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ASYMPTOTICS OF A GAUSS HYPERGEOMETRIC
FUNCTION WITH TWO LARGE PARAMETERS:

A NEW CASE
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Abstract

Asymptotic expansions of the Gauss hypergeometric function with large parameters,
F(α + ε1τ, β + ε2τ; γ + ε3τ; z) as |τ| → ∞, are known for many special cases, but not for
one that the author encountered in recent work on fluid mechanics: ε2 = 0 and ε3 = ε1z.
This paper gives the leading term for that case if β is not a negative integer and z is not
on the branch cut [1,∞), and it shows how subsequent terms can be found.
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1. Introduction

Asymptotic expansions as |τ| → ∞ of the hypergeometric function

F(α + ε1τ, β + ε2τ; γ + ε3τ; z), (1.1)

where α, β, γ, εi and z are finite, have been studied for over 100 years, but the theory
is still not complete [2, 5–8]. Most recently Paris [6] and then Cvitković et al. [2]
considered ε2 = 0, but their methods did not apply if ε3 = ε1z. This paper deals with
that case by putting a = α − γ/z, b = β, λ = γ + ε3τ, so that unless z = 0, |λ| → ∞ and

F(α + ε1τ, β; γ + ε3τ; z) = F(a + λ/z, b; λ; z). (1.2)

We refer to this function simply as F if no ambiguity would arise. If z = 0, then (1.1)
gives F = 1; its asymptotic expansion is just 1.

Our theory will assume that b is not a negative integer, so that there is a branch cut
in the complex z-plane, and that z < [1,∞) in order to avoid it. If b were a negative

1School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington
6140, New Zealand; e-mail: john.harper@vuw.ac.nz.
c© Australian Mathematical Society 2019

446

ANZIAM J. 62 (2020), 446–452

https://doi.org/10.1017/S1446181119000166 Published online by Cambridge University Press

https://orcid.org/0000-0003-0030-7574
mailto:john.harper@vuw.ac.nz
pg1394
Sticky Note
Unmarked set by pg1394

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446181119000166&domain=pdf
https://doi.org/10.1017/S1446181119000166


[2] 447

integer, F would be a polynomial in z and a rational function of λ, no branch cut would
exist and the asymptotic series would converge if |λ| > |b| − 1.

The motivation for studying the case ε2 = 0, ε3 = ε1z was the author’s recent theory
[3] for a gas bubble rising in a solution of a substance (for example, common salt in
water) that raises the surface tension. Finding the drag on the bubble led to a series∑

fnσn, in which | fn| → 0 as n→∞, and the values of σn were

σn =
F(3cn + 2, 1; 2cn + 2; 2/3)

1 + 2cn
−

F(3cn + 3, 1; 2cn + 3; 2/3)
1 + cn

, (1.3)

where cn →∞ as n→∞ and every cn > 0. Equation (1.3) involves two special cases
of (1.2): a = −d/2, b = 1, z = 2/3, λ = 2cn + d, where d = 2 or 3. Section 3 will show
that |σn| = O(c−1/2

n ); the series
∑

fnσn converges.

2. Integral representation of F

Let ph : C\{0} → (−π, π] be the single-valued phase function [5, Section 1.9(i)], let
θλ = ph(λ), θz = ph(z), let a, b and z be finite real or complex constants and let G(λ, b),
I(λ, a, b, z), p(t, z), q(t, a, b, z), r(t, z, θλ) be the functions

G(λ, b) =
Γ(λ)

Γ(b)Γ(λ − b)
,

I(λ, a, b, z) =

∫ 1

0
tb−1(1 − t)λ−b−1(1 − zt)−(λ/z)−a dt

=

∫ 1

0
exp (−λp(t, z))q(t, a, b, z) dt, (2.1)

p(t, z) = z−1 ln(1 − zt) − ln(1 − t),

q(t, a, b, z) = tb−1(1 − t)−b−1(1 − zt)−a,

r(t, z, θλ) = Re(eiθλ p(t, z)). (2.2)

If z , 0 or 1, |ph(1 − z)| < π and Re(λ) > Re(b) > 0, then [5, Section 15.6]

F(a + λ/z, b; λ; z) = G(λ, b)I(λ, a, b, z). (2.3)

The asymptotic form of G(λ, b) is well known [5, Section 5.11(iii)]. If |λ| → ∞ and
|θλ| 6 π − δ < π, then

G(λ, b) ∼
λb

Γ(b)

∞∑
s=0

(
b
s

)
B(b+1)

s

λs =
λb

Γ(b)

∞∑
s=0

Gs

λs , say,

where the B(b+1)
s are Bernoulli numbers of order b + 1 [5, Section 24.16(i)]; then

G0 = 1,
G1 = −b(b + 1)/2,
G2 = b(b − 1)(b + 1)(3b + 2)/24.
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3. Real z < 1, z , 0

Because we use both (2.1) and (2.3), we assume henceforth that |θλ| < π/2, z , 0
and z < [1,∞). We also assume for the time being that Re(λ) > Re(b) > 0 and z < 1,
but the restriction on Re(b) will be relaxed in Section 3.2 and the restriction on z will
be relaxed in Section 4.

3.1. Re(b) > 0 Let S be the open sector {t | 0 < |t| < 1, |ph(t)| < π/2}. Let D be the
open disc {t | |t| < min(1, 1/|z|)}. Let A be the closed annular sector

A = {λ | |λ| > Rmin > max(|b| + 1, |z| + |a|), |θλ| 6 π/2 − δ < π/2}.

We may use Laplace’s method [5, Section 2.4(iii)] if z ∈ (−∞, 0) ∪ (0, 1) to find the
asymptotic series of I(λ, a, b, z) by integrating along P1 = [0, 1], because the following
conditions are all satisfied.

(1) Both p(t, z) and q(t, a, b, z) are analytic for t ∈ S and the path of integration with
t real, from 0 to 1, is in S except for its ends.

(2) If t ∈ D, then p(t, z) and q(t, a, b, z) have these convergent series in powers of t,
with p0 , 0 and q0 , 0:

p(t, z) =

∞∑
n=0

pntn+2, pn =
1 − zn+1

n + 2
,

q(t, a, b, z) =

∞∑
n=0

qntn+b−1, qn = (−1)n
n∑

m=0

(
−b − 1
n − m

)(
−a
m

)
zm. (3.1)

If b is not an integer, we use the principal value of tb in (3.1).
(3) I(λ, a, b, z) converges at t = 1 absolutely and uniformly with respect to λ ∈ A.
(4) If 0 < t < 1, then r(t, z, θλ) > r(0, z, θλ) = 0.
(5) If λ ∈ A, r(t, z, θλ) is bounded away from zero uniformly with respect to θλ as

t→ 1 along P1.

Then, as λ→∞ in S ,

I(λ, a, b, z) ∼
∞∑

s=0

Γ

( s + b
2

) as

λ(s+b)/2 ,

where the coefficient as is the residue at t = 0 of

q(t, a, b, z)
2p(t, z)(s+b)/2 ,
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which has a pole of order s there. Expressions for as are also known in terms of partial
ordinary Bell polynomials [9, 10] and of ordinary potential polynomials [4]. We have

a0 =
q0

2pb/2
0

=
2b/2−1

(1 − z)b/2 ,

a1 =

[q1

2
−

(b + 1)p1q0

4p0

] 1

p(b+1)/2
0

,

a2 =

[q2

2
−

(b + 2)p1q1

4p0
+ {(b + 4)p2

1 − 4p0 p2}
(b + 2)q0

16p2
0

] 1

p(b+2)/2
0

.

By the duplication formula for gamma functions [5, (5.5.5)], the leading term when z
is real is

F
(
a +

λ

z
, b; λ; z

)
∼

2−b/2π1/2 λb/2

(1 − z)b/2Γ(1/2 + b/2)
. (3.2)

3.2. Re(b) 6 0 Equation (3.2) has been proved for Re(b) > 0. It still holds if b = 0,
because then F = 1. It also holds for any b ∈ C, except a negative integer. That is
because the value for Re(b) > −1 follows from those for b + 1 and b + 2 [1, (15.2.11)].
It agrees with (3.2) and shows that each term after the first in the asymptotic series
is O(λ−1/2) times the previous one. In the same way we find the same results for
Re(b) > −2, −3, −4, . . . . If on the other hand b is a negative integer, the right-hand
side of (3.2) is zero but the left-hand side is not. The asymptotic expansion then begins
further along the series, which now converges and contains only integer powers of λ.

4. Complex z

We still require θλ ∈ (−π/2, π/2), z , 0 and z < [1,∞). Checking where r(t, z, θλ) > 0
when z ∈ C need not require dealing with Im(z) < 0, because r(t, z, θλ) = r(t, z̄,−θλ). If
the least value of r(t, z, θλ) for t ∈ P1 = [0, 1] is still at t = 0 even when Im(z) , 0, then
the result of Section 3 still holds.

We now show that a sufficient condition is r̈(t, z, θλ)|t=0 > 0, where dots indicate
t-derivatives. With θλ and z fixed, r(t, z, θλ) defined in (2.2) is a real function of t
infinitely differentiable on P1; its least value on P1 is thus either at t = 0 or at another
point t = t′, where ṙ(t, z, θλ) = 0. That gives a quadratic equation for t; its two roots
are 0 and t′. Because r(t, z, θλ)→ +∞ as t → 1 along P1, t′ ∈ (0, 1) would require
r(t′, z, θλ) < 0 and ṙ(t′, z, θλ) = 0. Now

ṙ(t, z, θλ) = Re
( eiθλ

1 − t
−

eiθλ

1 − zt

)
,

∴ t′ =
r̈(0, z, θλ)

|z| cos(θλ − θz) − |z|2 cos θλ
,

r̈(t, z, θλ) = Re
(eiθλ(1 − z)(1 − zt2)

(1 − t)2(1 − zt)2

)
.
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Figure 1. The complex t-plane (t = x + iy), in a case where P2 is useful but P1 is not: |z| = 3, θz = 30◦,
θλ = −36◦. Dotted lines on which r(t, z, θλ) = 0 separate regions where it is of constant sign, marked +

and −. The lines spiral in towards the branch points on other Riemann sheets; only the principal sheet
is shown. Dashed lines: the straight line P1 and arc P2. Dot-dash-dot-dash lines: the branch cuts for
ln(1 − zt)/z and ln(1 − t). Black circles: the branch points t = 1 and 1/z.

If r̈(0, z, θλ) > 0, then r(t, z, θλ) > 0 when 0 < t � 1 and there would have to be a
maximum of r at t′′ ∈ (0, t′) before r decreased to its minimum at t′. The quadratic
equation would then have three roots, which is impossible. Therefore, if r̈(0, z, θλ) > 0,
then t′ < (0, 1) and the leading contribution to the integral (2.1) is from t near 0, with
P1 still the path of integration.

Experiments with Waterloo Maple computer algebra revealed (to the author’s initial
surprise) that the results of Section 3 still held even when r̈(0, z, θλ) < 0. That is because
there are other paths through complex values from t = 0 to t = 1 along which r(t, z, θλ)
has its least value at t = 0. Figures 1 and 2 illustrate the possibilities. In Figure 1 |z| = 3,
θz = 30◦, θλ = −36◦, ω ≈ 86◦, and in Figure 2 |z| = 8, θz = 3◦, θλ = 83◦, ω ≈ 47◦, where
ω = −{ph(1 − z) + θλ}/2.

Let θt = ph(t). Then

r(t, z, θλ) ∼ Re
( 1

2 (1 − z)t2eiθλ) as t→ 0

= | 12 (1 − z)t2| cos(2θt − 2ω).

Therefore, r(t, z, θλ) begins increasing as t leaves 0 if |θt − ω| < π/4, and it does so as
fast as possible if θt = ω. The other direction of steepest ascent of r (or steepest descent
of e−λp) from t = 0 is θt = ω ± π, but it will not concern us. Let P2 be the circular arc
passing through t = 0 and t = 1 with its tangent at 0 in the direction θt = ω, so that if
sinω , 0, then

t =
(sin φ + sinω) + i(cos φ − cosω)

2 sinω
, φ ∈ [−ω,ω].

Numerical work with |z| from 0.5 to 10, θz from 3◦ to 177◦ and θλ from −87◦ to +87◦

showed that r(t, z, θλ) > 0 everywhere except t = 0 on at least one of P1 and P2, except

[5]J. F. Harper
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Figure 2. The complex t-plane in a case where P3 is useful but P1 and P2 are not: |z| = 8, θz = 3◦, θλ = 83◦.
Solid line: P3. Other symbols as in Figure 1.

for a few cases where r(t, z, θλ) < 0 at some points on each of P1 and P2. In those cases
there is a path P3 on which r(t, z, θλ) > 0 everywhere except t = 0; we obtain P3 by
modifying P2 to bring y = Im(t) nearer to 0 by an amount gradually increasing as φ
increases:

y =
cos φ − cosω

2 cosh(1 + φ/ω) sinω
, φ ∈ [−ω,ω].

Because t = 0 when φ = −ω and t = 1 when φ = ω, P3 leaves t = 0 in the same direction
as P2, but arrives at t = 1 from a direction much closer to the real axis y = 0 (see
Figure 2).

The path P3 was needed if |z| � 1, |θz| � π/2, so that z was near the positive real
axis but far from 1, and θλ was near ±π/2. Then r < 0 both on the straight line P1
very near t = 0 and on much of the arc P2; hence, both paths were unsuitable for
Laplace’s method. Because ω ≈ 47◦ in Figure 2, the lower right negative region is
between θt ≈ +2◦ and θt ≈ −88◦ near t = 0, and the path P1 is initially inside it. The
circular-arc path P2 is in a negative region if x > 0.53, but P3 is in a positive region
for its whole length. Note that P2 and P3 are not paths of steepest descent, though
they do leave t = 0 in the steepest-descent direction. As the NIST Handbook says
[5, Section 2.4(iv)], “for the purpose of simply deriving the asymptotic expansions the
use of steepest descent paths is not essential”.

The remaining task was to choose the correct branch of pb/2
0 in (3.2). That was the

one on which ph(p0) = ph(1 − z) [5, equation (2.4.13)], whether the path of integration
was P1, P2 or P3.

5. Conclusion

The asymptotic form (3.2) for F(a + λ/z,b;λ; z) as |λ| → ∞ if |phλ| < π/2 was found
in Section 3.1 for Re(b) > 0, z real, z , 0 and z < 1. Section 3.2 shows that it still
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holds for any real or complex value of b except a negative integer if z ∈ R \ [1,∞),
and Section 4 extends that region to z ∈ C \ [1,∞). In a recent paper on bubbles
rising in a liquid [3], b = 1 and z = 2/3, a special case which revealed that the present
investigation was needed. The present results appear not to be in previous work on
hypergeometric functions.
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