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GENERALISED GAUSSIAN FIBONACCI NUMBERS

S. PETHE AND A.F. HORADAM

In this paper, generalised Gaussian Fibonacci numbers are

defined and, using the recurrence relation satisfied by them,

we obtain a number of summation identities involving the

products of combinations of Fibonacci, Pell and Chebyshev

polynomials.

1. Introduction

Horadam [3], in 1963, and Berzsenyi [/], in 1977, defined complex

Fibonacci numbers by following two different approaches. Horadam defined

the complex Fibonacci sequence {F*} by writing

F* = F + I F ,
n n n+1

where F is the n ™ Fibonacci number. Berzsenyi defined them as a

set of complex numbers at the Gaussian integers such that the Fibonacci

recurrence relation is satisfied at any triple of adjacent points.

In 1981, Harman [Z] also defined the complex Fibonacci numbers at

the Gaussian integers, but used the direct analogy with the Fibonacci

recurrence relation. These numbers include Horadam's complex Fibonacci

numbers and they have a symmetry condition which is not satisfied by the

numbers considered by Berzsenyi.
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The object of this article is not just to extend Harman's idea, but

by doing so, to obtain a wealth of significant summation identities

involving the products of combinations of Fibonacci numbers and

polynomials, Pell numbers and polynomials, Chebyshev polynomials and sine

functions. Our main result is in equations (5.1) and (5.2) which have

the potential of providing many more identities than the ones mentioned

in this paper.

2. Definition

Let (n,m), n,m e Z , denote the set of Gaussian integers

(n>m) = n + im. Let

G : (n3m) •+ C 3

where C is the set of complex numbers, be a function defined as follows.

For fixed real numbers p7 J q ~3 p~ and q^ define

(2.1) G(0,0) = 0, G(1,O) = 1, G(0,l) = i, G(1,1) = p£ + ip^

with the following conditions:

(2.2) G(n+2,m) = p G(n+l3m) - q G(n,m) and

(2.3) G(n,m+2) = p G(n3nH-l) - q£(n,m).

The conditions (2.2), (2.3) with the initial values (2.1) are

sufficient to obtain a unique value for every Gaussian integer.

3. Expression for G(n,m)

Let V and V denote Lucas fundamental sequences [4] defined
n n

and

by

( 3 .

t h e

1)

recurrence relations

•

f Vn+2 =

Vn+2

PlUn+l ~

P 2 n+1

«lUn

q V
2 n

with initial values

U = 0, U = 1 and VQ = 0, V = 1. Then

LEMMA 3. 1.

(G(n,0) = U and
n
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Proof. The proof i s simple and therefore omitted.

The f i r s t few terms of {U } and {V } are
n n

with similar values for V-, V , V and V when p. and <?. are

replaced respectively by p0 and q0.

THEOREM 3.2. G(n,m) is given by

(3. 3) G(n,m) = U V . + i U , V .
n mhl n+1 m

Proof. The proof is by induction. Suppose (3.3) is true for all

integers 0, 1, ..., n for the first number in the ordered pair (n3m)

and for all interers 0y 1, .. .3 m for the second number. Now by (2.2)

(3.4) G(n+l,m) = p G(n3m) - q G(n-l,m) .

Applying (3.3) to the right hand side of (3.4), we get

G(n+l,m) = pJU V . + iU nV ) - qAV .V . + iU V )r1 n rtn-1 n+1 m Hl n-1 rrH-1 n m

Hence by (3.1), we have

U J + iV (pj] , - qj} ) .
n-1 m ̂ 1 n+1 ^1 n

) = Un+lVm+l + iUn+2Vm •

Similarly we can get

(3.6) G(nym+1) = U V o + iU ,K , .
' n m+2 n+1 rrH-1

(3.5) and (3.6) show that (3.3) is true for all non-negative integers.

4. Recurrence Relation for G(n3m)

THEOREM 4.1. For fixed n,m (n,m = 0,1,2,...), the recurrence

relation for G(n,m) is given by the following:
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k , _ .
(4.1) G(n+2k+s, m+2k+s) = (p^H-p^ £ '- ~ ' 3 "

k k_.
- (p q Up q ) I (qnqj ° U .

1 * * 1 j-2 1 <= n+tj+s-1

+ (q^qJ G(n+s,rrH-s) ,

where s = 0,1.

Proof. For the proof, we again resort to induction on k. First

consider G(n+2,m+2) and G(n+Z,rrn-3) that i s (4.1) for k=l, s = 0 and

k = 1, s = 1. By (3 .3) we have ,

G(n+2,nn-2) =

Hence, by (3.3) we get

(4 .2) G(n+2,m+2)= (

Again , u s i n g ( 3 . 3 ) , we have

2VnH-l}

1JUn+2Vm+2

Tlius, applying (3.3) again, we get

(4.3)

Now (4.2) and (4.3) show tha t (4.1) i s t rue for k = 1 with

s = 0,1. Suppose next that (4.1) i s t rue for and up to some pos i t ive

in t ege r k. We wi l l show tha t i t is also t rue for k+1.
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Firs t , l e t s = 0. Now, although n and m are assumed to be

fixed in (4.2), i t is easy to see that (4.2) i s true for any positive

integers n and m. Then replacing n and m by n + 2k and m + 2k

respectively in (4.2), we get

(4.4) G(n+2k+2,m+2k+2) = (p^^^^^^^p^Hp^

+ q q G(n+2k,m+2k) .

Hence from (4.1) with s = 0, (4.4) becomes

I
0 •*•

Combining the first two terms on the right with those in the bracket, we

get

(4.5) G(n+2k+2,m+2k+2) =(po+ipJ \ (c
1 2 3=1

k+1
Ml-3\

If 4-1

+ (q-fl2) G(n,m) .

Identity (4.5) shows that (4.1), with s = 0, holds if k is replaced

by k+1. It can be shown similarly that (4.1)', with s = 13 also holds

if k is replaced by k+1. This completes the proof of Theorem 4.1.

5. Identities Involving'Product Terms of {U } and {v }
n n

Making use of (3.3) in equation (4.1) and then equating the real

and imaginary parts on both sides, we get

k k

I51' P V ^ ; '^^-Pl^.lJ*!^* '''Un+2j+s-l
V
m+2j+s-l

3~*

= Un+2k+sVm+2k+s+l ~ (qlq2} Un+sVm+s+l
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and

(5.2)

= Un+2k+s+lVm+2k+s ~ (qiq2) Un+s+lVrrH-s '

6. Special Cases

Case (A). Let p = p0 = 2 and q = q = 1. Then {U } = {V } and

each i s the sequence of non-negative in tegers . Note tha t U = n for

each n. Equations (5.1) and (5.2) reduce to

k k
(6.1) 2 \(n+2j+s) (nn-2o+sl - 2 I (n+2j+e-l) Cnn-2j+8-l)

3=1 3=1

= (n+2k+s)(nn-2k+s+l) - (n+s)(rrtf-s+l)

= (n+2k+s+l) (rrH-2k+s) - (n+s+1) (rrH-s)

Case (B). Let p = p = 1 and q = q = -1. Then {U } = {V } = {F },
J. & X Ci 7% Yl Yl

the Fibonacci number sequence. Thus (5.1) and (5.2) respect ive ly reduce

to

k k

(6. 2) LF
n+2j+s nH-2j+s+ .^fn+2j+s-l nH-2j+s-l~ n+2k+s m+2k+s+l~ n+s rrH-s+1

and

k k

(6.3) .):
F

n+2j+s
FnH-2j+s+ .\Fn+2j+s-lF/n+2j+s-l= F

n+2k+s+lFrrH-2k+s
3 •*• 3 •*•

- F ^F

n+s+1 rrn-s

Hence combining (6 .2) and ( 6 . 3 ) , we g e t

2k
.f n+s+3 rrH-s+3~ n+2k+s rrn-2k+s+l~ n+s m+s+1 n+2k+s+l m+2k+s

3~-*-
- F F

n+s+1 m+s

We observe that (6.4) is the identity unifying Barman's identities (3.8)

and (3.9) in [2] .
Case (C). Now let p = p = 2 and q = q = -1 so that

{U } = {V } = {P }, where {P } is the Pell number sequence.
n n n n
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Equations (5.1) and (5.2) then reduce to

2k
(6 5) 2 7 P P — P P P P

. ' n-fs+j wfs+J n+2k+s rrH-2k-te+l ~ n+s trrt-s+1

= p p - p p

n+2k+s+l m+2k+s n+s+1 m+s

Case (D). Next, l e t p. = 13 q- = -1; P 0 = p and q = q so t h a t

{U } = {JP } and {^ } = {£ } i s t h e Lucas Fundamental Sequence [ 4 ] .

Then equa t ions (5 .1) and (5.2) reduce t o

(6.6) p l(-q)k-J U k ' d

3 *•

I,
= P L — ( n) F L

n+2k+s m+2k+s+l H n+s rrH-s+1
and

(6.7) l(-q)k-t l k - J

= Fn+2k+s+lLm+2k+s~ (~q) Fn+s+lLmi-s '

2
Solving (6.6) and (6.7) simultaneously/ we get, provided p + q ^ 03

( 6 .

•• o

8)
k

3=1{
'-VJq~J

(-l)k k
k. 2+ j {l?Fn+2k+s+lLm+2k+s~P (~q) Fn+s+lLm+s~Fn+2k+sLnH-2k+s+l

(6.9) I
3 -L

(-1) k
k( 2+ j {pFn+2k+sLnn-2k+s+fp(~q) Fn+sLm-s+l+qFn+2k+s+lLrrn-2k+s

k

Case (E). Wow let p = p = p ̂  0 and q = q = q. Then {U } = {V }
X ci 1 ci Yl Yl

and each is the Lucas Fundamental Sequence {L }. Equations (5.1) and

(5.2), after simplification, reduce to
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V 3+1 ~3 -2k
(6.10) p l^ q n+s+Q nH-s+3~ n+s rrn-s+fq Ln+2k+s nn-2k+s+l

n+s+l ntf-s~q n+2k+s+l m+2k+s

Case (F). Finally, l e t p = 2, q = -1 and p = 1, q = -1. Then

{U } = {P } and {F } ={F } .

Equations (5.1) and (5.2), after simple calculations, give the following

resul ts .

ik i
f f i i i l ) P F = — FP F +P F -P F
1 ' .Lfn+s+j nn-s+3 3 n+2k+s m+2k+s+l n+2k+s+l m+2k+s n+s m+s+1

- P ,F ]
n+s+l m+s

2k

(6 .12) X(~1} Fn+s+jFm+s+3=Fn+2k+sFm+2k+s+rPn+2k+s+lFrrn-2k+s
3 ^

-P F + P F
n+s nH-s+1 n+s+l rrrt-s

7. Special Numerical Cases

I t is worthwhile to note the above identities for particular values

of m and n. These are listed below.

(A) m = 0, n = 0

? 3 o (-1)"I (-1)J j 2 = LJ^—.
3=1

.=i 3 lfN+1

y P2 = i p p
. j 2 lfN+1

3 •*•

(7.1) U-DU^F^L^ = - ^ - ip

k k
(7 .2) U-Vjq-JF2J L2. = - ^ —

where in both the last identities q ^ 0 and p2+q ^ 0 .
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( 7 . 3 ) 
N 
I (-1)° q'3 #. 

3=1 3 

N 
I P. F . 

3=1 3 3 

N 

(-1) -N 
~T~Q VN+I 

3 

(B) n = 1, m = 0 

N 

y F F. K+i - 1 > N e v e n 

I F 2 

N+l 
N odd. 

N 
j - i i o 3+1 

¡2 LP2N+1 ~ 21> N 6 V e n 

y2

 P2N+1 ' N ° d d -

( 7 . 4 ) 

where p ^ 0. 

k 

LI - q N L^+11 , N even 

-N 

p̂ UN+1 
, N odd 

( 7 . 5 ) J (-l)3q~h2.1 
F„ . = 

(-1)' 

3=1 ti-1 2* " q

k(pZ+q) 
{PL2kF2k+2-L2k+l

F2k+l
H-1)kqk} 

( 7 . 6 ) I (-l)3q-3L9.F 

3=1 
N 
I F.P.,n 

3=1 3 3 + 1 

2j 23+1 k 
{ ~ V {PL2k+lF2k+3-L2k+2F2k+2-P ( - « ) k } 

qK(p2+q) 

= ±LF p + F P -11 
3 N+l N+l 1TN+2 

N 

1 7

 F/j+l = (-VhFN+lPN+l ~ V W " 1 • 
3 

S i m i l a r l y from the r i g h t hand s i d e s o f equat ions ( 6 . 4 ) , ( 6 . 5 ) , and 

( 6 . 1 0 ) , we g e t 

*N N-l N+l 
N-l 
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) 1 1 ' 1P 2 - P P = (-I)1

N N-lN-t-1
a n d

t 7 - 7 ) LlN-LN-lLN+l 'I''* •

Remark 1. Many other identities may be obtained by other choices of

n and m. For example, if n = 3 and m = 0, the right hand sides of

equations (6.4), (6.5) and (6.10) provide the following identit ies:

N
FN+1FN-1 ~ F F = 2(~1}

and

8. Products Involving Some Well Known Polynomials.

If we let p or/and p. be functions of x, we get summations

involving the products of some well known polynomials. We will deal

only with those involving Fibonacci numbers and Chebyshev polynomials of

the second kind.

Let p~ = 1, q = -1, p = 2x and q0 = 1, with x - cos 6. Thus

{U } = {F } and {V } = {T (x)} , where T (x) = S 1" ̂ f is the nth
n n n n n sin 9

Chebyshev polynomial of the second kind. Note that this is the same as

special case (D) with p = 2x and q = 1.

Equations (6.8) and (6.9) then give some summation formulae

involving the Fibonacci numbers and Chebyshev polynomials of the second

kind. Obviously, those with particular values of m and n are more

interesting. We give a few of such formulae in the following.

Substituting p = 2x, q = 1, we find that equations (7.1), (7.2),

(7.5) and (7.6) become

k k
(8.1) I

J—-L

(8.2) U
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(8.4) U-

By using the trigonometric form of the Chebyshev polynomial, we get the

following interesting results.

THEOREM 8.1. The following summation formulae involving the

products of Fibonacci numbers and sine functions hold:

(8.5) I (-1)J+1F9. 7sin(2Q-1)9= - ^ {Fov ,sin(2k+l)Q
3=1 ^~2 1+4 cos2 8 2k-1

(8.6) Z (-l)dF.sin 2jQ= ' ' {F sin(2k+2)Q+Fn1i, osin 2kQ}
3=1 3 1+4 cos 2 9

k . 7 - i)k+1

(8.7) I (-1)3 F .sin(2j-l)Q= [~ J {F ,sin(2k+l)Q+Fl

3=1 3 1+4 cos 2 9 2K

+(-l)ksin 9}

k . 7 l-l)k+1

(8.8) I (-1)3 Fo. 7sin 2jQ= — {Fo7 ^sin(2k+2)Q+F . sin2kQ
3=1 23+1 1+4 cos28 2k+1 2K+6

-(-l)ksin 29}

Proof. We will prove (8.5). Then (8.6), (8.7) and (8.8) are proved

similarly. Substituting T (x) = : and a; = cos 9 in (8.1), we get
Yt s in u

k • i (-Dk

y (-1)3 Fn. -Sin(2j-1)Q = — {F.1sin(2k+l)Q-2 cos9f0, ,£
j=l 23~2 l+4cos*6 2k 2k+1

1=11 XT, . . - / o i - n o T, rsin(2k_2)Q+sin(2k+l)8]
l+4coszQ

{-s±n(2k+l)dLF -F ,1-F sin(2k-l)e}
2k+1 2k 2k+1

{-s±n(2k+l)dLF -F ,1-F
l+4cos26 2k+1 2k 2k+1
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in(2k+l)%+F

Remark 2. By le t t ing p = 2x, q = - I and p = x, q = -1 we

get respectively {U } = {F (x)} and {U } = {P fa;̂  }, the Fibonacci and

and the Pell polynomials.

Remark 3. I t is important to observe that by using appropriate

values of p > q , p^ q , m, n and Sj we will be able to obtain
1 2 £J Ci

various summation formulae involving the products of combinations of

Fibonacci, Pell, and Chebyshev polynomials and sine functions.

Remark 4. It should be noted that the initial conditions in (2.1),

are G(0,0) - 0, G(13O) = 1 and those of {U } and {7 } in (3.1) are

also U.= 0, U- = 1 and V = 0, V = 1. If these are changed,possibly

we will get new results involving some other sequences and polynomials.

This is the topic of discussion of our next paper.
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