ for all k �
1. Thus,

α1 < β1 < α2 < β2 < . . . < αk < βk < . . . .

Furthermore, the sequence x1x2 . . . xnk−110∞ decreases to (xn) = Ψx(1/2) as k →
∞, again by lemma 2.2 we obtain that βk ↗ 1/2 as k → ∞. Therefore, the sequence
{Fk(x)}∞k=1 of disjoint Cantor sets satisfies the assumption (i) of lemma 4.4.

In the following we show that the sequence {Fk(x)}∞k=1 also satisfies the
assumption (ii) of lemma 4.4.

Proposition 4.5. For any x ∈ (0, 1/2) we have limk→∞ τ(Fk(x)) = +∞.

In view of the definition of thickness, we first describe a defining sequence for
the Cantor set Fk(x). Clearly, [αk, βk] is the convex hull of Fk(x). By lemma 2.2 it
follows that

[αk, βk] \ Fk(x) =
⋃

ω∈{0,1}∗
Vk,ω,

where

Vk,ω :=
(
Ψ−1

x (x1x2 . . . xnk−11 ω 10∞),Ψ−1
x (x1x2 . . . xnk−11 ω 01∞)

)
.

We enumerate these open intervals Vk,ω, ω ∈ {0, 1}∗ according first to the length
of ω and then to the lexicographical order of ω:

Vk,ε; Vk,0, Vk,1; Vk,00, Vk,01, Vk,10, Vk,11;

Vk,000, Vk,001, Vk,010, Vk,011, Vk,100, Vk,101, Vk,110, Vk,111; . . . ,
(4.7)

where ε is the empty word. Thus, (4.7) gives a defining sequence Vk = {Vk,ω : ω ∈
{0, 1}∗} for Fk(x), and moreover, we have

LVk
(Vk,ω) =

[
Ψ−1

x (x1x2 . . . xnk−11 ω 1∞),Ψ−1
x (x1x2 . . . xnk−11 ω 10∞)

]
,

RVk
(Vk,ω) =

[
Ψ−1

x (x1x2 . . . xnk−11 ω 01∞),Ψ−1
x (x1x2 . . . xnk−11 ω 0∞)

]
.

(4.8)
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Note by (4.8) that the endpoints of LVk
(Vk,ω) and RVk

(Vk,ω) have codings
ending with ω1∞, ω0∞, ω10∞, ω01∞, respectively. In view of (4.1), to prove
limk→∞ τ(Fk(x)) we need the following inequalities.

Lemma 4.6. Let x ∈ (0, 1/2) \ {1/4} with (xn) = Ψx(1/2), and let m � 3 such that
xm = 1.

(i) If λ1, λ2 ∈ Λ(x) satisfy Ψx(λ1) = j1j2 . . . jq1∞ and Ψx(λ2) = j1j2 . . . jq0∞,
then

λ2 − λ1 � 1
4
λq

2.

(ii) If λ3, λ4 ∈ Λ(x) satisfy Ψx(λ3) = x1 . . . xmj1 . . . jq10∞ and Ψx(λ4) =
x1 . . . xmj1 . . . jq01∞, then

λ4 − λ3 � min

{
2(1 − 2λ3)λ

q+2
3 , 2(1 − 2λ4)

λm+q
4

λm−2
3

}
.

Before giving the proof we emphasize that for x = 1/4 we have (xn) = Ψx(1/2) =
010∞. So we can not find xm = 1 for m � 3, which plays an essential role in the
proof of lemma 4.6 (ii).

Proof. Since x ∈ (0, 1/2) \ {1/4}, the expansion (xn) = Ψx(1/2) satisfies xm =
1 for some m � 3. For (i), let λ1, λ2 ∈ Λ(x) with Ψx(λ1) = j1j2 . . . jq1∞ and
Ψx(λ2) = j1j2 . . . jq0∞. Then by lemma 2.2 we have λ1 < λ2. Note that x =
πλ1(j1j2 . . . jq1∞) = πλ2(j1j2 . . . jq0∞). Then

λq
2 = πλ2(0

q1∞) = πλ2(j1j2 . . . jq1∞) − πλ2(j1j2 . . . jq0∞)

= πλ2(j1j2 . . . jq1∞) − πλ1(j1j2 . . . jq1∞)

� 4(λ2 − λ1),

where the inequality follows by lemma 2.1 (ii) since for any (in) ∈ Ω(x) we have

dπλ((in))
dλ

=
∞∑

n=2

n

(
n − 1

n
− λ

)
inλn−2 �

∞∑
n=2

n − 1
2n−2

= 4.

This proves (i).
For (ii) let λ3, λ4 ∈ Λ(x) such that

Ψx(λ3) = x1 . . . xmj1 . . . jq10∞ and Ψx(λ4) = x1 . . . xmj1 . . . jq01∞,

where xm = 1 with m � 3. Then by lemma 2.2 we have λ3 < λ4. Note that
x = πλ3(x1 . . . xmj1j2 . . . jq10∞) = πλ4(x1 . . . xmj1j2 . . . jq01∞). Then

πλ3(0
m+q10∞) − πλ4(0

m+q+11∞)

= πλ4(x1 . . . xmj1j2 . . . jq0∞) − πλ3(x1 . . . xmj1j2 . . . jq0∞)

� 1
2
λm−2

3 (λ4 − λ3),

(4.9)
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where the last inequality follows by lemma 2.1 (ii) since by using xm = 1 with m � 3
and (2.5) we have

dπλ(x1 . . . xmj1j2 . . . jq0∞)
dλ

� m

(
m − 1

m
− λ

)
xmλm−2 � 1

2
λm−2.

Therefore, by (4.9) and using λ3 < λ4 it follows that

λ4 − λ3 � 2
λm−2

3

(
(1 − λ3)λ

m+q
3 − λm+q+1

4

)

� 2
λm−2

3

(
(1 − λ3)λ

m+q
3 − λm+q+1

3

)
= 2(1 − 2λ3)λ

q+2
3 ,

and

λ4 − λ3 � 2
λm−2

3

(
(1 − λ3)λ

m+q
3 − λm+q+1

4

)

� 2
λm−2

3

(
(1 − λ4)λ

m+q
4 − λm+q+1

4

)
= 2(1 − 2λ4)

λm+q
4

λm−2
3

.

This completes the proof. �

When x = 1/4 we prove similar inequalities by using different estimation.

Lemma 4.7. Let x = 1/4. Then (xn) = Ψx(1/2) = 010∞.

(i) If λ1, λ2 ∈ Λ(x) satisfy Ψx(λ1) = 010mj1j2 . . . jq1∞ and Ψx(λ2) = 010mj1j2
. . . jq0∞, then

λ2 − λ1 � λm+2+q
2

1 − 2λ1 + (m + 3)2−m
.

(ii) If λ3, λ4 ∈ Λ(x) satisfy Ψx(λ3) = 01j1j2 . . . jq10∞ and Ψx(λ4) = 01j1j2
. . . jq01∞, then

λ4 − λ3 � λ2+q
3 .

Proof. For (i) we note by lemma 2.2 that λ1 < λ2. Since x = πλ1(010mj1j2 . . . jq1∞)
= πλ2(010mj1j2 . . . jq0∞), we have

λm+2+q
2 = πλ2(0

m+2+q1∞) = πλ2(010mj1j2 . . . jq1∞) − πλ2(010mj1j2 . . . jq0∞)

= πλ2(010mj1j2 . . . jq1∞) − πλ1(010mj1j2 . . . jq1∞)

�
(
1 − 2λ1 + (m + 3)2−m

)
(λ2 − λ1),

where the inequality follows by lemma 2.1 (ii) since by (2.5) we have

dπλ(010mj1j2 . . . jq1∞)
dλ

� (1 − 2λ) +
∞∑

n=m+3

n

(
n − 1

n
− λ

)
λn−2

� 1 − 2λ +
∞∑

n=m+3

n − 1
2n−2

= 1 − 2λ + (m + 3)2−m.
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This proves (i).
For (ii), note by lemma 2.2 that λ3 < λ4. Then by using x = πλ3(01j1j2 . . . jq10∞)

= πλ4(01j1j2 . . . jq01∞) it follows that we have

πλ3(0
2+q10∞) − πλ4(0

3+q1∞) = πλ4(01j1j2 . . . jq0∞) − πλ3(01j1j2 . . . jq0∞)

� πλ4(010∞) − πλ3(010∞)

= (1 − λ3 − λ4)(λ4 − λ3).

This implies that

λ4 − λ3 � 1
1 − λ3 − λ4

(
(1 − λ3)λ

2+q
3 − λ3+q

4

)

� 1
1 − λ3 − λ4

(
(1 − λ3)λ

2+q
3 − λ4λ

2+q
3

)
= λ2+q

3 ,

as desired. �

Proof of proposition 4.5. Write Ψx(1/2) = (xn). Let {nk} be the enumeration of all
indices n > 1 such that xn = 0. Recall from (4.7) the defining sequence Vk = {Vk,ω :
ω ∈ {0, 1}∗} for Fk(x). It follows from (4.1) that

τVk
(Fk(x)) = inf

{ |LVk
(Vk,ω)|

|Vk,ω| ,
|RVk

(Vk,ω)|
|Vk,ω| : ω ∈ {0, 1}∗

}
.

Note by (4.8) that

LVk
(Vk,ω) =

[
Ψ−1

x (x1x2 . . . xnk−11 ω 1∞),Ψ−1
x (x1x2 . . . xnk−11 ω 10∞)

]
=:
[
γω,1, γω,2

]
,

RVk
(Vk,ω) =

[
Ψ−1

x (x1x2 . . . xnk−11 ω 01∞),Ψ−1
x (x1x2 . . . xnk−11 ω 0∞)

]
=:
[
γω,3, γω,4

]
.

Then

Vk,ω =
(
Ψ−1

x (x1x2 . . . xnk−11 ω 10∞),Ψ−1
x (x1x2 . . . xnk−11 ω 01∞)

)
=
(
γω,2, γω,3

)
.

Observe by lemma 2.2 that αk � γω,1 < γω,2 < γω,3 < γω,4, where αk = min Fk(x).
Case (A). x ∈ (0, 1/2) \ {1/4}. Then there exists an integer m � 3 such that xm =
1. Take a sufficiently large k so that nk > m. By lemma 4.6 it follows that

γω,2 − γω,1 � 1
4
γnk+q+1

ω,2 , γω,4 − γω,3 � 1
4
γnk+q+1

ω,4 ,

and

γω,3 − γω,2 � 2(1 − 2γω,2)γ
nk+q−m+2
ω,2 ,
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where q is the length of the word ω. So, for any ω ∈ {0, 1}∗ we obtain that

|LVk
(Vk,ω)|

|Vk,ω| =
γω,2 − γω,1

γω,3 − γω,2
�

γm−1
ω,2

8(1 − 2γω,2)
� αm−1

k

8(1 − 2αk)
,

|RVk
(Vk,ω)|

|Vk,ω| =
γω,4 − γω,3

γω,3 − γω,2
�

γm−1
ω,4

8(1 − 2γω,2)
� αm−1

k

8(1 − 2αk)
.

Thus, for sufficiently large k we have

τ(Fk(x)) � τVk
(Fk(x)) � αm−1

k

8(1 − 2αk)
.

Note that αk ↗ 1/2 as k → ∞ because βk ↗ 1/2. Therefore, τ(Fk(x)) → +∞ as
k → ∞.

Case (B). x = 1/4. Then (xn) = Φx(1/2) = 010∞, which gives x1 . . . xnk−1 =
010nk−3 for all k � 1. By lemma 4.7 it follows that

γω,2 − γω,1 �
γnk+q+1

ω,2

1 − 2γω,1 + nk23−nk
, γω,4 − γω,3 �

γnk+q+1
ω,4

1 − 2γω,3 + nk23−nk
,

and

γω,3 − γω,2 � γnk+q
ω,2 ,

where q is the length of the word ω. This implies that for all ω ∈ {0, 1}∗,
|LVk

(Vk,ω)|
|Vk,ω| =

γω,2 − γω,1

γω,3 − γω,2
� γω,2

1 − 2γω,1 + nk23−nk
� αk

1 − 2αk + nk23−nk
,

|RVk
(Vk,ω)|

|Vk,ω| =
γω,4 − γω,3

γω,3 − γω,2
� γω,4

1 − 2γω,3 + nk23−nk
� αk

1 − 2αk + nk23−nk
.

Thus,

τ(Fk(x)) � τVk
(Fk(x)) � αk

1 − 2αk + nk23−nk
.

Note that αk ↗ 1/2 and nk → +∞ as k → ∞. Therefore, τ(Fk(x)) → +∞ as k →
∞, completing the proof. �

4.3. Hausdorff dimension of
⋂p

i=1 Λ(yi)

For any � � 1, we define

C�(x) :=
∞⋃

k=�

Fk(x) ∪ {1/2}. (4.10)

Note that conv(Fk(x)) = [αk, βk] for all k � 1, and

α1 < β1 < α2 < β2 < · · · < αk < βk < · · · , and lim
k→∞

βk = 1/2.

Since Fk(x) ⊂ Λ(x) for all k � 1 and 1/2 ∈ Λ(x), it follows that each C�(x) is a
Cantor subset of Λ(x).
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Proposition 4.8. For any x ∈ (0, 1/2) we have lim�→∞ τ(C�(x)) = +∞.

Proof. Take x ∈ (0, 1/2). Write Ψx(1/2) = (xn). Let {nk} be the enumeration of
all indices n > 1 such that xn = 0. By lemma 4.4 and proposition 4.5, it remains
to prove that

lim
k→∞

βk − αk

αk+1 − βk
= +∞ and lim

k→∞
1/2 − αk+1

αk+1 − βk
= +∞, (4.11)

where

αk = Ψ−1
x (x1x2 . . . xnk−11∞), βk = Ψ−1

x (x1x2 . . . xnk−110∞), (4.12)

and

αk+1 = Ψ−1
x (x1 . . . xnk−1xnk

. . . xnk+1−11∞) = Ψ−1
x (x1x2 . . . xnk−101∞). (4.13)

Case (A). x ∈ (0, 1/2) \ {1/4}. There exists m � 3 such that xm = 1. For suf-
ficiently large k, we have nk > m. By (4.12), (4.13) and lemma 4.6 it follows
that

βk − αk � 1
4
βnk

k , αk+1 − βk � min

{
2(1 − 2βk)βnk−m+1

k , 2(1 − 2αk+1)
αnk−1

k+1

βm−2
k

}
,

which implies

βk − αk

αk+1 − βk
� βm−1

k

8(1 − 2βk)
and

1/2 − αk+1

αk+1 − βk
� βm−2

k

4αnk−1
k+1

.

Note that αk ↗ 1/2, βk ↗ 1/2 and nk → ∞ as k → ∞. We obtain (4.11) by letting
k → ∞.

Case (B). x = 1/4. Then (xn) = Φx(1/2) = 010∞. By (4.12), (4.13) and lemma
4.7 it follows that

βk − αk � βnk

k

1 − 2αk + nk23−nk
, αk+1 − βk � βnk−1

k . (4.14)

This implies

βk − αk

αk+1 − βk
� βk

1 − 2αk + nk23−nk
. (4.15)

On the other hand, note by (4.13) that

1
4

= x = παk+1(x1x2 . . . xnk−101∞) = παk+1(010nk−21∞)=(1 − αk+1)αk+1 + αnk

k+1.

This implies that

(
1
2
− αk+1

)2

= αnk

k+1, and thus
1
2
− αk+1 = α

nk/2
k+1 . (4.16)
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Note by (4.14) that αk+1 − βk � βnk−1
k <αnk−1

k+1 . This, together with (4.16), implies
that

1/2 − αk+1

αk+1 − βk
� 1

α
nk/2−1
k+1

. (4.17)

Note that αk ↗ 1/2, βk ↗ 1/2 and nk → +∞ as k → ∞. Letting k → ∞ in (4.15)
and (4.17) we obtain (4.11), completing the proof. �

Proof of theorem 1.4. Let y1, . . . , yp ∈ (0, 1/2). Then by (4.2), (4.10) and proposi-
tion 4.8 it follows that each Λ(yi) contains a sequence of Cantor subsets C�(yi), � � 1
such that max C�(yi) = 1/2 for all � � 1, and the thickness τ(C�(yi)) → +∞ as
� → ∞. So, by lemma 4.2 and remark 4.3 (i) it follows that for sufficiently large �
and for any i, j ∈ {1, 2, . . . , p} the intersection C�(yi) ∩ C�(yj) contains a Cantor
subset C�(yi, yj) such that

τ(C�(yi, yj)) → +∞ as � → ∞. (4.18)

Note that for any k ∈ {1, 2, . . . , p} we have min C�(yk) ↗ 1/2 = max C�(yk) as � →
∞. Furthermore, C�(yk) ⊃ C�+1(yk) for any � � 1. Then by (4.18) it follows that
the maximum point 1/2 is an accumulation point of C�(yi) ∩ C�(yj). So, by remark
4.3 (ii) we can require that the resulting Cantor set C�(yi, yj) ⊂ C�(yi) ∩ C�(yj)
has the maximum point 1/2 for sufficiently large � and any i, j ∈ {1, 2, . . . , p}.

Proceeding this argument for all y1, y2, . . . , yp we obtain that for sufficiently
large � the intersection

⋂p
i=1 C�(yi) contains a Cantor subset C�(y1, . . . , yp) such

that max C�(y1, . . . , yp) = 1/2, and the thickness τ(C�(y1, . . . , yp)) → +∞ as � →
∞. Therefore, by lemma 4.1 it follows that

dimH

p⋂
i=1

Λ(yi) � dimH

p⋂
i=1

C�(yi) � dimH C�(y1, . . . , yp)

� log 2
log(2 + 1

τ(C�(y1,...,yp)) )
→ 1,

as � → ∞. This completes the proof. �

At the end of this section we remark that in the proof of theorem 1.4 we construct
a sequence of Cantor subsets C�(y1, . . . , yp), � � 1 in the intersection

⋂p
i=1 Λ(yi)

such that the thickness τ(C�(y1, . . . , yp)) → +∞ as � → ∞. By a recent work of
Yavicoli [28, remark of Theorem 4] it follows that the intersection

⋂p
i=1 Λ(yi)

contains arbitrarily long arithmetic progression.

5. Final remarks

At the end of this paper we point out that our results theorem 1.1–1.4 can be
extended to higher dimensions. To illustrate this we give two examples.
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Example 5.1. For λ ∈ (0, 1/2] let Kλ be the self-similar set defined in (1.1).
Then for n ∈ N the product set

⊗n
i=1 Kλ is also a self-similar set in R

n. For
a = (a1, . . . , an) ∈ (0, 1/2)n let

Λ(a) :=

{
λ ∈ (0, 1/2] : a ∈

n⊗
i=1

Kλ

}

be the set of parameters λ ∈ (0, 1/2] such that the n-dimensional self-similar set⊗n
i=1 Kλ contains the given point a. It is clear that Λ(a) =

⋂n
i=1 Λ(ai), where for

x ∈ (0, 1/2) the set Λ(x) is defined as in (1.2). So, by theorems 1.2 and 1.4 it
follows that Λ(a) has zero Lebesgue measure and full Hausdorff dimension for any
a ∈ (0, 1/2)n.

Example 5.2. Let n ∈ N and let λi ∈ (0, 1/2] for all 1 � i � n. Then
⊗n

i=1 Kλi
⊂

R
n is a self-affine set generated by the IFS {(λ1x1, λ2x2, . . . , λnxn) + i : i ∈⊗n

i=1 {0, 1 − λi}} . For any b = (b1, . . . , bn) ∈ (0, 1/2)n let

Λ′(b) :=

{
(λ1, λ2, . . . , λn) ∈ (0, 1/2]n : b ∈

n⊗
i=1

Kλi

}
.

Then (λ1, λ2, . . . , λn) ∈ Λ′(b) if and only if bi ∈ Kλi
for all 1 � i � n, which is

also equivalent to λi ∈ Λ(bi) for all 1 � i � n. So, Λ′(b) =
⊗n

i=1 Λ(bi). By theorem
1.1 it follows that for any b ∈ (0, 1/2)n the set Λ′(b) is a Cantor set in R

n, i.e., it
is a non-empty compact, totally disconnected and perfect set in R

n. Furthermore,
by [7, product formula 7.2] and theorem 1.2 we obtain that Λ′(b) has Lebesgue
measure zero and dimH Λ′(b) = n for any b ∈ (0, 1/2)n.

Note that in examples 5.1 and 5.2 the higher dimensional self-similar sets all have
the product form

⊗n
i=1 Kλi

. However, if the higher dimensional self-similar sets do
not have the product form, our results theorems 1.1–1.4 can not be applied directly.
Some recent progress on the extension of Newhouse thickness theorems to higher
dimensions may be useful in this direction (cf. [2, 8, 9, 29]).
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