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Abstract

Asymptotic expansions of the Gauss hypergeometric function with large parameters,
F(a+ 1,8+ 61,7 + &T; 2) as |1| = oo, are known for many special cases, but not for
one that the author encountered in recent work on fluid mechanics: e, = 0 and €; = €z.
This paper gives the leading term for that case if 3 is not a negative integer and z is not
on the branch cut [1, c0), and it shows how subsequent terms can be found.
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1. Introduction

Asymptotic expansions as |r| — oo of the hypergeometric function
Fla+et,p+ ety +aT;2), (1.1)

where @, f,v, € and z are finite, have been studied for over 100 years, but the theory
is still not complete [2, 5-8]. Most recently Paris [6] and then Cvitkovi¢ et al. [2]
considered &, = 0, but their methods did not apply if €3 = £1z. This paper deals with
that case by puttinga = a — y/z, b =8, 1 =y + €7, so that unless z = 0, |1| — oo and

Fla+etn,By+et,2)=F(a+ A/z,b; 4;2). (1.2)

We refer to this function simply as F if no ambiguity would arise. If z = 0, then (1.1)
gives F' = 1; its asymptotic expansion is just 1.

Our theory will assume that b is not a negative integer, so that there is a branch cut
in the complex z-plane, and that z € [1, co) in order to avoid it. If b were a negative

'School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington
6140, New Zealand; e-mail: john.harper @vuw.ac.nz.
© Australian Mathematical Society 2019

446

https://doi.org/10.1017/51446181119000166 Published online by Cambridge University Press @ CrossMark


https://orcid.org/0000-0003-0030-7574
mailto:john.harper@vuw.ac.nz
pg1394
Sticky Note
Unmarked set by pg1394

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446181119000166&domain=pdf
https://doi.org/10.1017/S1446181119000166

[2] Hypergeometric asymptotics 447

integer, ' would be a polynomial in z and a rational function of 4, no branch cut would
exist and the asymptotic series would converge if || > |b| — 1.

The motivation for studying the case &, = 0, &3 = £,z was the author’s recent theory
[3] for a gas bubble rising in a solution of a substance (for example, common salt in
water) that raises the surface tension. Finding the drag on the bubble led to a series
> fuOn, in which |f,| — 0 as n — oo, and the values of o, were

_ F(c, +2,132¢, +2;2/3)  F(3c, +3,1;2¢, +3;2/3)

1.3
1+ 2¢, 1+c¢, (1.3)

n

where ¢, — o0 as n — oo and every ¢, > 0. Equation (1.3) involves two special cases
of (1.2):a=-d/2,b=1,z=2/3,1=2c, +d, where d = 2 or 3. Section 3 will show
that |o,| = O(C,_,l/ 2); the series . f,,0, converges.

2. Integral representation of F

Let ph : C\{0} — (-, ] be the single-valued phase function [5, Section 1.9(1)], let
6, = ph(Q), 6, = ph(z), let a, b and 7 be finite real or complex constants and let G(A, b),
I(4,a,b,7), pt,2), q(t,a,b, 2), r(t, z,0,) be the functions

'

O Fora=s)

1
1(4,a,b,2) = f 1 = )PP = gy Wma gy
0

= fo 1 exp (-Ap(t,2))q(t, a, b, z) dt, .1
p(t,2) =z ' In(1 — zt) — In(1 — 1),
g(t,a,b,2) =11 -1 - 207,
r(t,z,0,) = Re(e” p(t, 2)). (2.2)
Ifz# 0or 1, |ph(l — z)| < 7 and Re(1) > Re(b) > 0, then [5, Section 15.6]
F(a+ A/z,b; 4;2) = G(A4,b)I(4,a,b, 7). (2.3)

The asymptotic form of G(4, b) is well known [5, Section 5.11(iii)]. If |2] — oo and
|6;] < T — 06 <, then

2 S (p\BYY 2 &G,
G4, b) ~ — LI s
(4,5) r(b);(s) 1 r(b); P

where the B§b+1) are Bernoulli numbers of order b + 1 [5, Section 24.16(i)]; then

Go=1,
G, =-b(b+1)/2,
Gr, =b(b-1)(b+ 1)3b+2)/24.
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3. Realz<1,z#0

Because we use both (2.1) and (2.3), we assume henceforth that |6,;| < 7/2, z# 0
and z ¢ [1, o0). We also assume for the time being that Re(1) > Re(b) >0 and z < 1,
but the restriction on Re(b) will be relaxed in Section 3.2 and the restriction on z will
be relaxed in Section 4.

3.1. Re(b) >0 LetS be the open sector {¢|0 < |¢f| < 1, |ph(?)| < 7/2}. Let D be the
open disc {f | |¢| < min(1, 1/|z])}. Let A be the closed annular sector

A ={A]|A] > Rnin > max(|b| + 1, [z] + lal), 162l <7/2 -6 <7/2}.

We may use Laplace’s method [5, Section 2.4(iii)] if z € (—o0,0) U (0, 1) to find the
asymptotic series of /(4 a, b, z) by integrating along P; = [0, 1], because the following
conditions are all satisfied.

(1) Both p(t,z) and ¢(t, a, b, 7) are analytic for ¢ € S and the path of integration with
treal, from O to 1, is in S except for its ends.

(2) If t € D, then p(t,z) and ¢(t, a, b, 7) have these convergent series in powers of z,
with pg # 0 and go # 0:

a 1—Zn+l
ts = ntn+23 n: b
p(t,2) ;p p P
- _ O (—b—1\(-a) ,,
q(t,a,b,2) =Y g™, g, =(-1) Z( g )( )z. 3.1)
n=0 m=0 n m m

If b is not an integer, we use the principal value of # in (3.1).
(3) I(4,a,b,z) converges at t = 1 absolutely and uniformly with respect to 4 € A.
4) If0<t<1,thenr(t,z,0,) > r(0,z,6,) = 0.
5) If 1€ A, r(t,z,0,) is bounded away from zero uniformly with respect to 6, as
t — 1 along P;.

Then,as A —» oc0in §,
ILab - I s+b\ ay
(4,a,b,2) ~ Z (T)W’
s=0
where the coefficient ay is the residue at r = 0 of

q(t,a,b,z)
2p(t, Z)(s+b)/2 ’
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which has a pole of order s there. Expressions for a; are also known in terms of partial
ordinary Bell polynomials [9, 10] and of ordinary potential polynomials [4]. We have

% 2b/2-1
O T a=
4 = [q_l _(+Dpigo] 1
3 410 pgm)/z’
@ (b+2)piq: ) b+2)q0] 1
a = | L LTI 4y dpopy) :
2 [ D 4p0 P1 Pop2 1 6p(2) péb G

By the duplication formula for gamma functions [5, (5.5.5)], the leading term when z
is real is

2=b/2;1/2 Yb/2
(1 =2%21(1/2+b/2)

3.2. Re(b) <0 Equation (3.2) has been proved for Re(b) > 0. It still holds if b = 0,
because then F = 1. It also holds for any b € C, except a negative integer. That is
because the value for Re(b) > —1 follows from those forb + 1 and b + 2 [1, (15.2.11)].
It agrees with (3.2) and shows that each term after the first in the asymptotic series
is O(17!/?) times the previous one. In the same way we find the same results for
Re(b) > -2, =3, —4, .... If on the other hand b is a negative integer, the right-hand
side of (3.2) is zero but the left-hand side is not. The asymptotic expansion then begins
further along the series, which now converges and contains only integer powers of A.

Fla+ %,b;ﬂ; 2) ~ (3.2)

4. Complex z

We still require 6, € (—n/2,7m/2), z# 0and z ¢ [1, o0). Checking where r(t,z,6,) > 0
when z € C need not require dealing with Im(z) < 0, because r(¢, z, 6,) = (t,z,—6,). If
the least value of r(z, z,8,) for t € P = [0, 1] is still at = 0 even when Im(z) # O, then
the result of Section 3 still holds.

We now show that a sufficient condition is #(t, z, 6,)|;=o > 0, where dots indicate
t-derivatives. With 6, and z fixed, r(t, z,6,) defined in (2.2) is a real function of ¢
infinitely differentiable on P; its least value on P; is thus either at t = 0 or at another
point t = ¢, where 7(t,z,6,) = 0. That gives a quadratic equation for #; its two roots
are 0 and #. Because r(t,z,6,) = +co0 as t — 1 along P;, t' € (0, 1) would require
r(t',z,6,) <0and (¢, z,6,) = 0. Now

i
w@@:MF——e

it
1-t 1- zt)’
, 70, z,6,)
~ Jzlcos(6, — 6.) — |z cos 6,
(1 —2)(1 —z1?)
(1= 02(1 — 212 )

W@M=M(
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Ficure 1. The complex #-plane (f = x + iy), in a case where P, is useful but P is not: |z| = 3, 6, = 30°,
0, = —36°. Dotted lines on which (¢, z,0,) = 0 separate regions where it is of constant sign, marked +
and —. The lines spiral in towards the branch points on other Riemann sheets; only the principal sheet
is shown. Dashed lines: the straight line P, and arc P,. Dot-dash-dot-dash lines: the branch cuts for
In(1 — zt)/z and In(1 — 7). Black circles: the branch points # = 1 and 1/z.

If #0,z,6,) >0, then r(t,z,0,) >0 when 0 <7 < 1 and there would have to be a
maximum of r at t € (0,¢") before r decreased to its minimum at . The quadratic
equation would then have three roots, which is impossible. Therefore, if #(0, z,8,) > 0,
then ¢’ ¢ (0, 1) and the leading contribution to the integral (2.1) is from ¢ near 0, with
P, still the path of integration.

Experiments with Waterloo Maple computer algebra revealed (to the author’s initial
surprise) that the results of Section 3 still held even when #(0, z, 6,) < 0. That is because
there are other paths through complex values from ¢ = 0 to # = 1 along which 7(t, z, 8,)
has its least value at ¢ = 0. Figures 1 and 2 illustrate the possibilities. In Figure 1 |z| = 3,
6, =30°, 0, = -36°, w = 86°, and in Figure 2 |z] = 8, 6, = 3°, 6, = 83°, w ~ 47°, where
w = —{ph(l —2) + 6,}/2.

Let 6, = ph(?). Then

r(t,z,0,) ~ Re(%(l - z)tze’pﬂ) ast— 0
= 13(1 = 2| cos(26; - 2w).

Therefore, r(t, z, 6,) begins increasing as ¢ leaves 0 if |0, — w| < /4, and it does so as
fast as possible if 8, = w. The other direction of steepest ascent of r (or steepest descent
of =) from t = 0 is 6, = w + , but it will not concern us. Let P, be the circular arc
passing through ¢ = 0 and ¢ = 1 with its tangent at O in the direction 6, = w, so that if
sinw # 0, then

. (sin¢ + sin w) + i(cos ¢ — cos w)

B 2sinw

Numerical work with |z] from 0.5 to 10, 6, from 3° to 177° and 8, from —87° to +87°
showed that r(¢, z, 8,) > 0 everywhere except ¢ = 0 on at least one of P; and P,, except

, ¢E[-w,w].
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FiGure 2. The complex #-plane in a case where Ps is useful but P; and P, are not: |z] = 8,0, = 3°, 6, = 83°.

Solid line: P5. Other symbols as in Figure 1.

for a few cases where r(z, z,8,) < 0 at some points on each of P; and P,. In those cases
there is a path P; on which r(t, z, 6,) > 0 everywhere except t = 0; we obtain P3 by
modifying P, to bring y = Im(¢) nearer to 0 by an amount gradually increasing as ¢
increases:
_ COS ¢ — Cos w
y= 2 cosh(l + ¢p/w) sinw’

Because r = 0 when ¢ = —w and = 1 when ¢ = w, P3 leaves ¢ = 0 in the same direction
as P,, but arrives at t = 1 from a direction much closer to the real axis y = 0 (see
Figure 2).

The path P; was needed if |z| > 1, |6,| < /2, so that z was near the positive real
axis but far from 1, and 8, was near +7/2. Then r < 0 both on the straight line P,
very near ¢t = 0 and on much of the arc P,; hence, both paths were unsuitable for
Laplace’s method. Because w =~ 47° in Figure 2, the lower right negative region is
between 6, ~ +2° and 6, = —88° near ¢ = 0, and the path P, is initially inside it. The
circular-arc path P, is in a negative region if x > 0.53, but P3 is in a positive region
for its whole length. Note that P, and P3; are not paths of steepest descent, though
they do leave # = 0 in the steepest-descent direction. As the NIST Handbook says
[5, Section 2.4(iv)], “for the purpose of simply deriving the asymptotic expansions the
use of steepest descent paths is not essential”.

The remaining task was to choose the correct branch of pg/ Zin (3.2). That was the
one on which ph(pg) = ph(1 — z) [5, equation (2.4.13)], whether the path of integration
was Py, P, or Pj.

¢ € [-w,w].

5. Conclusion

The asymptotic form (3.2) for F(a + 4/z,b; A; z) as |A] — oo if [phA| < 7/2 was found
in Section 3.1 for Re(b) > 0, z real, z # 0 and z < 1. Section 3.2 shows that it still
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holds for any real or complex value of b except a negative integer if z € R\ [1, 00),
and Section 4 extends that region to z € C\ [1, ). In a recent paper on bubbles
rising in a liquid [3], » = 1 and z = 2/3, a special case which revealed that the present
investigation was needed. The present results appear not to be in previous work on
hypergeometric functions.
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