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GENERALISED GAUSSIAN FIBONACCI MUMBERS

S. PetHE anD A.F. HoraDAM

In this paper, generalised Gaussian Fibonacci numbers are
defined and, using the recurrence relation satisfied by them,
we obtain a number of summation identities involving the
products of combinations of Fibonacci, Pell and Chebyshev

polynomials.

1. Introduction

Horadam [3], in 1963, and Berzsenyi []], in 1977, defined complex
Fibonacci numbers by following two different approaches. Horadam defined
the complex Fibonacci sequence {F:} by writing

* = + 1
F% Fn v Fn+1

where Fn is the »nt" Fibonacci number. Berzsenyi defined them as a

set of complex numbers at the Gaussian integers such that the Fibonacci
recurrence relation is satisfied at any triple of adjacent points.

In 1981, Harman [2] also defined the complex Fibonacci numbers at
the Gaussian integers, but used the direct analogy with the Fibonacci
recurrence relation. These numbers include Horadam's complex Fibonacci
numbers and they have a symmetry condition which is not satisfied by the

numbers considered by Berzsenyi.
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The object of this article is not just to extend Harman's idea, but
by doing so, to obtain a wealth of significant summation identities
involving the products of combinations of Fibonacci numbers and
polynomials, Pell numbers and polynomials, Chebyshev polynomials and sine
functions. Our main result is in equations (5.1) and (5.2) which have
the potential of providing many more identities than the ones mentioned

in this paper.
2. Definition

Let (n,m), n,me L , denote the set of Gaussian integers
(ny,m) =n + im. Let
G : (nym) ~ C ,
where C 1is the set of complex numbers, be a function defined as follows.

For fixed real numbers Py ql, p2 and 49 define
(2.1) G(0,0) = 0, G(1,0) = 1, G(0,1) =<, G(1,1) = Py + ipl

with the following conditions:

(2.2) G(n+2,m)

pJG(n+1,m) - qu(n,m) and

(2.3) G(n,m+2) ng(n,m+1) - qZG(n,m).

The conditions (2.2), (2.3) with the initial values (2.1) are

sufficient to obtain a unique value for every Gaussian integer.
3. Expression for G(n,m)

Let Un and Vn denote Lucas fundamental sequences [[4] defined

by the recurrence relations

Vpve = P1%1 =~ 91Y, » 04
(3.1)
v v

w2 = PoVue = 90%
with initial values

U,=0, U, =1 and V, =0, V, =1, Then

0 1 0 1
LEMMA 3.1.
G(n,0) = U and
(3.2) n
G(0,m) = 1V
\ m
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Proof. The proof is simple and therefore omitted.

The first few terms of {Un} and {Vn} are
- — 2 _
2 =P Us =P; -4

_ 3 o4 a2 2
Uy =p; - 2P, Us =p; - %3, *4q;

with similar values for V2, VS’ V4 and V5 when p1 and ql are

replaced respectively by p2 and q2.

THEQREM 3.2. G(n,m) <is given by

(3. 3) G(n,m) = Uan” + 17 Un” Vm .

Proof. The proof is by induction. Suppose (3.3) is true for all
integers 0, 1, ..., n for the first number in the ordered pair (n,m)

and for all interers 0, 1, ..., m for the second number. Now by (2.2)
(3.4) Gn+l,m) = sz(n,m) - q, G(n-1,m) .
Applying (3.3) to the right hand side of (3.4), we get

G(n+l,m) = pz(Uanﬂ + 7,Un+1Vm) - ql(Un_Zle

+ iU V)
nm
= me-l(plun - qun—l) * LVm(pJUrH-l - qun) '
Hence by (3.1), we have

(3.5) G(n+l,m) = Un+1Vm+1 + 7’Un+2Vm .

Similarly we can get

(3.6) Gn,m+l) = UV

n m * 7’Un+1Vm+1 )

(3.5) and (3.6) show that (3.3) is true for all non-negative integers.

4. Recurrence Relation for G(n,m)

THEOREM 4.1. For fimed n,m (n,m = 0,1,2,...), the recurrence
relation for G(n,m) is given by the following:
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k .
(4. 1) G(n+2k+s, m+2k+s) = (p +ip,) (q.q9 }k_'] U o0, V. o
2 1 F=1 1*2 nt+ij+s mt2j+s

k-4 U

k
- (p43y%iP 4, jzl(qzqz) it 2te-1 'mi2i+e-1

+ (qlqz)k G(n+s,m+s)

where s = 0,1.

Proof. For the proof, we again resort to induction on k. First
consider G(n+2,m+2) and G(n+3,m+3) that is (4.1) for k=1, s = 0 and
k=1, s = 1. By (3.3) we have,

G(n+2,m+2) = Un+2 Vm+3 + 17 Un+3 Vm+2

v

UpioPoVmps = Vmer’ * 2P1Y 00 = 43V 2) Vs

(p2+1p1)U uiv

A PN Py P

= (Pt U, V™ P15t PP AU, Vs 170595 (U Vo 7440, V)

+2Vmea" 92 P10 1791Y,

Hence, by (3.3) we get

(4.2) G(n+2,m+2)= (p2+zp1)Un+2 - (p1q2+¢p2q1)un+1 m+1+q1q20(n,m)

Again, using (3.3), we have

Gn+3,m3) = Un+3VrrH-4 + 7'Un+4Vm+3

v

Us3PoVimes = QoVmeg? * P05 = 40000 Vines

=Py + 20U Vs ™ U Pilre = 9% Ve
= 144U, 0P se = AaVnie’

= (py + P U Vs P15+, o Vsat
U920, Vst nioVmd? -

Thus, applying (3.3) again, we get

(4.3) G(n+3,m+3)=(p2+¢p1)Un+3 . (p1q2+¢p2q1)lln+2 nH_2+q1q20(rz+1 m+1).

Now (4.2) and (4.3) show that (4.1) is true for k = 1 with
8 = 0,1. Suppose next that (4.1) is true for and up to some positive

integer k. We will show that it is also true for k+1.
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First, let s = 0. Now, although #»n and m are assumed to be
fixed in (4.2), it is easy to see that (4.2) is true for any positive
integers # and m. Then replacing # and m by »n + 2k and m + 2k
respectively in (4.2), we get
(4.4) Glnt2ktd,mok+2) = (PtiD ) U or oV onee™ (P17 P 0909V, okr 1 Vmeokr 1

+ qquG(n+2k,m+2k) .
Hence from (4.1) with s = 0, (4.4) becomes
G (n+2k+2, mt2k+2)=(p g#ip U, L o 1oV okws™ P 1927 P29V, p ok 1Vme 2k 1

k

. k-g
+ qlqz[(pznpl) jz-l (q1q2) U

n+2J Vm+2j
k

. k-j k
(plqzﬂpqu) jzz (qlqz) Un+2j-1Vm+2j-1+(q1q2) G(n,m)1].

Combining the first two terms on the right with those in the bracket, we
get
k+1

(4.5) G(n+2k+2,m+2k+2) =(p2+ip1) ) (qlqz)k+1"7Un+2j 25
J=1

k+1

. k+1-4
- (P4a,7iP5q,) jZ= ; (a,9,) Upr2i-1"me05-1

+(q1q2)k+16'-(n, m) .

Identity (4.5) shows that (4.1), with 8 = 0, holds if k is replaced
by k+I. It can be shown similarly that (4.1), with s = 1, also holds
if k is replaced by k+I. This completes the proof of Theorem 4.1.

5. Identities Involving Product Terms of {Un} and {Vn}

Making use of (3.3) in equation (4.1) and then equating the real

and imaginary parts on both sides, we get
k ke k ke
5.1) p ij 1 (qzqz) Un+2j+st+2j+s-p 1q2j£ 1 (qlqz) Un+2j+s-1Vm+2j+s-1

k
= U okrs kst ~ (qlqz) Uyrs mist1
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and
(5.2) Y (q.a,0% v - ]i (q.q.0%7 v v
. p1j=1 49 ntojte mreite quzjzl 9192 n+2j+s-1"m+2j+6-1

i 2kto+1 midkts T (q1q2) Urst1Vmes

6. Special Cases
Case (a). let p, =p,=2 and q;, =g, =1. Then {Un} = {K1} and
each is the sequence of non—negative integers. Note that Un =n for

each #n. Equations (5.1) and (5.2) reduce to

k k
(6.1) 2 Y(n+2j+s) (mt25+s) = 2 ¥ (n+8j+s-1) (m+2j+s-1)
Jg=1 J=1
(n+2k+s) (m+2k+s+1) - (n+s)(mts+1)
(n+2k+s+1) (m+2k+s) - (n+s+1) (m+s)

Case (B). Let p, =p, = 1 and q; =4y = -1. Then {Un} = {Vn} = {Fn}’

the Fibonacci number sequence. Thus (5.1) and (5.2) respectively reduce

to
k
(6.2) g g n+ij+s m+2g+s+j§1Fn+2j+s-1F m+2j+s—1=Fn+2k+sFm+2k+s+1'Fn+sFm+s+1
and
k k
(6-3) j_E]Fn+2j+3Fm+2j+s+ jZIFn+2j+s—1Fm+2j+s-1= Fn+2k+s+1Fm+2k+s
“ Fperms

Hence combining (6.2) and (6.3), we get

2k
(6.4) F z JFn+s+ij+s+j=Fn+2k+sFm+2k+s+1 —Fn+sFm+s+l=Fn+2k+s+1 Fm+ 2k+s
- Fesritmes

We observe that (6.4) is the identity unifying Harman's identities (3.8)

and (3.9) in [2].
Case (C). Now let pP; =Py = 2 and q9; =49, < -1 so that
{Un} = {P%} = {E%}, where {Pn} is the Pell number sequence.
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Equations (5.1) and (5.2) then reduce to

2k

(6.5) 2 jzlpn+s+jF}»s+j = Pn+2k+spm+2k+s+1 - Pn+st+s+1

= P rokte+limiokes ~ Envstimts

Case (D). Next, let p; = 1, q; = -1; Py=p and 9y = q so that
{Un} = {Fn} and {Vn} = {Ln} is the Lucas Fundamental Sequence [4].

Then equations (5.1) and (5.2) reduce to

k .
k-4 Rk~
(6.6) p jzlf-q) Fn+2j+sLm+2j+s' qul(_Q) Fh+2g+s-1 m+2j+s-1
=F L - -p%r L
n+2k+s m+2k+stl q n+s ms+1
and
(6.7) Zl( q) n+2,7+sLm+2J+s p Z (- q) n+2g+s—1Lm+2,7+s 1
- F L - =% F I
n+2k+s+1 m+Lk+s n+s+l m+s °

2
Solving (6.6) and (6.7) simultaneously, we get, provided p + g # 0,
q#0

J_~
(6.8) le( D" Fypjrs1Pmeogre-1

k
IS Vi

qk(p2+q) n+2k+s+1Lm+2k+s p(-q) F

+s+1 m+s Fn+2k+sLm+2k+s+1

+ (- q) n+sLm+s+1}

4,9 =7
(6.9) z (-1)%q Fn+23+sLm+2J+s

_ -1

qk(p2+q) {p£h+2k+s m+2k+s+1 Pl q) n+s m+s+1 *q n+2k+s+le+2k+s

k
R A CR

Case (E). wuow let P; =Py =P # 0 and 9; =49, =9q- Then {Un} = {Vn}
and each is the Lucas Fundamental Sequence {Ln}' Equations (5.1) and

(5.2), after simplification, reduce to
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J+1 -7 -2k
(6.10) pJ 21( 7 L +s+ng+s+J n+sLm+s+1 q Ln+2k+sLm+2k+s+1

-2k
Ln+s+1 Lm+s-q n+2k+s+1Lm+2k+s

Case (F). Finally, let py = 2, q;= -1 and py = 1, qq = -1. Then
g} =12} ana {V} ={E .

Equations (5.1) and (5.2), after simple calculations, give the following

results.
1
6.11) 2 F nts+j m+s+J 3 Pn+2k+sFm+2k+s+1 nt2kte+1 mt2krs Pn+sFm+s+1
- 1
Pn+s+1Fm+s
J+1
(6.12) —ZJ( 1) n+S+J m+s+J = n+2k+sFm+2k+s+1 Pn+2k+s+1 mt2k+s

—Pn+anH-s+1 * Prz+:'3+1F772+.5' '

7. Special Numerical Cases

It is worthwhile to note the above identities for particular values

of m and n. These are listed below.

(a) m=0,n=20
IR R e Val 1025
. J 2
N 2
2 5 = Fnfyer
J=1
¥ 1
2 = =
jzl Pj 2 PNPIV+1
(7.1) § -177F, . L = _0f ip F L., - F. L. -}
i1 2j-1"2§-1 " Ko2,0) 2k+1 Yok T Yok “ok+1
-1,k

(7.2) Z(-z)*7 Jp L. =

}
j=1 23 ad

& (o2ra) PP orsolonss = Fonerlones

where in both the last identities ¢q # 0 and p2+q A0 .
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o g - (—1) v,
7-3) o1 (-2)% q " I = w1
y 1
le i ¥5 = 3 w1 T Pueaty?
y J+1 N
jZ_J (DT PFs = (1B Fy, g - By
(B) n=1,m=20
N s
2 F.F. ~ FN+1 1, N even
F=1 J “J+1 =
2
FN+1 R N odd.
i} Lrp2 _ 11, N even
ZP _ 2 N+1 ’
1 J 3+ 1 52
‘5 PN+1 s N odd.
1 -
=[1-q 2.1, N even
J+1 -J _Ip N+1
. 1 L.L. . =
¢7.4) JZ_J( 4 G g+l ;"
q 2
> LN+1 s, N odd
where p # 0.
k
J ~d (-1) k k
(7.5) Z (-1)°¢771 = Ly Py, Ly o (-1 )
i 2j-1" 2 Kpreq) 2K 2K 2k
k .. k
J - __(=-1) k
(7.6) L (-1)7q 0L, F, . == APl Py L oF g P (@)
=1 24 2j+1 qk(p2+q) Sk+1" 2k+3 T2k+2 2k
_ 1 -
JZ_J FiF 341 = 5 Fyatter * Ffwee - 1
]
J*1 _ _
jZ_l A T [sz+1 we1 ~ Fifwee)

Similarly from the right hand sides of equations (6.4), (6.5), and
(6.10), we get

N-1
2 — = -
By~ Py qFuer = 1 '

https://doi.org/10.1017/50004972700002847 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002847

46 S. Pethe and A.F. Horadam

N-1
2 _ -
PN PN—JPN+1 (’1) >
and
N-1
2 _ =
7.7 LN LALJLN+1 q .

Remark 1. Many other identities may be obtained by other choices of
n and m. For example, if n =3 and m = 0, the right hand sides of

equations (6.4), (6.5) and (6.10) provide the following identities:

N
Puedfi-1 = Fyeafp-e = 232G
} v
Purify-1 = Fpedfn-z = 50610
and
) _ m-2,,
(7.8) Lyesfye1 = Iyedly-e = 4 (P59 -

8. Products Involving Some Weli Known Polynomials.
If we let pl or/and p2 be functions of &, we get summations

involving the products of some well known polynomials. We will deal
only with those involving Fibonacci numbers and Chebyshev polynomials of
the second kind.

Let p; = 1, q; = -1, Py = 2 and q, = 1, with x = cos 6. Thus

2

sin »nb

{U}Yy={F )} and {V } ={T (x)} , wvhere T (x) ==
n n n n n sin 6

is the nth

Chebyshev polynomial of the second kind. Note that this is the same as
special case (D) with p = 2x and q = 1.

Equations (6.8) and (6.9) then give some summation formulae
involving the Fibonacci numbers and Chebyshev polynomials of the second
kind. Obviously, those with particular values of m and 7n are more
interesting. We give a few of such formulae in the following.

Substituting p = 2x, ¢ = 1, we find that equations (7.1), (7.2),
(7.5) and (7.6) become

k . k
J+1 (~1)
(8.1) § (-1)7°F_. T . (x) == {F_T_ _(x)-2zF, T,  (x)}
i1 2j-1"24-1 Lrag? 2K 2ktl 2k+1" 2k
(8.2) ]Z{(-z)j”p 7 ()—(‘;)k{p T, (z)-2zF. .T.. (x)}
: 25 27'% = Sk+1" 2k+2 2k+2" 2k+1

J=1 1+4x?
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(8.3) Zk 03 o (w) _ ot 7 ()-2xF. .T. (z)-(-1)%}
I» 251951 oga? | EkH1 2kh] ok+2" 2k
(8.4) Ii -1)7 e p (x)= cu* {F (z)-2zF (2)+(-1)%22}
: i - Foir1Tos Trap? | 2k#2 T oreg (=22 o1 1 5T ks 1 z

By using the trigonometric form of the Chebyshev polynomial, we get the

following interesting results.

THEOREM 8.1. The following swmmation formulae involving the
products of Fibonacci numbers and sine functions hold:

(- 1)

(8.5) Z(zﬂ” . _sin(2j-1J8= { sin(2k+1)0
2J-1 2k~1
J=1 1+4 cos?
+F2k+lsin(2k—1)6}
. k+1
(8.6) § (-1)7* 1P sin 2jo= —LL (p sin(2k+2)e+F., _sin 2k6}
j=1 2 1+4 cos?e 2K 2k+2
k+1
(8.7) 2 (-1)7*1F sin(gj-1)6= =1~ {F,,5in(2k+1)0+Fy; osin(2k-1)8
J=1 2 1+4 cos?@
+(—1)ksin 0}
k+1
J+1 . . (-1) . .
(8.8) Z (-1) sin 2= ————— {F sin(2k+2)06+F sin2k8
=1 2,7+1 144 cos28 2k+1 2k+3

-(-l)ksin 20}

Proof. We will prove (8.5). Then (8.6), (8.7) and (8.8) are proved

similarly. Substituting 7 (x) = §i¥—ﬁg and x = cos 0 in (8.1), we get
n sin 8
k , k
) (—1)J+1Fé. ;sin(2j-1)8 = —1:12———{F2ksin(2k+1)9-2 coseF2k+lsin2k9}
J=1 J= 1+4c0526
—————————{F k51n(2k+1)6—F2k 1[51n(2k 1)0+sin(2k+1) 6]
1+4cos?g
cnk
='——————E—{—31n(2k+1)9[F2k+1—F2k]—F2k+151n(2k-1)6}
1+4cos<8
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(_1)k+1 .
I+4cos?6

F

k- sin(2k-1)0}.

15in(2k+1)e+Fék+Z

Remark 2. By letting P, = 2% q, = -1 and P, =% q; = -1 we
get respectively {D%} = {Fn(x)} and {Un} = {Fh(x)}, the Fibonacci and

and the Pell polynomials.
Remark 3. It is important to observe that by using appropriate
values of pl, qz, p2, q2, m, n and 8, we will be able to obtain

various summation formulae involving the products of combinations of
Fibonacci, Pell, and Chebyshev polynomials and sine functions.

Remark 4. It should be noted that the initial conditions in (2.1),
are G(0,0) =0, G(1,0) = 1 and those of {Un} and {Vﬁ} in (3.1) are

also UO = 0, UZ = 1 and Vb =0, V] = 1. If these are changed, possibly
we will get new results involving some other sequences and polynomials.

This is the topic of discussion of our next paper.
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