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Abstract
Our growth model explores the complex relationship between income, obesity, and changes in exercise-
related behavior. Combining Becker’s theory of time allocation (The Economic Journal 75(299), 493–517,
1965) with Veblen’s theory of conspicuous leisure (The Theory of the Leisure Class, 1st ed. New York:
Macmillan, 1899), we determine conditions for dynamic and static obesity Kuznets curves. Considering
food consumption and exercise choices, we show that dynamic and static Kuznets curves result from the
rising opportunity cost of exercise and peer influence, both increasing with income. Focusing on calorie
expenditure, we investigate the rise and slowdown in obesity prevalence in the USA and the correlation
between obesity and income per worker. Our numerical simulations indicate that, as the economy grows,
exercise choices slow down the rise in obesity prevalence but do not generate a dynamic Kuznets curve
in the USA. By contrast, they generate a static Kuznets curve for a population cross section. We discuss
policy implications of our findings.
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1. Introduction
Obesity is a multifaceted problem to address as it is affected by biological, psychological, environ-
mental, cultural, social, and economic factors. In this paper, we concentrate on the socioeconomic
factors of obesity. Even under this focus, obesity remains a complex issue. Indeed, the liter-
ature review by Mathieu-Bolh (2022) suggests that the link between income and obesity is
non-monotone and follows a Kuznets curve pattern. To explain this pattern, the theoretical lit-
erature has essentially focused on food consumption choices influencing calorie intake, assuming
exogenous preferences. By contrast, while modeling food consumption choices simply, we focus
on the specificities of physical activity choices influencing calorie expenditure, assuming changing
preferences over time [Bowles (1998)]. Indeed, physical activity is an important factor influencing
body weight, and the empirical literature indicates that an important aspect of physical activity is
tied to choices individuals make with their leisure time, such as time spent watching TV or exer-
cising [Harvard School of Public Health (2022)].1 Our theory rationalizes physical activity choices
in relation to income levels and explains their contribution to the Kuznets curve pattern of obe-
sity. Our model is the first theoretical growth model that combines Becker’s (1965) theory of the
allocation of time and Veblen’s (1899) theory of conspicuous leisure.We numerically simulate our
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model to describe obesity patterns in the USA. We discuss the fact that our model also provides a
tool for policy analysis.

So far, most theoretical explanations of the link between income and obesity concentrate on
the role of food consumption (calorie intake). Some contributions explain the historical rise in
obesity [Dragone (2009); Dragone and Ziebarth (2017); Burke and Heiland (2007); Levy (2002,
2009); Dragone and Savorelli (2012); Strulik (2014); Mathieu-Bolh (2020, 2021)]. Other contri-
butions explain the inverse relation between income and obesity for population cross sections in
rich countries [Cutler et al. (2015); Fuchs (1982); Grossman (1972); Cawley and Ruhm (2012);
Mathieu-Bolh (2021)]. Few articles provide insights on the changing link between income and
obesity focusing on food consumption. For Philipson and Posner (1999), as economies develop,
the change in the relation between income and obesity, from positive to negative, relates to
the assumption that rich individuals exogenously care more about their health and weight than
poor individuals and to complementarity between consumption and weight. Mathieu-Bolh and
Wendner (2020) is the only article that includes endogenous preferences with respect to food con-
sumption. As economies develop, the dominating income effectmakes individuals increase calorie
consumption. After a certain income threshold, an endogenous status effect makes individuals
prefer low-calorie food over high-calorie food and decrease their calorie intake. In addition, only
a few theoretical contributions explore the role of calorie expenditure in models with exogenous
preferences. The static model by Yaniv et al. (2009) analyzes optimal choices made by weight con-
scious and weight unconscious consumers accounting for interactions between food consumption
choices and physical activity. Dynamic models by Lakdawalla et al. (2005) and Lakdawalla and
Philipson (2009) argue that in rich countries, people are heavier than in poor countries because
technological progress leads to more sedentary work and raises the cost of physical activity. In
rich countries, where work-place technology is more uniform, rich people are thinner than poor
people because the authors assume that the demand for thinness is exogenously higher among
rich individuals. Therefore, there is to this date no dynamic model that includes exercise choices
(calorie expenditure) with endogenous preferences and food consumption choices (calorie intake)
to explain the changing link between income and obesity.

We emphasize that our purpose is not to incorporate the various causes of obesity and quantify
their respective effects on obesity as an empirical contribution would do. Instead, we build a theo-
retical model that sheds light on the specific mechanisms through which the interaction between
exercise and consumption choices influences the income obesity links and can generate Kuznets
curves.

Our model directly extends the theoretical literature by combining Becker’s (1965) theory of
the allocation of time and Veblen’s (1899) theory of conspicuous leisure in a growth model. We
extend Becker’s (1965) theory [followed by Gossen (1983); Le Van et al. (2018); Ha-Huy et al.
(2019)] in two ways. In the first place, we acknowledge that there are two types of consumption
goods, those that do not require time and those that do. For tractability reasons and consistent
with previous theoretical contributions [e.g. Levy (2002, 2009)], we associate consumption expen-
ditures that do not require time to food consumption. By contrast, we associate time-consuming
expenditure to exercise and distinguish between sedentary leisure and non-sedentary leisure
(exercise) for proper counting of calorie expenditure. For example, the purchase of a gym or ski
pass is associated to spending time exercising. Exercise choices therefore involve a double cost, the
exogenous price paid for exercising (such as the cost of a pass), and the endogenous opportunity
cost of exercise. The opportunity cost of exercise is the forgone wage. With capital accumulation,
the equilibrium wage rises and the rising opportunity cost of exercise pushes individuals to exer-
cise less. Assuming that exercise is a time-consuming expenditure therefore reinforces the overall
cost of exercise. This mechanism is important for two reasons. First, it can help explain the empir-
ical decrease in calorie expenditure and the rise in obesity. Second, it has implications for policy
analysis as exercise choices can be influenced through two channels, consumer prices and wages.

https://doi.org/10.1017/S1365100523000585 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100523000585


1596 N. Mathieu-Bolh and R. Wendner

However, accounting for the rising opportunity cost of exercise alone would yield counterfac-
tual results with respect to two empirical facts: in population cross sections, high-income earners
tend to exercise more and weight less than low-income earners; obesity prevalence declines
beyond a certain income threshold as captured by the empirical obesity Kuznets curve [e.g.
Clément (2017)]. Thus, in the second place, we introduce comparison utility in our model, which
reflects the fact that individuals’ exercise choices are influenced by their peers. The genealogy
of this idea is Veblen’s (1899) theory of conspicuous leisure, which we incorporate in our growth
model. According to Veblen, conspicuous leisure is visible leisure in which people engage with the
objective of displaying and reaching a certain status. We apply the idea of visible leisure to time-
consuming exercise expenditure. Consistent with the literature on peer effects, in order to capture
such comparisons, we introduce a reference level for exercise. The taste for exercise relates to the
extent to which people compare themselves to the reference, described as the degree (strength)
of peer influence. The implication of such a reference level is that the own marginal utility of
exercising increases with the reference level, which is endogenously determined in our model. In
other contexts, this type of mathematical formulation is referred to as positionality. Specifically,
we extend the literature on endogenous positionality [e.g. Dioikitopoulos et al. (2019, 2020); Akay
and Martinsson (2019); Mathieu-Bolh and Wendner (2020)], which establishes that the degree
of peer influence changes over time due to changes in economic development or inequality. In
accordance with this literature, in our model, the degree of peer influence has two components.
An exogenous component reflects individual rank in society and an endogenous component is
tied to capital accumulation. While exogenous differences in taste exist at all times, as the stock of
capital accumulates, everyone’s taste for exercise increases. As a result, ceteris paribus, individuals
exercise more as the stock of capital increases. We refer to this change in the degree of peer influ-
ence as the dynamic peer effect. Additionally, consistent with the past literature on endogenous
preferences [Mathieu-Bolh and Wendner (2020)], in our core framework, individuals experience
disutility from weight gain but are not calorie conscious. This implies that individuals do not
count calorie when they make consumption or exercise decision, which is key to maintain math-
ematical tractability. However, we also provide a brief extension and the main intuitions for the
model with calorie conscious individuals.

The rising opportunity cost and the dynamic peer effect create a wedge between optimal
exercise and food consumption choices of individuals with different socioeconomic status as
economies develop. As a result, our model explains the changing link between income and obesity
as a reflection of dynamic peer effects competing with the rising opportunity cost of exercise.

Empirical studies support that individuals have become increasingly influenced by peers with
respect to exercise choices. While the empirical literature on leisure initially did not find evidence
of positionality with respect to overall leisure time [Carlsson et al. (2007)], recent findings suggest
that people have become less positional with respect to the goods they purchase, but more posi-
tional with respect to how they spend their time [Holthoff and Scheiben (2018)]. Furthermore,
individuals are highly positional with respect to physical attractiveness [Solnick and Hemenway
(1998)]. Cawley’s (2015) literature review finds evidence of peer effects on women’s weight and
men’s fitness. Individuals work-out to be thin or fit, which in empirical studies is linked to attrac-
tiveness [Fletcher et al. (2014)]. Additionally, the psychology literature shows that peers influence
exercise behavior in adolescents [Chung et al. (2017)] and adults [Ingledew et al. (1998)]. Thus, it
makes sense to assume that exercise choices are influenced by peer behavior in the same way as
some healthy food choices are. The assumption that peer influence has increased is further sup-
ported by the increase in the portion of the population using social media, as well as the rise in the
number of followers of sport and fitness influencers. For example, the number of Instagram users
has increased from 100 million in 2010 to 800 million in 2017. The number of followers of the top
20 fitness influencers on Instagram reached almost 100 million individuals in 2017 [Influencer
Marketing Hub (2021)]. Additionally, social fitness applications (such as Fitbit, Garmin Connect,
Nike Run Club, PumpUp, and Stava) that track individuals exercise activities and compare them
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to their family, friends, or larger group of users have increasingly become popular in the USA. The
number of health and fitness application users has increased from 62.7 million users in 2018 to
87.4 million in 2020 [Statista (2021)].

Furthermore, exercise choices differ according to income. First, individual’s calorie expendi-
ture through labor is tied to economic development. Based on the U.S. National Health and
Nutrition Examination Surveys (NHANES), Church et al. (2011) show that in the early 1960s,
almost half the jobs in the private industry in the USA used to require at least moderate-intensity
physical activity, whereas nowadays, less than 20% of those jobs demand this level of energy
expenditure. Since 1960, the estimated mean daily energy expenditure due to work-related phys-
ical activity has dropped by more than 100 calories for both women and men. While Lakdawalla
et al. (2005) and Lakdawalla and Philipson (2009) have focused on calorie expenditure related to
technological progress and work, we are focusing on calorie expenditure related to leisure time.
Ourmodel reflects that when individuals do not spend calories at work, theymay chose to exercise
during leisure time. Second, there are also important differences in time spent exercising based on
income cross sections. Shuval et al. (2017) find that compared to those making less than $20,000
per year, those with an annual income of $75,000 or more engage in 4.6 more daily minutes of
moderate to vigorous-intensity physical activity. Higher income earners also exhibit more intense,
less frequent weekly patterns of physical activity. The 2008 Bureau of Labor Statistics Spotlight on
Statistics covering time spent on sports and exercise provides insights on differences in the prac-
tice of exercise between different income groups. The study indicates the percentage of adults 25
and older who engage in those activities between 2003 and 2006, according to their educational
attainment (see Figure A.13.1 in the appendix). It shows that 10% of people with less than a high-
school diploma engage in those activities, while 23% of individuals with a bachelor’s degree or
higher engage in those activities.

If exercise choices were solely the mirror of calories spent at work, there would be no dif-
ference between overall calorie expenditure of individuals with low-income strenuous jobs and
high-income sedentary jobs. Thus, exercise choices must also be the result of other factors, such as
peer effects. Indeed, peer effects seem to be concentrated on high-income earners as highlighted
by Western et al. (2021), who find that digital technologies targeting physical activities are not
effective on individuals with low socioeconomic status but make individuals with high economic
status more active.

Our main theoretical results are as follows. We determine the conditions for the existence of
both a dynamic and a static Kuznets curve for obesity. A dynamic Kuznets curve describes the
evolution of body weight over time as the economy grows. A static Kuznets curve describes body
weight as a function of income for population cross sections. Recall that in the empirical literature,
the Kuznets curve is initially presented as a dynamic relation between economic development and
obesity. However, empirical studies solely demonstrate the existence of a static Kuznets curve for
population cross sections [Clément (2017); Grecu and Rotthoff (2015)] or cross-country analy-
sis [Windarti et al. (2019); Deuchert et al.’s (2014)]. To show the change in the relation between
income and obesity over time, Clément (2017) resorts to two separate cross-sectional analyses cov-
ering two different time periods in China. Table 1 [Mathieu-Bolh (2022)] summarizes the results
of the empirical literature. It shows the regression coefficients for the BMI, overweight, or obesity
on income and income squared. A positive coefficient on income, together with a negative coef-
ficient on income squared, implies an inverted U-shaped relationship between income and the
outcome variable (obesity).

By contrast, our theoretical model generates both a dynamic and a static obesity Kuznets curve,
which complements the empirical literature on this topic, and is a new concept in the theoretical
literature. Our results differ fromMathieu-Bolh andWendner (2020) who do not describe the two
Kuznets curves, ignore the role of exercise choices in describing obesity patterns that arise from a
different mechanism, and do not provide numerical results.

https://doi.org/10.1017/S1365100523000585 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100523000585


1598 N. Mathieu-Bolh and R. Wendner

Table 1. Obesity Kuznets curve main estimates

Income Income2 Income Income2 Income Income2

BMI Overweight Obesity

Deuchert et al. (2014) 3.904∗ −0.693∗ 0.328∗ −0.058∗ 0.138∗ −0.025∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.552) (0.134) (0.042) (0.010) (0.027) (0.006)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Grecu and Rotthoff (2015) 0.158 −0.052∗∗ 2.088∗ −0.351∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.152) (0.024) (0.741) (0.114)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clément (2017) 1.479∗ −0.082∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−0.397) (−0.024)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Windarti et al. (2019) 3.567∗ −0.221∗ 2.840∗ −0.151∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.938) (0.053) (0.605) (0.035)

∗p < 0.01, ∗∗p < 0.05, standard deviation in parenthesis.

We provide a novel explanation for the dynamic and static Kuznets curves. First, the differ-
ence between the growth rates of consumption and exercise reflects two competing effects with
economic development: both the opportunity cost of exercise and peer influence for exercise
increases. The former (latter) renders the difference between the growth rate of food consump-
tion and exercise larger (lower) over time.2 Second, we formally demonstrate that there is a level
of capital per worker for which the growth rate of exercise starts exceeding the growth rate of food
consumption. Therefore, in a steady state, both the opportunity cost of exercise and peer influence
increase with the steady-state stock of capital up to a certain threshold, beyond which the corre-
lation between steady-state body weight and the stock of capital per worker is negative. This is
one factor explaining the negative correlation between body weight and income for high income
levels per worker in cross-sectional analyses of individuals or countries with different incomes per
worker.

Furthermore, we show that in the presence of dynamic peer effects, for high levels of economic
development, body weight gain becomes negative as the economy develops over time. In the same
way, in the presence of dynamic peer effects, our steady-state analysis shows that there is a level
of per capita income beyond which the link between body weight and steady-state capital stock is
negative. Last, we show that accounting for calorie consciousness reinforces the choice of exercise
over consumption and is likely to result in lower equilibrium body weight. However, accounting
for calorie consciousness does not alter the fundamental driving forces of obesity tied to peer
effects and opportunity costs.

We supplement the qualitative analysis with a quantitative analysis relying on numerical
simulations. We use a standard calibration procedure, which consists in matching the model’s
steady-state equilibrium characteristics with the long-term characteristics of the actual US econ-
omy. We derive the optimal simulated paths toward the steady state. Our simulations confirm
the existence of two different relations between body weight and the stock of capital per worker.
First, our results are consistent with data on body weight evolution in the USA as the simulated
economy shows that the dynamic evolution of average body weight has been monotonous. In
other words, given the current degree of peer influence, choices regarding calorie expenditure are
not sufficient to generate a dynamic Kuznets curve pattern for obesity in the USA. By contrast,
they generate a static Kuznets curve for the USA: the steady-state level of average body weight
increases with the average stock of capital up to a level of 187 pounds, corresponding to a stock
of capital per worker 25% higher than its baseline, and decreases thereafter. Second, we conduct
a sensitivity analysis. It highlights that the dynamic relation between weight and the per worker
capital stock does not exhibit a dynamic Kuznets curve pattern for a wide range of elasticities of
substitution between food consumption and effective exercise. For very high values of the degree
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of peer influence, we obtain a simulated dynamic obesity Kuznets curve, which confirms the role
of the dynamic peer effect in limiting and potentially inverting body weight growth.

The rest of the paper is structured as follows. In Section 2, we present the model and provide
analytical results. In Section 3, we provide numerical results. In Section 4, we conclude and discuss
policy implications of our work.

2. Model
2.1. The economy
We build a continuous time dynamic general equilibrium model for a closed economy in which
the capital accumulation technology exhibits decreasing returns. There is a large number of firms
and households, the respective number of which is normalized to unity. Households derive utility
from two types of consumption: food consumption that does not require time, and exercise-
related consumption that requires time and is affected by peer effects. In our base model,
households maximize utility subject to an intertemporal budget constraint, and body weight is
the result of optimal food and exercise choices. We discuss the case when the effect of net calo-
rie intake on body weight gain is endogenized in Section 3.3. In what follows, the time index t is
suppressed, unless needed for clarity.

2.1.1. Time-consuming consumption
First, the representative individual distinguishes between two types of goods, those that do not
require time, C (food consumption) and those that require time, X (exercise). Second, we intro-
duce endogenous labor in the model. Individuals are endowed with one unit of time, used for
endogenous labor N, endogenous exercise X, and exogenous sedentary leisure S̄ (such as sleeping
or watching television). As a consequence, we consider the time constraint:

1=N + X + S̄ . (1)

To simplify the notation, we write that the amount of time that is not spent on sedentary leisure
L̄= 1− S̄, such that:

L̄=N + X (2)

As a consequence, an individual’s flow budget constraint accounts for both work time and
consumption expenditure related to exercise:

K̇ = rK +w
(
L̄− X

)− pCC − pXX , pX , pC > 0 , (3)

where w is the wage rate, r denotes the interest rate, and pC and pX are the respective exogenous
prices of C and X.

2.1.2. Peer influence
Individuals are influenced by peers when choosing to exercise. We introduce a reference level of
exercise, X̄, to take into account such peer influence. In ourmodel, the impact of the reference level
of exercise is captured by effective exercise X̂, which differs from absolute exercise X according to
the standard subtractive specification [Ljungqvist and Uhlig (2000)]:3

X̂ = X − ε
(
k
)
X̄ , 0≤ ε

(
k
)≤ 1, (4)

where k≡K/N denotes aggregate wealth per unit of labor (roughly, capital per worker), which
is exogenous for an individual. The reference level X̄ ≡ X/1 is given by average exercise expenses
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(aggregate exercise expenses, with the population size equaling unity). It is endogenously deter-
mined in our model, but it is exogenous from an individual’s point of view (as indicated by the
upper bar). The degree (strength) of peer influence is captured by function ε

(
k
)
. When ε

(
k
)= 0,

individuals are not influenced by peers, and effective exercise equals absolute exercise. When ε
(
k
)

is high, effective exercise is low, and the marginal utility of X is high. The formulation of peer
effects is similar to Mathieu-Bolh and Wendner (2020) in the sense that it includes an exogenous
and an endogenous element.We use the following standard functional form to describe the degree
of peer influence:

ε(k)= 1− e−κk, κ > 0. (5)

The static element κ yields the property called the static peer effect. In our model, it means
that, given the stock of capital k, the higher the parameter κ , the more an individual cares about
exercise due to the higher reference level of exercise. The dynamic element yields the property
that we call the dynamic peer effect. It captures that a higher stock of capital—either built over
time due to economic growth or observed at a given point in time among different countries or
population subgroups—endogenously increases peer effects :

∂ε(k)
∂k

> 0 . (6)

Tying peer effects to economic development means that over time, as a country develops,
individuals become on average more influenced by peers’ exercise behavior, ceteris paribus.

2.1.3. Body weight
The choices of C and X have an impact on body weight change Ẇ. We connect weight gain to
net energy intake, the difference between energy intake and expenditure [described in a general
manner by Schofield (1985)]. Energy intake is a function of food consumption. We introduce a
modification in the Schofield equation to take into consideration the role of exercise, work, and
sedentary leisure. Recall that the usual Schofield equation is Ẇ = λCC − λWW, where the param-
eter λC > 0 represents the energy density of food (measured in joules per unit of food consumed),
and λW > 0 reflects a metabolic rate (measured in joules per unit of weight). In this expression,
calorie expenditure is a fixed proportion λW of body weightW. Implicitly, calorie expenditure is
measured for a unit of time of one, which can be one year or one day, and each type of activity
during this unit of time exerts the same amount of calories. By contrast, in our model, we take into
consideration that individuals allocate one unit of time to activities that exert different amounts of
calories. This unit of time is spent in exogenous sedentary leisure S̄, endogenous exercise X, and
labor N. Therefore, we rewrite the Schofield equation as

Ẇ = λCC −
(
λSS̄+ λXX + λNN

)
N

W. (7)

In this expression, λSS̄ represents the basal metabolic rate (BMR), which is basic energy expen-
diture to maintain the functioning of a body at rest. The terms λXX and λNN, with λX > 0 and
λN > 0, denote the extent to which time spent on exercise and labor reduces net energy. Note that
λC is a rate in front of the variable C. In the same way, the term in front of W is expressed as
a rate. For that reason, λSS̄+ λXX + λNN is divided by N (since W is expressed in total terms).
While sedentary leisure S̄ is fixed and proportional to weight, calorie expenditure associated to
non-sedentary leisure and work λXX + λNN vary with individuals’ choices. Since N = 1− S̄− X,
it is straightforward that when individuals choose to exercise more, they spend relatively fewer
calories at work.
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2.1.4. Preferences and optimal choices
Individuals face a constrained intertemporal optimization problem that is described as follows.
Instantaneous utility is given by

U(C, X̂,W)= u(C, X̂)− v
[(
W −WI)2] . (8)

Utility positively depends on food consumption and exercise. An exercise reference level X̄
increases marginal utility of exercise. Weight is not a choice variable, and conspicuous behav-
ior is solely reflected in individuals’ exercise choices. We account for the fact that disutility is
caused by body weight in excess or below a reference weight,WI ∈R+, which could, for example,
be an ideal weight from a health perspective. There are two ways to interpret this formulation.
Considering that individual and average weight are equal in equilibrium, this formulation can
denote obesity-related externalities and justifies considering policy interventions discussed in the
conclusion. Alternatively, this formulation can denote that individuals do not internalize inter-
nalities related to being overweight. Individuals are in that case boundedly rational or “weight
unconscious” [e.g. Mathieu-Bolh andWendner (2020); Mathieu-Bolh (2021); Yaniv et al. (2009)].
Boundedly rational choices connect to the vast literature on biased health choices that have roots
in psychological biases or informational problems [lack of information or cost of acquiring or
processing information, e.g. Chetty et al. (2009)].4

Assumption 1. The sub-utility function u :R2+ →R is twice continuously differentiable, increas-
ing in both arguments and strictly concave. Moreover, limC↓0 uC = limX̂↓0 uX̂ = ∞, and u(C, X̂)≤
q ρ eβρt , where q ∈R+ and β < 1. The sub-utility function v :R+ →R is twice continuously differ-
entiable, increasing and strictly convex in its argument (W −WI)2. Moreover, v

[(
W −WI)2]≤

qw ρ eβwρt , where qw ∈R+ and βw < 1.

Notice that the limit conditions prevent the individual from not consuming or exercising at
all, while the latter conditions imply boundedness of intertemporal utility. The boundedness
condition on function v is satisfied if v is an increasing function, and there exists a maximum
weight.

The intertemporal utility function is∫ ∞

t=0
U(C, X̂,W)e−ρτdτ , (9)

where ρ > 0 is the constant rate of time preference. Assumption 1 implies boundedness of the
utility integral.5

Given the DOP, ε(k̄), individuals choose C and X̂, to maximize (9), subject to their initial
endowment of wealth K0 > 0, their flow budget constraint [combining (4) and (3)]:

K̇ = rK +wL̄− p̂Xε
(
k̄
)
X̄ − pCC − p̂XX̂ , (10)

and a No-Ponzi-Game (NPG) constraint:

lim
τ→∞ e−R(t,τ )K � 0 , (11)

where R(t, τ )= ∫ τ

t r(v)dv represents the interest factor, and:

p̂X ≡w+ pX . (12)

Price p̂X represents the total cost of effective exercise that includes the cost of exercise expenditure
and the opportunity cost of exercise.

We solve the model (see Section A.1) applying Pontryagin’s maximum principle (Pontryagin
et al., 1962). We deduce the following expressions for the growth rates of food consumption and
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exercise. Noticing that in equilibrium, average exercise expenditure equals individual’s exercise
expenditure, X̄ = X, and combining the optimality conditions and the relation between effective
and actual exercise (4), we obtain the growth rates of consumption and exercise as (see Section
A.2):

Ċ
C

= 	C
(
C, X̂

)
(r − ρ)+ 
C

(
C, X̂

) (
�
ẇ
w

)
, (13)

Ẋ
X

= 	X
(
C, X̂

)
(r − ρ) + ε̇

(
k
)

1− ε
(
k
) − 
X

(
C, X̂

) (
�
ẇ
w

)
, (14)

where 0< � ≡ w
w+pX < 1, and 	C, 	X , 
C, 
X are elasticities defined in Section A.2.

The difference between the growth rate of food consumption and the growth rate of exercise
expenditure is therefore expressed as

Ċ
C

− Ẋ
X

=
[
	C

(
C, X̂

)
− 	X

(
C, X̂

)]
(r − ρ)︸ ︷︷ ︸

ECE

+
[

X

(
C, X̂

)
+ 
C

(
C, X̂

)] (
�
ẇ
w

)
︸ ︷︷ ︸

ROC

− ε̇
(
k
)

1− ε
(
k
)︸ ︷︷ ︸

DPE

. (15)

The growth rate of food consumption differs from the growth rate of exercise expenditure due to
three terms. The first term represents elasticities for consumption and exercise (ECE). It includes
two elasticities, respectively, 	C

(
C, X̂

)
and 	X

(
C, X̂

)
. The second term represents the rising

opportunity cost of exercise (ROC), and the third term represents the dynamic peer effect (DPE).
Note that accounting for the fact that exercise is a consumption expenditure influences the ROC
through two channels. One channel operates through
C

(
C, X̂

)
< 0, which denotes that exercise

is an expenditure using up resources that cannot be allocated to food consumption. Other things
equal, it decreases the growth rate of food consumption and limits the ROC. The other channel
operates through pX and lowers � ≡ w

w+pX . Other things equal, it decreases the importance of
ROC related to wage growth. The ultimate impact involves general equilibrium effects that will be
accounted for in the next sections.

Proposition 1. For general forms of utility functions, under Assumption 1, the difference between
the growth rate of consumption and the growth rate of exercise can be positive or negative as the DPE
is an offsetting force to the ROC.

Proof. See Section A.3.

The term ECE is neither specific to our assumption that exercise is both a consumption and a
time expenditure nor to our assumption that exercise is affected by peer behavior. By contrast, the
terms DPE and ROC are specific to our model and are present for all utility’s functional forms. For
that reason, in what follows, we will focus on the roles of DPE and ROC. On their own, those terms
cause a wedge between the growth rates of consumption and exercise and generate the pattern for
body weight gain. This mechanism is at the core of our results and holds for all forms of utility
functions.

It is worth noticing a fundamental difference between the mechanisms driving the income obe-
sity relation in our model compared to Mathieu-Bolh andWendner (2020). In their contribution,
the driver of obesity is an income effect, which would be captured by the term 	C

(
C, X̂

)
(r − ρ)
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in (15), competing with a DPE with respect to low calorie food consumption instead of exercise.
By contrast, in our model, the income effect is present only for some specific forms of utility
functions. For example, the term ECE disappears when utility is a CES function.

2.2. Firms
A unit mass of competitive firms produces a homogeneous output Y . The production process
is described by a Cobb–Douglas production function: Y = F(K,N)=KηN1−η, where 0< η < 1
denotes the capital elasticity of production. Factors are paid their respective marginal products:

∂F(K,N)
∂K

= r + δ,
∂F(K,N)

∂N
=w , (16)

where δ ≥ 0 denotes the rate of depreciation. We introduce a normalization (per unit of labor):
y≡ Y/N. Noting that k=K/N, by homogeneity of degree 1, we can write:

y= F(k, 1)≡ f (k)= kη , 0< η < 1. (17)

The first-order conditions (16) then become:

r(k)= f ′(k)− δ , w(k)= f (k)− k f ′(k) . (18)

A linear production process transforms total consumption into food consumption and exercise
consumption. Output can be used for either investment I or consumption such that Y = pCC +
pXX + I.

2.3. Equilibrium

Definition 1 (Equilibrium). A competitive equilibrium is a price vector (r,w, pC, pX) and an
attainable allocation for all t ≥ 0, such that:

1. Individuals choose feasible streams of C, X,K, to maximize intertemporal utility, given the
stream of price vectors, initial wealth endowments, the DOP, and average capital.

2. Firms choose K and N in order to maximize profits, given the price vector.
3. All markets clear. Specifically: K̇ = Y − pCC − pXX − δK, the goods market clears; the

capital market clears, and N = L̄− X, the labor market clears.
4. Reference levels are X̄ = X.

To study stability and ultimately enable comparisons between economies or population cross
sections, we express the dynamic system in per unit of labor terms, such that c≡ C/N, x≡
X/N, and w≡W/N. Furthermore, we express the dynamic system as functions of x and k (see
Section A.4 for details):

k̇
k = [

1− x
[
κk− 
X (x, k) η�(k)

]]−1

[
x	X (x, k) (f ′(k)− δ − ρ)+ f (k)

k
− δ − 1

k
(
pCc(x, k)+ pXx

)]
, (19)

ẋ
x = (1+ x)

[
	X (x, k) (f ′(k)− δ − ρ

)+ (
κk− 
X (x, k)�(k) η

) k̇
k

]
. (20)

The macroeconomic equilibrium gives rise to a dynamic system in two dimensions: k and x.
Indeed, the dynamic system is separable in w, since the dynamic variables k and x affect body
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weight w, but w does not affect k and x, which is to be expected since weight is not a deci-
sion variable.6 The dynamic system in normalized variables is given by (19)–(20): k̇= k̇(k, x);
ẋ= ẋ(k, x).

We separately determine the change in body weight per unit of labor over time and steady-state
body weight. The normalized Schofield equation, also expressed with normalized variables, reads
(see Section A.5):

ẇ
w = λC

c(x, k)
w

− (λSs̄ (x) + λXx+ λN) + 	X (x, k) (f ′(k)− δ − ρ
)

+ (
κk− 
X (x, k) η�(k)

) k̇
k
, (21)

where consumption c(x, k) is derived from the intratemporal optimality condition (ratio of
(A1) and (A2) in the appendix), and solely depends on k and x, and where s̄= S̄

N . Since N is
endogenous, and depends on X, which depends on x, we have s̄= s̄ (x).

A steady-state equilibrium is an equilibrium for which k̇= ẋ= 0. Let k∗ denote the steady-
state value of k, and x∗ = x

(
k∗), w∗ =w(k∗), p̂∗

X = pX +w∗, and c∗ = c(x∗, k∗). Considering the
dynamic system (19)–(20), the steady state is described by the following system (see Section A.8):

k∗ = f ′−1(δ + ρ) ; (22)

x∗ = f (k∗)− δk∗

pX + pCc(x∗, k∗)/x∗ , (23)

where f ′−1(.) denotes the inverse function of f ′(.). Equation (22) follows from our model equiv-
alent of the Keynes–Ramsey rule [equation (20)]. The term c(x∗, k∗)/x∗ is implicitly given by
dividing (A1) by (A2), which givesUC(C, X̂)/UX̂(C, X̂)= pC/p̂X(k). In case u(C, X̂) is homothetic,
the left-hand side is a function of (C/X̂)= c/[x(1−ε(k)]. By strict concavity, an inverse function
exists (UC/UX̂ as a function of C/X̂ is one to one). In this case, c∗/x∗ is a function of k∗, allowing
us to express x∗ explicitly.7

As a consequence, neither our static nor our dynamic positionality effect (DPE) impact the
steady-state level of k. Equation (23) determines the steady-state share of output to be devoted to
exercise, which increases with the degree of peer influence ε(k∗). As f ′(k) is a strictly monotonous
function, there exists only one value k∗ satisfying (22). Therefore, the steady state

(
k∗, x∗) is

unique. Similarly to the standard neoclassical growth model, since there is one predetermined
and one jump variable, the unique steady state is a saddle point. As a consequence, for low initial
levels of capital k0 > 0, on the stable arm of the saddle, the stock of capital increases monotonically
toward the steady state.

Once x∗ and c∗ are determined, we deduce the steady-state body weight per unit of labor w∗:

w∗ =
(

λCc(x∗, k∗)
λSs̄ (x∗) + λXx∗ + λN

)
. (24)

As the dynamic system is separable in w (that is, w is affected both by x and k but not vice
versa), a stationary state (x∗, k∗) does not imply that w=w∗. However, as can be easily verified,
if w≷w∗ along a stationary state (x∗, k∗), then ẇ≶ 0, and limt→∞ w=w∗. Consequently, the
pattern of the dynamics of c/x along transitional paths impacts on the weight change ẇ, though
we may experience periods for which c/x declines, while weight is still increasing, and we may
experience periods for which c/x is constant while the weight is declining. That is, w is lagging
behind the dynamic pattern of c/x.8 The behavior of weight, in our model, gives rise to a rich
dynamics depending on both the initial weight and the dynamics of the ratio c/x, following the
rise in k on the transitional path.
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3. Main theoretical results
In the theoretical section, in order to derive straightforward analytical results, we employ a
CES utility function [such as (A5)]. Considering that the intratemporal elasticity of substitu-
tion plays no qualitative role specific to the model, we assume ζ = 0. In this case, where 1/γ
is the intertemporal elasticity of substitution and α > 0 represents the taste for food consump-
tion relative to effective exercise consumption,	C = 	X = 1/γ ,
C = −(1− α)(1− γ )/γ ,
X =
(1− α(1− γ ))/γ > 0 and 
X + 
C = 1. Recall that it means that the term ECE equals zero and
only the effects specific to our model, DPE and ROC, remain in place. In the steady state, the
intertemporal elasticity of substitution plays no role either, so γ can take any value without altering
our results. We complement our theoretical results with a numerical section, in which we present
dynamic and steady-state quantitative results for a range of intra and intertemporal elasticities of
substitution with CES utility (see Section 4).

3.1. Dynamic obesity Kuznets curve
In what follows, we show that the two opposing effects, DPE and ROC, can produce a dynamic
Kuznets curve pattern for obesity. We also explain the puzzling fact that high-income earners may
increase exercise expenditure despite its rising opportunity cost.

Using the functional form (5), in normalized variables, the DPE and ROC are re-expressed as

DPE= ε̇
(
k
)

1− ε
(
k
) = κ k̇ ; (25)

ROC=
⎛
⎝
X + 
C︸ ︷︷ ︸

=1

⎞
⎠�(k)

ẇ
w

= 1
p̂X

(−kf ′′(k)
)
k̇ . (26)

Considering (15), the proof of Proposition 1, and that Ẋ
X − Ċ

C = ẋ
x − ċ

c , we have:

ċ
c

− ẋ
x

= −kf ′′(k)
pX +w

k̇︸ ︷︷ ︸
ROC

− κ k̇︸︷︷︸
DPE

. (27)

Specifically, for k̇> 0,

ċ(t)
c(t)

− ẋ(t)
x(t)

� 0⇐⇒ −kf ′′(k)
)

pX +w
� κ ⇐⇒ (1− η)η

k1−η
[
pX + (1− η)kη

]︸ ︷︷ ︸
≡h(k)

� κ . (28)

We now shed light on the difference between the growth rates of food consumption c and exercise
x in equilibrium. To this end, we restrict our study to the case of a growing economy. Recall
that k0 is the initial capital stock at t = 0, and k∗ = [η/ (δ + ρ)]1/(1−η) is the steady-state level of
capital (as t → ∞).

Assumption 2. There is a date t̂ > 0 for which there is a stock of capital k̂ such that k0 < k̂< k∗.

Proposition 2. Consider Assumption 2. In a growing economy, k̇> 0, limt→0 h(k)> κ , thus,
limt→0

ċ
c − ẋ

x > 0. As t̂ > 0, ROC>DPE and ċ
c − ẋ

x > 0 for t ∈ [0, t̂). Moreover, limt→∞ h(k)< κ ,
thus, limt→∞ ċ

c − ẋ
x < 0. As t̂ < ∞ (as κ > 0), ROC<DPE and, as long as k̇> 0, ċ

c − ẋ
x < 0 for

t ∈ (t̂,∞).

Proof. See Section A.6.
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Proposition 2 shows that this assumption implies that, over time, the sign of the difference
ċ(t)
c(t) − ẋ(t)

x(t) changes from positive to negative. Assumption 2 restricts the parameters of our model
(k0, pX , δ, η, κ , ρ) such that (i) k0 is “low," i.e., a higher income raises net-calorie intake and (ii) k∗
is “high” so that consumption grows by less than effective exercise, i.e., net calorie intake is nega-
tive. One way to think about Assumption 2 is that for all points in parameter space (k0, pX , δ, η, ρ),
there exists a κ > 0 such that Assumption 2 is satisfied.

Below, we show that the pattern of the difference ċ(t)
c(t) − ẋ(t)

x(t) along the transitional path impacts
the evolution of weight and gives rise to a dynamic obesity Kuznets curve (unless the initial weight
is very high).

Assumption 3. On a transitional path, the change in the ratio (c/x) dominates the changes in x and
w on the development of the weight term.9

Assumption 3 poses a natural restriction on the development of weight. It is not the change in
exercising, x, (alone) that determines the change in weight, it rather is the change in the ratio of
calorie intake to calorie expenditure, (c/x), that impacts the change in weight. In a growing econ-
omy (k̇> 0), both c and x increase. In light of Proposition 2, for t < t̂, the ratio (c/x) increases, and
so does the weight. However, for t > t̂, the ratio (c/x) decreases, while x increases. The assumption
puts an upper bound on the rise of x. Equipped with Assumptions 2 and 3, we can now establish
Proposition 3.

Proposition 3. Consider Assumptions 2 and 3. In a growing economy (k̇> 0), for W(0) not too
high, Ẇ > 0 for t ∈ [

t0, t̂
]
. For t > t̂, there exists a date t̂w > t̂ such that Ẇ < 0 for t > t̂w.

Proof. See Section A.7.

Proposition 3 helps us explain the evolution of obesity that goes with economic development
as coming from a change in preferences connected to social status. The intuition is that peer
effects with respect to exercise are higher in the future than in the present. Consequently, ceteris
paribus, the marginal utility of X increases over time. In response, individuals shift X from the
present to the future, which implies a higher growth rate of exercise than in the absence of peer
effects. For low levels of economic development, Proposition 2 predicts that the growth rate of
c exceeds the growth rate of x (note that Ẋ

X − Ċ
C = ẋ

x − ċ
c ). As a consequence, the ratio c/x and

body weight increase, as shown by Proposition 3. At some point of economic development t̂, as
the stock of capital per unit of labor exceeds a certain threshold k̂, Proposition 2 predicts that
the growth rate of x exceeds the growth rate of c. As a consequence, the ratio c/x decreases, as
shown in Proposition 3. Since the evolution of body weight is tied to the evolution of c/x, even if
lagged, it is easy to show that the growth rate of body weight eventually decreases. Therefore,
Propositions 2 and 3 provide an explanation for the empirically estimated dynamic obesity
Kuznets curve.

More specifically, Proposition 3 requires W(0) not to be too high. The intuition is obtained
from the Schofield equation. IfW(0) is too high relative to C and X, there exists an initial period
for which Ẇ < 0. Next, suppose that W(0) is less than this level. Then, for t ∈ [

t0, t̂
]
, Ẇ > 0, as

(c/x) increases in this period and so does the weight term under Assumption 3. For t > t̂, weight
continues to increase until, at t = t̂w, the ratio (c/x) becomes so small that the Schofield equa-
tion requires weight to decrease. IfW(t)>W∗ along a (roughly) stationary state (x∗, k∗), Ẇ < 0,
and weight asymptotically converges to its steady-state level. Assuming that the initial weight is
not too high is consistent with empirical observations that average body weight is relatively low
in counties with low levels of economic development compared to countries with high levels of
economic development.

Corollary 1. In a growing economy, if we ignore the DPE (κ = 0), ẋ/x< ċ/c, for all t.
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Proof. Straight from (27) and Proposition 1, in the absence of the DPE (κ = 0), the differ-
ence ẋ

x − ċ
c is always negative, so that exercise expenses grow at a slower pace than food

consumption.

A consequence of Corollary 1 is that without the DPE, the ratio c/x and body weight would
never decrease. This would yield two counterfactual results. It would imply that exercise expenses
always grow at a lower pace than food consumption, and that obesity always rises and never
exhibits a Kuznets curve along a transitional path.10

It is not possible to explicitly isolate the effect of the ROC on the results because for two reasons.
First, one ingredient of the ROC is the equilibrium wage. The equilibrium wage rises endoge-
nously as capital accumulates. It is therefore not possible in our model to eliminate the rise in the
opportunity cost of leisure. Second, the other ingredient of the ROC is the price pX that individ-
uals pay for leisure. If we were to set pX = 0, this would decrease the relative cost of exercise and
the coefficient �, directly increasing the ROC ceteris paribus. It would also modify the optimal
choice of exercise relative to food consumption and therefore influence capital accumulation, and
the marginal product of labor, which indirectly influences both DPE and ROC. Therefore, it is not
possible to derive analytical results from setting pX = 0. However, we study the effects of relaxing
the assumption of pX > 0 on the dynamic Kuznets curve in the numerical section.

3.2. Static obesity Kuznets curve
In what follows, we draw a parallel between mechanisms operating for the dynamic obesity
Kuznets curve and the static obesity Kuznets curve. The following comparative static analysis
can be considered a cross-sectional analysis, comparing countries or individuals with different
steady-state wealths k∗. It can also be considered a comparative static analysis of a single country
for which a change in a technology or preference parameter causes a change in k∗. In contrast to
the dynamic Kuznets curve, we study how steady-state weight varies with different steady-state
values of k.

To compare steady states, we totally differentiate expression c∗ = α/(1−
α)

(
p̂∗
X/pC

) (
1− ε(k∗)

)
x∗ with respect to k∗, so we study the DPE and ROC associated

with dk∗ > 0 (see Section A.9 for details):

ROC∗ = �
(
k∗) dw∗

w∗ = h(k∗) ,

DPE∗ = dε(k∗)(
1− ε(k∗)

) = κ ,

where dw∗ = ∂w/∂k |k=k∗ dk∗, and dε(k∗)= ∂ε/∂k |k=k∗ dk∗. The difference between the change
of c∗ and the change of x∗ upon a rise in k∗ is given by

dc∗/c∗ − dx∗/x∗

dk∗/k∗ = 1
dk∗/k∗

⎡
⎣h(k∗)︸ ︷︷ ︸

ROC∗
− κ︸︷︷︸

DPE∗

⎤
⎦ , (29)

where ROC∗ represents the higher opportunity cost of time spent on exercise that goes with a
higher marginal product of labor associated with a higher steady-state capital stock, and DPE∗
represents the dynamic peer effect that denotes the increase in peer effects associated with a higher
steady-state capital stock. The terms ROC∗ and DPE∗ are the steady-state equivalents of the terms
ROC and DPE presented in the dynamic setting.

For our functional specification, k∗ = [η/ (δ + ρ)]1/(1−η) , with 0< δ, η, ρ < 1. We make the
following assumption:
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Assumption 4. η > δ + ρ.

Assumption 4 plausibly implies that k∗(δ, η, ρ) is an increasing function of the output elasticity
η. Specifically, k∗(δ, 0, ρ)= 0, ∂k∗/∂η > 0, and limη↑1 k∗ = ∞. Thus, under Assumption 4, k∗ ∈
(0,∞) for η ∈ (0, 1). Now, consider h(k∗).We already established that h′(k∗)< 0. It is easy to verify
that limk∗↓0 h(k∗)= ∞. Likewise, limk∗↑∞ h(k∗)= 0. Thus, under Assumption 3, for k∗ ∈ (0,∞),
h(k∗) ∈ (0,∞).

As k∗ = k∗(δ, η, ρ), we know from (28) that h(k∗)= h∗(pX,δ, η, ρ). As η varies between (0, 1), h∗
varies between (0,∞). However, h∗ also declines in pX and rises in (δ + ρ). Thus, for every κ > 0,
there always exist parameter combinations for which h∗(pX,δ, η, ρ)= κ . This parametric condi-
tion implies a specific steady-state level of capital, k̂∗. Clearly, for k∗ < k̂∗, h∗ > κ , and for k∗ > k̂∗,
h∗ < κ . From (29), we deduce Proposition 4, which is the steady-state equivalent of Proposition 2.

Proposition 4. Under Assumption 4, let k∗ < k̂∗ < k∗ across sections, with k∗, k∗ ∈R+. If k∗ =
k̂∗,then dx∗

x∗ = dc∗
c∗ . For k

∗ ∈ (k∗, k̂∗), h(k∗)> κ , DPE∗ < ROC∗ and dx∗
x∗ < dc∗

c∗ , for dk
∗ > 0. For k∗ ∈

(k̂∗, k∗), h(k∗)< κ , DPE∗ > ROC∗, and dx∗
x∗ > dc∗

c∗ , for dk
∗ > 0.

Proof. See Section A.10.

Proposition 4 shows that the sign of ROC∗ −DPE∗ becomes negative beyond a certain thresh-
old of steady-state level of capital per worker. The result very much depends on the behavior
of ROC∗, as DPE∗ is a constant. We note that ROC∗ depends negatively on pX , as the resource
opportunity cost (foregone wages times the share of w to (pX +w)) declines in the “fixed cost” pX .

Corollary 2. If we ignore the fact that exercise is a type of consumption expenditure, that is, pX = 0,
ROC∗ becomes larger. Consequently, k̂∗ is larger (k̂∗|pX=0 > k̂∗|pX>0), and the space (k0, k̂∗) for
which ROC∗ >DPE∗ and dc∗

c∗ > dx∗
x∗ becomes larger.

Proof. Straightforward from Proposition 4 and the term ROC∗ = h(k∗). It is straightfor-
ward to show that k̂∗, which is obtained from h(k̂∗)= κ , decreases in pX : dk̂∗/dpX =
−k̂∗/

[((
k̂∗
)η + pX

)
(1− η)

]
< 0.

The corollary shows that the higher pX the lower k̂∗ and the larger the range of k∗ for
which dx∗

x∗ > dc∗
c∗ . A necessary condition for a static obesity Kuznets curve to occur is dx∗

x∗ > dc∗
c∗ .

Therefore, taking into account that exercise is a type of consumption expenditure (i.e., pX > 0
rather than pX = 0) shrinks the space (k0, k̂∗) for which dx∗

x∗ < dc∗
c∗ and widens the range of k∗ for

which a static Kuznets curve is obtained.
The sign of (h(k∗)− κ) impacts the steady-state weights across sections, as dx∗

x∗ > dc∗
c∗ is a

necessary condition for the weight to decline.
The comparison of body weight for different steady-state wealth levels is obtained by totally

deriving body weight (see (A16) in the appendix) with respect to k∗, which yields:

dw∗

dk∗ = λCc∗/x∗

z∗

⎡
⎣ d(c∗/x∗)

c∗/x∗ − dz∗
z∗

dk∗

⎤
⎦ (30)

where z
(
k∗)= λSs̄ (x∗) /x∗ + λX + λN/x∗ represents total calorie expenditure divided by exercise

expenditure. Expressed in terms of elasticities, we obtain:

dw∗/w∗

dk∗/k∗ =
⎡
⎣ d(c∗/x∗)

c∗/x∗ − dz∗
z∗

dk∗/k∗

⎤
⎦ ,

where we consider that λCc∗/x∗
z∗ =w∗.
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The first term on the right-hand side in the numerator of (30) represents the percentage change
of net calorie intake. The second term is the percentage change of total calorie expenditure relative
to exercise expenditure. When exercise time x∗ increases, dz∗ < 0. Thus, a necessary condition for
steady-state weight to decrease across sections is d (c∗/x∗) /dk∗ < 0.

As we consider dk∗ > 0, our model implies dw∗/dk∗ > 0 for k∗ < k̂∗. However, for k∗ > k̂∗, our
model implies two opposing effects on the steady-state weight. For k∗ > k̂∗, (c∗/x∗) decreases for
dk∗ > 0. At the same time, z∗ also decreases. To gain more insight, we rewrite the above total
derivative as follows:

dw∗/w∗

dk∗/k∗ =
[(

h(k∗)− κ
)− dz∗/z∗

dk∗/k∗

]
.

Assumption 5.

(i) There exists a k̃∗ > k̂∗ such that
(
h(k̃∗)− κ

)
= dz∗/z∗.

(ii) For k∗ > k̃∗, the decline in
(
h(k∗)− κ

)
is larger than the change (decline) in dz∗/z∗:∣∣∣∣d(c/x)∗/(c/x)∗dk∗

∣∣∣∣=
∣∣∣∣h(k∗)− κ

dk∗

∣∣∣∣>
∣∣∣∣dz∗/z∗dk∗

∣∣∣∣ .
Proposition 5. Under Assumption 5, a static Kuznets curve exists.

Proof. See Section A.11.

Intuitively, recall that the steady state k∗ ∈R+ (by, e.g., varying parameter η). As
(
h(k∗)− κ

)
>

0 for k∗ < k̂∗ by definition, and dz∗/z∗ < 0, condition (i) of the assumption can only be satisfied
for a k̃∗ > k̂∗. This condition also excludes the case for which −dz∗/z∗ > κ for all k∗. It requires
that the degree of peer influence is large enough. Condition (ii) of the assumption imposes a
monotonicity condition: h(k∗)− κ is required to decline by more than dz∗/z∗ for k∗ > k̃∗. In this
case dw∗/dk∗ < 0 for all k∗ > k̃∗. While Assumption 5 might sound restrictive at first sight, it is
always satisfied for the standard utility specifications employed in the numerical simulations (see
below).

Corollary 3. If we ignore the DPE∗ (κ = 0), as h(k∗)> 0, it follows that dw∗
dk∗ > 0.

Proof. Straightforward from Proposition 4, h(k∗)−dz∗

z∗︸ ︷︷ ︸
(+)

> 0 ⇒ dw∗
dk∗ > 0.

If κ = 0, then no static obesity Kuznets occurs. The DPE∗ generates substitution toward exer-
cise and drives the negative correlation between the stock of capital and body weight for high
values of the steady-state capital stock. In the absence of the DPE∗, for high values of the steady-
state capital stock, the main effect is the ROC∗ that unambiguously results in a decrease of exercise
and a higher steady-state body weight. Therefore, the introduction of dynamic peer effects helps
explain why, despite a higher opportunity cost of exercise, rich individuals may exercise more than
poor individuals.

With Proposition 3, we showed that the evolution of the stock of capital over time gener-
ates ROC and DPE, eventually yielding a dynamic obesity Kuznets curve. With Proposition 4,
we explain how differences in ROC∗ and DPE∗ are tied to different steady-state capital stocks
between poor and rich countries (or individuals). Propositions 4 and 5 are consistent with evi-
dence presented in the introduction that dw∗/dk∗ > 0 for poor countries (or individuals) and
dw∗/dk∗ < 0 for rich countries (or individuals) and suggests that dynamic peer effects associated
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with the consumption of time consuming goods plays a larger role for rich than poor countries
(or individuals).

3.3. Calorie consciousness
In this section, we study the behavior of individuals who are both weight conscious and calorie
conscious. Individuals internalize the net effect of calorie intake on weight gain [equation (7)],
accounting for the fact that labor and exercise choices are endogenous [equation (1)] and that
exercise choices are influenced by peer effects [equation (4)]. The formulation of the problem is
presented in Section A.12.

Proposition 6. Assuming 1
pC λC > 1

p̂X

[W
N (λN − λX)

]
, when overweight individuals are calorie

conscious, the ratio C/X̂ is lower than if they are calorie unconscious.

Proof. See Section A.12.

As expected, calorie consciousness reinforces the choice of exercise over consumption and
results in lower equilibrium body weight. To understand the assumption and gain intuition, con-
sider an individual for whomW >WI , that is, for whom a gain in weight reduces utility (parallel
arguments apply for the opposite case). Notice that the term W

N (λN − λX) describes the weight
change caused by an increase of X̂ by one unit, as seen in (A18). While we typically expect this
term to be negative, in principal it can take on either positive or negative values. The term λC
describes the weight gain caused by an increase of C by one unit. Shifting expenses by reducing
C by one dollar and increasing X̂ by one dollar results in a reduction of C by 1/pC units and an
increase of X̂ by 1/p̂X units. Thus, the assumption in Proposition 6 necessitates that the weight
loss resulting from reducing C by one dollar must surpass the weight change incurred by increas-
ing X̂ by one dollar.11 Weight consciousness leads to an increase in utility through this shift in
expenses, consequently lowering the value of C/X̂. With calorie consciousness C/X̂ is consistently
lower for every k compared to when calorie consciousness is absent. This also holds true for the
steady state: since calorie consciousness does not impact the steady-state capital stock [as seen in
equation (A21)], and C/X̂ is lower, the steady-state weight is consequently reduced under calorie
consciousness.

The Kuznets curve continues to reflect the competing rise in opportunity cost of exercise
and peer effects. Calorie consciousness may expedite the transition from a positive to a negative
income–obesity relationship or push the Kuznets curve downward.

4. Numerical results
We supplement the qualitative analysis with a quantitative analysis relying on numerical simula-
tions. Our numerical simulations illustrate our theoretical results and give a sense of magnitudes
regarding the role of peer influenced on exercise expenditures for the steady state and dynamic
Kuznets curves.12 We use data from the American time use survey by the Bureau of Labor
Statistics, the U.S. Department of Health andHuman Services, the Consumer Expenditure Survey,
and the work by Valero-Elizondo et al. (2016), Turnovsky (2000), Barro and Sala-i-Martin (2003),
and Burda and Wyplosz (2017) to calibrate the model. We simulate steady-state body weight for
different steady-state levels of the stock of capital per unit of labor to explore the possibility of a
static Kuznets curve for obesity in the USA.We also study the evolution of body weight toward its
steady state as the stock of capital increases over time to study the possibility of a dynamic obesity
Kuznets curve in the USA. Additionally, we conduct sensitivity analysis for the static and dynamic
Kuznets curves.
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4.1. Calibration
First, we set parameters for the Schofield equation. We use data on time use, calories spent
exercising, and BMR to calibrate the parameters of the Schofield equation.

An individual spends about 2000 hours per year working (40 hours times 50 weeks) out of 8736
total hours in a year (24 hours time 7 days times 52 weeks). The time that is not spent working
represents 6736 hours of leisure time (8736− 2000= 6736) and is split between sedentary leisure
and exercise. With exercise time representing only 122 hours (20minutes times 365 days divided
by 60), sedentary leisure represents 6614 hours (6736− 122= 6614). As a result, sedentary leisure
represents a fraction equal to S̄= 6614/8736= 75.7% of total time, and time that is not spent on
sedentary leisure represents a fraction of L̄= 1− 0.757= 24.3% of total time. This time is split
between exercise, which represents a fraction equal to 122/8736= 1.4% of total time, and work,
which represents a fractionN = 2000/8736= 22.9% of total time. The average of men and women
average weight in the USA is 185 pounds. On average, an individual at rest spends λSS̄W = 1577.5
calories per day. As a result, λS = 1577.5/(0.757 ∗ 185)= 11.26.

Based on the yearly American time use survey by the Bureau of Labor Statistics (2023), time
spent “participating in sports, exercise and recreation," measured since 2003, represents 0.33 hours
(20minutes) a day for the average individual. How many calories do those activities burn? The
2008 Bureau of Labor Statistics Spotlight on Statistics indicates that the three most popular types
of exercise are walking, weightlifting, and using cardiovascular equipment (see Figure A.13.2 in
the appendix). For a 185 pound individual, we estimate that these activities, respectively, burn 2.0,
1.4, and 4.7 calories per pound per hour. The calories burnt are taken from the chart provided
by Harvard Medical School (2021) and activities specifically correspond to walking 4 miles per
hour, general weight lifting, and high impact step (or vigorous rowing). We estimate that calories
burnt by an individual splitting their exercise time among those three activities, weighted by their
popularity, equals 2.5 calories per pound per hour. The details of our calculation are provided in
Table A.13.1 in the appendix. Thus, an average individual of 185 pounds spends 2.5 ∗ 185= 462.5
calories per hour. Since individuals exercise 20minutes a day, they spend λXXW =154 calories
per day. As a result, λX = 154/(0.014 ∗ 185)= 59.5.

Based on the U.S. Department of Health and Human Services and U.S. Department of
Agriculture (2015), we use the average of daily caloric expenditure of men and women, which
equals ((1600+ 2400)/2+ (2000+ 3000)/2)/2= 2250. With 1577.5 calories spent in sedentary
leisure and 154 calories spent exercising, calories spent at work are λNNW = 2250− 1577.5−
154= 518.5. As a result, λN = 518.5/(0.23 ∗ 185)= 12.2.

In order to estimate parameter λC (energy density of food), we use the Schofield equation,
written for a stationary body weight: λC = (λSS̄+λXX+λNN)W/N

C = 2250
4 = 562.5 per unit of food

expenditure per day. As explained above, the numerator represents total calorie expenditure per
day. The denominator represents the quantity of food consumed per day, which is between 3 and 5
pounds.We take 4 pounds for the baseline calibration. As a result, parameter λC represents energy
intake per unit of food expenditure per day. Note that there is no distinction between men and
women or individuals of different ages within households in the per quintile food consumption
data.

We need a consistent estimate for food and exercise, so we use cost per day. To estimate the
price of exercise, we use the work by Valero-Elizondo et al. (2016), who estimate the marginal
benefit of exercising (which, in equilibrium, equals the marginal cost) equal to $2500 per year. We
divide it by 365 days and by the time a person spends exercising daily to obtain pX , the price per
day. Note that the marginal benefit (or cost) of exercising is high as it represents more than the
sole expenditure on exercise-related activities or goods in that case. It also encompasses additional
benefits in the form of savings on health care expenditure due to better health outcomes. So it
overstates the direct cost of goods and services connected to calorie expenditure.
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Table 2. Parameters

λX λN λS λC S̄ pX pC ρ δ η α κ ζ γ

59.5 12.2 11.26 562.5 0.757 20.76 1.54 0.05 0.05 0.3 0.6 0.1 0 1

Table 3. Actual and simulated economies

k/y (p̂X X)/(pC C) DOP C/Y

Actual US economy 3 1.1 0.4 Between 0.10 and 0.65
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Simulated US economy 3 1 0.4 0.28

The average amount spent on food since 2003 is $2,251 per person year.We obtain this number
as follows. Based on the Consumer Expenditure Survey, aggregate food consumption expenditure
per year equals 776,647 millions of dollars. The share of aggregate food expenditure coming from
middle income households is 17.8%. The average number of consumer units in themiddle-income
category is 24,560 thousands and the number of person per consumer unit is 2.5. As a result,
776,647,000,000 ∗ 17.8%/24,560,000/2.5= $2,251 per year per person. We divide this number by
365 days and by the quantity of food a person consumes in a day (4 pounds) to obtain pC, the price
per pounds.

The model is simulated using a production function with a unit elasticity of substitution
between consumption and effective exercise (ζ = 0) and a unit intertemporal elasticity of substitu-
tion (γ = 1). We estimate the remaining yearly parameters. They are consistent with the standard
range of parameters of theoretical growth models [cf. Turnovsky (2000); Barro and Sala-i-Martin
(2003)] and are adjusted to reproduce some essential features of the US economy. We set the pro-
duction elasticity of capital η, the rate of depreciation δ, and the rate of time preference ρ to obtain
a capital output ratio of 3 [e.g. Burda and Wyplosz (2017, p. 64)].

Parameter α, which represents the taste for consumption relative to leisure, and parameter κ ,
which represents the exogenous component of the degree of peer influence modify steady-state
peer effects, consumption, calorie expenditure, and body weight. However, neither are directly
observable. We set those parameters to reflect the following empirical observations. Our cali-
bration generates a degree of peer influence close to 0.4, which is consistent with experimental
estimates,13 and a ratio of exercise related expenditure over food expenditure close to one.

Additionally, the food consumption-income ratio is 10% in the USA, and total consumption in
output is about 65%. Because our model has only one good, which is food consumption, if we set
parameters to reproduce a consumption output ratio of 10%, it would mean that most resources
are allocated to investment. The economy and food consumption would grow too fast compared
to reality.

At the same time, if we set parameters to reproduce a consumption output ratio of 65%, food
consumption and its effect on body weight would largely be overstated. With our parameters, we
obtain a ratio of for food consumption in total output between 10 and 65%. Parameter values are
summarized in Table 2.

Table 3 shows the fit between actual and simulated steady-state economies.

4.2. Baseline scenario
First, we build the curve that connects steady-state body weight to the steady-state capital stock.
Recall that in our model, peer effects have an endogenous component tied to the level of capi-
tal per unit of labor. In the steady state, the stock of capital is given by exogenous parameters,
which are the rates of time preference, depreciation, and the production elasticity of capital. These
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Figure 1. Body weight and capital stock with different degrees of peer influence.

parameters have an impact on the steady-state capital stock k∗ and steady-state weight. We simu-
late the steady-state weights by directly changing k∗, going from the baseline steady-state capital
stock to two times its value.14 Since peer effects also have an exogenous component κ related to
idiosyncratic differences between individuals or countries, we provide simulations for three dif-
ferent levels of κ , at the baseline value of 0.10 and close to it. The static relation between obesity
and the stock of capital per unit of labor is presented on the left graph in Figure 1. Second, we
build the curve showing the evolution of body weight over time toward the current steady state.
The dynamic relation between obesity and the stock of capital per unit of labor is presented on the
right graph in Figure 1.

The current steady-state body weight for the USA is 185 pounds, which is the starting point for
the static relation between body weight and the stock of capital per unit of labor in our baseline
scenario. We find the existence of a static Kuznets curve: for the baseline level of κ , the steady-
state level of average body weight increases with the average stock of capital up to a level of 186.5
pounds, corresponding to a stock of capital per unit of labor 25% higher than its the baseline and
decreases thereafter. The first interpretation of this finding is that the US economy’s tipping point
of the Kuznets curve is not yet reached. It will be reached once the stock of capital per unit of labor
is 25% higher than its baseline in the simulations.

The second interpretation of this result is that the steady-state average body weight starts being
inversely related to wealth when individual wealth is 25% above the average wealth in the USA and
is positively related to wealth below this threshold. Furthermore, when the parameter κ is higher
than in the baseline, DPE∗ is relatively stronger than ROC∗. As a consequence, as expected, steady-
state body weight is lower, and the obesity Kuznets curve is even more concave as individuals
choose to exercise more. Thus, our simulations also show that exogenous differences in the degree
of peer influence between individuals or countries may yield different Kuznets curves.

By contrast, the dynamic evolution of body weight towards its steady-state value of 185 points
does not show a dynamic Kuznets curve pattern for body weight in our baseline scenario. It means
that given the level of κ , the model shows that the increase in the capital stock has so far gener-
ated a DPE that has resulted in slowing down the growth rate of body weight but that it has not
been sufficient to produce a dynamic obesity Kuznets curve. For both the static and the dynamic
relations, the higher κ , the more prevalent peer effects, the lower the level of steady-state body
weight.

The existence of a static Kuznets curve is consistent with results of empirical studies for the
USA presented in the introduction. Given the exogenous degree of peer influence κ , the stock of
capital per unit of labor would need to be 25% higher for the DPE∗ to be large enough and steady-
state body weight to decrease. The absence of the Kuznets curve to this date is also consistent with
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Figure 2. Body weight and capital stock with different consumer prices for exercise.

US data showing that obesity has increased over time and its growth rate has slowed down (see
Figure A.13.3 in the appendix). The DPE may explain the slowdown of the evolution of obesity
in the USA as individuals who are influenced by their peers have allocated more time toward
exercise as the economy developed. However, this influence has so far been insufficient on its own
to produce a decrease in average weight gain.

4.3. Sensitivity analysis
In this subsection, we first show the effect of considering exercise as a consumption expenditure
on the static and dynamic Kuznets curves by varying the cost of exercise expenditure, the elas-
ticity of substitution between consumption and effective exercise, the intertemporal elasticity of
substitution, and the degree of peer influence.

4.3.1. Exercise as a consumption expenditure
We simulate the static and dynamic relations between body weight and the stock of capital per
unit of labor with the price of consumption expenditure ranging from 0 to 20.76. The results are
presented in Figure 2.

When the price of exercise expenditure decreases, the static and dynamic Kuznets curves shift
down. The reason is that a lower price of exercise lowers ROC∗ thereby encouraging exercise. The
increase in calorie expenditure results in lower body weight for all levels of the stock of capital.

4.3.2. Elasticity of substitution between consumption and effective exercise
Recall that the baseline scenario corresponds to a unit elasticity, with parameter ζ = 0. We simu-
late the static and dynamic relations between body weight and the stock of capital per unit of labor
with elasticities of substitution between consumption and effective leisure ranging from 0.66 to 2
(corresponding to ζ ranging from −0.5 to 0.5). The results are presented in Figure 3.

When the elasticity of substitution between food consumption and effective exercise becomes
larger than in the baseline scenario and equal to 2, with ζ = 0.5, then, as the stock of capital
becomes higher in the steady state, individuals substitute food consumption for exercise more eas-
ily than in the baseline with unit elasticity of substitution. As a consequence, the relation between
weight and the capital stock is decreasing as the steady-state stock of capital becomes higher. In
this case, the relation between steady-state weight and the capital stock is not a Kuznets curve. In
other words, the DPE∗ dominates the ROC∗ for all steady-state levels of capital. In contrast, when
the elasticity of substitution between food consumption and effective exercise becomes smaller
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Figure 3. Body weight and capital stock with different elasticities of substitution between food consumption and effective
exercise.

than in the baseline scenario and equal to 0.66, with ζ = −0.5, individuals substitute food con-
sumption for exercise less easily as the stock of capital becomes higher in the steady state. The
relation between steady-state weight and the capital stock is a Kuznets curve. In this case, until
a certain level of steady-state stock of capital per unit of labor, the ROC∗ dominates and weight
increases. Beyond this level, the DPE∗ dominates, and weight decreases as the steady-state stock of
capital becomes higher. The static Kuznets curve is also present in the baseline case (solid curve)
but less pronounced than for the lower CES with ζ = −0.5.

The dynamic relation between weight and the capital stock does not exhibit a Kuznets curve
pattern for a wide range of elasticities of substitution between food consumption and effective
exercise. For both the static and dynamic relations, the more food consumption and effective
exercise are complements, the more prevalent peer effects, the lower the level of steady-state body
weight.

To our knowledge, there is no empirical estimate of the elasticity of substitution between food
consumption and exercise. If food consumption and exercise are substitutes, we should see a
decrease in steady-state weight happening much earlier that in our baseline. If we consider that
when people exercise, they also eat more, then food consumption and effective exercise may be
complements and the relation between steady-state weight and stock of capital per unit of labor
could exhibit a Kuznets curve. However, the model predicts that with an elasticity of substitution
of 0.66, the tipping point of the Kuznets curve would happen at a steady-state stock of capital 67%
higher and a body weight of 344 pounds, which is a more pessimistic scenario than the baseline
scenario.

4.3.3. Intertemporal elasticity of substitution
Recall that the baseline scenario corresponds to an intertemporal elasticity of substitution equal to
one with parameter γ = 1. We simulate the relation between body weight and the stock of capital
per unit of labor with intertemporal elasticities of substitution ranging from 0.33 to 1 (correspond-
ing to γ ranging from 3 to one). By definition, the intertemporal elasticity of substitution does not
affect the steady state, but it modifies the dynamic evolution of weight as the stock of capital builds
up. The results are presented in Figure 4.

When the intertemporal elasticity of substitution becomes smaller, from 1 to 0.33 (as γ goes
from 1 to 3), the dynamic relation between weight and the stock of capital per unit of labor
becomes flatter. As γ increases, the effect of the ROC on the difference between the growth rate
of exercise and the growth rate of food consumption, ẋ

x − ċ
c , becomes smaller, and the effect of
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Figure 4. Dynamic of body weight with different intertemporal elasticities of substitution.

Figure 5. Dynamic of body weight gain with low and high degrees of peer influence.

the DPE becomes dominant, explaining that the relation between obesity and capital becomes less
and less positive. As the DPE become dominant, individuals postpone net calorie intake to the
future, which flattens the evolution of body weight.

4.3.4. High degree of peer influence
While in the baseline scenario, the Kuznets curve is generated for low values of κ matching empir-
ical estimates of peer effects, we further explore the role of a higher degree of peer influence in
generating a dynamic Kuznets curve and present it in Figure 5. The reason for this is that there
is significant uncertainty regarding empirical estimates of peer effects. We simulate the evolution
of body weight toward its steady state as the stock of capital increases over time for parameter
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values of κ equal to 0.1 and 0.8. In that range of values for κ , there are very large differences in the
level of body weight: the higher κ , the lower the body weight. Thus, we use two different scales
corresponding to the two different κ to present the level of body weight. With high values of κ , we
obtain obesity Kuznets curves: After a number of periods, body weight overshoots its steady-state
value and then decreases to its steady- state value.

Therefore, the most striking results of our sensitivity analysis are as follows. The dynamic rela-
tion between weight and the capital stock does not exhibit a Kuznets curve pattern for a wide
range of elasticities of substitution between food consumption and effective exercise. For both the
static and dynamic relations, the more food consumption and effective exercise are complements,
the more prevalent peer effects, the lower the level of steady-state body weight. Peer effects would
need to be larger than empirically observed for a dynamic Kuznets curve to occur.

5. Conclusion
Our model expands the theoretical literature to acknowledge the importance of calorie expen-
diture in maintaining healthy body weights and the fact that preferences change over time. We
build and simulate the first theoretical growth model that combines Becker’s (1965) theory of the
allocation of time and Veblen’s (1899) theory of conspicuous leisure and focus on exercise choices
and changing preferences to explain obesity-income patterns.

We show that both a dynamic and a static Kuznets curve for obesity can arise and provide
a novel explanation of the mechanisms generating the dynamic and static Kuznets curves. Our
dynamic model shows that the difference between the growth rate of consumption and the growth
rate of exercise reflects the difference between the rise in the opportunity cost of exercise and the
change in peer-influence with respect to exercise. We formally demonstrate the existence of a
level of capital per worker for which the growth rate of exercise starts exceeding the growth rate
of food consumption. These mechanisms apply to a dynamic environment in which the stock of
capital per worker builds up over time and a static environment used for cross-sectional analysis
of countries or individuals with different income levels, explored through comparative statics.

Furthermore, we show that ignoring dynamic peer effects with respect to exercise choices
would yield a positive correlation between economic development and weight gain at all levels
of economic development. By contrast, in the presence of dynamic peer effects with respect to
exercise, for high levels of economic development, we show that body weight gain becomes neg-
ative as the economy develops over time. The static analysis indicates that for high levels of the
steady-state stock of capital per worker, the link between body weight and the steady-state capital
stock is negative.

We supplement the qualitative analysis with numerical simulations. The simulated US econ-
omy shows that peer effects on exercise choices are not sufficient to generate a dynamic Kuznets
curve pattern for obesity. However, they are sufficient to generate a static Kuznets curve for the
USA: the steady-state level of average body weight increases with the average stock of capital up to
a level of 187 pounds, corresponding to a stock of capital per worker 25% higher than its current
steady-state level, and decreases thereafter.

We acknowledge a few caveats in our work. Neither our behavioral model nor our simula-
tions distinguish between men and women, while the data show differences in the income obesity
relation between men and women. This task is limited by the lack of empirical data on behav-
ioral differences with respect to food consumption and exercise and specific to men and women.
Notwithstanding these limitations, this study clarifies the impact of peer effects on the relation
between income and obesity.

A natural extension of this work is to use our model to study the effect of exercise subsidies.
While calorie expenditure is an important factor in weight gain, in the USA, government policies
aiming at encouraging exercise have been limited. The most recent federal level initiative is the
Let’s Move program led by former First Lady Michelle Obama. Additionally, while a larger and
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larger number of employers are offering financial incentives for heathy behavior, small businesses
who employ more than half of the private sector workforce do not. Less than 5% of worksites with
50–99 employees offer comprehensive workplace health programs. However, Cawley’s (2015) lit-
erature review, Mukhopadhyay and Wendel (2013), and Goetzel (2016) indicate that physical
exercise programs have the potential in preventing youth obesity and improving employees’
health. It is therefore important to understand the effect of exercise subsidies on obesity, distin-
guishing between subsidies to consumers as opposed to employers. Our model provides a starting
framework for this analysis since it accounts for the fact that the cost of exercise is both an expen-
diture and an opportunity cost and provides a vehicle to study various types of exercise subsidies.
It also suggests that subsidies targeting the price of exercise expenditure (pX) may have a different
quantitative effect from those targeting wages (w) because they affect the ROC in different ways.
By lowering pX to show the role of exercise as an expenditure, we already showed that a subsidy
lowering the cost of exercise would result in lower body weight. Exploring the effects of subsidies
should be the focus of future investigations.

Notes
1 See the extensive literature review at https://www.hsph.harvard.edu/obesity-prevention-source/obesity-causes/.
2 In our model, economic development is captured by the stock of capital per worker (identical to the per capita stock of
capital) which, given technology, fully determines income per worker.
3 This specification of status preferences is prevalent throughout the literature. Formulating it as a multiplicative function
[Gali (1994)] is also possible and yields essentially equivalent results.
4 We provide a discussion on the role of calorie consciousness in Section 3.3.
5 To understand this, observe that:

∞∫
0

u(C, X̂)e−ρtdt ≤
∞∫
0

q ρ e−(1−β)ρtdt = q
1− β

.

and: ∞∫
0

v
[(
W −WI)2] e−ρtdt ≤

∞∫
0

qw ρ e−(1−βw)ρtdt = qw
1− βw

.

6 Notice the different fonts for weight (w) and wage (w).
7 For example, with constant elasticities of substitution in (A5), c∗/x∗ = α/(1− α)

(
p̂X

(
k∗) /pC

) (
1− ε(k∗)

)
, and the steady-

state value of x becomes: x∗ = f (k∗)−δk∗
pX+ α

1−α p̂X (k∗)(1−ε(k∗)) .
8 Notice that w∗ does not necessarily represent the ideal body weight. It simply is the stationary weight, consistent with a
steady state (x∗, k∗).
9 This change is given by Ẇ/X = λC

( c
x
)−

[
λS

s
x + λX + λN

x

]
w. If, on the transitional path, c/x declines, x increases, and w

possibly declines, then the impact of the decline in c/x lowers weight change, while the changes in x and w tend to increase
weight change. Assumption 3 requires the decline in c/x to dominate the effects on weight change induced by changes in x
and w.
10 Suppose the economy reaches a stationary state at date t∗. In this case, a dynamic Kuznets curve is obtained only for t > t∗
and ifW(t∗)>W∗, where the latter is the steady-state value of weight (W∗ =w∗N∗).
11 Of course, if λN < λX , this assumption is always satisfied.
12 We rely on Mathematica and use the relaxation algorithm to obtain dynamic results.
13 Quasi-experimental research provides estimates in the 0.2–0.6 range [see, e.g., Johansson-Stenman et al. (2002); Clark and
Senik (2010); Carlsson et al. (2007); and the overview by Wendner and Goulder (2008)].
14 To obtain meaningful body weight levels, we normalize the steady-state body weight at 185 pounds in the initial steady
state.
15 The variations applied to (C, X̂) affect the weight, but any change in weight does not impact the decisions of (C, X̂). To
streamline the presentation, instead of representing utility as u(C, X̂)− v

[(
W −WI)2], we disregard v

[(
W −WI)2].

16 Therefore, limT→∞ μ∗(T)e−ρTK∗(T)= 0 is not a necessary condition, very much in contrast to (eco-
nomics) textbooks, though less in contradiction to insights from major mathematicians, including Ekeland (cf.
https://www.youtube.com/watch?v=0upVJC39hCw).
17 The same considerations concerning Ekeland’s variational principle, as discussed in Section A.1, are applicable in this
context as well.
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Appendix A
A.1. Optimality conditions

H=U(C, X̂,W)+ μ
[
rK +wL̄− p̂Xε

(
k̄
)
X̄ − pCC − p̂XX̂

]
,

whereμ is the shadow value of saving expressed in utility units. An interior solution regarding the
control variables implies:

∂H
∂C

=UC − μ pC = 0 , (A1)

∂H
∂X̂

=UX̂ − μ p̂X = 0 . (A2)

The canonical equations regarding the state variable K are

∂H
∂K

= μr = ρμ − μ̇ , (A3)

which yields:

μ̇

μ
= −(r − ρ) . (A4)

As the transversality condition (TVC) is not a settled matter for an infinite horizon problem
[Halkin (1974)], we find the transversality condition by applying Ekeland’s variational principle
as in Bosi et al. (2023). Notice that the utility function U is separable in weight and that weight
is not a choice variable in our base framework (we choose food and exercise, and weight is the
outcome that we like or dislike). Thus, we consider instantaneous utility function u, which by
Assumption 1, is C2, strictly increasing in both arguments and strictly concave:15

u(C, X̂) .

We apply Ekeland’s variational principle. Suppose an optimal path (C∗, X̂∗,K∗) exists, i.e., K(0)=
K0 and K̇ = rK +wL̄− p̂Xε

(
k̄
)
X̄ − pCC − p̂XX̂. Let λ∗ be the path of the usual multiplier asso-

ciated with the optimal path. The necessary conditions for an optimum can be obtained from the
following value function:

V(C, X̂, λ∗)=
∞∫
0

u(C, X̂)e−ρτdτ +
∞∫
0

λ∗ [rK +wL̄− p̂Xε
(
k̄
)
X̄ − pCC − p̂XX̂ − K̇

]
dτ .

Here, λ∗ = μ∗e−ρτ , where μ∗ is the current value costate variable in the Hamiltonian function.
Thus, (λ̇/λ)∗ = (μ̇/μ)∗ − ρ. Integration by parts yields:

∞∫
0

λ∗K̇ dτ = λ∗K |∞0 −
∞∫
0

λ̇∗K dτ = −λ∗(0)K(0)+ lim
T→∞ λ∗(T)K(T)−

∞∫
0

λ̇∗K dτ .
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Thus, we re-write the value function as:

V(C, X̂, λ∗)=
∞∫
0

u(C, X̂)e−ρτdτ +
∞∫
0

λ∗ [rK +wL̄− p̂Xε
(
k̄
)
X̄ − pCC − p̂XX̂

]
dτ

+ λ∗(0)K(0)− lim
T→∞ λ∗(T)K(T)+

∞∫
0

λ̇∗K dτ ,

or, equivalently, as

V(C, X̂, λ∗)=
∞∫
0

u(C, X̂)e−ρτdτ +
∞∫
0

λ̇∗K + λ∗ [rK +wL̄− p̂Xε
(
k̄
)
X̄ − pCC − p̂XX̂

]
dτ

+ λ∗(0)K(0)− lim
T→∞ λ∗(T)K(T) .

We introduce perturbations (C̃, ˜̂X, K̃) as follows. Let (C∗, X̂∗,K∗) denote the optimal paths
of (C, X̂,K). For ε �= 0, define: C̃ ≡ [C − C∗]/ε; ˜̂X ≡ [X̂ − X̂∗]/ε; K̃ ≡ [K −K∗]/ε; with
˜(C, ˜̂X, K̃) :R+ →R. Thus, we write any feasible path as a deviation from the optimal path, e.g.,
C(ε)= C∗ + εC̃:

V(ε) =
∞∫
0

u(C(ε), X̂(ε))e−ρτdτ

+
∞∫
0

λ̇∗K(ε)+ λ∗ [rK(ε)+wL̄− p̂Xε
(
k̄
)
X̄ − pCC(ε)− p̂XX̂(ε)

]
dτ

+λ∗(0)K0 − lim
T→∞ λ∗(T)[K∗(T)+ εK̃(T)] ,

noting that K(0)=K0 is exogenously given (i.e., fixed). As a result, the functional V was trans-
formed into a function of ε. The optimum then implies V ′(ε)= 0 [see, e.g., Chiang (1992, pp.
177ff; pp. 242f)]:

V ′(ε)=
∞∫
0

e−ρτ
(
uCC̃ + uX̂

˜̂X
)
dτ

+
∞∫
0

λ̇∗K̃ + λ∗ [rK̃ − pCC̃ − p̂X ˜̂X
]
dτ − lim

T→∞ λ∗(T)K̃(T)= 0 .

Grouping terms yields:

V ′(ε)=
∞∫
0

C̃
(
e−ρτuC − λ∗pC

)
dτ +

∞∫
0

˜̂X (
e−ρτuX̂ − λ∗p̂X

)
dτ

+
∞∫
0

K̃
(
λ̇∗ + rλ∗) dτ − lim

T→∞ λ∗(T)K̃(T)= 0 .
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Consider the subclass K of functions K̃ for which limT→∞ λ∗(T)K̃(T)= 0. Thus, for K̃ ∈
K, limT→∞ λ∗(T)K(T)= limT→∞ λ∗(T)K∗(T) ∈R. For every such K̃, the previous first-order
condition V ′(ε)= 0 implies:

∞∫
0

C̃
(
e−ρτuC − λ∗pC

)
dτ +

∞∫
0

˜̂X (
e−ρτuX̂ − λ∗p̂X

)
dτ +

∞∫
0

K̃
(
λ̇∗ + rλ∗) dτ = 0 .

As C̃, ˜̂X, and K̃ are arbitrary functions, necessary conditions for the first-order condition above
to be satisfied are

(
e−ρτuC − λ∗pC

)= 0,
(
e−ρτuX̂ − λ∗p̂X

)= 0, and
(
λ̇∗ + rλ∗)= 0 for all τ ≥ 0.

Noting that μ∗ = λ∗eρτ , we can rewrite these conditions in present-value terms:
(
uC − μ∗pC

)=
0,
(
uX̂ − μ∗p̂X

)= 0, and
(
λ̇∗ + rλ∗)= λ∗

(
λ̇∗
λ∗ + r

)
= λ∗

(
μ̇∗
μ∗ + (r − ρ)

)
= 0, for all τ ≥ 0, which

are the necessary first-order conditions appearing in Section A.1 above.
Next, consider these necessary first-order conditions. Then, optimality requires that

limT→∞ λ∗(T)K̃(T)= 0. As a consequence (and as argued above), this condition implies
limT→∞ λ∗(T)K(T) ∈R for any feasible K, and in particular for K∗:

lim
T→∞ λ∗(T)K∗(T) ∈R ,

which is a necessary transversality condition for our optimal control problem, as in Bosi
et al. (2023), though in a different context. Again noting that μ∗ = λ∗eρτ , Ekeland’s varia-
tional principle yields the following necessary transversality condition for our optimization
problem:16

lim
T→∞ μ∗(T)e−ρTK∗(T) ∈R .

A.2. Solution to the individual’s optimization problem [equations (13) and (14)]
Based on the first-order conditions (A1), (A2), and (A3), the intratemporal optimality condition
becomes

UX̂(C, X̂,W)
UC(C, X̂,W)

= uX̂(C, X̂)
uC(C, X̂)

= pX̂
pC

,

due to separability of the utility function in W. Differentiating the first-order conditions with
respect to time yields

U̇C(C, X̂,W)
UC(C, X̂,W)

= uCC(C, X̂)C
uC(C, X̂)

Ċ
C

+ uCX̂(C, X̂)X̂
uC(C, X̂)

˙̂X
X̂

= μ̇

μ
= −(r − ρ),

and

U̇X̂(C, X̂,W)
UX̂(C, X̂,W)

= uX̂C(C, X̂)C
uX̂(C, X̂)

Ċ
C

+ uX̂X̂(C, X̂)X̂
uX̂(C, X̂)

˙̂X
X̂

= μ̇

μ
+

˙̂pX
p̂X

= −(r − ρ)+ �
ẇ
w
.

Let eij, i, j ∈
{
C, X̂

}
define the elasticities uij(i, j)j/ui. Then, the above growth rates can be written

as (suppressing the arguments of the elasticity functions):

eCC
Ċ
C

+ eCX̂
˙̂X
X̂

= −(r − ρ),
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and

eX̂C
Ċ
C

+ eX̂X̂
˙̂X
X̂

= −(r − ρ)+ �
ẇ
w
.

Considering both equations and collecting terms yields:
Ċ
C

=
[ eX̂X̂ − eCX̂
−eCCeX̂X̂ + eCX̂eX̂C

]
(r − ρ)+

[ eCX̂
−eCCeX̂X̂ + eCX̂eX̂C

]
�
ẇ
w
,

and
˙̂X
X̂

=
[ eCC − eX̂C
−eCCeX̂X̂ + eCX̂eX̂C

]
(r − ρ)−

[
eCC

−eCCeX̂X̂ + eCX̂eX̂C

]
�
ẇ
w
.

The function� is such that 0< � ≡ w
w+pX < 1 (implying that ∂�

∂w > 0, and ∂�
∂pX < 0).We define the

following elasticities: 	C
(
C, X̂

)
= eX̂X̂−eCX̂−eCCeX̂X̂+eCX̂eX̂C

, 	X
(
C, X̂

)
= eCC−eX̂C−eCCeX̂X̂+eCX̂eX̂C

, 
C
(
C, X̂

)
=

eCX̂−eCCeX̂X̂+eCX̂eX̂C
, and 
X

(
C, X̂

)
= eCC−eCCeX̂X̂+eCX̂eX̂C

, with eCC = (UCCC/UC), eCX̂ =
(
UCX̂X̂/UC

)
,

eX̂C = (
UX̂CC/UX̂

)
, eX̂X̂ =

(
UX̂X̂X̂/UX̂

)
. Considering the definitions	C,	X ,
C, and
X we can

re-write the above equations as
Ċ
C

= 	C
(
C, X̂

)
(r − ρ)+ 
C

(
C, X̂

)
�
ẇ
w
,

and
˙̂X
X̂

= 	X
(
C, X̂

)
(r − ρ)− 
X

(
C, X̂

)
�
ẇ
w
.

In equilibrium, X̂ = X(1− ε(k)), that is:
˙̂X
X̂

= Ẋ
X

− ε̇(k)
1− ε(k)

,

so:
Ẋ
X

= 	X
(
C, X̂

)
(r − ρ)+ ε̇(k)

1− ε(k)
− 
X

(
C, X̂

)
�
ẇ
w
.

A.3. Proof of Proposition 1

Straightforward from (15). The ECE includes two elasticities, respectively 	C
(
C, X̂

)
and

	X
(
C, X̂

)
, which are different unless preferences are CES, in which case this term disappears.

To illustrate the terms 	C, 	X , 
C, 
X , we can consider a constant elasticities of substitution
specification for the utility function, such that:

U(C, X̂,W)=

[(
αCζ + (1− α)X̂ζ

)1/ζ]1−γ

1− γ
− v

[(
W −WI)2] ,

0< α < 1, γ > 0, ζ ≤ 1 . (A5)
where α represents the taste for food consumption relative to effective exercise consumption.
The intratemporal elasticity of substitution between C and X̂ is given by 1/(1− ζ ), while the
intertemporal elasticity of substitution (IES) is given by 1/γ .
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For γ = 1, the sub-utility function u(C, X̂) equals ln
(
αCζ + (1− α)X̂ζ

)1/ζ
. It is increasing

in both arguments as 0< α < 1, twice continuously differentiable and strictly concave (as follows
from negative definiteness of the Hessian due to 0< α < 1, ζ ≤ 1). Moreover, for our param-
eterization, it can easily be checked that limC↓0 uC = limX↓0 uX̂ = ∞ and that limC→∞ uC =
limX→∞ uX̂ = 0. Additionally, recall that from Assumption 1, the sub-utility function v :R+ →R

is twice continuously differentiable, increasing and strictly convex in its argument (W −WI)2 and
v
[(
W −WI)2]≤ qw ρ eβwρt , where qw ∈R+ and βw < 1.
Our utility integral is bounded. Along the transitional path starting from below the stationary

state, both C and X̂ rise and converge to some stationary state (C∗, X̂∗). Let y denote y= αCζ + (1−
α)X̂ζ . y converges to y∗. As u is increasing in both arguments, u increases in y. With some abuse of
notation, let u(y) denote the instantaneous utility function. Then boundedness of the utility integral,
as shown above, requires u(y)≤ q ρ eβρt . That is, there must be a q ∈R+ and a β < 1 such that for
all t, u(y)≤ q ρ eβρt . As our y(t) path is not diverging and u is a real valued function, for every y(t)
there exist q ∈R+ and β < 1 such that for all t, u(y)≤ q ρ eβρt . Moreover, as limt→∞ y(t)= y∗,

u(y) is bounded, and for ρ > 0, the integral
∞∫
0
u(y)e−ρτdτ is bounded [cf. Chiang (1992, p. 101)].

Additionally, by Assumption 1, the integral
∞∫
0
v
[(
W −WI)2] e−ρτdτ is bounded, thus, the utility

integral (difference of the integrals of sub-utilities) is also bounded.
For the whole class of constant elasticities of substitution utility functions, the term[


X + 
C]= 1/(1− ζ )> 0 (with 
C = −(1− α)(1− γ )/γ < 0, when ζ = 0) and 	C = 	X =
1/γ . That is, in (15), the term ECE equals zero. Therefore, equation (15) indicates that the sign
of the rate of change of exercise expenditure is ambiguous, solely depending on the difference
between DPE and ROC, which are two positive terms.

A.4. Derivation of the dynamic system in k and x [equations (19) and (20)]
Noting that x= X/N = X/(L− X), we can re-write X = x(L̄− X), hence, X = [x/(1+ x)] L̄. Thus,
X = X(x). Next, consider that X̂ = (1− ε(k))X(x) in equilibrium. Thus, X̂ = X̂(x, k). Finally,
dividing (A1) by (A2), the resulting intratemporal first-order condition UC(C, X̂)/UX̂(C, X̂)=
pC/p̂X(k) implicitly defines a relationship C(X̂(x, k), k). Since the arguments

(
C, X̂

)
can also

be written in terms of (x, k), 	i(C, X̂)= 	i(x, k) and 
i(C, X̂)= 
i(x, k), i= C, X. Recall that:
� =w/(pX +w) and p̂X = pX +w. Since w depends on k, we write � = �

(
k
)
. The comparison

term ε(k) is specified according to (5). Considering our functional specification of ε(k),

ε̇(k)
1− ε(k)

= ε′(k)k
1− ε(k)

k̇
k

= (κk)
k̇
k
.

As ẇ/w= η k̇/k, and considering that X̂ = X̂(x, k) and C = C(x, k)—see Section 2.3—we re-write
the growth rate of X:

Ẋ
X

= 	X (x, k) (r − ρ)+ [
κk− 
X (x, k)� η

] k̇
k
.

As x= X/N, ẋ/x= Ẋ/X − Ṅ/N. We note that Ṅ/N = −X/(L̄− X)
(
Ẋ/X

)= −x
(
Ẋ/X

)
. Thus,

ẋ/x= (1+ x)Ẋ/X:

ẋ
x

= (1+ x)

[
	X (x, k) (f ′(k)− δ − ρ)+ [

κk− 
X (x, k)� η
] k̇
k

]
. (A6)
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Next,
(
k̇/k

)
= (

K̇/K
)− (

Ṅ/N
)= (

K̇/K
)+ x

(
Ẋ/X

)
. We consider the resource constraint K̇ =

f (k)N − δK − pCC − pXX:

k̇
k

=
(
K̇
K

)
+ x

Ẋ
X

=
(
f (k)
k

− δ − pC
c
k

− pX
x
k

)
+ x

{
	X (x, k) (r − ρ)+ [

κk− 
X (x, k)� η
] k̇
k

}
,

thus,

k̇
k
{
1− x

[
κk− 
X (x, k)� η

]}=
(
f (k)
k

− δ − pC
c
k

− pX
x
k

)
+ x	X (x, k) (r − ρ) ,

and as a result:
k̇
k

= {
1− x

[
κk− 
X (x, k)� η

]}−1

[
x	X (x, k) (f ′(k)− δ − ρ)+ f (k)

k
− δ − pC

c(x, k)
k

− pX
x
k

]
. (A7)

A.5. Derivation of the Schofield equation with normalized variables [equation (21)]
We now derive (21). We rewrite the Schofield equation (A8) as

Ẇ = λCC −
(
λSS̄+ λXX + λNN

)
N

W, (A8)

Ẇ
W

= λC
C
W

−
(
λSS̄+ λXX + λNN

)
N

= ẇ
w

+ Ṅ
N
. (A9)

Since:
Ṅ
N

= −x
Ẋ
X

= − 1
1+ x

ẋ
x
,

ẇ
w

= λC
C
N

N
W

−
(
λSS̄+ λXX + λNN

)
N

+ 1
1+ x

ẋ
x
.

Substituting (A6) in this expression yields:

ẇ
w

= λC
c
w

−
(
λSS̄+ λXX + λNN

)
N

+	X (x, k) (f ′(k)− δ − ρ
)+ (

κk− 
X (x, k) η(k)�(k)
) k̇
k
,

which is equivalent to:
ẇ
w

= λC
c
w

− (λSs̄+ λXx+ λN)

+	X (x, k) (f ′(k)− δ − ρ
)+ (

κk− 
X (x, k) η(k)�(k)
) k̇
k
.
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A.6. Proof of Proposition 2
Notice that we study a Cobb—Douglas production function: f (k)= kη, 0< η < 1, and that prices
pX > 0 and pC > 0 are exogenous. Throughout, we consider a growing economy, k̇> 0. From 27:

ċ
c

− ẋ
x

= −kf ′′(k)
pX +w

k̇︸ ︷︷ ︸
ROC

− κ k̇︸︷︷︸
DPE

.

Step 1: The sign of the difference ROC−DPE is determined by

ċ
c − ẋ

x
k̇

= ROC−DPE
k̇

= −kf ′′(k)
pX +w

− κ .

Thus, for k̇> 0:

ċ
c

− ẋ
x
� 0⇐⇒ −kf ′′(k)

)
pX +w

� κ ⇐⇒ (1− η)η
k1−η

[
pX + (1− η)kη

]︸ ︷︷ ︸
≡h(k)

� κ , 0< η < 1, κ > 0,

where the latter is an implicit inequality of k. Function h(k) has the following properties: (i) h(k)
is a continuous function, (ii) limk→0 h(k)= ∞ and limk→∞ h(k)= 0, and (iii) h′(k)< 0. By the
intermediate value theorem, for any κ > 0, there exists a unique k̂

(
κ , η, pX

)
such that h(k̂)= κ .

Formally,

h(k̂)= (1− η)η

k̂1−η
[
pX + (1− η)k̂η

] = κ .

As a consequence, for k< k̂, ċ(t)c(t) − ẋ(t)
x(t) > 0, that is, ROC>DPE. Likewise, for k> k̂, ċ(t)c(t) − ẋ(t)

x(t) < 0,
that is, ROC<DPE.

Notice that k̂
(
0, η, pX

)→ ∞ and dk̂/dκ = 1/h′(k̂)< 0. For κ > 0, if k assumed every value
in R+ during the transition from its initial value k0 toward its steady-state value k∗(δ, η, ρ)=
[η/(δ + ρ)]1/(1−η), then there would always be a period for which k< k̂, that is, ċ(t)

c(t) − ẋ(t)
x(t) > 0,

and a period for which k> k̂, that is, ċ(t)
c(t) − ẋ(t)

x(t) < 0. However, for a growing economy, in our
model k ∈ [

k0, k∗] rather than R+, where k0 > 0 and k∗ < ∞.
Step 2: Suppose during transition, k assumed every value in R+. Then, our assumptions of

a growing economy together with continuity of h(k) would imply the existence of a date t̂ such
that for t < t̂, ċ(t)c(t) − ẋ(t)

x(t) > 0, and for t > t̂, ċ(t)c(t) − ẋ(t)
x(t) < 0. In the following, we impose parametric

restrictions on k0 and (δ, η, κ , ρ) such that there exists such a t̂ in R++ even when k ∈ [
k0, k∗]

rather than R+ :
Let k0 < k̂

(
κ , η, pX

)
< k∗(δ, η, ρ). Notice that for k ∈ [k0, k∗), k̇> 0. Then, limt→0 h(k)>

κ , thus, limt→0
ċ
c − ẋ

x > 0. As t̂ > 0, for t ∈ [0, t̂), ċ
c − ẋ

x > 0 and ROC>DPE. Moreover,
limt→∞ h(k)< κ , thus, limt→∞ ċ

c − ẋ
x < 0. As t̂ < ∞ (because κ > 0), ċ

c − ẋ
x < 0 for t ∈ (t̂,∞).

Specifically, for t ∈ (t̂,∞), ROC<DPE for k̇> 0 (and ROC=DPE= 0 for k̇= 0).
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A.7. Proof of Proposition 3
We consider a growing economy (k̇> 0). To prove Proposition 3, we rewrite the Schofield
equation as

Ẇ
X

= λC
c
x

−
(

λS
x
s̄+ λX + λN

x

)
w. (A10)

The sign of Ẇ depends on how the term ( λC
c
x(

λS
x s̄+λX+ λN

x

) ) compares to weight:

Ẇ ≷ 0⇐⇒ λC
c
x(

λS
x s̄+ λX + λN

x

) ≷w.

At t0, ifW(0)<
λC

c(0)
x(0)(

λS
x(0) s̄(0)+λX+ λN

x(0)

)N(0), Ẇ(0)> 0. Otherwise, Ẇ(0)< 0 during an initial period.

Suppose Ẇ(0)> 0. Then, for t ∈ [
t0, t̂

]
, Ẇ(t)> 0. This follows from the fact that (c/x)

increases during this time period (see Proposition 2), and from Assumption 2, according to which
λC

c
x(

λS
x s̄+λX+ λN

x

) increases in (c/x), regardless of the development of x.

For t > t̂, the ratio (c/x) decreases. This decrease lowers the weight growth, though it does
not immediately lead to negative weight growth. However, the ratio (c/x) decreases toward its
stationary value by Proposition 2. As a consequence, ifW(t̂)>W∗, there exists t̂w > t̂, so that Ẇ <

0 for t > t̂w. To see this, first consider a date t∗ as of which (x, k) is (roughly) stationary. IfW(t∗)>
W∗, then the Schofield equation becomes a very simple differential equation implying that Ẇ(t)<
0 for t > t∗. Second, consider a date before (but close to) t∗. For such dates, in addition, (c/x)
declines, which further reduces Ẇ (i.e., makes it more negative).

A.8. Steady-State equilibrium x∗ and k∗

In the steady state f ′(k∗)= δ + ρ. As f (k) is an increasing and strictly concave function, f ′(k) is
monotone, and there exists an inverse function f ′−1(.). An asterisk denotes a steady-state value.
Then:

k∗ = f ′−1(δ + ρ).

We express the intratemporal trade-off between exercise and food consumption as:

pCc∗ = (pX +w∗) α

1− α
(1− ε(k∗))x∗ .

From (19), we know that:

f (k∗)− δk∗ = pCc∗ + pXx∗ = x∗
(
pX + pC

c∗

x∗

)
.

Combining both equations yields an implicit steady-state relationship between x and k:

f (k∗)− δk∗ = x∗
[
pX + α

1− α

(
pX +w∗) (1− ε(k∗)

)]
,

equivalent to:

x∗ = f (k∗)− δk∗

pX + α
1−α

(
pX +w∗) (1− ε(k∗)

) = f (k∗)− δk∗

pX + pC c∗
x∗

. (A11)
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Furthermore, c∗ follows from substituting x∗ in the optimality condition:

c∗ = f (k∗)− δk∗ − pXx∗

pC
. (A12)

A.9. Change of c∗ with respect to k∗

The ratio of first-order conditions (A1) by (A2) yields:
c∗ = α/(1− α)

(
p̂∗
X/pC

) (
1− ε(k∗)

)
x∗

Recalling that p̂∗
X = pX +w∗ and that w∗ also depends on k∗, we derive c∗ with respect to k∗ and

obtain:
dc∗

dk∗ = α

1− α

[
dw∗/dk∗

pC
(
1− ε(k∗)

)
x∗ − pX +w

pC
dε(k∗)
dk∗ x∗ + pX +w

pC
(
1− ε(k∗)

) dx∗

dk∗

]
.

Dividing dc∗
dk∗ by c∗

k∗ and simplifying, we obtain the elasticity of c∗with respect to k∗:
dc∗/c∗

dk∗/k∗ = 1
dk∗/k∗

[
�
(
k∗) dw∗

w∗ − dε(k∗)
(1−ε(k∗)) + dx∗

x∗
]
, (A13)

As a consequence,

dc∗/c∗ − dx∗/x∗

dk∗/k∗ = 1
dk∗/k∗

⎡
⎢⎢⎢⎣�

(
k∗) dw∗

w∗︸ ︷︷ ︸
ROC∗

− dε(k∗)(
1− ε(k∗)

)︸ ︷︷ ︸
DPE∗

⎤
⎥⎥⎥⎦ . (A14)

Using the functional forms for utility and peer effects, we get:

ROC∗ = η(1− η)k∗η−1

(1− η)k∗η + pX
= h(k∗) ,

DPE∗ = dε(k∗)(
1− ε(k∗)

) = κ .

which produces equation (29).

A.10. Proof of Proposition 4
We consider dk∗ > 0 (across sections). The sign of the difference ROC∗ −DPE∗ is determined by

dc∗
c∗ − dx∗

x∗
dk∗ =

h(k∗)︸ ︷︷ ︸
ROC∗

− κ︸︷︷︸
DPE∗

dk∗ . (A15)

The sign of this expression is ambiguous, as both terms DPE∗ and ROC∗ are positive. However,
while coefficient κ , related to the term DPE∗, is constant, the term related to ROC∗ changes as k∗
increases. Assumption 3 implies that k∗(δ, η, ρ) is an increasing function of the output elasticity
η and a decreasing function of (δ + ρ). Specifically, k∗(δ, 0, ρ)= 0, ∂k∗/∂η > 0, and limη↑1 = ∞.
Thus, under Assumption 3, k∗ ∈ (0,∞) for η ∈ (0, 1). Now, consider h(k∗). We already estab-
lished that h′(k∗)< 0. It is easy to verify that limk∗↓0 h(k∗)= ∞. Likewise, limk∗↑∞ h(k∗)= 0.
Thus, under Assumption 3, for k∗ ∈ (0,∞), h(k∗) ∈ (∞, 0). By the Intermediate value theorem,
there exist parameter combinations for which h∗(pX,δ, η, ρ)= κ . We denote the corresponding
steady-state values of capital by k̂∗(pX). Clearly, for k∗ < k̂∗, h∗ > κ , and for k∗ > k̂∗, h∗ < κ .
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Let k∗ < k̂∗. Then h(k∗)> κ > 0 for all k∗ ∈ (k∗, k̂∗). Let k∗
> k̂∗. Then h(k∗)< κ for all k∗ ∈

(k̂∗, k∗).

A.11. Proof of Proposition 5
We express steady-state weight as

w∗ =
(

λC (c∗/x∗)
z
(
k∗)

)
, (A16)

where z
(
k∗)= λSs̄ (x∗) /x∗ + λX + λN/x∗ represents total calorie expenditure divided by x∗.

Comparing body weight for different wealth levels is obtained by totally deriving body weight
with respect to k∗,

dw∗

dk∗ = λC
( c
x
)∗

z∗

[
d(c/x)∗/(c/x)∗ − dz∗/z∗

dk∗

]
,

thus, the sign of dw∗/dk∗ is determined by the signs of d(c∗/x∗)
dk∗ and dz∗

dk∗ . First, based on
Proposition 3:

d(c∗/x∗)
c∗/x∗ = dc∗

c∗
− dx∗

x∗ =
⎡
⎢⎣h (k∗)︸ ︷︷ ︸

ROC∗

− κ︸︷︷︸
DPE∗

⎤
⎥⎦ . (A17)

We know from Proposition 3 that this term is positive all k∗ ∈ (k∗, k̂∗), and it is negative for all
k∗ ∈ (k̂∗, k̄∗).

Second, we consider the impact of dk∗ on z∗:
dz∗

dk∗ = dz∗

dx∗
dx∗

dk∗ , where x∗ = f (k∗)− δk∗

pX + pC
( c∗
x∗
) .

We first examine dx∗/dk∗. The numerator of x∗ can be rewritten as
[
f (k∗)− (δ + ρ)k∗]+ ρk∗.

A rise in k∗ raises the numerator by
[
f ′(k∗)− (δ + ρ)

]+ ρ units. As
[
f ′(k∗)− (δ + ρ)

]= 0 in a
steady state, the numerator raises by ρ dk∗ > 0 units. For k∗ > k̂∗, the ratio (c∗/x∗) declines in k∗.
Thus, for k∗ > k̂∗, (dx∗/k∗)> 0.

Second, we examine dz∗/dx∗:
dz∗

dx∗ = λS
∂(s̄ (x∗) /x∗)

∂x∗ − λN

(x∗)2
.

The term ∂(s̄(x∗)/x∗)
∂x∗ can be positive or negative in principle. Based on the definition of S̄, we

obtain:

s̄∗ = 1
N

− 1− X
N

∗
= 1

N
− 1− x∗.

Because N is endogenous, we need to make a reasonable assumption: we consider an increase
in x∗, representing an increase in X∗ given N, or assume that it is not offset by a decrease in N.
In that scenario, an increase in x∗ produces a decrease in s̄∗. In other words, an increase in per
worker exercise leads to a decrease in per worker sedentary leisure. Therefore, d[s̄(x

∗)/x∗]
dx∗ < 0, and

dz∗
dx∗ < 0. Thus, for k∗ > k̂∗, we have dz∗

dk∗ < 0.
As we consider dk∗ > 0, our model implies dw∗/dk∗ > 0 for k∗ < k̂∗. However, for k∗ > k̂∗, our

model implies two opposing effects on the steady-state weight. For k∗ > k̂∗, (c∗/x∗) decreases for
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dk∗ > 0. At the same time, also z∗ decreases under the assumption we adopted. with respect to k∗.
First, we rewrite the above total derivative as follows:

dw∗

dk∗ = λC
( c
x
)∗

z∗

[(
h(k∗)− κ

)− dz∗/z∗

dk∗

]
.

Recall that the steady state k∗ ∈R+ (by, e.g., varying parameter η). A static Kuznets curve
exists under two conditions. (i) There exists a k̃∗ > k̂∗ such that

(
h(k̃∗)− κ

)
= dz∗/z∗. As(

h(k̃∗)− κ
)

> 0 for k∗ < k̂∗ by definition, and dz∗/z∗ < 0, condition (i) can only be satisfied for

a k̃∗ > k̂∗. This condition also excludes the case for which −dz∗/z∗ > κ for all k∗. (ii) For k∗ > k̃∗,
the decline in

(
h(k∗)− κ

)
is larger than the change (decline) in dz∗/z∗:∣∣∣∣d(c/x)∗/(c/x)∗dk∗

∣∣∣∣=
∣∣∣∣h(k∗)− κ

dk∗

∣∣∣∣>
∣∣∣∣dz∗/z∗dk∗

∣∣∣∣ ,
in which case dw∗/dk∗ < 0 for all k∗ > k̃∗.

A.12. Formulation of the problemwith calorie consciousness and Proof of Proposition 6
With calorie consciousness, weight becomes a costate variable, so the dynamic constraint for Ẇ
must be included in the Hamiltonian. The choices of C and X̂ not only directly affect utility but
also do so via their respective effects on weight, which is considered by an individual.

Ẇ = λCC −
(
λSS̄+ λXX + λNN

)
N

W.

We canwrite the numerator as (λS − λN)S̄+ λNS̄+ λXX + λNN. Considering that S̄= 1−N − X
and X = X̂ + ε

(
k̄
)
X̄ we re-write the weight change as

Ẇ = λCC −
(
(λS − λN)S̄+ λN + (λX − λN)

(
X̂ + ε

(
k̄
)
X̄
))

N
W. (A18)

We focus on an individual for whomW >WI , that is, for whom a gain in weight reduces utility
(the same arguments apply for the opposite case). The current-value Hamiltonian becomes:

H=U(C, X̂,W)+ μ
[
rK +wL̄− p̂Xε

(
k̄
)
X̄ − pCC − p̂XX̂

]

− ξ

⎡
⎣λCC −

(
(λS − λN)S̄+ λN + (λX − λN)

(
X̂ + ε

(
k̄
)
X̄
))

N
W

⎤
⎦ ,

where ξ > 0 is the shadow value of weight gain expressed in utility units. An interior solution
satisfies:17

∂H
∂C

=UC − μ pC − ξλC = 0 , (A19)

∂H
∂X̂

=UX̂ − μ p̂X − ξ
W
N

(λN − λX) = 0 , (A20)

∂H
∂K

= μr = μρ − μ̇ , (A21)
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∂H
∂W

= −ξρ + ξ̇ , (A22)

lim
τ→∞ ξ (τ )e−ρτW(τ )= 0. (A23)

The necessary first-order conditions (A19) and (A20) imply:

UX̂
UC

= p̂X + ξ
μ
W
N (λN − λX)

pC + ξ
μ
λC

. (A24)

Without weight consciousness (ξ = 0), themarginal rate of substitutionUX̂/UC = p̂X/pC. With
weight consciousness (ξ > 0), the additional terms are interpreted as follows. As shown by (A18),
the term W

N (λN − λX) describes the weight change caused by an increase of X̂ by one unit. In
principal, this term can be positive or negative (while we typically expect it to be negative). The
term λC describes the weight change caused by an increase of C by one unit. The multiplier ξ/μ

converts these weight changes into utility units.
Under the assumption stated in Proposition 6,

1
pC

λC >
1
p̂X

[
W
N

(λN − λX)
]
,

UX̂
UC

|ξ=0>
UX̂
UC

|ξ>0 .

By strict concavity of the utility function, the indifference curves are strictly convex. As a
consequence,

C
X̂

|ξ=0>
C
X̂

|ξ>0 .

A.13. Figures and Tables

Figure A.13.1 Engagement in sports and educational attainment (Source: Bureau of Labor Statistics, 2008).
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Figure A.13.2 Engagement in sports per type of exercise (Source: Bureau of Labor Statistics, 2008).
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Figure A.13.3 Obesity prevalence over time in the USA [Source: Cawley (2015)].

Table A.13.1 Calorie spent per activity

Activity Percentage of total time Calorie expenditure per pound per hour

Walking = 30/(30+ 13.1+ 12.7)= 0.54 378/185= 2.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Weight lifting = 13.1/(30+ 13.1+ 12.7)= 0.23 252/185= 1.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cardio = 12.7/(30+ 13.1+ 12.7)= 0.23 880/185= 4.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Weighted average 2.5

Sources: Bureau of Labor Statistics (2008) and Harvard Medical School (2021).
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