
DOI: 10.1017/cjn.2024.352 

This is a manuscript accepted for publication in Canadian Journal of Neurological Sciences. 

This version may be subject to change during the production process. 

 

Automatic Matching Algorithms to Identify Eligible Participants for Stroke Trials: A Proof-of-1 

Concept Study 2 

Pattarawut Charatpangoon,
1
 Nishita Singh,

2
 Brian H Buck,

3
 Federico Carpani,

4
 Luciana 3 

Catanese,
5
 Shelagh B. Coutts,

6
 Thalia S. Field,

7
 Gary Hunter,

8
 Houman Khosravani,

9
 Kanjana 4 

Perera,
10

 Tolulope T. Sajobi,
11

 Michel Shamy,
12

 Jai Jai Shiva Shankar,
13

 Aleksander Tkach,
14

 5 

Richard H. Swartz,
15

 Mohammed A. Almekhlafi,
16

 Bijoy K. Menon,
17

 M. Ethan MacDonald*,
18

 6 

Aravind Ganesh*
19

 7 

*Co-senior authors 8 

Affiliations: 9 

1. Departments of Biomedical Engineering, the Hotchkiss Brain Institute, University of 10 

Calgary, Calgary, Canada 11 

2. Department of Internal Medicine, Neurology Division, Rady Faculty of Health Sciences, 12 

University of Manitoba, Winnipeg, Canada. 13 

3. Division of Neurology, Department of Medicine, University of Alberta, Edmonton, 14 

Canada 15 

4. University Health Network (UHN) Stroke Program. Toronto Western Hospital. 16 

University of Toronto. Toronto, Canada.   17 

5. Department of Medicine, Neurology Division, McMaster University, Hamilton, Ontario, 18 

Canada. Population Health Research Institute, Hamilton, Ontario. 19 

6. Departments of Clinical Neurosciences, Radiology and Community Health Sciences. 20 

University of Calgary Cumming School of Medicine, Calgary, Canada 21 

7. Vancouver Stroke Program, Division of Neurology, University of British Columbia, 22 

Vancouver, Canada. 23 

8. University of Saskatchewan, Saskatoon, Canada 24 

9. Division of Neurology, Department of Medicine, Hurvitz Brain Sciences Program, 25 

Sunnybrook Health Sciences Centre, University of Toronto, ON, Canada 26 

https://doi.org/10.1017/cjn.2024.352 Published online by Cambridge University Press

https://doi.org/10.1017/cjn.2024.352


 

10. Department of Medicine, Division of Neurology, McMaster University, Hamilton, 27 

Canada 28 

11. Departments of Community Health Sciences & Clinical Neurosciences, the Hotchkiss 29 

Brain Institute, University of Calgary Cumming School of Medicine, Calgary, Canada 30 

12. Department of Medicine, Ottawa Heart Research Institute, University of Ottawa, ON, 31 

Canada 32 

13. Department of Radiology, University of Manitoba, Winnipeg, Canada. 33 

14. Interior Health Stroke Network, Division of Neurology, Kelowna, British Columbia, 34 

Canada 35 

15. Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Department of 36 

Medicine (Division of Neurology), University of Toronto, Toronto, Canada 37 

16. Departments of Community Health Sciences & Clinical Neurosciences, the Hotchkiss 38 

Brain Institute, University of Calgary Cumming School of Medicine, Calgary, Canada 39 

17. Calgary Stroke Program, Departments of Clinical Neurosciences, Radiology and 40 

Community Health Sciences, the Hotchkiss Brain Institute, University of Calgary 41 

Cumming School of Medicine, Calgary, Canada 42 

18. Departments of Biomedical Engineering, Electrical and Software Engineering, and 43 

Radiology, the Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, 44 

University of Calgary, Calgary, Canada 45 

19. Calgary Stroke Program, Departments of Clinical Neurosciences and Community Health 46 

Sciences, the Hotchkiss Brain Institute and the O’Brien Institute for Public Health, 47 

University of Calgary Cumming School of Medicine, Calgary, Canada 48 

 49 

KEYWORDS: CLINICAL TRIALS, TRIAL ENROLLMENT, STROKE, ISCHEMIC 50 

STROKE, MATCHING ALGORITHM  51 

Corresponding Author: Aravind Ganesh, MD DPhil(Oxon) FRCPC, Calgary Stroke Program, 52 

University of Calgary Cumming School of Medicine, HMRB Room 103, 3280 Hospital Drive 53 

NW, Calgary, AB   T2N 4Z6, aganesh@ucalgary.ca  Phone: (403) 220-3747 Fax: 54 

(403) 210-8113; Twitter: @draravindganesh  55 

https://doi.org/10.1017/cjn.2024.352 Published online by Cambridge University Press

https://doi.org/10.1017/cjn.2024.352


 

ABSTRACT 56 

Background: Clinical trials often struggle to recruit enough participants, with only 10% of 57 

eligible patients enrolling. This is concerning for conditions like stroke, where timely decision-58 

making is crucial. Frontline clinicians typically screen patients manually, but this approach can 59 

be overwhelming and lead to many eligible patients being overlooked. 60 

Methods: To address the problem of efficient and inclusive screening for trials, we developed a 61 

matching algorithm using imaging and clinical variables gathered as part of the AcT trial 62 

(NCT03889249) to automatically screen patients by matching these variables with the trials’ 63 

inclusion and exclusion criteria using rule-based logic. We then used the algorithm to identify 64 

patients who could have been enrolled in six trials: EASI-TOC (NCT04261478), CATIS-ICAD 65 

(NCT04142125), CONVINCE (NCT02898610), TEMPO-2 (NCT02398656), ESCAPE-MEVO 66 

(NCT05151172), and ENDOLOW (NCT04167527). To evaluate our algorithm, we compared 67 

our findings to the number of enrollments achieved without using a matching algorithm. The 68 

algorithm's performance was validated by comparing results with ground truth from a manual 69 

review of two clinicians. The algorithm's ability to reduce screening time was assessed by 70 

comparing it with the average time used by study clinicians. 71 

Results: The algorithm identified more potentially eligible study candidates than the number of 72 

participants enrolled. It also showed over 90% sensitivity and specificity for all trials, and 73 

reducing screening time by over 100-fold. 74 

Conclusions: Automated matching algorithms can help clinicians quickly identify eligible 75 

patients and reduce resources needed for enrolment. Additionally, the algorithm can be modified 76 

for use in other trials and diseases. 77 

Highlights 78 

 Clinical trials currently require manually intensive screening to find potentially eligible 79 

patients 80 

 An automatic matching algorithm using imaging and clinical variables could quickly and 81 

accurately list eligible trials for 1,577 individual acute stroke patients 82 

 This algorithm can be adapted to other diseases and integrated with imaging and health 83 

records data extraction modules for full automation. 84 
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Introduction 85 

In recent years, significant advancements in healthcare research have been driven by 86 

emerging technologies, innovative methodologies, and the results of randomized clinical trials
1–4

. 87 

These developments have the potential to improve healthcare practices and patient outcomes. 88 

Patients who are admitted to hospitals that participate in clinical trials receive better care and 89 

have a lower mortality rate
5
. 90 

Clinical trials are generally designed to find an alternative treatment that will be superior 91 

to standard care. A higher rate of participant enrollment in clinical trials could result in faster 92 

medical advancement, which in the long term leads to better care and outcomes for the general 93 

population
6
. However, many clinical trials struggle to meet their enrollment goals

7–10
. A hospital 94 

may participate in many trials simultaneously, and it is often impractical for physicians to be 95 

aware of the inclusion and exclusion criteria for every trial enrolling patients at their hospital
11

. 96 

Stroke is an acute disease and a time-sensitive emergency. It is one of the leading causes 97 

of mortality, and 30-40% of survivors are disabled
6
. Rapid screening and identification of 98 

eligible patients is the key to efficient trial recruitment for acute stroke. Currently, acute stroke 99 

clinical trial recruitment is managed by physicians and research personnel who screen patients on 100 

a per-trial basis, most often using a manual approach that is time-consuming and complex. 101 

Physicians are appropriately focused on delivering patient care and may overlook eligibility for 102 

ongoing trials. Hiring research personnel to manually screen patients is expensive, and they may 103 

not have direct access to patients in clinics or the emergency room. In addition, some 104 

jurisdictions have limited specialists and knowledge about ongoing trials, and most of those who 105 

know about the trials are in larger urban medical research centers
12

. This is also a common issue 106 

among clinicians who do not engage in research studies and clinician-scientists. 107 

From an equity lens, the cognitive biases of physicians may prevent many eligible 108 

patients from being enrolled in acute trials, with the consequence that women, older, Indigenous 109 

persons, and other ethnic minorities are underrepresented
13,14

. Such inequity also contributes to 110 

slower medical advancement through missed enrolment opportunities and enrolment of a study 111 

population that may not represent those affected by the disease in the general population
14,15

.  112 

This proof-of-concept study aimed to develop a matching algorithm using imaging and 113 

clinical variables to automatically screen patients by matching these variables with the inclusion 114 
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and exclusion criteria of the trials. The algorithm has been designed to incorporate advanced AI 115 

capabilities like image auto-interpretation and smart notifications. These tools will work together 116 

seamlessly to create an efficient and streamlined automatic recruiting process. We hypothesized 117 

that the number of potentially eligible patients identified using a matching algorithm would be 118 

higher than the number of patients who were enrolled by conventional recruitment methods and 119 

that the algorithm would achieve high accuracy in identifying eligible patients compared to 120 

expert clinical researchers. 121 

Methods 122 

Patient Data 123 

We used imaging and clinical variables gathered as part of the AcT trial (NCT03889249, 124 

Alteplase Compared to Tenecteplase in Patients with Acute Ischemic Stroke). The ACT trial was 125 

an investigator-initiated, phase 3, pragmatic, multicenter, open-label, registry-linked, 126 

randomized, controlled, non-inferiority trial, with blinded end-point assessment (PROBE), 127 

comparing tenecteplase to alteplase in patients presenting with acute ischemic stroke
16

. Inclusion 128 

and exclusion criteria were informed by the Canadian Stroke Best Practice Recommendations 129 

(CSBPR 2018)
17

 and are published elsewhere
18

. The trial used deferred consent procedures, 130 

details of which have already been published. Reuse of data for design and development of the 131 

algorithms was approved by the Conjoint Health Research Ethics Board of the University of 132 

Calgary (REB22-0592). Data have been disclosed to only researchers and clinicians involved in 133 

this study. The sample size was one of convenience, making use of all available data from the 134 

AcT dataset. 135 

The data were collected from December 2019 to January 2022 from 1,577 patients. 136 

Available features included demographic, medical history, clinical and imaging data (with 137 

baseline imaging consisting of computed tomography (CT) and computed tomography 138 

angiography (CTA)). This dataset was selected to test our algorithms for two key reasons: 1) 139 

AcT had comprehensive characterization of patients with key clinical, imaging, and demographic 140 

variables, and 2) AcT was a pragmatic trial and therefore reflected patients with acute ischemic 141 

stroke seen in routine practice (with the notable exception that all the AcT patients had to be 142 

eligible for thrombolysis). 143 
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The key baseline and imaging characteristics of patients in the AcT dataset are given in 144 

Table 1. 145 

 146 

Clinical Trials 147 

We developed our matching algorithm to identify patients in the AcT dataset who would 148 

potentially be eligible for six exemplar stroke trials, including a variety of ischemic stroke 149 

mechanisms and intervention strategies: EASI-TOC.(NCT04261478,.Endovascular.Acute.Stroke 150 

Intervention.-.Tandem.Occlusion.Trial), CATIS-ICAD.(NCT04142125,.Combination 151 

Antithrombotic.Treatment.for.Prevention.of.Recurrent.Ischemic.Stroke.in.Intracranial 152 

Atherosclerotic.Disease), CONVINCE.(NCT02898610,.Colchicine.for.Prevention.of.Vascular 153 

Inflammation.in.Non-cardioembolic.Stroke), TEMPO-2
19

.(NCT02398656,.A.Randomized 154 

Controlled.Trial.of.TNK-tPA.Versus.Standard.of.Care.for.Minor.Ischemic.Stroke.With.Proven 155 

Occlusion), ESCAPE-MEVO (NCT05151172, EndovaSCular TreAtment to imProve outcomEs 156 

for.Medium.Vessel.Occlusions), and ENDOLOW.(NCT04167527,.Endovascular.Therapy.for 157 

Low.NIHSS.Ischemic.Strokes).  The first three – EASI-TOC, CATIS-ICAD, and CONVINCE – 158 

were used as proof-of-concept as these three trials were ongoing at the time of the AcT trial and 159 

permitted patients in the AcT trial to be co-enrolled, as was the case for EASI-TOC, or to be 160 

enrolled after the 90-day follow-up for AcT was completed, as with CATIS-ICAD and 161 

CONVINCE (Table 2). The last three – TEMPO-2, ESCAPE-MEVO, and ENDOLOW – were 162 

used to evaluate the capability of expanding the algorithm to trials that were currently enrolling 163 

patients but for which the AcT population could not, in fact, have been co-enrolled.  164 

 165 

Matching Algorithm 166 

The study clinicians started the pipeline by simplifying and adapting the original clinical 167 

trial inclusion and exclusion criteria to align with the available features in the dataset. Then, the 168 

algorithms were developed based on a rule-based method, which manually added all criteria 169 

using a cascade of if-else statements. The code was developed on Python, a widely used high-170 

level programming language known for its simplicity and power in the data science field. The 171 

patient’s clinical features, collected by the AcT research team when they were presented at the 172 

hospital, were used as input variables. The complete criteria can be reviewed from the 173 
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registrations published on clinicaltrials.gov. The validation was conducted by comparing with a 174 

manual screening on a subsample, as explained in the following section. 175 

Evaluation 176 

We used the matching algorithms to identify potentially eligible patients who could have 177 

been enrolled in these six trials: EASI-TOC.(NCT04261478), CATIS-ICAD.(NCT04142125), 178 

CONVINCE.(NCT02898610), TEMPO-2.(NCT02398656), ESCAPE-MEVO.(NCT05151172), 179 

ENDOLOW.(NCT04167527). We then compared eligible patients identified by the matching 180 

algorithms to the number of enrollments from the AcT population that had been achieved in the 181 

three trials (EASI-TOC, CATIS-ICAD, CONVINCE), that allowed co-enrolment with AcT. The 182 

algorithm’s performance was also validated by having study clinicians manually screen a 10% 183 

validation set, which rounded up to 200 patients from AcT, for eligibility into each of the six 184 

trials while blinded to the algorithm’s results. The validation set was weighted more toward the 185 

patient group that was evaluated by the algorithm as not being eligible for any trial, as we wanted 186 

to specifically evaluate the risk of false negative classification by the algorithm, which is crucial 187 

to mitigate when deploying such an algorithm for screening patients for ongoing trials. The 188 

validation set therefore included 100 patients who were screened by the algorithm as not eligible 189 

for any trial. Another half were the patients eligible for 1 to 5 trials. Specifically, there were 50, 190 

35, 10, 3, and 2 individuals for those deemed eligible by the algorithm to be eligible in 1, 2, 3, 4, 191 

and 5 trials, respectively. These numbers approximately represent 51%, 36%, 9%, 3%, and 1% of 192 

all eligible patients in each group, and we ensured that the characteristics of the validation group 193 

were representative of the entire dataset. The first study clinician.(AG) reviewed the 194 

neuroimaging scans and available clinical data for every patient on the list, indicating which of 195 

the six trials (if any) each patient was potentially eligible for enrolment. This clinician was 196 

blinded to the algorithm's results, and the matching algorithm, of course, did not have access to 197 

the clinician's impression. In the spirit of efficiency, discrepancies between the first physician 198 

and the algorithm were adjudicated based on screening by a second clinician.(NS) who was also 199 

blinded to the algorithm’s output. Then, the combination of screening results from the first 200 

clinician and adjudicated results on the discrepancy list from the second clinician were used as 201 

ground truth to determine the performance metrics of the algorithm. Lastly, we calculated 202 

sensitivity, specificity, PPV, NPV, and accuracy. 203 
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Results 204 

Figure 1 shows the number of potentially eligible patients identified by the algorithm 205 

after filtering by each criterion for all six trials. The range of potentially eligible patients varied 206 

from 51 in the ENDOLOW trial to 1,090 in the CONVINCE trial, as shown in Table 3 under the 207 

trial’s name. For patients with missing data in critical features, any trial that required those 208 

features was excluded from the eligible list. However, the name of the trial and the missing 209 

features were shown in the algorithm’s remarks to let the clinician know that it was possible to 210 

enroll if the criteria were met. The proportion of patients with missing data in key criteria in each 211 

trial ranged from 0.4% to 6.2%. For missing data in optional criteria, trials with missing data 212 

were still eligible to appear in the list with remarks indicating the missing features. Imputation 213 

methods were not applied to the algorithm to avoid altering the screening results. 214 

The distribution of potentially eligible patients in each trial, compared to the entire 215 

patient population in the original dataset, is shown in Table 3. The median age range of 216 

participants in each trial was between 69.5 and 79, compared to 74 in the entire population. The 217 

distribution of sex was mostly balanced, with roughly equal numbers of male and female 218 

patients, except for the EASI-TOC trial, which had a higher proportion of female potentially 219 

eligible participants at 69.3%. 220 

The algorithm results were compared with the actual number of enrollments achieved 221 

without utilizing the algorithm in the three proof-of-concept trials that allowed enrolment during 222 

the AcT trial study period: EASI-TOC, CATIS-ICAD, and CONVINCE. A summary of the 223 

comparison of enrollment rates is presented in Figure 2. The number of patients actually 224 

recruited was observed to be considerably lower when compared to the total number of patients 225 

who were identified by the algorithm, showing a more than 25 to 90-fold difference in all trials. 226 

In particular, the CONVINCE trial had only 12 patients who were actually recruited from the 227 

AcT sample, but 1,090 were identified as potentially eligible by the algorithm. 228 

Comparing the time used between the algorithms and manual screening by the clinician, 229 

the algorithms could complete the screening process for all six trials in 2.14 seconds per patient, 230 

and it took 2.83 seconds for 200 patients in the validation set. In contrast, the study clinician 231 

spent more than 140 times longer to evaluate. The screening required at least 5 minutes per 232 

patient, and it took about 17 hours to complete the validation set of 200 patients.  233 
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The percent agreement between results from the algorithm and study clinicians (ground 234 

truth) are shown in Table 4. The results showed that the algorithm was highly accurate, 235 

achieving over 90% for all performance metrics in all trials except for some metrics in CATIS-236 

ICAD and ESCAPE-MEVO. This implies that the algorithms generated only a few false 237 

positives and false negatives in most trials. CATIS-ICAD and ESCAPE-MEVO had a slightly 238 

higher number of false positives because of important limitations in real-world clinical aspects of 239 

patient selection for those studies, resulting in a lower positive predictive value (PPV) rate at 240 

68% and 75%, respectively. 241 

Discussion 242 

In this proof-of-concept study, we developed algorithms to automatically match patients 243 

in an acute ischemic stroke dataset to six different clinical trials based on clinical and imaging 244 

features. The study solely compared the results of the algorithm with manual screening of a 245 

subset and with the actual number of enrollments because our team did not have any other 246 

available automated tools available to us in our routine practice. We opted not to use other non-247 

rule-based algorithmic techniques for developing our automated screening technique because we 248 

wanted to ensure that the rules used by the algorithm were easily explainable and not subject to 249 

unanticipated distortions through ‘black-box’ AI methods. The trials had varying inclusion and 250 

exclusion criteria, resulting in different numbers of eligible patients. The CONVINCE trial had 251 

the most eligible patients due to its broad criteria, while EASI-TOC had stricter criteria, resulting 252 

in fewer eligible patients. CATIS-ICAD's requirement for specific ICAD locations further 253 

reduced eligible numbers. Although TEMPO-2, ESCAPE-MEVO, and ENDOLOW had similar 254 

criteria, ESCAPE-MEVO had more eligible patients due to focusing on those with NIHSS scores 255 

of 3 or higher. According to the performance metrics, the algorithm performed well in all aspects 256 

except the PPV in the ESCAPE-MEVO and CATIS-ICAD trials. We designed the algorithms by 257 

weighing more on the impact of false negatives, which resulted in a high NPV that was higher 258 

than 95% in all trials. For PPV, it was low in the ESCAPE-MEVO because the human readers 259 

also considered the technical feasibility of thrombectomy for the given patient’s neurovascular 260 

anatomy and specific clot location, which the algorithm could not evaluate. For CATIS-ICAD, 261 

when the readers reviewed the data alongside the imaging, they might have overlooked certain 262 
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vessels that had a less clinically significant burden of ICAD and also appeared to be more 263 

selective when considering the affected area of ICAD.  264 

The algorithm could significantly reduce the time required for screening patients. Most of 265 

the algorithm's time was spent on initializing the software package and importing data, which is 266 

illustrated by a small difference in time used between 1 and 200 patients. Therefore, increasing 267 

the number of patients or clinical trials did not substantially influence the algorithm's run time. 268 

However, the impact of time-effectiveness depends on where the algorithms are implemented; in 269 

acute trials, screening case by case with a limited number of trials could significantly differ from 270 

screening in a large database in prevention trials. Additionally, these results relied on the 271 

assumption that all necessary data is accessible to the clinician, and the algorithms used the 272 

processed structural data. In real situations, several factors affecting screening time need to be 273 

considered, such as the time required to obtain information from the patient and the waiting time 274 

for imaging acquisition and interpretation. Addressing these aspects will be vital for future 275 

evaluations. 276 

Another important consideration with such algorithms is their potential cost-277 

effectiveness. Figure 3 compares the estimated cost of hiring researchers and clinicians with the 278 

cost of running the algorithm. This estimation was based on the time that our study clinicians 279 

used when screening the validation set, which was approximately 50 seconds per trial per patient. 280 

Hiring a research associate and a clinician to screen patients can cost around CAD$30/hour and 281 

CAD$200/hour. This can be contrasted with the cost of using automated algorithms like ours, 282 

which are expected to cost less than CAD$1.5/hour (based on the virtual machine price from the 283 

Google Cloud Compute Engine), with a running time less than 5 seconds for the entire dataset. 284 

Therefore, the cost of human raters quickly rises as the number of trials and patients increases 285 

while that of the automated algorithm remains the same. That being said, this comparison does 286 

not account for the fact that clinical staff would still need to prepare data for the algorithm, 287 

confirm eligibility to enrol, and approach the patient for enrollment; as such, prospective 288 

evaluation of the algorithm is needed to more formally evaluate its cost-effectiveness. 289 

However, the algorithm was fast and accurate, comparable to experienced human 290 

screeners. In addition, the algorithm itself would not introduce biases because the screening 291 

relied only on each trial’s criteria. As shown in Table 3, there was no significant selection bias 292 
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regarding patient characteristics such as age, sex, weight, and time from onset to randomization. 293 

Moreover, since the screening algorithm does not require clinicians to actively consider each trial 294 

for a given patient, it can potentially mitigate cognitive biases from clinicians that arise in 295 

manual screening processes. 296 

Previous studies have developed algorithms or software to match patients with clinical 297 

trials automatically
20–31

. Many studies used rule-based logic with inclusion and exclusion 298 

criteria, but some recent studies have tried to incorporate machine learning in the matching 299 

process. Penberthy and Kamal conducted studies aiming to use healthcare institute data and 300 

systems to design adaptable rule-based software for various diseases
20,21

. Their research focused 301 

on improving the screening time and increasing the enrollment of potentially eligible patients, 302 

but it did not mention the accuracy of their method. The studies conducted by Lucila and Musan 303 

were focused on AIDS and cancer
22,23

. Both researchers used logical rules and Bayesian 304 

networks to match patients and suggest additional data for informed decisions. Recent studies 305 

aimed to develop matching algorithms focused on extracting clinical variables from patient 306 

records. Hassanzadeh and Chen used natural language processing (NLP) and Medical 307 

Knowledge, respectively, to extract clinical variables from the records and then trained a deep 308 

learning model to match patients with trials
24,25

. Their study was based on the National NLP 309 

Clinical Challenges (N2C2) data and attempted to match the extracted variables with preset 310 

eligibility criteria, which was not a real-world trial. There are existing methods to extract clinical 311 

variables of patients based on oncology and use rule-based logic to match them with clinical 312 

trials
26,27

. Yuan and Ni proposed to matching both clinical variables and trial criteria from raw 313 

data
28,29

. Yuan also focused on stroke clinical trials, and their study yielded a sensitivity range of 314 

0.41-0.98 for six trials. Kaskovich and colleagues used NLP to automatically extract inclusion 315 

and exclusion criteria from raw data of 216 leukemia-associated trials. The approach was to 316 

input patients' data to match with those trials
30

. However, during the N2C2 shared task, the rule-317 

based method had the highest performance, and four of the top ten systems were rule-based
24,31

. 318 

Our research focused on matching structured data to specific criteria and applying this to clinical 319 

trial recruitment. Rather than the accuracy of the matching algorithm, the rule-based method was 320 

chosen for the reasons of its simplicity for maintenance and expansion. Unlike “black box” 321 

machine learning methods, the logic behind a matching algorithm is interpretable and easily 322 

understood, and it does not require retraining. Additional criteria could be added or removed 323 
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from the cascade statement for each trial. Adding other trials is as simple as adding another 324 

cascade of statements to the list. Moreover, implementing it as a Python software package makes 325 

it easy to add any future modules. This approach is valuable for increasing enrollment in stroke 326 

trials and simplifying the enrollment process in smaller healthcare settings. Other areas of acute 327 

care, like cardiac failure, could also benefit from this approach. 328 

Automatic matching algorithms could mitigate critical limitations in current recruitment 329 

methods by quickly identifying eligible patients, allowing clinicians to focus on quality care. 330 

This approach reduces screening costs for hospitals and research centers, and benefits patients by 331 

considering them for appropriate treatment trials. The algorithms do not require a high-332 

performance computing system due to the simplicity of a rule-based algorithm, even when used 333 

on a larger scope. Therefore, it is suitable to be implemented in remote areas. Combining the 334 

algorithm with advanced notification systems can help mitigate the shortage of specialized 335 

clinicians in rural areas by sending screening results to nearby specialists for timely care
4
. 336 

Commercial applications have used similar notification systems for stroke cases to speed up 337 

enrollment. These algorithms could be applied to other stroke trials or diseases and potentially 338 

improve the representation of underrepresented populations, but this remains to be demonstrated. 339 

However, when considering applying these algorithms to other trials and diseases, there are some 340 

challenges in adapting the original trial criteria to the nature of the available structural data, 341 

which requires collaboration between the technical and clinical teams in a given healthcare 342 

system. 343 

Importantly, there are some limitations of the proposed method. First, some of the 344 

exclusion criteria for the trials, such as baseline pre-morbid function (e.g., pre-stroke modified 345 

Rankin Scale) and alternative stroke etiologies (e.g., atrial fibrillation for CATIS-ICAD), were 346 

not gathered in the AcT dataset, meaning that an unknown proportion of the patients flagged as 347 

eligible for the trials by our algorithm would likely be ultimately excluded from participation. 348 

This was especially the case for CONVINCE, which had several specific comorbidity- and 349 

medication tolerance-related exclusionary criteria that were simply unavailable in the routinely 350 

gathered clinical and imaging data in AcT. The study was conducted using only one dataset, 351 

which might not be reflective of the general stroke population. The high level of data 352 

completeness in the AcT randomized-controlled trial dataset does not reflect the missingness that 353 

is inevitable in routine clinical data. Therefore, our future plan involves utilizing datasets from 354 

https://doi.org/10.1017/cjn.2024.352 Published online by Cambridge University Press

https://doi.org/10.1017/cjn.2024.352


 

multiple sources to validate the generalizability and effectiveness of the algorithms. Missing data 355 

and features could hinder the real-world performance of the algorithm by reducing the number of 356 

potentially eligible patients. Even in the manual screening process, clinicians cannot decide 357 

whether to enroll patients if relevant data are missing. The list of missing data variables for 358 

specific trials shown in the algorithm’s outputted remarks will nevertheless help alert clinicians 359 

to fill in remaining criteria to complete screening for otherwise potentially eligible patients. 360 

Second, in some clinical trials, more nuanced clinical interpretation is required to 361 

determine whether a patient is eligible to participate. For instance, in the CATIS-ICAD trial, the 362 

treating physician would need to establish whether they consider the patient’s ICAD (flagged by 363 

the algorithm) to be symptomatic or not. The absence of this information can lead to a lower 364 

algorithm performance. The data from the AcT trial was extracted from data available in an 365 

electronic data capture system. Real-world data is often a combination of free text, notes, and a 366 

wide variety of other data formats. In addition, imaging variables from CTA that were crucial 367 

selection criteria for these trials need to be gathered by specialized physicians; the AcT trial 368 

dataset benefited from a detailed review of key imaging features by study readers. In practice, 369 

this could lead to a delay in the availability of key information for the algorithm. By integrating 370 

with EMRs at the point-of-care, we can greatly enhance the utility of this approach. It will allow 371 

us to take advantage of real-time data entry, resulting in more efficient data collection. However, 372 

human interpretation of medical imaging could potentially confound the algorithm’s 373 

performance due to reader biases. The same image can be interpreted differently by different 374 

readers, which might lead to misleading results. Another confounding factor could be the 375 

variations in data quality in different sites where the algorithm is deployed. Some variations 376 

directly impact the quality and homogeneity of the data, such as the protocol and image 377 

processing method, which can cause variations in assessment of certain stroke characteristics 378 

such as infarct core volume estimation. 379 

Third, obtaining ethical permission to run a screening algorithm through patients' 380 

electronic medical records (EMRs) and imaging can be a potential challenge. For enrolling 381 

patients in clinical trials, both consent to use their data and participation in the trial are crucial. 382 

While having a higher number of eligible candidates may seem like it would lead to more people 383 

consenting to participate, this may not always be the case. In reality, only a proportion of eligible 384 

candidates will actually agree to participate
32

. This can be due to various reasons, such as a lack 385 
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of interest, concerns about side effects, or a desire for certainty in receiving a particular 386 

intervention. In real-life scenarios, clinicians are authorized to access the EMRs of patients they 387 

care for, evaluate which clinical trial would be appropriate for the patient, and then seek the 388 

patient's consent to participate. Rather than involving clinicians in the initial screening process, 389 

the algorithm directly reviews the EMR and generates a list of eligible trials. Then, clinicians are 390 

responsible for selecting a trial and obtaining consent from the patient before enrollment. Since 391 

the algorithm is technically not directly involved in the patient’s care, privacy concerns may 392 

therefore be potentially raised about its use of patient data. Therefore, it is important to consider 393 

potential regulatory or data access barriers which may vary from one healthcare system to 394 

another, and develop strategies to overcome them. For example, the algorithm may require pre-395 

approval of patients to access their EMRs to screen for trial participation. This could be 396 

facilitated by implementing patient-directed communication strategies and offering patients the 397 

option to provide advance consent for their data to be used for such screening purposes in 398 

medical emergencies when interacting with their family doctors or otherwise sharing information 399 

with health systems. These steps can increase the number of trial enrollments while still 400 

respecting patient privacy. However, given that it is a matching algorithm, the patient data can 401 

remain local to the site and does not need to be stored or transmitted, easing some of these 402 

concerns. 403 

In the future, we envision this solution ideally being paired with other modules to achieve 404 

complete automation and mitigate human error and biases. Automated imaging analysis and data 405 

extraction algorithms for relevant clinical variables from electronic health records are important 406 

upstream modules that are increasingly being adopted by hospital systems worldwide to identify 407 

patients eligible for therapy, automatically gathering variables such as age, medications, 408 

occlusion presence/location and extent of ischemic changes as examples. Once the matching 409 

algorithm generates screening results, a smart notification system can be integrated into the 410 

smartphone system. This could notify either the attending physicians or research staff in the 411 

coverage area of any positive trial eligibility, ideally without interfering with patient care 412 

processes. This system can prompt them to take appropriate actions in terms of further evaluating 413 

and consenting the patient or a proxy decision-maker for the trial, leading to a timely and 414 

accurate screening process. Deferral of consent and advance consent processes could help 415 

facilitate the automatic flow of the entire process since patients are often incapacitated and may 416 
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not be accompanied by a proxy decision-maker
33–36

. Future studies should aim to evaluate trial 417 

enrolment rates achieved with such screening algorithms in the real world, before and after 418 

implementation, and across multiple sites. Our future work will include implementing and 419 

validating the algorithm at different stroke centers for point-of-care use. In particular, we plan to 420 

adapt the algorithm to guide patient selection for different domains of an upcoming platform trial 421 

for acute ischemic stroke, using trial-related checklists to capture relevant characteristics. 422 

However, this initial offline research was crucial to justify this novel enrolment method for 423 

future ethics applications. 424 

Conclusion 425 

We found that automated trial matching algorithms achieved fast and accurate 426 

performance in identifying patients eligible for six different stroke trials. Overall, this research 427 

has the potential to significantly improve clinical trial recruitment and thereby help accelerate the 428 

development of new treatments for time-sensitive diseases like stroke. Mitigating cognitive 429 

biases and ensuring equitable access to clinical trials are important benefits of these innovative 430 

strategies. 431 
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Table 1. Key characteristics of the 1,577 patients in the AcT dataset. 537 

Features Median(IQR), n(%) 

Age [years] 

Sex: female 

Weight [kilograms.] 

Baseline NIHSS 

Time from onset to randomization [minutes] 

74(63-83) 

822(52.12%) 

75(65-89) 

9(6-16) 

122(87-179) 

ASPECTS 9(8-10) 

Occlusion site on baseline CT angiography 

(n=1,558*) 

 

Intracranial internal carotid artery 135(8.56%) 

M1 segment MCA  237(15.21%) 

M2 segment MCA  315(20.22%) 

Other distal occlusions 268(17.20%) 

Vertebrobasilar arterial system 64(4.11%) 

Cervical internal carotid artery 26(1.67%) 

No visible occlusions 513(32.93%) 

ICAD exists (n=1,558*) 373(23.94%) 

Follow-up affected territory (n=1,577)  

MCA 1091(69.18%) 

ACA 84(5.33%) 

PCA 130(8.24%) 

Vertebral 99(6.28%) 

Anterior choroidal 3(0.19%) 

No evident affected territory 170(10.78%) 

*19 patients did not have a baseline CT angiography 

ACA = Anterior Cerebral Artery; ASPECT = Alberta Stroke Program Early 

CT Score; CT = Computed Tomography; ICAD = Intracranial Atherosclerotic 

Disease; IQR = Interquartile Range; MCA = Middle Cerebral Artery; NIHSS 

= National Institutes of Health Stroke Scale; PCA = Posterior Cerebral Artery. 
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Table 2. Summary of key details of the selected clinical trials. 538 

 EASI-TOC CATIS-ICAD CONVINCE TEMPO-2 ESCAPE-MEVO ENDOLOW 

Target 

patient 

population 

485 115 3,154 1,274 530 175 

Design A multi-center, 

prospective, 

randomized, open-

label, blinded 

endpoint (PROBE) 

controlled trial (1:1 

allocation). 

Randomized, 

open-label, 

blinded endpoint, 

pilot trial 

A multi-center 

international, 

Prospective, 

Randomized 

Open-label, 

Blinded-Endpoint 

assessment 

(PROBE) 

controlled Phase 3 

clinical trial 

A Phase 3, 

prospective, 

randomized 

controlled, open-

label with 

blinded outcome 

assessment 

(PROBE) 

controlled trial. 

Multicenter, 

prospective, 

randomized, 

open- label study 

with blinded 

endpoint 

evaluation 

(PROBE design) 

Phase 2/3, 

prospective, 

randomized, open-

label, blinded-

endpoint (PROBE) 

adaptive two-stage 

design trial 

Intervention Acute ICA stenting 

during the 

thrombectomy 

procedure versus 

intracranial 

thrombectomy alone 

without ICA stenting 

Rivaroxaban 

2.5mg bid and 

ASA 81mg od 

versus ASA 81mg 

od 

Colchicine 0.5 

mg/day and usual 

care versus usual 

care alone 

(antiplatelet, lipid-

lowering, 

antihypertensive 

treatment, lifestyle 

advice) 

TNK-tPA versus 

Standard of Care 

for minor 

ischemic stroke 

with proven 

occlusion 

EVT with 

Solitaire group of 

intracranial stent-

retriever devices 

as the first line 

approach and 

standard medical 

care, versus 

standard medical 

care 

iMT using 

EmboTrap 

Revascularization 

Device versus 

iMM 

Key 

inclusion 

criteria* 

- Occlusion in the 

intracranial carotid, 

M1, or M2 

- Age >= 40 years 

- ICAD 30-99% 

- Affected 

- Age >= 40 years 

- Atherosclerosis 

of the carotid or 

- Within 12 

hours of last seen 

normal 

- Within 12 hours 

of last seen 

normal 

- NIHSS 

(baseline) <= 5 

- CT/CTA 
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- Within 24 hours of 

last seen normal 

- Ipsilateral (same 

side) >= 70% 

cervical ICA 

stenosis or occlusion 

territory 

correspond to 

the ICAD 

vertebral or 

MCA or ACA or 

basilar artery 

- NIHSS 

(baseline) <=5 

- Any acute 

intracranial (not 

cervical ICA) 

occlusion, or 

CTP focal 

perfusion 

abnormality 

- NIHSS 

(baseline) >= 3 

- Occlusion in 

M2, M3, A2, A3, 

P2, or P3 

occlusion of ICA, 

M1, or M2 

- ASPECTS >= 6 

or core volume < 

70cc 

Key 

exclusion 

criteria* 

- Ipsilateral ICA 

stenosis or 

occlusion 

attributable to 

clinically or 

radiologically 

confirmed arterial 

dissection 

- Isolated cervical 

carotid occlusion 

without intracranial 

occlusion 

 

* Not applicable to 

AcT: pregnancy 

* Not available in 

AcT: pre-stroke 

mRS≥3, 

contraindication to 

angioplasty/stenting 

- Intracranial 

arterial occlusion 

(e.g. 100% 

stenosis) 

responsible for 

the acute brain 

ischemia 

- Intracranial 

arterial stenosis 

secondary to 

causes other than 

atherosclerosis. 

- Intraluminal 

thrombus 

 

* Not available in 

AcT: Not 

available in AcT: 

Other indication 

for longterm dual 

* Not applicable 

to AcT: pregnancy 

 

* Not available in 

AcT: 

cardioembolic 

etiology, drug use, 

venous 

thrombosis, hyper-

coagulability 

states, migraine, 

myopathy, blood 

dyscrasia, 

impaired hepatic 

function, use of 

CYP3A4 

inhibitors, 

symptomatic 

peripheral 

neuropathy or 

- ASPECTS < 7 

- Core volume > 

10cc 

- Intracranial 

hemorrhage 

- Chronic 

intracranial 

occlusion 

 

* Not applicable 

to AcT: severe 

fatal or disabling 

illness 

preventing 90-

day follow-up, 

Pregnancy, 

Exclusions for 

thrombolysis 

 

* Not available 

- ASPECTS <= 5 

- Lack of 

core:penumbra 

mismatch (based 

on available 

imaging 

combination)- 

Intracranial 

hemorrhage 

* Not applicable 

to AcT: 

Pregnancy 

 

* Not available in 

AcT: nursing care 

needs, major 

comorbidity like 

dementia or 

cancer 

- Time from last 

seen normal >=8 

hours 

- NIHSS ≥6 

- Intracranial 

hemorrhage 

- Multifocal ICAD  

 

* Not applicable to 

AcT: Pregnancy  

 

* Not available in 

AcT: investigator 

judgement of 

futile 

recanalization, 

pre-stroke mRS 

≥3, seizures at 

onset, baseline 

glucose <50 
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or antiplatelet 

therapy 

antiplatelet or 

anticoagulation, 

plans for carotid 

revascularization, 

atrial fibrillation, 

subdural 

hematoma in prior 

12 months, prior 

hemorrhagic 

stroke, pre-stroke 

mRS ≥4 

neuromuscular 

disease, 

inflammatory 

bowel disease, 

dementia, active 

malignancy, 

hepatitis B/C, 

HIV, dysphagia, 

poor medication 

compliance, 

colchicine allergy 

or sensitivity 

in AcT: In-

hospital stroke  

mg/dL or >400 

mg/dL, platelets < 

100,000/uL, 

creatinine > 3.0 

mg/dL, suspected 

bacterial 

endocarditis, 

intubation, drug or 

alcohol 

dependence, 

incarceration, 

acute COVID-19  

*The inclusion and exclusion criteria have been adapted to align with the clinical features in the AcT dataset. 539 

ACA = Anterior Cerebral Artery; ASA = Acetylsalicylic Acid; ASPECT = Alberta Stroke Program Early CT Score; cc = cubic 540 

centimeter; CT = Computed Tomography; CTA = Computed Tomography Angiography; CTP = Computed Tomography Perfusion; 541 

EVT = Endovascular Thrombectomy; HIV = Human Immunodeficiency Virus; ICA = Internal Carotid Artery; ICAD = Intracranial 542 

Atherosclerotic Disease; iMM = Initial Medical Management; iMT = Immediate mechanical thrombectomy; IQR = Interquartile 543 

Range; MCA = Middle Cerebral Artery; mg = milligrams; mg/dL = milligrams per decilitre; NIHSS = National Institutes of Health 544 

Stroke Scale; TNK = Tenecteplase; tPA = Tissue Plasminogen Activator; uL = microliters.  545 
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Table 3. The summary statistics of potentially eligible patients identified by the algorithm for each trial compared with the entire AcT 546 

population. 547 

Features 

Median (IQR), n (%) 

AcT Dataset 

(n=1,577) 

EASI-TOC 

(n=140*) 

CATIS-ICAD 

(n=105*) 

CONVINCE 

(n=1,090*) 

TEMPO-2 

(n=191*) 

ESCAPE-

MEVO 

(n=544*) 

ENDOLOW 

(n=51*) 

Age [years] 

Sex: female 

Weight 

[kilograms] 

Baseline NIHSS 

Time from onset to 

randomization 

[minutes] 

74 (63-83) 

822 (52.12%) 

75 (65-89) 

9 (6-16) 

122 (87-179) 

69.5 (60-79) 

97 (69.3%) 

80 (66.8-89) 

16 (10-20) 

117 (85-168) 

79 (70-87) 

53 (50.5%) 

75 (67-90) 

8 (5-14) 

145 (97-208) 

76 (67-84) 

586 (53.8%) 

75 (65-88) 

10 (6-17) 

124 (88-181) 

72 (60-83) 

114 (59.7%) 

77 (66-90) 

4 (3-5) 

140 (101-201) 

76 (66-84) 

279 (51.3%) 

75 (64-86) 

9 (6-16) 

117.5 (86-173) 

75 (65.5-84) 

29 (56.9%) 

81 (68-90.5) 

4 (3-5) 

140 (98.5-

203) 

ASPECTS  9 (8-10) 8 (7-10) 10 (9-10) 9 (8-10) 10 (9-10) 9 (8-10) 10 (8.5-10) 

*Number of potentially eligible patients identified by the algorithm 548 

ASPECT = Alberta Stroke Program Early CT score; IQR = Interquartile Range; NIHSS = National Institutes of Health Stroke Scale.549 
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Table 4. Classification performance metrics between the algorithm and ground truth. 550 

Patient groups 
Sensitivity 

(95%CI) 

Specificity 

(95%CI) 

PPV 

(95%CI) 

NPV 

(95%CI) 

Accuracy 

(95%CI) 

EASI-TOC 
0.92 

(0.78-1.00) 

1.00 

(1.00-1.00) 

1.00 

(1.00-1.00) 

0.99 

(0.98-1.00) 

0.99 

(0.99-1.00) 

CATIS-ICAD 
0.94 

(0.82-1.00) 

0.96 

(0.93-0.99) 

0.68 

(0.49-0.88) 

0.99 

(0.98-1.00) 

0.96 

(0.93-0.99) 

CONVINCE 
0.93 

(0.88-0.98) 

1.00 

(1.00-1.00) 

1.00 

(1.00-1.00) 

0.95 

(0.91-0.99) 

0.97 

(0.95-0.99) 

TEMPO-2 
0.96 

(0.89-1.00) 

0.98 

(0.96-1.00) 

0.89 

(0.78-1.00) 

0.99 

(0.983-1.00) 

0.98 

(0.96-1.00) 

ESCAPE-MEVO 
1.00 

(1.00-1.00) 

0.93 

(0.89-0.97) 

0.76 

(0.64-0.88) 

1.00 

(1.00-1.00) 

0.94 

(0.91-0.97) 

ENDOLOW 
0.90 

(0.71-1.00) 

0.99 

(0.98-1.00) 

0.90 

(0.71-1.00) 

0.99 

(0.98-1.00) 

0.99 

(0.98-1.00) 

CI = Confidence Interval; NPV = Negative Prediction Value; PPV = Positive Predictive Value  551 
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 552 

Figure 1. Potentially eligible patients identified for each trial according to key criteria used for 553 

automatic matching. Each box displays the key criteria for inclusion and exclusion, along with 554 

the number of potentially eligible patients up to that criterion in the blanket. ACA = Anterior 555 

Cerebral Artery; ASPECT = Alberta Stroke Program Early CT Score; hr = hours; ICA = Internal 556 

Carotid Artery; ICAD = Intracranial Atherosclerotic Disease; MCA = Middle Cerebral Artery; 557 

NIHSS = National Institutes of Health Stroke Scale; PCA = Posterior Cerebral Artery; Vol. = 558 

volume. 559 
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 560 

Figure 2. Comparison of the total number of enrolled patients for each trial versus the number of 561 

potential candidates identified by the algorithm.  562 

  563 
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 565 

Figure 3. Cost comparison estimate between using a clinician or a research assistant versus our 566 

automatic algorithm for the trials screening process, using standard hourly rates and 567 

extrapolating from the comparative time data from our test sample. 568 
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