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The simplification of collision operators is necessary for quasilinear turbulence modelling
used with integrated modelling frameworks, such as the gyrokinetic code QuaLiKiz. The
treatment of collisions greatly impacts the accuracy of trapped electron mode (TEM)
modelling, which is necessary to predict the electron heat flux and the balance between
inward and outward particle fluxes. In particular, accurate particle flux predictions are
necessary to successfully model density peaking in the tokamak core. We explored
two ways of improving collisional TEM model reduction for tokamak core plasmas.
First, we carried out linear GENE simulations to study the complex interplay between
collisions and trapped electrons. We then used these simulations to define an effective
trapped fraction to characterize the collisional TEM based on two key parameters, the
local inverse-aspect ratio ε and the collisionality ν∗. One aspect missing from analytical
TEM research is that the collisional frequency and the bounce-transit frequency are
both velocity dependent; this effective trapped fraction takes both into account. In doing
so, we determined that two parameters are not enough to model the collisional TEM,
as an additional third free parameter was necessary. We determined that this model,
as currently formulated, is not suitable for integrated modelling purposes. Second, we
directly improved QuaLiKiz’s Krook operator, which relies on two free parameters. We
determined that these parameters required adjustments against higher-fidelity collisional
models. In order to improve density profile predictions when paired with integrated
models, we refined the Krook operator by using GENE simulations as a higher-fidelity
point of comparison. We then demonstrate strong improvement of density peaking
predictions of QuaLiKiz within the integrated modelling framework JETTO.
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1. Introduction

In tokamaks, electrostatic drift instabilities constitute an important component of
turbulence. Specifically, microinstabilities such as trapped electron modes (TEMs) and
ion temperature gradient (ITG) driven modes are responsible for driving turbulence, which
dominates tokamak transport, and thus are key to modelling confinement physics (Liewer
et al. 1986; Kadomtsev & Pogutse 1995). Many effects such as E × B shearing (E and
B being the electromagnetic fields), collisions and high magnetic shear play a role in
setting the critical temperature gradient thresholds of the transport-driving instabilities. In
particular, collision detrapping of electrons can stabilize TEM turbulence. Experimentally,
it has been shown that turbulent convection is responsible for the peaking of the density
profile in the tokamak core (Hoang et al. 2003). The density peaking can also be impacted
by the balance between ITG and TEM instabilities, since the particle flux’s specific
dependence on plasma parameters can depend strongly on the turbulent regime (Hoang
et al. 2003; Angioni et al. 2009; Fable, Angioni & Sauter 2010). Consequently, in the
context of integrated modelling, an inaccurate treatment of collisionality can lead to
severe discrepancies in density profiles in the core. While collisions can in principle be
accounted for through the use of sufficiently complex collision operators when simulating
microinstabilities, the use of such operators incurs a large computational cost, restricting
their usefulness when considering their inclusion in reduced transport models. Simplified
models of collisions are therefore necessary when computational speed is a priority.

Motivated by the aforementioned potential discrepancies in integrated modelling, our
study of TEMs is the primary focus of this work. The TEM instabilities are driven
by the presence of a trapped electron population in the tokamak whereby the electrons
perform a bounce motion along the magnetic field lines (Kadomtsev & Pogutse 1970).
Collisions serve to detrap particles by scattering them into the passing part of velocity
space; as a result, TEMs are typically divided into collisionless TEMs (CTEMs) and
dissipative TEMs (DTEMs) (Kadomtsev & Pogutse 1971). In high-collisionality regimes
(where the collisionality parameter ν∗, defined in (3.4) as the ratio of the detrapping
collision frequency to the bounce frequency, is such that ν∗ �� 1), the particle undergoes
many collisions before completing a full bounce motion, thus leading to detrapping of
the particle and thereby producing a stabilizing effect. However, it is also important
to recognize that passing electrons play a role in TEM instabilities, thus creating a
complicating interaction between the trapped and passing electron populations that leads
to collisions becoming a destabilizing effect in certain low-collisionality regimes (Connor,
Hastie & Helander 2006). Moreover, the trapped–passing boundary in velocity space
constitutes a region where collisional effects are amplified.

Dimensionless quantities that attempt to characterize the collisional regime are typically
constructed by calculating these frequencies for thermal particles. While these quantities
are useful to describe the overall effect of collisions, it is important to realize that collisions
do not impact trapped particles in a uniform manner. Thus, we expect reasonably realistic
collision operators to incorporate both energy and pitch-angle dependence in order to treat
collisions properly for TEMs. An overview of collision operators used in this work is given
in § 2.

There are two primary goals for this work. First, we attempt to construct a model
to characterize DTEM growth rates in the regime where collisions are stabilizing. The
intended goal of this model was to simplify the treatment of trapped electron collisions in
an integrated modelling context. We do so with the aid of the gyrokinetic electromagnetic
numerical experiment (GENE) code (Jenko et al. 2000) by simulating a number of linear
TEMs. The GENE code solves the gyrokinetic equation in field-line coordinates by using
the well-known δf approximation, where δf refers to the perturbed distribution function.

https://doi.org/10.1017/S0022377824000837 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000837


Quasilinear modelling of collisional trapped electron modes 3

We use the s–α model to conduct linear simulations using a linearized Landau–Boltzmann
collision operator, where s and α are the magnetic shear and Shafranov parameter
respectively. The core idea is to construct an effective trapped electron fraction that takes
into account the fact that not all trapped electrons contribute to TEM destabilization at
high collisionality. By scanning over the conventional trapped electron fraction as well as
the collisionality for numerous base cases, we show that collisions and the conventional
trapped electron fraction do not independently determine the growth rate of a DTEM.
Instead, the effective trapped fraction, a function of both the conventional trapped electron
fraction and the collisionality, suitably determines the growth rate of the instability (along
with other independent parameters such as the density gradient, temperature gradient
and so on). We determined that this model requires a free parameter, which we term
ac, to accurately model the effect of collisions; this parameter depends on other plasma
parameters such as gradients and geometry. Because this free parameter varies over an
order of magnitude for the examined cases with no clear pattern, we determined that this
model is not suitable for integrated modelling. Nevertheless, we present the results of this
study, as it still contained valuable physics insights and could present opportunities for
improvement in the future.

The second goal is address the failure of the quasilinear gyrokinetic code QuaLiKiz
(Bourdelle et al. 2007; Bourdelle 2015; Citrin et al. 2017) to predict density peaking
in the tokamak core in high-collisionality regimes when coupled with integrated
modelling suites. Originally based on the eigenvalue code Kinezero (Bourdelle et al.
2002), QuaLiKiz calculates the anomalous quasilinear transport arising from ITG,
TEM and electron temperature gradient microinstabilities. Because calculation speed
is key for integrated modelling, QuaLiKiz is designed to be orders of magnitude
faster than first-principles-based linear gyrokinetic codes such as GENE via numerous
approximations. The kinetic dispersion relation is separated species by species and also
separated between trapped particles and passing particles. Approximations such as using
the s–α equilibrium, considering only electrostatic fluctuations and assuming Gaussian
eigenfunctions allows the code to perform full computations in ∼1 CPU per wavenumber.
The full derivation can be found in Stephens et al. (2021). The simplified collision
operator in QuaLiKiz is Krook-like in that it contains a simple velocity dependence and no
differentiation of the perturbed distribution function. In addition, the Krook-like operator
retains pitch-angle dependence to account for particle detrapping near the trapped–passing
boundary; the operator also depends on two free parameters. In investigations of high
collisionality in Joint European Torus (JET) and the tungsten steady-state tokamak
(WEST), it has been found that QuaLiKiz quasilinear flux values lead to inaccurate density
profile flattening predictions when used with integrated modelling suites (Tala et al. 2019).
Predicting the correct density peaking is essential for performance in terms of pulse length
and energy content, as the density will impact the current drive and the fusion power
scales quadratically with the fuel density. We also note that electromagnetic effects are
also important to include for reactor-like plasmas (Hein et al. 2010; Fable et al. 2019),
although these effects are not included in QuaLiKiz. Given previous collisionality studies
as the numerous approximations applied to TEMs in QuaLiKiz, we have high confidence
that the improper treatment of DTEMs is the primary culprit for the mismatch. To address
the inaccuracy in density profile predictions, we seek to improve the Krook-like collision
operator in QuaLiKiz to properly treat DTEMs. To tune QuaLiKiz’s collision operator,
we use GENE simulations as a point of comparison. We mandate that DTEMs simulated
by QuaLiKiz exhibit a collisionality dependence in the DTEM growth rates matching that
of GENE. To verify the improvement, we use the newly improved version of QuaLiKiz
to simulate heat and particle transport of JET H-mode and L-mode collisionality scans
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within the core transport solver JETTO as part of the JET integrated transport code
(JINTRAC) suite (Cenacchi & Taroni 1998; Romanelli et al. 2014; Citrin et al. 2017),
many of which were investigated in Tala et al. (2019). Thanks to the improved Krook-like
operator obtained from comparisons with GENE simulations, we attain proper predictions
of density peaking in the core when using QuaLiKiz in predicting JET profiles.

This paper is organized as follows. First, we briefly describe the gyrokinetic modelling
equations and the collision operators used in this work in § 2. We then attempt to construct
an effective trapped fraction model in § 3. Next, in § 4 we discuss improvements made
to QuaLiKiz and analyse the ramifications of these improvements via the integrated
modelling framework. Finally, we present conclusions in § 5. The GENE simulations
settings can be found in Appendix A. Due to the large number of simulations produced
for this work, we present figures for isolated GENE simulations in Appendix B, figures
involving QuaLiKiz growth rate predictions in Appendix C, figures involving QuaLiKiz
flux predictions in Appendix D and figures produced from JETTO simulations in
Appendix E.

2. Gyrokinetic modelling
2.1. The GENE and QuaLiKiz simulations

The simulations conducted in this work are based on the gyrokinetic code GENE
and the quasilinear gyrokinetic code QuaLiKiz. We use GENE to solve the linearized
gyrokinetic equations in the electrostatic limit in a flux tube; this limit is justified for the
low-β tokamak cases analysed in this work, where β is the ratio of plasma pressure to
magnetic pressure. For a given species s, the distribution fs is split into a background
Maxwellian f0s and a fluctuating part f1s such that fs = f0s + f1s. The electrostatic potential
is self-consistently solved via the quasineutrality equation. In this work, we use both the
initial value solver and the eigenvalue solver versions of GENE. More details can be found
in Jenko et al. (2000).

In contrast, QuaLiKiz utilizes a variational approach and is based on the action-angle
formalism. Using this formalism, the kinetic equation is easily linearized and then
coupled to the quasineutrality equation. Therefore, instead of working with the distribution
function directly, we multiply the quasineutrality equation by the complex conjugate of the
electrostatic potential and integrate over the domain, thus obtaining a zero-dimensional
dispersion relation instead of a differential equation.

Note that, in this work, we have neglected toroidal rotation and radial electric shear. In
Tala et al. (2019), it was found that finite rotation only has a minor impact on the density
peaking, so we neglect these effects to simplify the analysis. Once the mode frequency
is found, we use a quasilinear saturation rule to compute the turbulent particle, angular
momentum and heat fluxes. We take the functional form of the eigenfunction to be a
Gaussian in ballooning space, where the parameters of the Gaussian are determined via
a high-frequency fluid approximation. As described in Cottier et al. (2014), the Gaussian
ansatz agrees well with linear gyrokinetic simulations near the peak of the eigenfunction,
but TEM eigenfunctions tend to be more extended in ballooning space compared with a
Gaussian. Assuming a shifted-circular geometry, we then obtain tractable two-dimensional
integrals that can be performed numerically, where passing and trapped particles are
treated separately. More details as to the particularities of the derivation can be found
in Stephens et al. (2021).

2.2. Collision operators
In this work, we make use of two collision operators: the Landau–Boltzmann
collision operator (Hazeltine & Waelbroeck 2004) in GENE and a Krook-like operator
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(Kotschenreuther, Rewoldt & Tang 1995) in QuaLiKiz. In general, a collision operator
enters the Boltzmann equation as

dfs

dt
=

(
∂fs

∂t

)
coll

=
∑

s′
Css′, (2.1)

where fs is the distribution function of species s and the collision operator Css′ takes
into account collisions between different species. The full Landau–Boltzmann operator
is written as

Css′ = Css′( fs, f ′
s ) = γss′

ms

∂

∂v
·
∫

d3v′
(

u2I − uu
u3

)
·
(

f ′
s′

ms

∂fs

∂v
− fs

ms′

∂f ′
s′

∂v′

)
, (2.2)

where we use notation such that f = f (v) while f ′ = f (v′) and v is the velocity
vector (Hazeltine & Waelbroeck 2004). We also use standard dyadic notation with ∗I
being the three-dimensional identity matrix and define the relative velocity u = v − v′.
Meanwhile, the factor γss′ is written as

γss′ = e4Z2
s Z2

s′λss′

8πε2
0

, (2.3)

where m and e are the mass of the indicated species respectively, ε0 is the vacuum
permittivity and λ = ln(Λ) is the Coulomb logarithm. Because the simulations in GENE
are linear, the collision operator is likewise linearized via the δf approximation, as
described in Crandall (2019).

In QuaLiKiz, a different approach is used. Since any collision operator that uses
derivatives would slow down QuaLiKiz considerably, we require a simpler approach to
obtain a tractable dispersion relation. Energy-dependent collision operators, currently
used in QuaLiKiz, already increase the computational complexity since Fried and Conte
integrals can no longer be used to analytically simplify calculations of collisional species.
Thus, any additional complexity in the operator must be carefully considered to avoid
a computationally intractable code. We therefore make use of a Krook-style operator
(Bhatnagar, Gross & Krook 1954; DeLucia & Rewoldt 1981) constructed to mimic the
qualities of a pitch-angle operator. First, we neglect ion–ion collisions completely since
they play little role for TEMs. Electron–electron collisions are also ignored as they
provide only a small correction to the collision operator. Finally, this collision operator
is only used for trapped particles, meaning that particle number, momentum and energy
are not conserved. Although an artificial collision term could in principle be added to
passing particles to ensure conservation properties, it has been shown that these terms
are negligible corrections in the electrostatic limit (Rewoldt, Tang & Hastie 1986). Since
QuaLiKiz is an electrostatic code, these conservation properties can be safely ignored. To
verify this, a brief implementation of passing electron collisions did not alter calculated
growth and was thus discarded. Consequently, marginally passing particles deflecting into
the trapped part of velocity space tend to have a weak effect on TEM growth rates for the
considered parameter regimes. We then write for electrons

(
∂fe

∂t

)
coll

=
⎧⎨
⎩

−νe

(
δfe − eφ

Te
f0e

)
if trapped,

0 if passing,

(2.4)
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where φ is the perturbed electrostatic field and T is the temperature (Romanelli, Regnoli
& Bourdelle 2007). Meanwhile, because we have no collision operator for ions, we write

(
∂fi

∂t

)
coll

= 0. (2.5)

Collisions thus drive the δfe to eφ/Te, which corresponds to the electron adiabatic response
created by the electrostatic perturbation.

We proceed with the construction of the Krook-style collision operator, following the
analysis presented by DeLucia & Rewoldt (1981) and Rewoldt, Tang & Hastie (1987).
For simplicity, we consider only one ion species; the final result can be generalized for
multiple ion species by replacing Zi with Zeff for electron collisions and a sum over all ions
for ion collisions. The key is to construct two separate preliminary collision operators for
electrons and ions with collision frequencies

νe = aeε
νei

(v̂e)3

Zi + H(v/vTe)

|1 − 2ε − λ|2 , (2.6)

νi = aiε
νii

(v̂i)3

H(v̂i)

|1 − 2ε − λ|2 . (2.7)

Here, ε = r/R0 is the inverse-aspect ratio where r is the local minor radius and R0 is
the major radius, λ is the pitch angle parameter, νss′ denotes the characteristic collision
frequency between species s and s′, v̂s = v/vth,s is the speed normalized to the thermal
velocity vth,s = √

2Ts/ms and as is a constant. Meanwhile the function H is defined as

H(x) = e−x2

√
πx

+
(

1 − 1
2x2

)
erf(x). (2.8)

In QuaLiKiz, we use the following definition for the pitch-angle parameter λ:

λ = μBmin

E
, (2.9)

where μ is the magnetic moment, Bmin is the magnetic field strength evaluated at its
minimum on a given flux surface and E is the kinetic energy. Because QuaLiKiz assumes
circular flux surfaces, for small ε, the magnetic field strength can be approximated as
B ≈ B0(1 − ε cos(θ)), where θ is the poloidal angle and B0 is a constant characteristic
field strength. Thus, Bmin = B0(1 − ε). The pitch-angle parameter determines whether a
given particle is either trapped (λ > 1 − 2ε) or passing (λ < 1 − 2ε). The trapped–passing
boundary is given at λ = 1 − 2ε.1 The pitch-angle dependence in the collision operator
mimics the effects of pitch-angle scattering in a crude way without the use of
differential equations. Meanwhile, the collision frequency is constructed to diverge at the
trapped–passing boundary. This accounts for enhancement of collisions at this boundary in
velocity space. It is important for any implementation of this method to correctly captures

1Note that our definition of λ is somewhat different than other conventional texts since we use Bmin as the reference
magnetic field. If we were to use B0 as the reference magnetic field, then the trapped–passing boundary would be given
at λ = 1 − ε. This distinction is related to why the previous version of the collision operator was bugged, which will be
discussed in § 4.
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this divergence. We also note for deeply trapped, thermal particles that

νe ∼ Zνei

ε
, (2.10)

νi ∼ νii

ε
. (2.11)

The collision frequencies are constructed such that they mimic the effective collision
frequency for a simple Krook operator (νeff = ν/ε). This takes into account the fact that the
typical scattering process we are concerned with is not 90 ◦ scattering but rather diffusion
from the trapped part of velocity space to the passing part of velocity space.

The coefficients ae and ai are determined by comparing the collisional models with a
dispersion relation obtained using a Lorentz collision operation by means of the variational
principle (Rosenbluth, Ross & Kostomarov 1972). It is important to note that this is
calculated in the regime where

νii

ε
� |ω| � νei

ε
, (2.12)

where ω is the complex mode frequency. DeLucia then writes (DeLucia & Rewoldt 1981)

ae = 1.31, (2.13)

ai = 9.42 × 10−3. (2.14)

These coefficients are chosen such that they reproduce the collisional scalings obtained
from the more accurate Lorentz model. The next step is to construct an operator that is
valid outside this limit and bridges the regime of low collisionality and high collisionality
(relative to the mode frequency). The result is

νe = ε
νei

v̂3
e

Zi + H(v̂e)

|1 − 2ε − λ|2
0.111δ + 1.31

11.79δ + 1
, (2.15)

νi = ε
νii

v̂3
i

H(v̂i)

|1 − 2ε − λ|2
0.111δ + 1.31

11.79δ + 1
, (2.16)

where δ will be defined momentarily. The numerical factors are constructed such that

lim
δ→0

0.111δ + 1.31
11.79δ + 1

≈ ae = 1.31, (2.17)

lim
δ→∞

0.111δ + 1.31
11.79δ + 1

≈ ai = 9.42 × 10−3. (2.18)

The δ-dependent ratio ensures that electron and ion collision frequencies have similar
limiting behaviour for arbitrary frequency ω while still independently abiding by the
limiting behaviour found when enforcing the ordering in (2.12). We then require the
numerical factor δ to depend on the collisional frequency and mode frequency such that

lim
|ω|/νss′→0

δ = 0, (2.19)

lim
|ω|/νss′→∞

δ−1 = 0. (2.20)

There is a wide degree of freedom in constructing a specific definition of δ such that one
cannot prescribe a formula from analytical analysis alone. It is necessary to make reference
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to direct numerical simulations using more exact operators and perform a comparison with
define δ. The original form of this operator was applied to codes used by Rewoldt (Rewoldt
et al. 1986, 1987) and then modified in Kotschenreuther et al. (1995) based on comparisons
with the more exact Lorentz collision operator.

We consider two functional forms of δ. The first one is taken from Kotschenreuther et al.
(1995) and is defined as

δK =
( |ω|ε

37.2νeiZeff

)1/3

, (2.21)

whereas the new one implemented in QuaLiKiz through detailed comparisons with GENE
is defined as

δQ = 12.0
( |ω|ε

νeiZeff

)3/2

. (2.22)

A detailed comparison of these two operators will be made in § 4. We also note that the
collision operator as currently implemented in QuaLiKiz uses a slightly different definition
for the electron–ion collision frequency. The definition QuaLiKiz uses is

νei,Q = 4
3
√

π
νei, (2.23)

where in other works νei is commonly written as

νei = nee4λe

4πε2
0m2

ev
3
th,e

, (2.24)

which is based on energy transfer times in collision. Here, λe is the Coulomb logarithm
for collisions involving electrons.

3. Effective trapped electron fraction
3.1. Derivation of model

The intended purpose of this model is to simplify the treatment of collisions for
gyrokinetic calculations in an integrated modelling framework. In reduced kinetic
modelling, it is typical to bounce average the trapped electron kinetic response, much like
in the bounce-averaged drift kinetic equation. The bounce averaging approach QuaLiKiz
can be found in Stephens et al. (2021). To summarize, the trapped electron part of the
dispersion relation requires an integration over the trapped part of velocity space; the
natural variables to integrate over are the energy and the pitch angle. In the collisionless
limit, the energy integration can be performed analytically using the plasma dispersion
function. The goal, then, is to devise a model that includes the effects of collisions while
retaining the numerical advantage of working in the collisionless limit.

We aim to construct a reduced model for DTEMs that can accurately predict and
characterize the growth rate spectrum. We first describe basic features of trapped particles
and TEMs. Specifically, we want to characterize the how collisionality stabilizes DTEM
growth rates by considering the effect of collisional detrapping on trapped particle bounce
orbits. We then distinguish between deeply trapped particles, which are difficult to detrap
via collisions, and marginally trapped particles, which can easily be deflected into the
passing part of velocity space. We define the effective trapped fraction by quantifying
the proportion of the trapped particle population that is deeply trapped, as opposed to
marginally trapped. The larger the collisionality, the lower the effective trapped fraction.
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Since the trapped fraction drives TEM instabilities, we hypothesize that the effective
trapped fraction should drive DTEM instabilities.

The driving idea is that the deeply trapped particles should be the subgroup that drives
the DTEM. Our plan of attack, then, is to construct an effective trapped fraction by first
defining a parameter, which we term ac, that delineates between marginally trapped and
deeply trapped particles by considering the effect of collisions. The effective trapped
fraction would simply be the subgroup of trapped particles that are deeply trapped. The
model parameter ac at this stage is undetermined. Our goal is to determine the value of
ac with the hope that it can be held constant across core tokamak parameters, namely
inverse minor aspect ratio, collisionality, temperature and density gradients and magnetic
geometry. For the cases considered, we are able to determine a value of ac such that the
effective trapped fraction could take into account variations in inverse-aspect ratio and
collisionality. Each case differs in temperature and density gradients as well as magnetic
geometry. Unfortunately, we determine that the parameter ac varied substantially from case
to case. In the present study, we are unable to predict the appropriate value of ac given a
set of gradient and geometry information. Therefore, to improve the collision operator in
QuaLiKiz, we take a different (and successful) approach as detailed in § 4.

At a given poloidal angle θ , we define the trapped fraction as the proportion of particles
in velocity space that are trapped. It is given by

ft(θ) =

∫
trapped

d3vf (v)

∫
d3vf (v)

= 1
n

∫
trapped

d3vf (v). (3.1)

The boundary in velocity space between trapped particles and passing particles can be
characterized by the pitch angle. Since a curve of constant pitch angle forms a cone in
velocity space, the trapped fraction can be calculated for an isotropic velocity distribution
by simply taking the ratio of a spherical cone’s volume to a sphere’s volume. For an
isotropic distribution in the small inverse-aspect-ratio limit, the trapped particle fraction
at specific poloidal angle is

ft(θ) =
√

ε(1 + cos(θ)). (3.2)

However, we are typically interested in simulations that take into account the entire flux
surface, not just a single position on the flux surface. By taking advantage of the fact that
the density of particles is approximately a flux function, we can compute the flux surface
average of the trapped particle fraction to obtain

〈ft〉 = 1
4π2

∫
dSft(θ) = 1

2π

∫ 2π

0
dθ(1 + ε cos(θ))ft(θ) = 2

√
2ε

π
+ 2

√
2ε3/2

3π
. (3.3)

The trapped fraction drives both CTEM and DTEM instabilities. The specific effect
collisions have on the instability can vary between different regimes; in some cases,
especially those with particularly large density gradients (Connor et al. 2006; Zhao, Zhang
& Xiao 2017), collisions can destabilize the TEM (Kadomtsev & Pogutse 1967, 1970). In
other cases, collisions instead stabilize the mode (Gang, Diamond & Rosenbluth 1991;
Romanelli et al. 2007; Manas et al. 2015). The literature typically refers to a simple
picture where collisions can stabilize the TEM by detrapping electrons and expelling
them into the passing part of velocity space. Collisional effects are in actuality more
complicated given that their net effect on the growth rate depends on the collisional
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regime; an elementary treatment that demonstrates both destabilizing and stabilizing
effects can be found in Kadomtsev & Pogutse (1970). It is also important to keep in mind
that, for extremely high collisionality, one cannot adequately speak of trapped electrons
due to the lack of any characteristic bounce motion (Kadomtsev & Pogutse 1971). We
note that earlier studies often made use of Krook collision operators with no velocity
dependence for analytical simplicity, while modern supercomputers allow for the use of
more sophisticated collision operators such as the Lorentz or Landau–Boltzmann operator.
For the simulations conducted with typical tokamak core parameters and more realistic
collision operators, the instability generally stabilizes with increasing collisionality. We
introduce the dimensionless quantity ν∗ to characterize the collisional regime and define
it as

ν∗= 4
3
√

π

νei

ωb0ε
. (3.4)

This is the classic collisionality parameter encountered in neoclassical theory. The factor
of ε−1 takes into account the effective collisional frequency relevant for trapped electrons
in velocity space as discussed in § 2. Meanwhile, the numerical prefactor 4/(3

√
π) is

included by convention, since the characteristic collision time (Wesson 2012) associated
with energy transfer between electrons and ions is

τe = 3(2π)3/2 ε2
0m1/2

e T3/2
e

nee2λe
= 3

√
π

4νei
. (3.5)

Meanwhile, the term ωb0 is the characteristic electron bounce frequency (Stephens, Garbet
& Jenko 2020) and defined to be

ωb0 =
√

Te/me
√

ε

qR0
, (3.6)

where q is the safety factor. Small values of ν∗ corresponds to the scenario where
trapped electrons undergo many bounce motions before undergoing a significant collision,
whereas large values of ν∗ imply that the trapped electrons undergo many collisions
before completing a single bounce motion. However, this characterization is only valid
for deeply trapped thermal electrons. For any given distribution of electrons, there will
be a population of low-energy trapped electrons that undergo many collisions before
completing a bounce motion. We therefore consider the velocity-dependent collisionality
parameter ν̂ defined as

ν̂(v) = Zeffνei

ωbε

1
v̂3

e

. (3.7)

We have included v̂−3
e to take into account the velocity dependence of the collisional

frequency. Meanwhile, ωb corresponds to the velocity dependent bounce frequency,
defined for small inverse-aspect ratio as

ωb =
√

E/me
√

ε

qR0

π

2K(κ)
= ωb0v̂e

π

2K(κ)
. (3.8)

Here, K is the complete elliptic integral of the first kind. We also define the trapping
parameter κ such that

λ = 1 − 2εκ2. (3.9)
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The trapping parameter is related to the bounce angle θb via

κ = sin(θb/2), (3.10)

where θb is the poloidal angle such that v‖ = 0 (e.g. the banana tip). Trapped particles at a
specific poloidal angle θ have the property that

| sin(θ/2)| ≤ κ ≤ 1. (3.11)

Since all of our simulations have sufficiently small ε, this formula is accurate for our
purposes This formula is well suited for our purposes, since it has been shown to be
accurate for ε � 0.3 in accordance with our simulations (Stephens et al. 2020). We thus
use the approximate formula in (3.8).

Thus, while the bounce frequency is largely dependent on the velocity, it is also
dependent on the pitch angle. All else being equal, particles that are close to the
trapped–passing boundary have lower bounce frequency and thus correspond to larger
values of ν̂. Intuitively, this corresponds to marginally trapped particles being more easily
detrapped. The full expression for ν̂ is then

ν̂ = νei

ωb0ε

2K(κ)

πv̂4
e

= ν∗ 2K(κ)

πv̂4
e

. (3.12)

We now use the notion of the trapped particle fraction as inspiration to define the
marginally trapped fraction of particles. We call particles with low values of ν̂ marginally
trapped as defined by the condition

ν̂ac ≥ 1, (3.13)

where ac is a constant that is ∼O(1). Equivalently, we can write this as

v̂e ≤
(

acν
∗ 2K(κ)

π

)1/4

. (3.14)

We then define the marginal trapped fraction to be the fraction of total particles that meet
the above condition, leading to

fm =

∫
marginal

d3vf0e

∫
d3vf0e

, (3.15)

where f0e is a Maxwellian given by

f0e = ne

(
√

πvth,e)3
e−v2/v2

th,e = ne

(
√

πvth,e)3
e−v̂2

e . (3.16)

Essentially, we integrate over the speed v up until the marginal condition is met and then
integrate over κ . To lowest order in ε, the integral simplifies to

fm =
∫ 1

| sin(θ/2)|

dκ
√

2εκ√
κ2 − sin2(θ/2)

F
(

acν
∗ 2K(κ)

π

)
, (3.17)
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where the function F is defined as

F(x) = erf(x1/4) − 2√
π

x1/4 e−x1/2
. (3.18)

The constant ac therefore sets the boundary at which we consider particles to be marginally
trapped. We note that

lim
ac→0

fm = ft, (3.19)

lim
ac→∞

fm = 0. (3.20)

We then define the effective trapped electron fraction that contributes to the trapped
electron drive to be

f ∗
t = ft − fm. (3.21)

We next take flux-surface average of fm to remove the poloidal dependence, leading to

〈fm〉 ≈ 1
2π

∫ 2π

0
dθ

∫ 1

| sin(θ/2)|

dκ
√

2εκ√
κ2 − sin2(θ/2)

F
(

acν
∗ 2K(κ)

π

)
,

= 2
√

2ε

π

∫ 1

0
dκK(κ)κF

(
acν

∗ 2K(κ)

π

)
, (3.22)

where the simplified expression is obtained by changing the order of integration. Likewise,
the flux surface-averaged effective trapped electron fraction is

〈f ∗
t 〉 = 〈ft〉 − 〈fm〉 = 〈ft〉

(
1 −

∫ 1

0
dκK(κ)κF

(
acν

∗ 2K(κ)

π

))
. (3.23)

In the regime where collisions contribute to stabilization of DTEMs, we hypothesize
that the effective trapped electron fraction drives DTEM instabilities in a way that is
analogous to the trapped electron fraction drive in CTEMs. For simplicity, we fix other
important parameters such as the normalized temperature and density gradients and
consider the growth rate γ on a case-by-case basis while allowing ε and ν∗ to vary. For
the purpose of this work, we vary νei for any given case by scanning over the reference
temperature of the simulation. In general, the growth rate would of course depend on both
ε and ν∗ in a non-trivial way. The growth rate for CTEMs can then be written as

γ = γ (〈ft〉), (3.24)

where gradients, magnetic geometry parameters and so on are held constant. For DTEMs,
we hypothesize that the growth rate can instead be written as

γ = γ (〈f ∗
t 〉). (3.25)

That is, by holding everything else fixed, the collisionality and ε dependence can be
summarized by the effective trapped electron fraction. Intuitively, we claim collisions
stabilize the mode via the detrapping effect where electrons that are close to the
trapped–passing boundary or of particularly low energy are prone to detrapping. The
dimensionless quantity ac determines the exact strength of this detrapping effect. We
argue that in suitable cases, the collisionality and ε dependence can be reduced to a
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one-parameter model where the parameter ac is determined by the parameters of the case
(e.g. the temperature and density gradients). Equivalently, we can determine the effective
inverse-aspect ratio ε∗ by calculating

ε∗ =
(

π

2
√

2
〈f ∗

t 〉
)2

. (3.26)

3.2. Model testing
To test the efficacy of this model, we conduct linear gyrokinetic simulations based off of
five parameter sets using GENE. Not only do we test TEM-dominated regimes, but we also
test ITG-dominated regimes where there exists a subdominant TEM. In ITG-dominated
regimes, an eigenvalue solver is required to analyse any subdominant TEMs; otherwise
an initial value solver suffices when the TEM is dominant. We aim to estimate the
model parameter ac in different cases to determine whether it varies significantly from
case to case. The parameter sets are summarized in table 1. We use two basic cases:
the general atomics (GA) standard case (Waltz et al. 1997) and a WEST case based on
an electron-heated long L-mode pulse (Yang et al. 2020). We also use three additional
experimentally motivated cases based upon JET profiles where DTEMs play an important
role in turbulent transport (Keilhacker et al. 2001; Tala et al. 2019). The JET pulse numbers
are 73 342 (Baiocchi et al. 2015), 95 272 (Tala et al. 2022), and 94 875 (Citrin et al. 2022).
In the table, R/a is the aspect ratio of the machine where a is the minor radius of the
machine while R is the major radius. We also define the parameters

τ = Ti

Te
, (3.27)

1
LTs

= − 1
Ts

dTs

dr
, (3.28)

1
Ln

= −1
n

dn
dr

. (3.29)

For simplicity, we include deuterium as the ion species with charge Zi = 1 and nucleon
number Ai = 2. We include the effects of multiple ion species via Zeff. Assuming flat
Zeff, quasineutrality guarantees that Lne = Lni = Ln. The simulations also assume a circular
equilibrium defined by the safety factor q and the magnetic shear s. For JET pulse 73 342
and JET pulse 94 875 parameters we use the s–α equilibrium model, with α denoting
the magnetohydrodynamic parameter that characterizes the pressure gradient. In all these
linear runs, we take the electrostatic limit and thus neglect electromagnetic effects. For all
cases, we use the Landau–Boltzmann collision operator. Various GENE settings can be
found in Appendix A.

For each case we perform a scan over kθρs, where kθ is the poloidal component of
the wavenumber of the mode and ρs = √

Te/Ωi, where Ωi is the reference ion cyclotron
frequency. For each case, the interval is 0.2 ≤ kθρs ≤ 0.5 with increment 0.1. We also
scan over ε for each case, and for each value of ε we scan over ν∗ by varying the reference
temperature. We perform convergence tests for each individual simulation by varying
the resolution of the simulation until the growth rate has sufficiently converged. For the
simulations where the TEM is dominant, we use initial value simulations to determine
the growth rate. For runs where the TEM is subdominant to an ITG mode, we use the
eigenvalue solver to solve for the TEM growth rate. We use the sign of the real frequency
as well as the behaviour of the mode with respect to collisionality to determine whether it is
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Tokamak Case R/a Zeff R/LTe R/LTi R/Ln q s α τ ε

DIII-D GA Standard 3 1 9.0 9.0 3.0 2.0 1.0 0 1 0.1667
WEST 54 178 5 2.8 15.0 9.0 5.5 1.7 0.9 0 1/2 0.10
JET 73 342 3 1.8 9.7 8.1 2.4 2.4 2.0 0.80 1 0.24
JET 95 272 3 1 10.2 10.2 3.5 2.0 2.1 0 1 0.24
JET 94 875 3 1.7 11.4 10.0 3.0 2.2 1.8 0.75 1 0.225

TABLE 1. Summary of cases being simulated. For each case, we list the aspect ratio, the effective
charge number, gradient length scales, parameters characterizing the magnetic geometry, the
ion-to-electron temperature ratio and the inverse-aspect ratio at the reference radial location.
Note that we scan over the collisionality by self-consistently varying the temperature.

a TEM or not for our purposes. It is important, however, to keep in mind that instabilities
are not always easily separable from each other, so some caution must be taken when
labelling a mode as TEM or ITG (Merz & Jenko 2010). This is most easily seen in the
WEST electron-heated case where the real frequency of the dominant mode continuously
changes with collisionality. Here, we call a mode ITG dominated if the sign of the real
mode frequency aligns with the ion drift direction and TEM dominated if the sign of the
real mode frequency is associated with the electron drift direction. The other four cases
are typically ITG dominated with a subdominant TEM at reference parameters. For each
mode we obtain the frequency ω = ωr + iγ , where ωr is the real frequency and γ is the
TEM-dominated growth rate.

First, we plot the growth rates for all five cases as a function of kθρs as well as ε

in figures 1 and 2 (shown here) and figures 22–24 (shown in Appendix B). We show
representative examples of the five cases in the main body of the paper while plots for
the remaining cases are shown in the appendices; these additional plots display similar
trends as the representative examples. Note that some of these curves do not possess
the same number of points or collisionality range. This is because for all collisionality
scans, we use the same values of the temperature and density for convenience. Moreover,
when ε is small, then smaller values of ν∗ are required to stabilize the mode; mismatches
in the domain occur when the mode is stabilized. The trapped electron fraction strongly
drives the mode, which can be seen by comparing the growth rate spectrum for different
values of ε. Next, we plot the growth rate as a function of collisionality for kθρs = 0.3 in
figures 3 and 4 (shown here) and figures 25–27 (shown in Appendix B). It can be seen that
collisions stabilize the mode for moderately high values of ν∗ and that, with exception of
a small number of cases, the growth rate decreases monotonically with collisionality. This
is in congruence with previously acquired results for typical tokamak core parameters
(Kotschenreuther et al. 1995; Manas et al. 2015). In general, however, the instability’s
dependence on collisionality is non-trivial for all of these cases. To test the model, we
scan over different values of ac for any given case, where ac does not vary within a case
for different values of ε, ν∗, or kθρs. We then obtain a best fit such that the growth rate
dependence on ε∗ is nearly independent of ε for the collisional cases and matches the
collisionless growth rate. Figures 5 and 6 (shown here) and figures 28–30 (in Appendix B)
show the result for kθρs = 0.3. The only significant deviations occur for the GA and WEST
based cases at fairly high values of ε as well as when the growth rate saturates with
increasing collisionality. An example of this saturation can be found in the blue, orange
and yellow curves in figure 26. Otherwise, the deviation from the collisionless calculation
is less than 5 %. The determined values for ac are shown in table 2.
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FIGURE 1. Collisionless TEM growth rates calculated by GENE for different values of
kθρs plotted against ε using GA standard parameters. Note that the growth rate increases
monotonically with ε.

FIGURE 2. Collisionless TEM growth rates calculated by GENE for different values of kθρs
plotted against ε using WEST pulse 54 178 parameters. Note that the growth rate increases
monotonically with ε.

3.3. Discussion
Our simple parameter model successfully describes the collisionality dependence of the
growth rate. This may come as a surprise, given that the Landau–Boltzmann operator
contains physics such as pitch-angle scattering and energy diffusion. For TEMs, however,
the dominant effect of collisions is due to the velocity dependence of the collision
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FIGURE 3. Collisional TEM growth rates calculated by GENE for different values of ε plotted
against ν∗ using GA standard parameters where kθρs = 0.3. Note that the growth rate decreases
nearly monotonically with ν∗.

FIGURE 4. Collisional TEM growth rates calculated by GENE for different values of ε plotted
against ν∗ using WEST pulse 54178 parameters where kθρs = 0.3. Note that the growth rate
decreases nearly monotonically with ν∗.

frequency and the scattering of trapped particles into the passing part of velocity space.
Both effects are included in conventional trapped particle Krook operators, where the
effective velocity-dependent collision frequency is obtained by simply dividing by the
inverse-aspect ratio. These dominant collisional effects are also encoded in the effective
trapped fraction model. Although we can successfully characterize the TEM growth rates
with this approach, there are a few caveats. While ac ∼ O(1)–O(10) for all cases, its value
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FIGURE 5. The TEM growth rates calculated by GENE for different values of nominal ε plotted
against effective ε∗ = (π〈f ∗

t 〉/2
√

2)2 using GA Standard parameters where kθρs = 0.3 and 〈f ∗
t 〉

is a function of ν∗.

FIGURE 6. The TEM growth rates calculated by GENE for different values of nominal ε plotted
against effective ε∗ = (π〈f ∗

t 〉/2
√

2)2 using WEST pulse 54 178 parameters where kθρs = 0.3
and 〈f ∗

t 〉 is a function of ν∗.

varies from 1.2 to 8.1 as seen in table 2. The wide variance indicates that we have no
guarantee that ac will be of O(1) in all cases; parameter regimes with even larger values of
ac may exist. We expect fundamental parameters such as the temperature gradients, density
gradient, and the magnetic geometry to strongly affect the value of ac. For instance, the
best fit for the WEST-based case leads to ac = 1.2, substantially smaller than the other
cases analysed; distinguishing factors of the WEST-based case include a large electron
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Tokamak Case ac Error

DIII-D GA Standard 6.5 0.05
WEST 54 178 1.2 0.23
JET 73 342 5.0 0.03
JET 95 272 8.1 0.02
JET 94 875 3.9 0.05

TABLE 2. Value of ac for each simulated case. We estimate this parameter by performing
a least-squares fit between the model data (derived from collisionless simulations) and
finite-collisionality simulations. Error is calculated by computing the largest pointwise difference
in growth rates between the collisionless curve and any of the collisional curves.

FIGURE 7. Collisional TEM real frequencies calculated by GENE for different values of ε
plotted against ν∗ using WEST pulse 54 178 parameters where kθρs = 0.3. Note that at high
collisionality, some of the real frequencies trend far closer to 0, indicating an unorthodox TEM.
Convergence tests were performed to confirm the accuracy of these results.

temperature gradient and a non-unity ion-to-electron temperature ratio. In particular, (3.14)
indicates that small values of ac are associated with weaker collisional damping.

Analysis of the WEST-based case also reveals a shortcoming of the model. In particular,
the model does not predict the correct growth rate trends at very high collisionality for
ε < 0.10. The underlying cause is made clear in figure 4, where the growth rates for
ε = 0.06 and ε = 0.08 flatten with increasing collisionality. These modes have entered
an unorthodox resistive regime at high collisionality, likely because the drive from the
trapped electron fraction is quite low. This can be further confirmed in figure 7, which
plots the real frequency of these modes over collisionality. At high collisionality, the real
frequencies for ε ≤ 0.10 suddenly become much smaller in magnitude, indicative of a
different mode branch than the conventional DTEM. As such, we do not expect our model
to succeed in this regime.
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Because the two parameters ε and ν∗ did not fully characterize the DTEM growth rates,
the derived model could not be easily extended into a quasilinear code. Unfortunately, the
fitted value of ac varies too strongly in terms of plasma parameters. A brief implementation
of this model was attempted in QuaLiKiz to fix the aforementioned issue with core density
peaking for JET pulses 73 342 and 95272 with various values of ac. We omit this specific
analysis for brevity, as the implementation attempt did not produce the requisite density
peaking.

4. Improvements to QuaLiKiz’s collisional operator
4.1. Context

Next, we discuss improvements to the collisional operator in QuaLiKiz. Recall that the
trapped electron collision operator contained a term, δ, which depends on free parameters.
In QuaLiKiz, it enters into the collision operator as

νe = ε
νei

v̂3
e

Zeff

|1 − 2ε − λ|2
0.111δ + 1.31

11.79δ + 1
. (4.1)

The strategy is to change the definition of δ such that the TEM collisionality dependence in
QuaLiKiz matches the aforementioned GENE simulations that use the Landau–Boltzmann
collision operator; we use the same exact simulations done in § 3 to perform the
QuaLiKiz-GENE comparisons. To appropriately change δ, we parameterize it such that

δ = aδ

( |ω|ε
νei,QZeff

)bδ

, (4.2)

where aδ and bδ are tuneable constants. Since our goal is to improve the treatment of
highly collisional DTEMs in QuaLiKiz, we must ensure that the behaviour for DTEMs
is preserved for low collisionality as well. From this parametrization we see that the old
definition of the Krook operator formulated in Kotschenreuther et al. (1995) uses

aδ,K = 0.30, (4.3)

bδ,K = 1
3 , (4.4)

whereas the new definition of the Krook operator uses

aδ,Q = 12.0, (4.5)

bδ,Q = 3
2 . (4.6)

Notably, the values of these parameters found in Kotschenreuther et al. (1995) are
also different from the original values detailed in DeLucia & Rewoldt (1981); these free
parameters were tuned to match the Lorentz operator used in Kotschenreuther et al.
(1995) to better predict the growth rate for TEMs. In arriving at the new tuning, we
scan over values of aδ and bδ and fit the resulting collisionality dependence of the TEM
growth rates to linear GENE simulations. Essentially, we use the GENE simulations
as a reference to compare the old and new versions of the Krook operator used in
QuaLiKiz. Because the values of aδ and bδ cannot be derived analytically, we expect
their optimal values to depend on the specific model using the Krook operator as every
kinetic model will have different underlying assumptions. Model differences constitute
one potential reason for the difference in the tuning parameters. In Kotschenreuther et al.
(1995), the collision operator was used in an eigenvalue code that treated electrons drift
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FIGURE 8. Collisionless TEM growth rates calculated by GENE and QuaLiKiz using GA
standard parameters plotted against ε, where kθρs = 0.3. Since this is calculated with no
collisions, both old Krook and new Krook in QuaLiKiz would agree perfectly.

kinetically. Moreover, that eigenvalue coded computed the eigenfunctions explicitly by
solving integrodifferential equation in a Ritz basis. In contrast, in QuaLiKiz trapped
electrons are treated in a bounce-averaged way with significant approximations and the
Gaussian eigenfunction is prescribed in advance. Moreover, their linear initial value
solver code used a Lorentzian collision operator, whereas our GENE simulations use the
Landau–Boltzmann collision operator. Our results indicate that both parameters should
be increased for implementation in QuaLiKiz for the examined scenarios. We observe in
(4.2) that aδ and bδ have competing effects on the collisionality dependence; large values
of aδ decrease the effect of collisionality, whereas large values of bδ increase the effect of
collisionality. Therefore, large departures in both parameters can lead to modest changes
in the computed eigenvalues.

It is important to note that we only perform linear GENE simulations to benchmark
QuaLiKiz. Nonlinear validations of QuaLiKiz’s turbulent transport model have been
conducted in the past such as in Casati et al. (2009), Citrin et al. (2012) and Bourdelle
et al. (2015). To compensate for the lack of nonlinear gyrokinetic simulations, we validate
the new treatment of collisions against experimental profiles using integrated modelling,
detailed in § 4.4.

4.2. The TEM growth rates
As a starting reference, we compare the calculated CTEM growth rates between QuaLiKiz
and GENE. Figures for kθρs = 0.3 are shown in figures 8 and 9 (shown here) and
figures 31–33 (shown in Appendix C) where the CTEM growth rates are plotted against ε.
We see here that, even in the collisionless case, there are some discrepancies between the
growth rates computed in QuaLiKiz and GENE; this is to be expected since the precise
growth rate is sensitive to the input parameters even when confined to similar models.
Some discrepancy likely due to approximations of the bounce-averaged electrostatic
potential in QuaLiKiz and the particularities of the Gaussian eigenfunction ansatz, the
improvement of which is the subject of current work The deviation tends to grow in both
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FIGURE 9. Collisionless TEM growth rates calculated by GENE and QuaLiKiz using WEST
pulse 54178 parameters plotted against ε, where kθρs = 0.3. Since this is calculated with no
collisions, both old Krook and new Krook in QuaLiKiz would agree perfectly.

FIGURE 10. Collisional TEM growth rates calculated by GENE and QuaLiKiz. Here, we use
GA standard parameters where kθρs = 0.3 and we plot against ν∗ for ε = 0.1667.

the limit of large ε and the limit of small ε. Moreover, the minimum value of ε that
destabilizes the TEM is slightly different between GENE and QuaLiKiz simulations. For
values of ε corresponding to mid-radius positions (e.g. ε � 0.25), however, the agreement
is satisfactory. Some discrepancy is expected given the approximations used in QuaLiKiz.
In particular, QuaLiKiz assumes that the trapped particles are deeply trapped when
calculating the trapped part of the dispersion relation (Stephens et al. 2021). Moreover,
the eigenfunctions used by QuaLiKiz make use of a Gaussian ansatz and are calculated in
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FIGURE 11. Collisional TEM growth rates calculated by GENE and QuaLiKiz (relative to their
reference growth rates). Here, we use GA standard parameters where kθρs = 0.3 and we plot
against ν∗ for ε = 0.1667.

FIGURE 12. Collisional TEM growth rates calculated by GENE and QuaLiKiz (relative to their
reference growth rates). Here, we use WEST pulse 54 178 parameters where kθρs = 0.3 and we
plot against ν∗ for ε = 0.10.

the fluid limit; it is known that this approximation is rather crude for TEMs (Cottier et al.
2014). We take these discrepancies into account by normalizing the collisional growth rate
to the CTEM growth rate when comparing collisionality scans in QuaLiKiz and in GENE;
our goal is to match the collisionality dependence using the collisionless growth rate as a
given. Thus we compute γref to be the collisionless growth rate for a given case and value
of ε for GENE and QuaLiKiz separately.
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FIGURE 13. Total integrated particle flux calculated in QuaLiKiz for JET pulse 73 342
parameters plotted against ν∗ where ε = 0.24. Note that nominal ν∗ = 0.50.

FIGURE 14. Total integrated ion heat flux calculated in QuaLiKiz for JET pulse 73 342
parameters plotted against ν∗ where ε = 0.24. Note that nominal ν∗ = 0.50.

In these figures, we also compare with an older ‘bugged’ version of QuaLiKiz.
QuaLiKiz’s definition of the pitch-angle parameter λ uses the minimum value of the
magnetic field as the reference magnetic field. Therefore, the trapped–passing boundary
occurs at λ = 1 − 2ε, hence the appearance of |1 − 2ε − λ|2 in the denominator of the
collision operator. Essentially, the singularity at the trapped–passing boundary in velocity
space is important to mimic the effects of Lorentzian collision operator. However, an older
version of QuaLiKiz incorrectly used |1 − ε − λ|2 in the denominator, thus misplacing
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FIGURE 15. Total integrated electron heat flux calculated in QuaLiKiz for JET pulse 73 342
parameters plotted against ν∗ where ε = 0.24. Note that nominal ν∗ = 0.50.

FIGURE 16. Ratio between total integrated particle flux and total integrated electron heat flux
calculated in QuaLiKiz for JET pulse 73 342 parameters plotted against ν∗ where ε = 0.24. Note
that nominal ν∗ = 0.50.

the trapped–passing boundary. This bug was fixed in the early stages of this work, and
comparisons with this bugged version of QuaLiKiz are included for completeness.

Taking inspiration from Kotschenreuther et al. (1995), we scanned over different values
for the free parameters aδ,Q and bδ,Q, where each parameter was initially varied separately;
for bδ,Q, we varied the exponent slightly over rational numbers between 1/4 and 2.
Meanwhile, we varied aδ,Q over two orders of magnitude. After converging on a trial set of
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FIGURE 17. Integrated modelling of a JET H-mode case as part of collisionality scan in Tala
et al. (2019), with lower collisionality.

FIGURE 18. Integrated modelling of a JET H-mode case as part of collisionality scan in Tala
et al. (2019), with higher collisionality.

values, we scanned over a small region in parameter space to determine the final tuning.
The final values are aδ,Q = 12.0, bδ,Q = 3/2. For completeness, we illustrate the new trend
for the GA standard case in figure 10 without normalizing to a reference growth rate. In
addition, we plot results for kθρs = 0.3 and nominal values of ε in figures 11 and 12 (shown
here) and in figures 34–36 (shown in Appendix C) with the normalization to reference
growth rates taken into account. The nominal values of ε are listed in table 1. We see
marked improvement for all DTEM growth rates and identify the probable culprit behind
the issues in integrated modelling when comparing GENE with the Landau–Boltzmann
operator, QuaLiKiz with the old Krook operator ((4.3) and (4.4)), and QuaLiKiz with the
new Krook operator ((4.5) and (4.6)). Essentially, the previous version of the collision
operator produced damping that was too strong.
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FIGURE 19. Integrated modelling of a JET H-mode case as part of collisionality scan in Tala
et al. (2019).

4.3. Particle and Heat Fluxes
Next, we validate these improvements by computing the complete particle, ion heat
and electron heat fluxes in QuaLiKiz over the range 0.1 ≤ kθρs ≤ 2.0 for the three
JET-based cases (due to quasineutrality, the particle flux is ambipolar). This will allow
us to better interpret our integrated modelling results. Because we use JETTO-QuaLiKiz
for the integrated modelling, we focus on the JET-based cases in this section. We see in
figures 13–16 (shown here) and in figures 37–44 (shown in Appendix D) that the important
properties of the flux structure are shifted rightwards in collisionality with the new Krook
operator, indicating that the effective impact of collisions in the new operator is reduced.
We can see in figures 13 and 37 that the outward particle flux at the nominal value of
ν∗ = 0.5 for these simulations is reduced; an erroneously large outward particle flux would
lead to a less peaked density profile in the core. We note that, in other work, the net impact
of the new QuaLiKiz Krook operator on low-collisionality JET hybrid H-mode density
peaking was indeed shown to be low (Citrin et al. 2022); it is evident from figure 36
that the collisionality dependence of the old Krook operator was already quite close to
that of GENE. Indeed, it is important that we do not worsen the collision operator in
the cases where collisionality dependence is correct. Since QuaLiKiz’s collision operator
functioned quite well in the low-collisionality limit, a crude approach such as artificially
reducing ν∗ by a factor of 10 would be inappropriate.

4.4. Integrated Modelling
Finally, we implement the new collision operator by running JETTO-QuaLiKiz
simulations for H-mode and L-mode ν∗ collisionality scans reported in Tala et al. (2019)
as shown in figures 17–19 (shown here) and figures 45–47 (shown in Appendix E),
as well as two high-collisionality H-modes (figures 48 and 49 in Appendix E), a very
high-collisionality ohmic L-mode (figure 50 in Appendix E) and a mid-collisionality
heated L-mode (figure 20). In these simulations, we include an neutral beam
injection-driven particle source. Moreover, the profiles for ρ ≥ 0.8 are treated as boundary
conditions, and only the radial domain ρ < 0.8 is simulated in the integrated model.
Note that finite rotation effects are not considered in this work. We see that the correct
behaviour is preserved in low-collisionality cases. We also observe improvement in the
density profile predictions for mid- to high-collisionality cases, L-mode cases without
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FIGURE 20. Integrated modelling of a medium-collisionality heated L-mode (Weisen et al.
2020).The version of QuaLiKiz with the incorrect implementation of the collision operator is
in red.

FIGURE 21. Instability spectrum plotted against kθρs for JET L-mode at ρnorm = 0.75. Note
that with new Krook we retain the correct TEM instability, whereas for old Krook the TEM is
stable.

much change in the temperature profile prediction. For deeper insight as to why the new
Krook operator improves the density peaking, we compute the instability spectrum for
a high-collisionality L-mode case and plot the results in figure 21. We see here that for
kθρs > 0.2 the mode switches to a proper TEM-dominated regime for the new Krook
operator, while the ITG mode is dominant for low kθρs. In the old Krook operator, the
TEM never becomes dominant for this example. It is known that the interplay between
the two modes in the mixed ITG–TEM regime is important for density peaking (Fable
et al. 2010). We strongly suspect that the improper treatment of DTEMs in QuaLiKiz is
responsible for a large part in the incorrect density profiles.

Note that we also show particularly poor cases which exhibit noticeable hollowing in the
density profile between the core and the edge region; these cases are associated with the
highest-collisionality regimes among all the discharges studied. We note that there is some
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improvement in the density profile behaviour, although the incorrect density hollowing is
still present.

As mentioned previously, in older versions of QuaLiKiz, the Krook operator was
implemented incorrectly. Essentially, the pitch-angle dependence of the old Krook
operator was coded in QuaLiKiz such that the singularity in the Krook operator was
not located at the trapped–passing boundary in velocity space, but some other region
of velocity space. For completeness, we also include a comparison between this bugged
version of the old Krook operator, the bug-fixed version of the old Krook operator and
the new Krook operator in figure 20. In this case, the red curve indicates the version of
QuaLiKiz that used the bug-fixed version of the old Krook operator. The bug fix alone
resulted in marked improvement in this particular case. We also plot the growth rates
predicted by the old bugged Krook operator in figures 11 and 12 (shown here) and in
figures 34–36 (shown in Appendix C).

Lastly, we note that the purpose of this study was to improve the density peaking
predictions in the core. Unfortunately, one drawback of the new changes is that the
temperature profile prediction has degraded in some cases. This is most likely due
to large number of approximations made in QuaLiKiz; for instance, even in the
collisionless regime, QuaLiKiz’s predicted TEM growth rates differ from GENE. Further
improvements may require a more exact gyrokinetic code that better matches linear GENE
simulations.

5. Conclusions

The complex interplay between the trapped electron dynamics and collisions pose
a difficult challenge in TEM modelling, especially because a large degree of model
reduction is mandatory for profile predictions in integrated modelling. Nonetheless, we
attempted to construct a reduced collisionality model with the aid of GENE simulations
using the notion of an effective trapped electron fraction. Thanks to this investigation, we
were able to gain insight as to how collisions impact TEM growth rates by conducting
scans over ε and ν∗. The resulting model was successful in characterizing the growth rate
spectrum for DTEMs, providing a straightforward parametric relationship between CTEM
growth rates and DTEM growth rates. However, the above two parameters were not enough
to completely characterize the growth rate; since a free parameter remained, we could not
converge upon a universally applicable collisionality model.

Since the effective trapped fraction model could not be used for reduced models such
as QuaLiKiz, we therefore focused on improving the Krook-like operator directly. In
this work, we successfully improved the collisional model in QuaLiKiz by tuning the
dimensionless parameters of the Krook-like operator to GENE simulations using the
Landau–Boltzmann operator. The result was an improvement in moderately collisional
L-mode cases while also preserving the correct treatment for low collisionality.
The improved collision operator allowed for improved particle flux predictions in
experimentally relevant regimes by lessening outward particle transport, thus leading to
more peaked density profiles as seen in experiments at both low- and high-collisionality
regimes. We note further improvements can be made to QuaLiKiz given that ν∗ > 1 cases
still exhibit noticeable and unphysical density profile hollowing in between the core and
the edge. However, we are likely hitting the limitations with regards to improvements
of reduced gyrokinetic models such as QuaLiKiz. We have already seen in this work
that changes made to improve the density peaking predictions can also lead to worse
temperature profile predictions. More gains could potentially be made via techniques such
as neural network surrogate modelling of higher-fidelity gyrokinetic codes as well as GPU
acceleration of hybrid codes.
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Appendix A. Table: GENE Settings

In table 3, we list typical GENE settings for our linear simulations for each case. The
parameters nx0, nz0, nv0 and nw0 correspond to the number of grid points in the x, z, v‖
and μ directions. Since these are linear simulations, only one toroidal mode number is
simulated at a time. We carry out convergence tests for each value of ε and ν∗ separately.
The collision operator used is the Landau–Boltzmann operator (unless of course the
simulation is collisionless); for α = 0 cases, we use circular geometry, otherwise the s–α

geometry is used. When the most unstable mode is ITG dominated, we use the eigenvalue
solver to calculate the TEM-dominated growth rate. To determine the eigenvalue, we
use the SLEPc solver termed ‘harmonic’. We set hyp_z = −0.5 for all simulations; for
collisionless simulations we set hyp_v = 0.2 and for collisional simulations instead set
hyp_v = 0.0. All simulations were done on the HPC system Cobra, housed at the Max
Planck Computing and Data Facility.

Tokamak Case nx0 nz0 nv0 nw0

DIII-D GA Standard 80 40 40 20
WEST 54 178 60 60 40 20
JET 73 342 80 40 40 20
JET 95 272 80 40 40 20
JET 94 875 60 40 40 20

TABLE 3. Standard GENE settings for each of the cases considered in this work. These values
correspond to the number of grid points for each direction when solving the gyrokinetic equation.
In GENE, x refers to the flux-surface label and is a radial coordinate, z is the field-line
following coordinate, v‖ is the parallel velocity and μ is the magnetic moment. Since these are
linear simulations, each Fourier mode in the y-direction (the bi-normal direction) is simulated
separately. The grid points (nx0, nz0, nv0, nw0) correspond to (x, z, v‖, μ). Note that these
values are only representative of most cases; when scanning over values of ε and ν∗, some
simulations required slightly higher resolution to ensure numerical convergence.
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Appendix B. Figures: additional GENE TEM growth rate predictions

FIGURE 22. Collisionless TEM growth rates calculated by GENE for different values of kθρs
plotted against ε using JET pulse 73 342 parameters. Note that the growth rate increases
monotonically with ε.

FIGURE 23. Collisionless TEM growth rates calculated by GENE for different values of kθρs
plotted against ε using JET pulse 95 272 parameters. Note that the growth rate increases
monotonically with ε.
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FIGURE 24. Collisionless TEM growth rates calculated by GENE for different values of kθρs
plotted against ε using JET pulse 94 875 parameters. Note that the growth rate increases
monotonically with ε.

FIGURE 25. Collisional TEM growth rates calculated by GENE for different values of ε plotted
against ν∗ using JET pulse 73 342 parameters where kθρs = 0.3. Note that the growth rate
decreases nearly monotonically with ν∗.
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FIGURE 26. Collisional TEM growth rates calculated by GENE for different values of ε plotted
against ν∗ using JET pulse 95 272 parameters where kθρs = 0.3. Note that the growth rate
decreases nearly monotonically with ν∗.

FIGURE 27. Collisional TEM growth rates calculated by GENE for different values of ε plotted
against ν∗ using JET pulse 94 875 parameters where kθρs = 0.3. Note that the growth rate
decreases nearly monotonically with ν∗.
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FIGURE 28. The TEM growth rates calculated by GENE for different values of nominal ε

plotted against effective ε∗ = (π〈f ∗
t 〉/2

√
2)2 using JET pulse 73 342 parameters where kθρs =

0.3 and 〈f ∗
t 〉 is a function of ν∗.

FIGURE 29. The TEM growth rates calculated by GENE for different values of nominal ε

plotted against effective ε∗ = (π〈f ∗
t 〉/2

√
2)2 using JET pulse 95 272 parameters where kθρs =

0.3 and 〈f ∗
t 〉 is a function of ν∗.
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FIGURE 30. The TEM growth rates calculated by GENE for different values of nominal ε

plotted against effective ε∗ = (π〈f ∗
t 〉/2

√
2)2 using JET pulse 94 875 parameters where kθρs =

0.3 and 〈f ∗
t 〉 is a function of ν∗.

Appendix C. Figures: additional QuaLiKiz-GENE TEM growth rate comparisons

FIGURE 31. Collisionless TEM growth rates calculated by GENE and QuaLiKiz using JET
pulse 73 342 parameters plotted against ε, where kθρs = 0.3. Since this is calculated with no
collisions, both old Krook and new Krook in QuaLiKiz would agree perfectly.
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FIGURE 32. Collisionless TEM growth rates calculated by GENE and QuaLiKiz using JET
pulse 95 272 parameters plotted against ε, where kθρs = 0.3. Since this is calculated with no
collisions, both old Krook and new Krook in QuaLiKiz would agree perfectly.

FIGURE 33. Collisionless TEM growth rates calculated by GENE and QuaLiKiz using JET
pulse 94 875 parameters plotted against ε, where kθρs = 0.3. Since this is calculated with no
collisions, both old Krook and new Krook in QuaLiKiz would agree perfectly.
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FIGURE 34. Collisional TEM growth rates calculated by GENE and QuaLiKiz (relative to their
reference growth rates). Here, we use JET pulse 73 342 parameters where kθρs = 0.3 and we
plot against ν∗ for ε = 0.24.

FIGURE 35. Collisional TEM growth rates calculated by GENE and QuaLiKiz (relative to their
reference growth rates). Here, we use JET pulse 95 272 parameters where kθρs = 0.3 and we
plot against ν∗ for ε = 0.24.
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FIGURE 36. Collisional TEM growth rates calculated by GENE and QuaLiKiz (relative to their
reference growth rates). Here, we use JET pulse 94 875 parameters where kθρs = 0.3 and we
plot against ν∗ for ε = 0.225.

Appendix D. Figures: additional QuaLiKiz flux predictions

FIGURE 37. Total integrated particle flux calculated in QuaLiKiz for JET pulse 95 272
parameters plotted against ν∗ where ε = 0.24. Note that nominal ν∗ = 0.50.
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FIGURE 38. Total integrated ion heat flux calculated in QuaLiKiz for JET pulse 95 272
parameters plotted against ν∗ where ε = 0.24. Note that nominal ν∗ = 0.50.

FIGURE 39. Total integrated electron energy flux calculated in QuaLiKiz for JET pulse 95 272
parameters plotted against ν∗ where ε = 0.24. Note that nominal ν∗ = 0.50.
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FIGURE 40. Ratio between total integrated particle flux and total integrated electron heat flux
calculated in QuaLiKiz for JET pulse 95 272 parameters plotted against ν∗ where ε = 0.24. Note
that nominal ν∗ = 0.50.

FIGURE 41. Total integrated particle flux calculated in QuaLiKiz for JET pulse 94 875
parameters plotted against ν∗ where ε = 0.225. Note that nominal ν∗ = 0.50.
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FIGURE 42. Total integrated ion heat flux calculated in QuaLiKiz for JET pulse 94 875
parameters plotted against ν∗ where ε = 0.225. Note that nominal ν∗ = 0.50.

FIGURE 43. Total integrated electron heat flux calculated in QuaLiKiz for JET pulse 94 875
parameters plotted against ν∗ where ε = 0.225. Note that nominal ν∗ = 0.50.
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FIGURE 44. Ratio between total integrated particle flux and total integrated electron heat flux
calculated in QuaLiKiz for JET pulse 94 875 parameters plotted against ν∗ where ε = 0.225.
Note that nominal ν∗ = 0.50.

Appendix E. Figures: additional integrated modelling results

FIGURE 45. Integrated modelling of a JET L-mode case as part of collisionality scan in Tala
et al. (2019).
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FIGURE 46. Integrated modelling of a JET L-mode case as part of collisionality scan in Tala
et al. (2019).

FIGURE 47. Integrated modelling of a JET L-mode case as part of collisionality scan in Tala
et al. (2019).
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FIGURE 48. Integrated modelling of a high-collisionality H-mode (Tala et al. 2022).

FIGURE 49. Integrated modelling of a high-collisionality H-mode.

FIGURE 50. Integrated modelling of a high-collisionality ohmic L-mode (Baiocchi et al.
2015).
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