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For A € (0, 1/2] let K\ C R be a self-similar set generated by the iterated function
system {Az, Az + 1 — A}. Given z € (0, 1/2), let A(z) be the set of A € (0, 1/2] such
that z € K. In this paper we show that A(z) is a topological Cantor set having zero
Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any
Y1, -+, Yp € (0, 1/2) there exists a full Hausdorff dimensional set of A € (0, 1/2]
such that y1, ..., yp € K.
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1. Introduction

For A € (0, 1/2] let Ky be the self-similar set generated by the iterated function
system (simply called, IFS) {fra(z) =Ax +d(1 —X):d=0, 1}. Then K is the
unique nonempty compact set satisfying (cf. [13])

Ky = faoEKx) U fan(Ky) = {(1 =AY i A i, €{0,1} Vi > 1} . (L)
n=1

Clearly, 1 — X is chosen so that the convex hull of K is the unit interval [0, 1] for all
A€ (0, 1/2]. Then 0 and 1 are common points of K for all A € (0, 1/2]. For other
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2 K. Jiang, D. Kong, W. Li and Z. Wang

x € (0, 1) it is natural to ask how likely the self-similar sets Kx, A € (0, 1/2] contain
the common point 7 Or even ask how likely the self-similar sets Ky, A € (0, 1/2]
contain any given points y, ..., ¥p € (0, 1)? These questions are motivated by the
work of Boes, Darst and Erd6s [4], in which they considered a class of fat Cantor sets
C' with positive Lebesgue measure. They showed that for a given point « € (0, 1)
the set of parameters A € (0, 1/2) such that x € C) is of first category.

Given z € [0, 1], let

Ax) == {\e (0,1/2] sz € Ky} (1.2)

Then A(x) consists of all A € (0, 1/2] such that = is the common point of Kj.
Note that K is symmetric, i.e., x € K if and only if 1 — 2 € K. Then A(z) =
A(1 —z) for any x € [0, 1]. So, we only need to consider z € [0, 1/2]. Note that
A(0) = (0, 1/2], and A(1/2) = {1/2}. So, it is interesting to study A(z) for z €
(0, 1/2).

Recall that a set FF C R is called a Cantor set if it is a non-empty compact
set containing neither interior nor isolated points. Our first result considers the
topology of A(z).

THEOREM 1.1. For any x € (0, 1/2) the set A(z) is a Cantor set with min A(x) = x
and max A(z) = 1/2.

By theorem 1.1 it follows that A(x) is a fractal set for any « € (0, 1/2). Our next
result considers the Lebesgue measure and fractal dimension of A(z).

THEOREM 1.2. For any = € (0, 1/2) the set A(x) is a Lebesque null set of full
Hausdorff dimension. Furthermore,

log 2
lim dimg(A(z) 0 (A — 8\ +6)) = —2

A
50+ —log A VA€ A),

where dimy denotes the Hausdorff dimension.

In 1984, Mahler [18] proposed the problem on studying how well elements in
the middle third Cantor set K3 can be approximated by rational numbers in it,
and by rational numbers outside of it. Some recent progress on this problem can
be found in [10, 11, 16, 22] and the references therein. On the other hand, this
question also motivates the study of rational numbers in a fractal set (cf. [23, 26]).
As a corollary of theorem 1.2 we show that for Lebesgue almost every A € (0, 1/2)
the Cantor set K, contains only two rational numbers 0 and 1.

COROLLARY 1.3. For Lebesgue almost every X € (0, 1/2] the set Ky \ {0, 1} con-
tains only irrational numbers.

Proof. By theorem 1.2 it follows that A(x) has zero Lebesgue measure for any
z € (0, 1). But if K\ {0, 1} contains a rational number, then A € U, cgn(0,1) M)
which has zero Lebesgue measure. g

Given yi, ..., yp € (0, 1/2), by theorems 1.1 and 1.2 it follows that the intersec-
tion (}_, A(y;) is small from the topological and Lebesgue measure perspectives.
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On the other hand, by using the thickness method introduced by Newhouse [19]
we can show that (7_, A(y;) contains a sequence of Cantor sets whose thickness
can be arbitrarily large, and from this we conclude that the intersection (_, A(y;)
has full Hausdorff dimension.

THEOREM 1.4. For any points y1, Yz, - .., yp € (0, 1/2) we have

P
dimpy n Aly;) = 1.
i=1

Recently, the first three authors studied in [14] analogous objects but with dif-
ferent family of self-similar sets (their self-similar sets have different convex hulls).
Theorem 1.4 shows that the intersection of any finitely many A(y;) has full Haus-
dorff dimension, while in [14, Theorem 1.5] their method can only prove this result
for the intersection of two associated sets.

The rest of the paper is organized as follows. In § 2 we prove theorem 1.1 for the
topology of A(x); and in §3 we investigate the local Hausdorff dimension of A(x)
and prove theorem 1.2. In §4 we consider the intersection ()_, A(y;) and prove
theorem 1.4; and in the final section we make some further remarks.

2. Topological properties of A(x)

In this section we investigate the topology of A(x), and prove theorem 1.1. Given
x € (0,1/2), note by (1.1) that for each A € A(x)\ {1/2} there exists a unique
sequence (d;) € {0, 1}" such that z = (1 — \) Sooe  dp A" We will show that A(z)
is homeomorphic to a subset in the symbolic space {0, 1}N, and then the topological
properties of A(z) can be deduced by studying the corresponding symbolic set.

First we recall some terminology from symbolic dynamics (cf. [17]). Let {0, 1}"
be the set of all infinite sequences of zeros and ones. For a word we mean a finite
string of zeros and ones. Let {0, 1}" be the set of all words over the alphabet {0, 1}
together with the empty word e. For two words c =c¢y...¢p, d=d;...d, from
{0, 1}* we write cd = ¢y ...c¢pd; ... d, for their concatenation. In particular, for
n € N we denote by c™ the n-fold concatenation of ¢ with itself, and by ¢ the
periodic sequence with period block c. Throughout the paper we will use lexico-
graphical order ‘<, <, >’ or ‘>=’ between sequences and words. For example, for two
sequences (¢;), (d;) € {0, 1}, we say (¢;) < (dy) if ¢; < dy, or there exists n € N
such that ¢;...¢c, =dy...d,, and ¢, 11 < d,,+1. For two words c, d, we say ¢ < d
if c0*° < do0°°.

Let A € (0, 1/2]. We define the coding map my : {0, 1} — K by

A ((in)) = nhj& Iainofaiso -0 fai, (0)=(1—=A) Z in AL (2.1)
n=1

If X € (0, 1/2), then the IFS {f\ q(x) = Az +d(1 — ) : d = 0, 1} satisfies the strong
separation condition, and thus the map =y is bijective. If A =1/2, then my /5 is
bijective up to a countable set. The map m defined in (2.1) naturally induces a
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function with two parameters:
I: {0, 1} (0,1/2] = [0,1); ((in), A) = ma((in))- (2.2)

Note that the symbolic space {0, 1} becomes a compact metric space under the
metric

pl(in), () = 20> Loin ), (2.3)

Equipped with the product topology on {0, 1}N x (0, 1/2] we show that II is
continuous.

LEMMA 2.1. The function I1 is continuous. Furthermore,

(i) for X € (0, 1/2] the function II(-, \) is increasing with respect to the lexico-
graphical order, and is strictly increasing if A € (0, 1/2);

(i1) if 0°° < (i) < 01°°, then I1((iy,), ) has positive derivative in (0, 1/2).

Proof. First we prove the continuity of IT. For any two points ((i,), A1), ((4n), A2) €
{0, 1} x (0, 1/2] we have

TL((n ), A2) = TL((n) s A< TI((Gn); A2) =TL((in), A2)| + [TL((in), A2) — T((in), ?21)4|)

Note that if p((jn), (i,)) < 27™, then |TI((4,), A2) — ((in), A2)] < A1 < 21—,
So the first term in (2.4) converges to zero as p((jn), (in)) — 0. Moreover, since the
series II((i,), A) = (1 = A) Y07 | i, A" ! with parameter A converges uniformly in
(0, 1/2], the second term in (2.4) also converges to zero as [Aa — A1| — 0. Therefore,
II is continuous.

For (i) let A€ (0, 1/2] and take two sequences (in), (jn) € {0, 1}". Suppose
(in) < (jn). Then there exists m € N such that iy ...4m—1 = Jj1...Jm—1 and i,, <
Jm.- This implies that

O((in),\) = (1= X) ii,@”*l <(1=X) (ijz/\"l + i )\”1>
n=1 n=1

n=m-+1

SA=2) A
n=1

< I((Fn), ),
where the second inequality follows from A/(1 —X) <1 for A € (0, 1/2], and this
inequality is strict if A € (0, 1/2).
For (i) let (in) € {0, 1} with 0% < (i,,) < 01°. Then i; = 0. So for any A €
(0, 1/2) we have II((in), A) = (1 — A) Yoo 5 in A"~ 1. This implies that

dH((in)v/\)in("l )\) i A"2 >0, (2.5)

dA n

n=2

where the strict inequality follows since A < 1/2 and (i,,) > 0°°. This completes the
proof. O
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Note that the map IT defined in (2.2) is surjective but not injective. Given z €
[0, 1], for A € (0, 1/2] we consider the horizontal fibre

() =1 ()0 ({0,137 x (A}
= {((in),A) € {0, 1 % (0,1/2] : (1 = \) iin/\"—l = x} .

Then T',(A\) # 0 if and only if A € A(z). Furthermore, by lemma 2.1 (i) it follows
that for any A € A(z) N (0, 1/2) the fibre set T';(\) consists of only one sequence;
and if A =1/2 € A(x) then the set I';(1/2) consists of at most two sequences. This
defines a map

U, A(z) — {0,1} ;A= W),

where U, (\) denotes the lexicographically largest sequence in I';(\). The sequence
U, (A) is also called the greedy coding of x in base .

Given z € (0, 1/2), we reserve the notation (z,) := ¥,(1/2) for the greedy coding
of z in base 1/2. Then (z,) begins with 0 and does not end with 1°°.

LEMMA 2.2. For any z € (0, 1/2) the map ¥, : A(x) — Q(x) is a decreasing
homeomorphism, where

O(x) == {(in) e {0, 1}V : (2n) < (in) < 0100}.

Proof. Let x € (0, 1/2). By lemma 2.1 it follows that ¥, is strictly decreasing.
Observe that « ¢ K for any A < x. Then A(x) C [z, 1/2]. Note that ¥, (z) = 01>
and U, (1/2) = (x,). Since ¥, is monotonically decreasing, we have

(2n) < Uo(\) < 01%° ¥ A€ A(z).

So, U, (A(z)) C Q(z).
Next we show that U, (A(z)) = Q(z). Let (i) € Q(x). Then by lemma 2.1 it
follows that

H((in),;>>ﬂ<(xn),;)z and TI((i,),\) O <z as A\, 0.

So, by the continuity of IT in lemma 2.1 there must exist A € (0, 1/2] such that
M((in), A) = . (2.6)

If X e (0,1/2), then (2.6) gives that ¥, () = (in). If A =1/2, then by (2.6) and
using (i,) = (z,) we still have U, (\) = (i,,). This proves ¥, (A(z)) = Q(x). Hence,
U, : A(z) — Q(z) is a decreasing bijection.

To completes the proof it remains to prove the continuity of W, and its inverse
W1 Since the proof for the continuity of W' is similar, we only prove it for
U,. Take A, € A(z). Suppose V¥, is not continuous at A,. Then there exists
N € N such that for any 6 > 0 we can find A € A(z) N (A =, Ax + ) such that
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\ +(A) = W (A\)| =27V, Letting 6 = 1/k with k = 1, 2, ..., we can find a sequence
Ak) C A(z) such that
Jim A=A and [Wa (M) = Ta(A)] > 27N ViEk>1. (2.7)
—00
Write W, (\,) = (i%”) and W,(\.) = (i%). Then by (2.7) we have it"...ily #
i7...i% for all k> 1. Note that ({0, 13", p) is a compact metric space, where
p is defined in (2.3). So we can find a subsequence {k;} C N such that the limit

limj_,oo(i;,kj)) exists, say (i],). Then ¢} ... # 4} ...i%. Observe that
(i), M, ) = @ = T0((i7), ) ¥ > 1. (2.8)
Letting j — oo in (2.8), by (2.7) and lemma 2.1 it follows that
T((#7); Av) = 2 = T((i7), As)- (2.9)

If A = 1/2 then Ay, < A, for all _] 1. Since ¥, is decreasing, it follows that

Vo (Ak;) = Pa(As) = ( *) for all j > 1, and thus (i},) = (i%). Note that (i) is the
greedy coding of z in base .. Then by (2.9) it follows that (i},) = (i), leading to
a contradiction with ) ... # ... i%. If Ay < 1/2, then (2.9) gives that (i) =
(¢f). This again leads to a contradiction. Therefore, ¥, is continuous at A,. Since
A« € A(x) is arbitrary, ¥, is continuous in A(z). This completes the proof. O

Proof of theorem 1.1. Let z € (0, 1/2). By lemma 2.2 it follows that min A(z) =
U 1(01%°) = 2 and max A(x) = ¥ ((x,)) = 1/2. Observe that Q(z) is a Cantor
set under the metric p defined in (2.3), which means that Q(x) is a non-empty
compact, perfect and totally disconnected set under p. Then by lemma 2.2 we
conclude that A(z) is also a Cantor set. O

3. Lebesgue measure and Hausdorff dimension of A(x)

In this section we will prove theorem 1.2, which states that for any « € (0, 1/2) the
set A(z) is a Lebesgue null set of full Hausdorff dimension. The key ingredient in our
proof of theorem 1.2 is proposition 3.1 (see below), which indicates that the local
Hausdorff dimension of A(x) at some A\g € A(z) is equal to the Hausdorff dimension
of the self-similar set K,. This property on the interplay between the ‘parameter
space’ (in this case, A(z)) and the ‘dynamical space’ (in our case K)) was first
observed by Douady [6] in the context of dynamics of real quadratic polynomials.
A similar result was proved by Tiozzo [24], who considers for ¢ € R the set of angles
of external rays which ‘land’ on the real slice of the Mandelbrot set to the right of
¢ (parameter space) and the set of external angles which land on the real slice of
the Julia set of the map 2 — 22 + ¢ (dynamical space), showing that these two sets
have the same Hausdorff dimension. Some other similar results in different settings
can be found in [3, 5, 15, 25].

PROPOSITION 3.1. Let x € (0, 1/2). Then for any A € A(z) we have

‘ . ) log 2
Jimdimr (Ax) N (A= 6,2 +6)) = dimy Ky = _1o§x

(3.1)
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The second equality in (3.1) is obvious, since for any A € A(z) the self-similar set
K is generated by the IFS {A\z, Az + (1 — \)} satisfying the open set condition
(cf. [13]). So it suffices to prove the first equality in (3.1).

LEMMA 3.2. Let x € (0, 1/2). Then for any X\ € (x, 1/2) we have
dimpy (A(z) N[z, ) < dimpy K.

Proof. Let X € (z, 1/2). Note by lemma 2.2 that my o U, : A(z) N[z, \] = K is
injective. By [7, Proposition 3.3] we only need to prove that the inverse map () o
U, )~ ! is Lipschitz. In other words, it suffices to prove that for any A1, Ay € A(z) N
[z, A] we have

[TA (W (A1) — (W (A2))| = ClA = A2, (3.2)

where C' > 0 is a constant independent of A; and 5.

Take A1, Ao € A(x) N[z, A] with Ay < A9, and write U, (A1) = (i), Vr(A2) =
(jn). By lemma 2.2 we have i; = j; = 0 and (4,) > (jn). Then there exists m > 2
such that 41 ...%,,-1 =7J1...Jm—1 and i,, > jm. Note that

L=M)D inAf =2 = (1= X)) jnAs
n=2 n=2

Then
(1 =X — A2) x x
A1A2(17A1)(17A2)(A —A)= M=) Aa(l—Ay)

. n—2 . n—2
= E in Ay ° — g JnAg
= n=2
m—1

m—1
Z Zn)\n 2 + Z /\n 2 Z Z-n)\;z—Q
n=2

)\m—2

ZAnQ 1_)\1

where the first inequality follows by 41...%p,-1=7J1...Jm—1, and the second

inequality follows by A1 < As. This, together with A\; < Ao < A, implies that

x(l — )\1 — /\2)
11— X

AT AT > A2 — A1) = 2(1—20) (A — A\p).

Therefore,

[mA(Wa (A1) = ma(Wa (A2))[ = (1 = A ZlnA" = ZJM"*

2 (1 7)\) (/\ml o A 1)
n=m+1

= (1 =20\t > C|\a — My,
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where C' = z(1 — 2X)?/X > 0 (since A < 1/2). This proves (3.2), and then completes
the proof. 0

LEMMA 3.3. Let € (0, 1/2). If X € A(x) \ {1/2} such that ¥, (\) does not end
with 0°°, then for any § > 0,
dimg (A(z) N[A\ A+ 6]) > dimpy K.

Proof. Let A € A(z) \ {1/2} such that (¢,,) = ¥, (\) does not end with 0°°. Take
0 > 0. We will construct a sequence of subsets in A(z) N [A, A + §] whose Hausdorff
dimension can be arbitrarily close to dimy K.

Since A < 1/2, by lemma 2.2 we have (¢,) > ¥, (1/2) = (x,,). Then there exists
ng = 2 such that ¢1...¢pg—1 = 1 ... Tpe—1 and ¢, > Xy, . Since (¢,) does not end

with 0°°, we can find an increasing sequence {n;} C N such that ng < n; < n2 <
,and ¢, =1 for all £ > 1. Now for k > 1, we define

Mg = {01 ceiCpp—10igia oot g1 e gk F 0% vn > } (3.3)

Note by lemma 2.2 that ¥, (A(x) N [A, 1/2]) = {(in) : (xn) =< (in) < (cn)}. Then by
using ¢, > xn, and ¢,, = 1 it follows that

Dk C UL (A()N[A1/2]) forall k> 1. (3.4)
Since 6 > 0, by (3.3), (3.4) and lemma 2.2 there exists N € N such that
A)NMNA+] DU (k) VE=N
So, to finish the proof it suffices to prove that
Jimdimy U (Qap) = dimpy K. (3.5)
Take k > N, and consider the map 7y o W, : W1 () 1) — mA(Qa k). Let A1, A2 €
\Pgl(QMﬁ) with A\ < Ag, and write ¥, (\;) = (4 ), U, (A2) = (jn)- Then (i), (jn) €
k- Since A1 < A, by lemma 2.2 we have (iy,) > (jn). So there exists m > nj, such

that 41 ...4%n-1 =J1...Jm-1 and 4., > j,,. Note that ¢,,2,,41 ... does not contain
k consecutive zeros. Then

=(1=2) ) i AT > (1= M) Z in AL > (1= Ag) (Zin/\’f_1+)\§"+k_l> :
n=1 n=1
(3.6)
On the other hand,

z=(1=X) > nAs N < (1= X2) > inAp (3.7)
n=1 n=1

Note that A1, A2 € A(2)

i)

[A, 1/2]. Then by (3.6) and (3.7) it follows that

(7t = A1)

Ms

>\m+k:71 g )\In,—i-k—l <

3
Il
—

1 1 N
1—>\2 1—>\1_(1_/\1)(1_)\2)'

(/\n 1 /\n 1)

Mg

3
Il
—
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This implies that

TA(Wa (M) = A (Ta(A2)) = (1= X)) ip A" = (1= A) > jn A"
<(1-N) i An (3.8)
et MemhL A ),

(T = A)(1 = Ag) AF

where the last inequality follows by A1, A2 < 1/2.
So, by (3.3) and (3.8) it follows that

dim g \I};l(Q)\,k) > dimpg WA(Q)\,]C)
=dimy mx ({(in) t ins1 .. insr # 0% VR > 0})

> dimys 7y ({(in) € (0,1} : i, = 1 for all n = O(mod k)})

(k—1)log2 log 2 )
S = dimy K
klogh  —logx A
as k — oo. This proves (3.5), and then completes the proof. O

Proof of proposition 3.1. Take A € A(z). Note that A(x) C [z, 1/2] and z, 1/2 €
A(z). We will prove (3.1) in the following two cases.
Case I. A€ A(z) N[z, 1/2). Then by lemma 3.2 it follows that for any ¢ €

(0, 1/2 = N),
dimg (A(z) N (A =6, A +0)) < dimg(A(z) N[z, A+ 6])
<dimg Kygs = %-
This implies that
lim dimp (A() N (= 6,7+ 6)) < —282 _ dimy K. (3.9)
5—0+ —log A

On the other hand, take § > 0. Note by theorem 1.1 that A(z) is a Cantor set,
and A € A(z). Then we can find a sequence {\;} in A(z) N (A — 6, A+ §) such that
each U, (Ar) does not end with 0°°, and Ay — A as k — oo. Therefore, by lemma
3.3 it follows that

dimg (A(z) N (A =0, A+ 0)) > dimg (A(x) N [Ag, A+ I])
log 2 log 2
—
—log A\ —log A

>dimHK>\k = :dlmHK)\

as k — oo. This, together with (3.9), proves (3.1).

Case II. A = 1/2. The proof is similar to that for the second part of Case I. Let
d > 0. Since A(z) is a Cantor set and max A(z) = 1/2, there exists a sequence { A}

https://doi.org/10.1017/prm.2024.66 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.66

10 K. Jiang, D. Kong, W. Li and Z. Wang

in A(z) N (1/2 — 6, 1/2) such that each ¥, (\;) does not end with 0%, and A\, ' 1/2
as k — oo. Then by lemma 3.3 it follows that

log 2

>dimHK)\k = —>1:dimHK1/2,

—log A\,
proving (3.1). O
As a direct consequence of proposition 3.1 we have the following result of A(x).

COROLLARY 3.4. Let x € (0, 1/2). Then for any open interval I C R with A(x)N
I # () we have

dimg(A(z)NI)= sup dimg K.
AeA(z)NI

Proof of theorem 1.2. By corollary 3.4 it follows that

dimy A(z) = dimpg (A(z) N (x,1/2)) = sup dimpg Ky = 1.
AEA(z)N(z,1/2)

Furthermore, for any n € N the Hausdorft dimension of A, (x) := A(z) N[z, 1/2 —
1/n] is strictly smaller than one, and thus each A, (z) has zero Lebesgue measure.
Since A(z) \ {1/2} = U, , An(x), the set A(z) also has zero Lebesgue measure.
This together with proposition 3.1 completes the proof. g

4. Hausdorff dimension of the intersection (}_, A(y;)

Given finitely many numbers y1, y2, ..., yp € (0, 1/2), we will show in this section
that the intersection (\7_; A(y;) has full Hausdorff dimension (see theorem 1.4).
Note by theorem 1.1 that each set A(y;) is a Cantor set. We will construct in each
A(y;) a sequence of Cantor subsets Cy(y;), £ > 1, such that each Cp(y;) has the
same maximum point 1/2, and the thickness of Cy(y;) tends to infinity as £ — oo.
Then by using a result from Hunt, Kan and Yorke [12] (see lemma 4.2 below)
we conclude that the intersection (!_; A(y;) contains a sequence of Cantor subsets
whose thickness tends to infinity. This, together with lemma 4.1 (see below), implies
that (?_; A(y;) has full Hausdorff dimension.

4.1. Thickness of a Cantor set in R

First we recall the thickness of a Cantor set in R from Newhouse [19] (see [1] for
some recent progress). Let E be a Cantor set in R with its convex hull conv(E) = Ej.
Then the complement Ey \ F = UZO:1 V,, is the union of countably many disjoint
open intervals. The sequence ¥ = (V1, Vs, ...) is called a defining sequence for E.
If moreover |V1| = |Va| > |V5] = - - -, where |V denotes the diameter of a set V' C R,
then we call ¥ an ordered defining sequence for E. Let E,, := Eq \ UZ:I Vi.. Then
FE), is the union of finitely many disjoint closed intervals. So, for any n > 1, the open
interval V,, is contained in some connected component of E, i, say E’_;. Then
the set EY_, \ V, is the union of two closed intervals Ly (V) and Ry (V},), where
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Self-similar sets with common points 11

we always assume that Ly (V},) lies to the left of Ry (V},). We emphasize that both
intervals Ly (V;,) and Ry (V;,) have positive length, since otherwise E will contain
isolated points which is impossible. Then the thickness of E with respect to the
defining sequence ¥ is defined by

. . |L“1/(Vn)| |R7/(Vn)|
Ty (E) = Tgfl mm{ AR , (4.1)
and the thickness of E is defined by
7(E) :=sup 1y (E), (4.2)
v

where the supremum is taken over all defining sequences ¥ for E. It was shown in
[27] that 7(E) = 7y (E) for every ordered defining sequence ¥ for E.

The following lower bound for the Hausdorff dimension of a Cantor set in R in
terms of thickness was proven by Newhouse [20] (see also [21, P. 77]).

LEMMA 4.1 [20, P. 107]. If E is a Cantor set in R, then

log 2

dimg F > ——F————.
log (2 + m)

Two Cantor sets in R are called interleaved if neither set lies in the closure of a
gap of the other. The following result for the intersection of two interleaved Cantor
sets was shown by Hunt, Kan and Yorke [12].

LEMMA 4.2 [12, Theorem 1]. There eists a function ¢ : (1 ++/2, 0o) — (0, 00)
such that for all interleaved Cantor sets E and F in R with 7(E), 7(F) >t >
1+ /2, there exists a Cantor subset K C ENF with 7(K) > ¢(t).

REMARK 4.3.

(i) In [12, P. 882] the authors pointed out that when ¢ is sufficiently large, ()
is of order v/t. So, lemma 4.2 implies that if the thicknesses of two interleaved
Cantor sets E and F in R are sufficiently large, then the thickness of the
resulting Cantor set K C EN F is also very large.

(ii) It is clear that if two Cantor sets F and F' in R have the same maximum
point &, then they are interleaved. Furthermore, if the maximum point & is
also an accumulation point of E N F', then from the proof of [12, Theorem 1]
(see also [12, P. 837]) it follows that the resulting Cantor set K C ENF in
lemma 4.2 can be required to have the same maximum point &.

We first construct a sequence of disjoint Cantor subsets of A(x) whose thickness
tends to infinity. Then by the following lemma, we can construct a sequence of
Cantor subsets of A(x) with the same maximum point, whose thickness also tends
to infinity. These Cantor sets will be used to show that the intersection has full
Hausdorff dimension.
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LEMMA 4.4. Let {F},}72, be a sequence of Cantor sets with oy, = min Fy, and (), =
max Fy. Suppose that

) ar<fri<aa<fa<...<ap<pfr<...,and(:=lmg_ Ok;
(ii) limg oo T(F)) = +00;
(i)
-« -«
len;O H = +o0, len;o ﬁ = +o00.
Then

211110107' (G Fp U {6}) = +o0.

k={

Proof. For k > 1, let 7}, = {V}, ;}72, be an ordered defining sequence of the Cantor
set Fy, i.e.,

[, Br] \ Fi. = U Vi, (4.3)
j=1

with [Vi1| = [Vie| = [Vis| > .... For £ > 1, write

Co:=J Feu{p}

k=¢

Note by (i) that each Cp is a Cantor set, and the convex hull of Cy is [ay, 0]
Moreover, we have

e, B\ Co = | J B, 1) U | U Vs
k=t k=0 j—1

To estimate the thickness of Cp, we enumerate the open intervals (8, ag+1) and
Vi with k > £, j > 1 in the following way:

(Be,aer1)  (Begrsaer2)  (Begosaers)  (Beas, oga)

(4.4)

This means that we first remove from [ay, 1/2] the open interval (8¢, ap41), and
next remove Vi, and then (Bry1, cwta), Vie11, Voo, (Beye, cuts), and so on.
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ay Be Qg Ber1 Qg2 B2 B
Ve Vi1 Vitaa
Via Via Vit Vi1 Vitas Vitaz
Fy Fria Foio

Figure 1. A defining sequence #; = {(ﬁ;67 apy1), Vij k24,5 > 1} for the Cantor set
Cp=Upey FrU{B}, and for each k > { a defining sequence ¥, = {Vk,j};il for the
Cantor set Fy; see (4.3) and (4.4) for more explanation.

Thus, (4.4) gives a defining sequence #; = {(Bk, aw+1), Vi 1 k= ¢, j > 1} for Cy
(see Fig. 1).
For the defining sequence #; for Cy, by (4.4) we have that

Ly, (Br, k1)) = [aw, Bils R, (B okg1)) = [arg1, 8] for any k > ¢;
and
Ly,(Vij) = Ly, Vi), Rw,(Vkj) = Ry, (Vi;) forany k>¢,5> 1.
Note that Ty, (F) = 7(F%). Then by (4.1) it follows that

. . B —ar  B—oamyr Ly, (Vij)| Ry (Vij)l
Tw,(C¢) = inf min , .
7 (C) k3521 {ak+1 — Ok kg1 — B’ Vil Vi,

= inf mi F
Igemln{T( i)

Br—ar B — a1 }

Op41 — ﬁk ' Op41 — ﬁk

Note that 7(Cy) = 7y, (Cp). We conclude by (ii) and (iii) that limy_ . 7(Cy) = +00.
U

4.2. Construction of Cantor subsets of A(x)

Let z € (0, 1/2). We will construct a sequence of Cantor subsets {Fj(z)}72, of
A(z) satisfying the assumptions (i)—(iil) in lemma 4.4. Note by lemma 2.2 that

Vo (A(2)) = Qz) = {(in) : (¥a) < (in) < 017},

where (z,) = U, (1/2). Moreover, ¥, is a decreasing homeomorphism from A(z) to
Q(x). Based on this, our strategy to construct these Cantor subsets {Fj ()}, in
A(z) is to construct a sequence of Cantor subsets {Q(z)},- , in the symbolic space

Note by the definition of (x,) = ¥,(1/2) that z; = 0 and (z,) does not end with
1°°. Denote by {n} the set of all indices n > 1 such that z,, = 0. Then z,,, = 0 for
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any k > 1, and z,, = 1 for any ny < n < ng41. For k > 1, we define
Qp(z) = {(in) 21 ... Tp—110%° =2 (i) <21 .. .2, —11°°}. (4.5)
Then Q(x) C Q(z), which implies that
Fi(z) :== U, (Q(2)) C Az). (4.6)

Note by (4.5) that for each k > 1 the set (24(z), p) is a topological Cantor set,
where p is the metric defined in (2.3). By lemma 2.2 it follows that each Fj(x) is a
Cantor subset of A(x).

Write o, = min Fj () and 8 = max Fj(z). Clearly, ay, and (5 depend on z. For
simplicity we will suppress this dependence in our notation if no confusion arises.
Since ¥, is decreasing by lemma 2.2, by (4.5) and (4.6) we have

Q. = W;l(xlxg .. .xnk,lloo), ﬁk = \1151(371.’172 . mnk,llo‘x’).

Note that z122 ... 2, —11%° = 2122 . .. T, 101%° <2172 ... Ty, —110% for all k >
1. Thus,

N <Pi<a<Bo<...<ap<pf,<....

Furthermore, the sequence x125 ... 2,, 110 decreases to (x,) = V,(1/2) as k —
00, again by lemma 2.2 we obtain that 8y " 1/2 as k — oo. Therefore, the sequence
{Fr(z)};, of disjoint Cantor sets satisfies the assumption (i) of lemma 4.4.

In the following we show that the sequence {Fj(x)},—, also satisfies the
assumption (ii) of lemma 4.4.

PROPOSITION 4.5. For any = € (0, 1/2) we have limy_,o 7(Fj(x)) = +00.

In view of the definition of thickness, we first describe a defining sequence for
the Cantor set Fy(z). Clearly, [y, Bk] is the convex hull of Fj(z). By lemma 2.2 it
follows that

[O‘kaﬂk} \Fk(x) - U Vk,wa

we{0,1}*

where

Viw i= (\I’;l(l‘ll'g Ty 11 W 10%9), U (g, 11 w 01°°)) .

B

We enumerate these open intervals Vi ., w € {0, 1}" according first to the length
of w and then to the lexicographical order of w:

Vier” Vio, Vs Vioo, Vo1, Vi,10, Vii1s (@)
Vi,0005 Vi,0015 Vi,0105 V0115 Vi,1005 V1015 Vie,1105 Vet -+ -

where € is the empty word. Thus, (4.7) gives a defining sequence ¥, = Vi :w €
{0, 1}"} for Fj(x), and moreover, we have

Ly, (Viw) = [‘P;l(mlxg Ty 11 W 1), U (a2, 11 W 1000)] ,

(4.8)
Ry, (Viw) = [U (w122 .. @y 11 w 01%°), U (@20 . 2y -1 1 w 0)]
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Note by (4.8) that the endpoints of Ly, (Vi) and Ry, (Vi) have codings
ending with wl®, w0, w10, w01>°, respectively. In view of (4.1), to prove
limy 00 7(Fi(z)) we need the following inequalities.

LEMMA 4.6. Let z € (0, 1/2) \ {1/4} with (x,,) = ¥,(1/2), and let m > 3 such that
Ty = 1.

(1) If )\1, )\2 S A(.’IJ) satisfy \I’aj()\l) = j1j2 .. quoo and \I/I()\Q) = jle .. .qu"o,
then

1
A= A1 > (A

(i) If )\3, Ay € A( ) satisfy Uo(A3) =x1...Tmf1-..Jg10° and Vi (\y) =
L1 ... TmJ1 .- 3q01°°, then

: a+2 o Ayt
A4 - )\3 < min 2(1 - 2)\3))\3 5 ( 2)\4)

m—2
)‘3

Before giving the proof we emphasize that for z = 1/4 we have (x,,) = ¥,(1/2) =
010°°. So we can not find x,, =1 for m > 3, which plays an essential role in the
proof of lemma 4.6 (ii).

Proof. Since z € (0, 1/2)\ {1/4}, the expansion (x,) = ¥,(1/2) satisfies z,, =
1 for some m > 3. For (i), let A1, A2 € A(z) with U (A1) =jij2... 541> and
U,(A2) = j1j2---340%°. Then by lemma 2.2 we have A < A2. Note that z =
7T)\1 (j]_jz .. ]q1<>0> = 71')\2 (j]_jg .. ]qOOO) Then
A3 =, (091%°) = iy, (Jidiz -+ §q 1) — T (Jidiz - - §40%)
=1, (J1d2 -+ Jg17°) — 7, (g2 - g 1)

where the inequality follows by lemma 2.1 (ii) since for any (i,,) € Q(z) we have

n=2

This proves (i).
For (ii) let A3, Ay € A(z) such that

Uo(A3) =ax1...Tmf1...Jgl0° and Wy(Ag) =21...&md1 ... 54017,

where z,, =1 with m > 3. Then by lemma 2.2 we have A3 < A\y. Note that
T =T (21. .. Tmfrde ... §q10%°) = mx, (x1 ... &md1j2 - - - §401°°). Then

Tas (0™ FTI10%°) — 7y, (0T FIHL10)
= 7T>\4(I’1 . .l‘mjljg .. jqooo) — 7T)\3((Z?1 .. .I]Smjljg .. ]q()oo) (49)

1.,
> 5)\?’ 2()\4 — )\3),
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where the last inequality follows by lemma 2.1 (ii) since by using z,,, = 1 withm > 3
and (2.5) we have

dmx(zy ... &mjijz - .. J40%°) >m (ml — )\> T A2 > 1)\"”2
= m = D) :

dA m
Therefore, by (4.9) and using A3 < A4 it follows that
2
)\4 o )\3 < — ((1 o )\3))\73n+q _ )\T+q+1>
A3
2
< sz (= AT A7) =201 - 220,
3
and
2
A= dg € g (L= 2g)ag e — Aot
3
2 m-+q m—+q+1 )‘TJrq
< N2 ((1 —A)AL T = A ) =2(1- 2>\4))\m72'
3 3
This completes the proof. |

When z = 1/4 we prove similar inequalities by using different estimation.
LEMMA 4.7. Let x = 1/4. Then (z,) = ¥, (1/2) = 010°°.

(1) If M, A2 € A(z) satisfy (A1) = 010Mj172 ... j¢1°° and U, (A2) = 010™j1 72
.. §q0%°, then
)\72n+2+q
1—2\ + (m+3)2™

(i) If A3, As € A(x) satisfy U,(A3) =01j172...5,10%° and ¥, (\s) = 01j1j2
... Jq01°°, then

Ao — A1 2

A — Az < AT

Proof. For (i) we note by lemma 2.2 that A\; < Aa. Since x = 7y, (010" j1 2 . .. j41°°)
=, (010™ 12 . .. j40°°), we have

AR =y (0MFEFI1%0) = 3, (010™ 1 ds - . §¢1°°) — T, (010™ 12 - . . j40°)
=T, (010™ j1j2 . .. §q1%°) — m, (010™ j1j2 . . . 541°°)
<(T=2\+(m+3)27") (A2 — A1),

where the inequality follows by lemma 2.1 (ii) since by (2.5) we have

A (010" -Gl ™) ) gy 4 i n (” m_ A) A2

dA o n
- n—1 —m
SL-2+ ) g =1-22+(m+3)27™
n=m-+3
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This proves (i).
For (ii), note by lemma 2.2 that A3 < A4. Then by using z = 7, (01j1j2 .. . j410°°)
= 7, (01j1J2 ... j,01°°) it follows that we have
T (02T910%°) — my, (03191°°) = 7, (015142 - . . 7,0°°) — a5 (015172 . . . 5,0°°)
> m, (010%°) — Ty (010*°)
=(1—=X3—Ag)(As — A3).

This implies that

1 2+ 3+
M—A3 < ———— (1= A3)A3" 1=\
14— A3 17)\37>\4(( 3) A3 4)
1 2+ 24 2+
<— lfAAqf)\)\q>:)\q
1—)\3—>\4(( 3% s 3
as desired. 0O

Proof of proposition 4.5. Write W,(1/2) = (x,,). Let {ny} be the enumeration of all
indices n > 1 such that ,, = 0. Recall from (4.7) the defining sequence ¥, = {V4 ., :
w € {0, 1}*} for Fi(z). It follows from (4.1) that

Ty, (Fk(x)) — inf { |L”1/k (Vk7w)|7 |R“//k (Vk7w)| ‘w e {0’ 1}*} )
|Vk,w| |Vk:,w|

Note by (4.8) that

Ly, (Viw) = [\11;1(,7:1952 T 11 W 1), U (22 2y, 11w 1000)]

= ['yw,la ’7(4},2] )

Ry, (View) = [\Ilgl(xlxg Ty o11 W 01%9), U (g oy, 11 w 000)]
= [%,3,%,4]-
Then
View = (W;l(xlxg e Tppo11 w 10%°), U (g .y, 11w 01°°)) = (’Yw72,7w73).
Observe by lemma 2.2 that o < Y1 < Vw2 < Vw3 < Vw4, Where o = min Fj ().

Case (A).z € (0, 1/2) \ {1/4}. Then there exists an integer m > 3 such that x,,, =
1. Take a sufficiently large k£ so that ny > m. By lemma 4.6 it follows that

1, 1
+q+1 nk+q+1
Yw,2 = Yw,1 > Z ch2 ) Yw,4 — Yw,3 > Z ch4 )
and

Yeo,3 = Vw2 S 2(1 — 27w’2),ygf2+q—m+2)
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where ¢ is the length of the word w. So, for any w € {0, 1}* we obtain that

| Ly, (View)| _ dw2 =Yl ’Yﬂg_l - ap’” L
|Vk7w| Yw,3 = Yw,2 - 8(1 - 2'70,;72) - 8(1 — 20%)7
|R“//k (Vk,w)‘ _ Yw,4 — Yw,3 > ’yﬂzzl S O[ZL 1
|V1€7w| Yw,3 — Yw,2 - 8(1 — 2%‘;72) - 8(1 — ZOLk)
Thus, for sufficiently large k we have
apt
F, Fi(z) > —k
(F) 2 T (B 0) > g
Note that ay " 1/2 as k — oo because [ " 1/2. Therefore, 7(Fi(x)) — +oo as

k — oo.
Case (B). z =1/4. Then (x,) = ®,(1/2) = 010>, which gives x1...2,, 1 =
01073 for all k£ > 1. By lemma 4.7 it follows that

nr+q+1 nr+q+1
’Yw, ’yw 4

T2y, Lnp2s e Jed Tes 2 T o

Vw, le/

and

nk+q
Yw,3 — 7w2\7w2 )

where ¢ is the length of the word w. This implies that for all w € {0, 1}*,

|L7/k (Vk,w)‘ Yw,2 = Yw,1 Yw,2 Qg
‘V]%w Yw,3 = VYw,2 - 1-— 2’}/“,71 —+ nk23_nk - 1— 2ak + nk23_nk )
[Ry, Viw)l  Yod — Vw3 Vo4 oy
Vil Yoz — Yoz 1 —2y,3+nk237 " 71— 20y + ng 23k
Thus,
g

T(Fp(2)) 2 9 (Fr(2)) 2 T 2o Lo

Note that a ' 1/2 and ny — +o0 as k — oo. Therefore, 7(Fj(z)) — +o0 as k —
00, completing the proof. O

4.3. Hausdorff dimension of (}_, A(y;)
For any ¢ > 1, we define
= J Fe(@)u{1/2}. (4.10)
k=t
Note that conv(F(z)) = [ag, Bx] for all & > 1, and
< <ag<fo<--<ap<fp<--, and klingoﬂkzl/Q.

Since Fy(x) C A(z) for all k> 1 and 1/2 € A(z), it follows that each Cy(z) is a
Cantor subset of A(z).
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PROPOSITION 4.8. For any x € (0, 1/2) we have limy_, o 7(Cy(z)) = +o0.
Proof. Take x € (0, 1/2). Write ¥, (1/2) = (x,,). Let {ni} be the enumeration of

all indices n > 1 such that z,, = 0. By lemma 4.4 and proposition 4.5, it remains
to prove that

Br — oy 1/2 — apqa

lim ———— =400 and lim = 400, (4.11)
k—oo g1 — O k—oo g1 — B
where
ap =V, Y2129 Ty 11%°), B =V, N (z1w0 .. 2y, 110%), (4.12)
and

pr1 =V (@1 1Ty e Ty, —117°) = U (w12 2y, —101%°). (4.13)

Case (A). z € (0,1/2)\ {1/4}. There exists m > 3 such that z,, = 1. For suf-
ficiently large k, we have nj > m. By (4.12), (4.13) and lemma 4.6 it follows
that

1 n . nE—m ankil
Br —ag = 1@’3 41 — B < min {2(1 — 26,) BT 2(1 — 2a41) I:,SQ } ,
%

which implies

m—1 m—2
—« 1/2 — «
Br — o i and / k1o B

ape1 — B~ 8(1—264) apr1— B ot

Note that oy ' 1/2, B/ 1/2 and ny, — oo as k — oo. We obtain (4.11) by letting
k — oo.

Case (B). x = 1/4. Then (x,) = ®,(1/2) = 010>°. By (4.12), (4.13) and lemma
4.7 it follows that

Tk
—ay = k — B <AL 4.14
Bk — ag T 2oy tngoim Ok B < By (4.14)
This implies
B —an L (4.15)

apgr— B~ 1 — 200 +ng23m
On the other hand, note by (4.13) that

1 _
1= %= Tarn (2122 . . . Ty —101%°) = 7, (010™721°) = (1 — agpq1) o1 + ot ;.

This implies that

2
1 " 1 n
<2 — ak+1) =ayt,, and thus 3~ Okl = akj_/f. (4.16)
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Note by (4.14) that ax4+1 — O < ,Z’“_1<a2j51. This, together with (4.16), implies

that
1/2 — 1
/2= i — (4.17)
Qg1 — B a’kli/l -
Note that oy " 1/2, B /" 1/2 and ny, — +00 as k — oco. Letting k — oo in (4.15)
and (4.17) we obtain (4.11), completing the proof. O

Proof of theorem 1.4. Let y1, ..., yp € (0, 1/2). Then by (4.2), (4.10) and proposi-
tion 4.8 it follows that each A(y;) contains a sequence of Cantor subsets Cy(y;), £ > 1
such that maxCy(y;) =1/2 for all £ > 1, and the thickness 7(Cy(y;)) — 400 as
¢ — 0. So, by lemma 4.2 and remark 4.3 (i) it follows that for sufficiently large ¢
and for any ¢, j € {1, 2, ..., p} the intersection Cy(y;) N C¢(y;) contains a Cantor
subset Cy¢(yi, y;) such that

7(Ce(yi, yj)) — +oo  as £ — oo. (4.18)

Note that for any k € {1, 2, ..., p} we have min Cy(yx) " 1/2 = max Cy(yi) as £ —
oo. Furthermore, Cy(yx) D Cri1(yx) for any £ > 1. Then by (4.18) it follows that
the maximum point 1/2 is an accumulation point of Cy(y;) N C¢(y;). So, by remark
4.3 (ii) we can require that the resulting Cantor set Cy(y;, y;) C Ce(yi) N Co(y;)
has the maximum point 1/2 for sufficiently large ¢ and any i, j € {1, 2, ..., p}.

Proceeding this argument for all yi, y2, ..., ¥, we obtain that for sufficiently
large ¢ the intersection (!_, C¢(y;) contains a Cantor subset Cy(y1, ..., yp) such
that max C¢(y1, ..., Yp) = 1/2, and the thickness 7(Cy(y1, ..., yp)) — +00 as £ —
00. Therefore, by lemma 4.1 it follows that

p p
dimy ﬂ Ay;) > dimpy ﬂ Co(yi) = dimpg Ce(y1, ..., Yp)

i=1 i=1
> log 2 : S,
log(2 + ey, )
as £ — 0o. This completes the proof. |

At the end of this section we remark that in the proof of theorem 1.4 we construct
a sequence of Cantor subsets Cy(y1, ..., yp), £ = 1 in the intersection (}_; A(y;)
such that the thickness 7(C¢(y1, - .., Yp)) — +00 as { — co. By a recent work of
Yavicoli [28, remark of Theorem 4] it follows that the intersection (!_, A(y;)
contains arbitrarily long arithmetic progression.

5. Final remarks

At the end of this paper we point out that our results theorem 1.1-1.4 can be
extended to higher dimensions. To illustrate this we give two examples.
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ExAMPLE 5.1. For A € (0, 1/2] let K, be the self-similar set defined in (1.1).
Then for n € N the product set @, Ky is also a self-similar set in R". For
a=(ay, ..., an) € (0,1/2)" let

A(a) := {/\6 (0,1/2] :aeé[ﬁ}

i=1

be the set of parameters A € (0, 1/2] such that the n-dimensional self-similar set
&, K contains the given point a. It is clear that A(a) = (\;_; A(a;), where for
x € (0, 1/2) the set A(z) is defined as in (1.2). So, by theorems 1.2 and 1.4 it
follows that A(a) has zero Lebesgue measure and full Hausdorff dimension for any
aec(0,1/2)™.

EXAMPLE 5.2. Let n € N and let \; € (0, 1/2] for all 1 <4 < n. Then Q;_, K, C
R™ is a self-affine set generated by the IFS {(Ajx1, Aazwa, ..., A\pap) +1i: 1€
Qi {0, 1= X\}}. For any b = (by, ..., by) € (0, 1/2)" let

A/(b) = {(/\1,)\2,...,)\n) S (071/2]71 :be éK&}

Then (A1, A2, ..., Ay) € A/(b) if and only if b; € K, for all 1 < i < n, which is
also equivalent to \; € A(b;) for all 1 < i < n. So, A'(b) = @], A(b;). By theorem
1.1 it follows that for any b € (0, 1/2)™ the set A’(b) is a Cantor set in R™, i.e., it
is a non-empty compact, totally disconnected and perfect set in R"™. Furthermore,
by [7, product formula 7.2] and theorem 1.2 we obtain that A’(b) has Lebesgue
measure zero and dimgy A’(b) = n for any b € (0, 1/2)".

Note that in examples 5.1 and 5.2 the higher dimensional self-similar sets all have
the product form ", Ky,. However, if the higher dimensional self-similar sets do
not have the product form, our results theorems 1.1-1.4 can not be applied directly.
Some recent progress on the extension of Newhouse thickness theorems to higher
dimensions may be useful in this direction (cf. [2, 8, 9, 29]).
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