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Abstract

Let A be an F-central simple algebra of degree m? = Hfle pl.z"‘ and G be a subgroup of the unit group
of A such that F[G] = A. We prove that if G is a central product of two of its subgroups M and N, then
F[M] ®F F[N] = F[G]. Also, if G is locally nilpotent, then G is a central product of subgroups H;, where
[F[H;] : F] = pf“‘, A = F[G] = F[H,] ®F - - - ® F[H,] and H;/Z(G) is the Sylow p;-subgroup of G/Z(G)
for each i with 1 < i < k. Additionally, there is an element of order p; in F for each i with 1 <i < k.

2020 Mathematics subject classification: primary 16K20; secondary 15A30, 20H25.
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1. Introduction

The multiplicative group of a noncommutative division ring has been investigated in
various papers by Amitsur [3], Herstein [13, 14], Hua [15, 16], Huzurbazar [17] and
Scott [23, 24]. Given a noncommutative division ring D with centre Z(D) = F, the
structure of the skew linear group GL,(D) for n > 1 is generally unknown. A good
account of the most important results concerning skew linear groups can be found
in [25], as well as in [26] particularly for linear groups. For instance, it is shown in
[12] that there is a close connection between the question of the existence of maximal
subgroups in the multiplicative group of a finite-dimensional division algebra and
Albert’s conjecture concerning the cyclicity of division algebras of prime degree. In
this direction, in [20], it is shown that when D is a central division F-algebra of prime
degree p, then D is cyclic if and only if D* contains a nonabelian soluble subgroup.
Furthermore, a theorem of Albert (see [6, page 87]) asserts that D is cyclic if D*/F*
contains an element of order p.

The structure of locally nilpotent subgroups of GL,(D) is studied in many
papers. The basic structure of locally nilpotent skew linear groups over a locally
finite-dimensional division algebra was studied by Zaleeskii [30]. One important
problem raised by Zaleeskii remains open, namely, is every locally nilpotent subgroup
of GL, (D) hypercentral. In [10], Garascuk proved a theorem that shows this question
has a positive answer in the case where [D : F] < co. A treatment of such results
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which is both more elaborate and more refined may be found in [4, 25-29]. For
example, it is shown in [29] that when H is a locally nilpotent normal subgroup
of the absolutely irreducible skew linear group G, then H is centre-by-locally-finite
and G/Cg(H) is periodic. In special cases, the structure of maximal subgroups of
GL, (D) has been investigated (see [1, 2, 5, 7, 9]). For instance, it is shown in [1] that
when D is a finite-dimensional division ring with infinite centre F and M is a locally
nilpotent maximal subgroup of GL,(D), then M is an abelian group. Also, by [25,
Theorem 3.3.8], when D is an F-central locally finite-dimensional division algebra,
every locally nilpotent subgroup of GL, (D) is soluble.

Another important property of locally nilpotent subgroups arises in crossed product
constructions. Let R be aring, S a subring of R and G a group of units of R normalising
S such that R = S[G]. Suppose that N =SNG is a normal subgroup of G and
R = ®,c7tS, where T is some transversal of N to G. Set H = G/N. We summarise this
construction by saying that (R, S, G, H) is a crossed product. Sometimes, we say that R
is a crossed product of S by H. Let O be the class of all groups H such that every crossed
product of a division ring by H is an Ore domain. In [25, Remark 1.4.4], it is shown
that the group ring EG is an Ore domain for any division ring E and any torsion-free
locally nilpotent group G. In addition, any hyper torsion-free locally nilpotent group is
in 0.

Let D be an F-central division algebra and G a subgroup of GL, (D). The F-algebra
of G, that is, the F-subalgebra generated by elements of G over F in M,,(D) is denoted
by F[G]. Further, G is absolutely irreducible if F[G] = M, (D). When M, (D) is a
crossed product over a maximal subfield K, from [6, page 92], K/F is Galois and
we can write M,(D) = ®ycgaikx/r)Kes, where e, € GL,(D) and for each x € K and
o € Gal(K/F), there exists o(x) € K such that e,x = o(x)e,. Several recent papers
investigate the group theoretical properties which give useful tools to realise maximal
Galois subfields of central simple algebras in terms of absolutely irreducible subgroups
(see[1, 8,9, 11, 18-20]).

We say a group G is a central product of two of its subgroups M and N if G = MN
and M € Cg(N). In fact, a central product of two groups is a quotient group of M X N.
If F is a field and FG denotes the group algebra of G, then it is well known that
FM ®p FN = F(M x N). We prove a similar result for skew linear groups. Let A be
an F-central simple algebra of degree n’> = Hf:l p?m and G be a subgroup of the unit
group of A such that F[G] = A. We prove that if G is a central product of two of
its subgroups M and N, then F[M] Q®F F[N] = F[G]. Also, if G is locally nilpotent,
then G is a central product of subgroups H;, where [F[H;] : F] = pl.z”" ,A=F[G] =
F[H|] ®F - -- ®F F[Hy] and H;/Z(G) is the Sylow p;-subgroup of G/Z(G) for1 <i < k.
Additionally, there is an element of order p; in F for 1 <i < k.

2. Notation and conventions

We recall here some of the notation that we will need throughout this article. Given
a subset S and a subring K of aring R, the subring generated by K and S is denoted by
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K[S]. The unit group of R is written as R*. For a group G and subset S C G, we denote
by Z(G) and Cg(S) the centre and the centraliser of S in G and the same notation
is applied for R. We use Ng(S) for the normaliser of S in G and G’ for the derived
subgroup of G. A group G is a central product of its subgroups Hj,...,H; if G =
H;---H; and H; € Cg(H;) for each i # j.

Let F be a field, and A and B be two unital F-algebras. Let H be a subgroup of A*
and G be a subgroup of B*. We define H ®r G by

H®rG={a®blacH,bcG}.

Note that (a® b)™' = a~! ® b™!, so it is easily checked that H ® G is a subgroup of
(A® B)*. Also, F[H] ®F F[G] = F[H ®r G] in A ®¢ B.

Given a division ring D with centre F' and a subgroup G of GL,(D), the space
of column n-vectors V = D" over D is a G—D bimodule; G is called irreducible,
completely reducible or reducible according to whether V is irreducible, completely
reducible or reducible as a G—-D bimodule.

An irreducible group G is said to be imprimitive if for some integer m > 2, there
exist subspaces Vi,..., V,, of V such that V = @ | V; and for any g € G, the mapping
Vi — gV; is a permutation of the set {V, ..., V,,}; otherwise, G is called primitive.

The following important results on central simple algebras will be used later.

THEOREM 2.1 (Double centraliser theorem; [6, page 43]). Let B C A be simple rings
such that K := Z(A) = Z(B). Then, A = B ®g Cs(B) whenever [B : K] is finite.

THEOREM 2.2 (Centraliser theorem; [6, page 42]). Let B be a simple subring of a
simple ring A, K := Z(A) C Z(B) and n := [B : K] be finite. Then:

(1) Ca(B) ®k My(K) = A ®k B;

(2) Ca(B) is a simple ring;

(3) Z(Ca(B)) = Z(B);

(4) Ca(Ca(B)) = B;

(5) ifL:=ZB)andr:=[L:K], then A®g L = M,(B) ®, Ca(B);

(6) Aisafree left (right) Co(B)-module of unique rank n;

(7) if, in addition to the above assumptions, m := [A : K] is also finite, then A is a free
left (right) B-module of unique rank m/n = [Ca(B) : K].

THEOREM 2.3 [6, page 30]. Let A,B be K-algebras, K := Z(A) € Z(B) a field and
either [A : K] or [B : K] finite. Then, A Qk B is a simple ring if and only if A and B are
simple rings.

3. Central products of skew linear groups and tensor products of central simple
algebras

In this section, we prove a theorem which relates a central decomposition of an
absolutely irreducible group G to the tensor product decomposition of F[G].
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It is well known that every finite dimensional division algebra is isomorphic to a
tensor product of division algebras of prime power degree [0, page 68]. Since each
central simple algebra is isomorphic to some M,(D), we easily obtain the following
result.

LEMMA 3.1. Let A be an F-central simple algebra of degree m* = Hf:l pl.zai. Then,
A=A ®p- - Qp Ay, where A; is a unique (up to isomorphism) F-central simple
algebra of degree pf“" .

Additionally, we have the following easy lemma.

LEMMA 3.2. Let A,B be two F-central simple algebras, and M < A* and N < B".
Then, M and N are absolutely irreducible if and only if M ®r N is an absolutely
irreducible subgroup of A Qr B.

LEMMA 3.3. Let F be a field, A, B be two unital F-algebras and a € A,b € B. Then,
a®b=1Q1ifandonly ifa,b € F and ab = 1.

PROOF. First,ifa,b € Fandab=1,thena®b=ab®1=1® 1.

Conversely, assume a ® b = 1 ® 1. Itis clear that a # 0 and b # 0. First, assume that
a,b ¢ F*. Then, {1,a} is an F-linearly independent set in A and {1, b} is an F-linearly
independent set in B. By [6, Theorem 4.3], {a ® b, 1 ® 1} is an F-linearly independent
set in A ® B. Therefore, a ® b # 1 ® 1. Next, assume that a ¢ F* and b € F*. Then,
ab ¢ F* and {1,ab} is an F-linearly independent set in B. Thus, {1 ® ab,1 ® 1} is an
F-linearly independent set in A®r B and a®b=1®ab # 1 ®1. When b ¢ F* and
a € F*, the proof is similar. We conclude thatifa® b = 1 ® 1, then a, b € F*. Now, we
have I® 1 =a®b =ab® 1 = ab(1 ® 1). Consequently, ab = 1, as we desired. |

The following result shows that any absolutely irreducible skew linear group can be
viewed as an absolutely irreducible linear group.

PROPOSITION 3.4. Let F be a field and D be a finite dimensional F-central division
algebra such that [D : F] = n* Let K be a maximal subfield of D and G be an
absolutely irreducible subgroup of GL,,(D). Then, M,,(D) ® K = M,,,(K) and G ® 1
is an absolutely irreducible subgroup of UM, (D) ®F K) = GL,,,(K) isomorphic to G.

PROOF. By [21, Propositions 13.5 and 13.3], there exists a maximal subfield K of
D such that [D: K] =[K:F]=n and D®r K = M,(K). Therefore, M,,(D) ®r K =
M, (F)®r (D®F K) = (M,,,(F) ®r M,(F)) ® K = M,,,(K). Now, by Lemma 3.3, the
map ¢ : G = G®r 1 given by ¢(g) = g® 1 is an isomorphism. However, G is an
absolutely irreducible subgroup of GL,,(D), so F[G] = M,,(D). Also, M,,(D) ®¢ K =
F[Gl®r K =K[G®r K*'] CK[G®F 1] € M,,(D)®Fr K. Consequently, K[G®F 1] =
M,,(D) ®p K. This means G ® 1 is an absolutely irreducible subgroup of GL,,,(D) ®F
K* isomorphic to G. In addition, G is isomorphic to an absolutely irreducible subgroup
of GL,,,,(K). m]
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COROLLARY 3.5. Let F be a field and D be a finite dimensional F-central division
algebra. Assume that G is a subgroup of GL,,(D) such that F|G] is a simple ring.
Then, there exists an absolutely irreducible linear group H isomorphic to G.

THEOREM 3.6 [25, page 7]. Let F be a field, D a locally finite-dimensional division
F-algebra and G a subgroup of GL,,(D). Set R = F[G] € M, (D).

(1) If G is completely reducible, then R is semisimple Artinian.
(2) If Gisirreducible, then R is simple Artinian.

Using Theorem 3.6, we obtain the following result.

COROLLARY 3.7. Let F be a field and D be a finite dimensional F-central division
algebra. If G is an irreducible subgroup of GL,, (D), then there exists an absolutely
irreducible linear group H isomorphic to G.

When F is a field, a subgroup G of GL,(F) is said to be absolutely irreducible if it
is an irreducible subgroup of GL,(K) for any extension K of F. Hence, we obtain the
following result.

COROLLARY 3.8. Let F be a field and D be a finite dimensional F-central division
algebra. If G is an irreducible subgroup of GL,,(D) such that either G is irreducible
or F|G] is a simple ring, then there exists an algebraically closed field Q and an
irreducible Q-linear group H isomorphic to G.

THEOREM 3.9 [25, page 8]. Let F be a field, D a division F-algebra and G a subgroup
of GL,(D). Set R = F[G] € M, (D).

(1) IfR is semiprime (for example, if R is semisimple Artinian), then G is isomorphic
to a completely reducible subgroup of GL,,(D).

(2) If R is simple Artinian, then for some m < n, the group G is isomorphic to an
irreducible subgroup of GL,,(D).

Using Theorem 3.9, we obtain the following result.

COROLLARY 3.10. Let F be a field and D be a finite dimensional F-central division
algebra such that [D : F] = n®. Let A = M,,,(D) C M,2,,(F) = B be an F-central simple
algebra. If G is a subgroup of GL,,(D) such that either G is irreducible or F[G] is
a simple ring, then for some s < mn?, the group G is isomorphic to an irreducible
subgroup of GL(F).

THEOREM 3.11 [26, page 111]. Let V be a finite dimensional linear space over a
division ring D and G an irreducible subgroup of GL(V) which can be represented
in the form G = HF, where H and F are elementwise permutable normal subgroups of
G. Then, the irreducible components of H(F) are pairwise equivalent.

PROPOSITION 3.12. Let F be a field and D be a finite dimensional F-central division
algebra. Assume that G is an absolutely irreducible subgroup of GL,(D). If G = MN
is a central product decomposition of G, then FIM)®r F[N] = F[G] and under
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this isomorphism, M ®p N = G. Additionally, FIM] and F[N] are F-central division
algebras.

PROOF. By [25, Theorem 1.2.1], G is irreducible. Using [25, Theorem 1.1.7] and
Theorem 3.11, we conclude that M is a homogeneous completely irreducible subgroup.
So Theorem 3.11 implies D" = V™, where V is an irreducible M — D bimodule.
Hence, F[N] € A = Cy,p)(M) = Endy_p(D") = M, (E), where E = Endy_p(V) is a
division ring by Schur’s lemma. Note that F[N]® F[M] < A ®r Cy,p)(A). Hence,
by the centraliser theorem, [F[M]: FIFN] : F] < [A : F][Cy,p)(A) : F] = n?[D : F].
Furthermore, F[M], F[N] € F[G] implies that there is a surjective homomorphism f
from F[N] ®F F[M] onto F[G] = M,(D) such that f(a ® b) =ab foreachacM,beN.
So F[M]®F F[N] = F[G] by dimension counting. It is clear that f, the restriction
of f to M ®r N, is a surjective homomorphism on G. If 7(a®b) =ab =1, then
a=b"'eMNNCZG)CF.Hence,a®b=b"'®b=1®b"'b =18 1. So, ker(f)
is trivial and ? is an isomorphism from M ®g N to G. Consequently, F[M] and F[N]
are F-central division algebras by Theorem 2.3. ]

The following example shows that the above result is not true in semisimple rings.

EXAMPLE 3.13. Let A=FxF, G={(1,1),(1,-1),(-1,1),(-1,-1)}, M ={(1,1),
(1,-D}, N ={(1,1),(=1,1)}. Then, G is a central product of M and N. However,
[FIM] ®F F[N]: F] =4.So FIM]®r FIN] # F[G] = A.

Next we introduce some notation from [26]. Let V be a finite dimensional linear
space over a division ring D and G a completely irreducible subgroup of GL(V). Let
D"=V =L, ®---®L, and suppose that L; is a G-invariant G-irreducible subspace of
V for 1 <i < r. We determine the irreducible components of G, that is, the irreducible
representations d; of the form

diiG—>GL(L,'), g—>g|Li, i=1,...,l".

By [26, Lemma 13.1], the irreducible components d; and d; of G are equivalent if and
only if there exists a module isomorphism ‘¥ : L; — L; such that for any y € G,

di(y) = Y, (¥~

In addition, these representations are equivalent if and only if the modules L; and
L; have respective bases By and B, such that for any y € G, the matrix of the
endomorphism d;(y) in By is the same as that of d;(y) in B,. This observation gives
the following result.

LEMMA 3.14. Let G be a completely irreducible subgroup of GL,(D) such that
the irreducible components of G are pairwise equivalent. Let r be the degree of
an irreducible component of G and n = rs. Then, there is an isomorphism f with
f i M,(D) — M.(D)®r M(F) and an irreducible subgroup H of GL,.(D) such that
f(G)=H®{1}.
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4. Locally nilpotent subgroups of GL,(D)

In this section, we prove that every absolutely irreducible locally nilpotent subgroup
of GL,,(D) is a central product of some of its subgroups which gives a decomposition of
M, (D) as a tensor product of central simple algebras of prime power degree. First, we
recall the following general results which play a key role in proving our main theorems.

THEOREM 4.1 [26, page 216]. Let F be an arbitrary field and G be an absolutely
irreducible locally nilpotent subgroup of GL,(F). Then, G/Z(G) is periodic and
n(G/Z(G)) = n(n).

THEOREM 4.2 [29]. Let H be a locally nilpotent normal subgroup of the absolutely
irreducible skew linear group G. Then, H is centre-by-locally finite and G/Cg(H) is
periodic.

THEOREM 4.3 [22, page 342]. Let G be a locally nilpotent group. Then, the elements
of finite order in G form a fully invariant subgroup T (the torsion subgroup of G) such
that G/T is torsion and T is a direct product of p-groups.

THEOREM 4.4 [5]. Let N be a normal subgroup in a primitive subgroup M of GL,,(D).
Then:

(1) FI[N]is a prime ring;
(2) Cum,p)(N) is a simple Artinian ring;
(3) if Cy,p)(N) is a division ring, then N is irreducible.

THEOREM 4.5 [18]. Let D be a finite dimensional F-central division algebra. Then,
M, (D) is a crossed product over a maximal subfield if and only if there exists an
absolutely irreducible subgroup G of M,,,(D) and a normal abelian subgroup A of G
such that Cg(A) = A and F[A] contains no zero divisor.

THEOREM 4.6. Let A = M,(D) be an F-central simple algebra of degree m* =
]_[f.‘=1 p?‘" and G be an absolutely irreducible locally nilpotent subgroup A*. Then:

(1) G/Z(G) is locally finite and n(G/Z(G)) = n(m);
(2) G/Z(G) is a p-group for some prime p if and only if m is a pth power.
PROOF. (1) By Theorem 4.2, G is centre-by-locally finite. Let K be a maximal subfield
of D. By Proposition 3.4, G is isomorphic to an absolutely irreducible subgroup of
GL,,(K). Now, Theorem 4.1 asserts that 7(G/Z(G)) = n(m).

(2) This statement is clear from item (1). O

COROLLARY 4.7. Let A = M,(D) be an F-central simple algebra of degree m* =
Hf:l piza" and G be an absolutely irreducible locally nilpotent subgroup of A*. Then:

(1) G/Z(G) is locally finite and n(G/Z(G)) = n(mz/[CMn(D) : F)) € n(m);
(2) if G/Z(G) is a p-group for some prime p, then [F[G] : F] is a pth power;
(3) if mis a pth power for some prime p, then G/Z(G) is a p-group.
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PROOF. By Theorem 3.6, F[G] is a simple ring. From the centraliser theorem,
[FIG] : Fl[Cu,) : F] = m?. The reminder of the proof is similar to the proof of
Theorem 4.6. O

Now we are ready to prove the main theorem of this article.

THEOREM 4.8. Let A = M, (D) be an F-central simple algebra of degree m*> =
Hf:l pl.z"’ and G be an absolutely irreducible locally nilpotent subgroup A*. Then:

(1) G/Z(G) is the internal direct product of H\|Z(G), .. .,Hy/Z(G), where H;/Z(G)
is the Sylow p;-subgroup of G/Z(G);

(2) G is the central product of Hy, . . ., Hy;

(3) A=FI[G]=F[H|]Q®p - Qp F[Hy] and G=H,®p--® H, under this
isomorphism and, for each i, A; = F[H;] is an F-central simple algebra and
[FIH,] : F] = p/.

PROOF. (1) The statement follows from Theorems 4.3 and 4.6.

(2) Let i #j and take a € H;,b € H;. Then, ab = Aba with A1 € Z(G) C F*. Now,
a?” € F* and b”’ € F*, so A" = A%’ = 1, which gives A = 1 and ab = ba. So, H; C
Cg(H;) and G is the central product of Hy, ..., Hy.

(3) This statement follows from Proposition 3.12 and induction on &. O

COROLLARY 4.9. Keep the notation and assumptions of Theorem 4.8. If n = 1 and
F[H;] = D;, then D = D| Qp - - - Qp Dy, where i(D;) = p;*.

Using [19, Theorem 2.4], we have the following proposition.

PROPOSITION 4.10. Keep the notation and assumptions of Theorem 4.8. Then, F[G] =
M, (D) is a crossed product over a maximal subfield K if and only if for each i, F[H;] is
a crossed product over a maximal subfield K;. In addition, under these circumstances,
K=K, ®F - ®r Ky and Gal(K/F) = Gal(K,/F) X - -- X Gal(K/F).

THEOREM 4.11. Let D be an F-central finite dimensional division algebra. Assume
that G be a primitive absolutely irreducible locally nilpotent subgroup of GL,(D).
Then, M, (D) is a crossed product over a maximal subfield K. With the notation and
assumptions of Theorem 4.8:

(1) there exists an abelian normal subgroup S of G such that G/S and Gal(K/F) are
Sfinite nilpotent groups and Gal(K/F) = Ng,p)(K*)/K* = G/S;

(2) for each i, there exists an abelian subgroup A; of H; such that F[H;] is a crossed
product over a maximal subfield K; and, in addition, H;/A; and Gal(K;/F) are
Jfinite nilpotent groups and Gal(K;/F) = Npiy)-(K?)/K; = H;/A;;

B) S=2AQ®r-  QrAL, K=K Q- -Qr Kyand S = Ay - - - Ay.

PROOF. By [25, Theorem 3.3.8], G is soluble. Now, using [26, Theorem 6, page 135],
G contains a maximal abelian normal subgroup, say S, such that |[G/S| < co. By
Theorem 4.4, K = F[S] is a field and by a result in [10], G is hypercentral. Hence,
by an exercise from [22, page 354], we conclude that every maximal abelian normal
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subgroup of G is self-centralising. Now, using Theorem 4.5, we conclude that M, (D)
is a crossed product over a maximal subfield K. By a result of [6, page 92], K/F
is Galois and we can write M,(D) = @yccakx/r)Ker, wWhere e, € GL,(D) and for
each x € K and o € Gal(K/F), there exists o(x) € K such that e,x = o(x)e,. So,
es € NgL,0)(K*). Now, using the Skolem—Noether theorem [6, page 39] and the
fact that Cy,p)(K) = K, we obtain Gal(K/F) = Ng,)(K*)/K*. However, consider
the homomorphism o : G — Gal(K/F) given by o(x) = f,, where f.(k) = xkx! for
k € K. Clearly, ker(o) = Cg(K). Since S C Cg(K) € Cg(S) = S, we have Cg(K) = S.
Choose an element a € Fix(Im o). For any x € G, we have f,(a) = a and hence xa = ax.
This shows that Fix(Im 07) € Cx(G) € Cuy,)(G) = F. Hence, F = Fix(Im o) and o is
surjective. Therefore, Gal(K/F) = G/S, as we claimed.

The proof is completed by using Theorem 4.8 and Proposition 4.10. |

We can immediately deduce the following theorem.

THEOREM 4.12. Let D be an F-central finite dimensional division algebra such that
[D: F]=iD)* = Hle pi2%. If D* contains an absolutely irreducible locally nilpotent
subgroup G, then D is a crossed product over a maximal subfield K. With the notation
and assumptions of Theorems 4.8 and 4.11, D = Dy Qf - - - ®p Dy, where F[H;] = D;
and D; is a crossed product over a maximal subfield K;.

PROPOSITION 4.13. Let A = M,(D) be an F-central simple algebra of degree m* =
I—[f;l piza" and G be an absolutely irreducible locally nilpotent subgroup A*. Then,
there is an element of order p; in F for 1 <i <k.

PROOF. Keep the notation and assumptions of Theorem 4.8, so that [F[H;]: F] =
pi2%. Since F[H;] is a central simple algebra, F[H,] = M, 5:(D;), where D; is an
F-central division algebra of degree a power of p;. Assume that K; is a maximal
subfield of D;. By [26, Theorem 27.6] and Proposition 3.4, K; contains an
element b, say, of order p;. Now, [F(b) : F] < p; — land [F(D) : F] | [K; : F]. However,
[K; : F]is a power of p;, which implies [F[b] : F] = 1, thatis, b € F. O

PROPOSITION 4.14. Let D be an F-central finite dimensional division algebra and
suppose that for p € n(n), there is an element of order p in F, when n > 1. Then,

GL,(D) contains a finite irreducible nonabelian nilpotent subgroup G such that
F[G] = M,(F) € M,(D).

PROOF. By [26, Theorem 27.6], there exists a finite nilpotent subgroup G of GL, (F)
such that F[G] = M,(F) € M,(D). We show that G is an irreducible subgroup of
GL,(D). In contrast, assume that G is reducible in GL,(D). By [25, Theorem 1.1.1],
there exists a matrix P € GL,(D) such that

M.(D) B }

—1
P(F[G] )P < O(nfs)xr Mnfs(D)

This means that we can define a homomorphism from M, (F) to M,(D). However,
M,(F) is a simple ring. Hence, this map is an injection. This contradicts
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[25, Theorem 1.1.9], which asserts that the matrix ring M,(D) contains at most r
nonzero pairwise orthogonal idempotents. ]

EXAMPLE 4.15. The multiplicative group of the real quaternion division algebra
contains the quaternion group which is an absolutely irreducible 2-group. By [8,
Corollary 3.5], if D is a noncommutative finite dimensional F-central division algebra
and D* contains an absolutely irreducible finite p-subgroup for some prime p, then D
is a nilpotent crossed product with [D : F] = 2™ for some m € N.
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