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The present article proposes and evaluates marginal maximum likelihood (ML) estimation methods
for hierarchical multinomial processing tree (MPT) models with random and fixed effects. We assume
that an identifiable MPT model with S parameters holds for each participant. Of these S parameters, R
parameters are assumed to vary randomly between participants, and the remaining S − R parameters are
assumed to be fixed.We also propose an extended version of themodel that includes effects of covariates on
MPTmodel parameters. Because the likelihood functions of both versions of the model are too complex to
be tractable, we propose three numerical methods to approximate the integrals that occur in the likelihood
function, namely, the Laplace approximation (LA), adaptive Gauss–Hermite quadrature (AGHQ), and
Quasi Monte Carlo (QMC) integration. We compare these three methods in a simulation study and show
that AGHQ performs well in terms of both bias and coverage rate. QMC also performs well but the number
of responses per participant must be sufficiently large. In contrast, LA fails quite often due to undefined
standard errors. We also suggest ML-based methods to test the goodness of fit and to compare models
taking model complexity into account. The article closes with an illustrative empirical application and an
outlook on possible extensions and future applications of the proposed ML approach.

Key words: multinomial processing tree models, random effects models, hierarchical models, maximum
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Multinomial processing tree (MPT) models are stochastic models for categorical data fre-
quently used in different branches of behavioral science, primarily in cognitive psychology and
social cognition research (for overviews and a recent tutorial see Batchelder & Riefer, 1999; Erd-
felder et al., 2009, 2020; Hütter &Klauer, 2016; Schmidt et al., 2023). They have been applied to a
wide range of phenomena, including, for example, recognitionmemory (e.g., Riefer&Batchelder,
1995; Xu & Bellezza, 2001), source monitoring (e.g., Meiser & Broder, 2002), recall memory
(Batchelder & Riefer, 1986), and judgmental illusions, such as the hindsight bias (Erdfelder &
Buchner, 1998; Nestler & Egloff, 2009; Nestler et al., 2012) . Specifically, MPTmodels are cogni-
tive process models that refer to a particular experimental task or paradigm in which participants’
judgments are categorized into a well-defined set of responses. It is assumed that the observed
frequencies of responses who fall into these categories follow a multinomial distribution and that
the probabilities underlying these frequencies are determined by latent cognitive processes that
drive observed response behavior.

The primary goal of fitting MPT models to observed response frequencies is to estimate the
cognitive process parameters, that is, the latent probabilities that certain cognitive processes were
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successful or not (e.g., memory processes, such as encoding, storage, or retrieval). Furthermore,
by estimating models that impose psychologically motivated restrictions on these parameters
(e.g., equality constraints or parameter fixations), model comparisons can be used to statistically
test psychological assumptions and cognitive hypotheses that are linked to the model.

Inmost past applications,MPTmodels have been estimated by aggregating observed category
frequencies across participants. This approach presumes that individual differences in cognitive
process parameters can be neglected. However, when there are substantial individual differences,
parameter estimates may be biased, and the results of inferential statistical procedures might not
be optimal (e.g., the standard errors of the parameter estimates may be misleading, Batchelder &
Riefer, 1999; Erdfelder et al., 2009; Klauer, 2006; 2010; Smith &Batchelder, 2010). In addition to
these statistical problems, the assumption that there are no between-person differences in relevant
cognitive processes seems rather implausible (Lee & Webb, 2005; Smith & Batchelder, 2010).
Such an assumption also precludes the exploration of interesting research questions about the ori-
gin of individual differences in process parameters and about their relationships with other model
parameters as well as covariates (e.g., Coolin et al., 2015, 2016). Hence, it is desirable to quantify
potential interindividual differences and to investigate which person variables can explain them.

A number of extensions have therefore been proposed to model and predict the heterogeneity
of parameters between individuals. First, Klauer (2006) suggested a latent class MPT framework
in which a single person is assumed to be a member of one latent class, and model parameters may
differ between latent classes. Second, Smith and Batchelder (2010) proposed a hierarchical MPT
model in which participants’ model parameters are assumed to be sampled from independent beta
distributions (i.e., a beta distribution for each MPT model parameter; hence the name “beta-MPT
model”). More recently, Klauer (2010) introduced another hierarchical extension of the standard
MPT model that allows researchers to capture not only the variability in the (probit-transformed)
parameters across individuals but also the covariances or correlations between these parameters.
This latent-trait MPT model is based on the assumption that the person parameters stem from a
multivariate normal distribution, and their expectations and covariance matrix are estimated from
the observed frequency data.

Klauer (2010) suggested a Bayesian approach for parameter estimation and inferences in
which the posterior distribution is approximated using Monte Carlo-Markov chain methods (see
Heck et al., 2018a, for an implementation in R). In the present article, we show how the parameters
of the latent-trait MPT model can be obtained through marginal maximum likelihood (ML) esti-
mation. Our implementation of the ML method introduces a frequentist approach for hierarchical
MPT models that is perhaps more familiar to researchers because standard errors, confidence
intervals, and goodness-of-fit tests can be computed on the basis of well-known asymptotic prop-
erties ofML estimates.Moreover, in addition to the asymptotic optimality ofML estimates (Reed
& Cressie, 1988) , the subtleties of specifying appropriate prior distributions for Bayesian estima-
tion can be avoided when using the ML method. In particular, one does not have to worry about
whether and how the obtained estimates and model comparisons are affected by the prior (for a
recent discussion, see Sarafoglou et al., 2022) or whether de-facto equivalent models may become
nonequivalent as a consequence of the choice of the prior (Kellen & Klauer, 2020). Importantly,
the most efficient numerical ML algorithm is also typically faster than a Bayesian estimator, and
the convergence of the ML algorithm is simpler to determine.

1. The Pair-Clustering Model

Before we introduce MPT models and the ML estimation methods in more detail, we briefly
describe the pair-clustering model (e.g., Batchelder & Riefer, 1980, 1986) that we use throughout
the article to illustrate the proposedmethods. The pair-clusteringmodel can be used to analyze data
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Figure 1.
The pair-clustering MPT model (adapted from Riefer & Batchelder, 1988, p. 330, Figure 2). Rectangles indicate stimulus
classes (left) and observable responses (right). Rectangles with rounded corners represent latent cognitive states. Parame-
ters attached to the branches indicate transition probabilities from left to right, specifically, storing a word pair as a cluster
(c), retrieving a stored cluster in free recall (r ), storing and retrieving a word from a non-clustered pair in free recall (u),
and storing and retrieving a singleton in free recall (a).

from a free-recall experiment in which participants are presented with a list of word pairs plus a
number of singletons. All words are preselected to be equally difficult in terms of memorizability.
Each word pair consists of semantically related words (e.g., rose–tulip), whereas singletons are
unrelated to other words in the list. These pairs and the singletons are presented one word at a
time, and participants are later asked to recall the items from the list in any order. On the basis of
participants’ free recall performance, the studied word pairs and singletons are then assigned to
one of six response categories. It is assumed that the probability of each response category can be
modeled by two processing trees that include a total of four parameters (see Fig. 1 for a graphical
illustration of the model).

Specifically, the model defines four response categories for the word pairs: Category C11
includes all cases where both words in a pair are recalled adjacently, C12 represents cases in
which both words are recalled nonadjacently, C13 corresponds to cases where exactly one word
is recalled, and finally C14 represents cases in which neither word from the pair is recalled. In
addition, the singletons are scored in two categories: singletons recalled successfully (C21) versus
not successfully (C22).

The pair-clustering model proposes four cognitive process parameters that jointly determine
the response probabilities: (1) the probability c that a word pair is stored as a cluster inmemory, (2)
the probability r that a stored cluster is successfully retrieved in free recall, (3) the probability u
that one word from a pair that is not stored as part of a cluster is successfully retrieved, and finally,
(4) the probability a that a singleton is successfully stored and retrieved. These parameters can
be used to derive response probabilities for each of the six categories by calculating the product
of all parameters along a branch and then summing up all branch probabilities that refer to the
same category. For example, because there is only one branch that terminates in category C11 (see
Fig. 1), the probability of this category (i.e., both words recalled adjacently) is just the product
c · r (i.e., successful storage as a cluster followed by successful retrieval of this cluster). Applying
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the same logic to all branches in Fig. 1 results in the following six model equations:

P(C11) = c · r

P(C12) = (1 − c) · u2

P(C13) = (1 − c) · u · (1 − u) + (1 − c) · (1 − u) · u

P(C14) = c · (1 − r) + (1 − c) · (1 − u)2

P(C21) = a

P(C22) = 1 − a (1)

The goal of MPT modeling, applied to the pair-clustering model, is to estimate the four cognitive
process parameters and to test reasonable hypotheses about these parameters. One example of
such a hypothesis would be that unclustered words from a pair behave like singletons in memory,
that is, they are stored and retrieved with the same probability (i.e., u = a).

In the next section, we begin with a formal introduction of a typical MPT model without
random effects. This is followed by an outline of the latent-traitMPTmodel with some extensions.
In the third section, we present threemethods ofmarginalML estimation for the latent-trait model.
Next, we describe the results of a small simulation study in which we compare the different
methods with respect to accuracy and speed. In Sect. 3.2, we present an application of our method
to an illustrative example using real data. In the final section, we discuss possible extensions and
open questions for future research.

2. MPT Models Without Person-Level Random Effects

The pair-clustering model we just described is a specific instance of an MPT model. On
a more general level, MPT models are statistical models of response frequencies of mutually
exclusive, independent categories. To define the model, we assume that there are k = 1, . . . , K
category systems and that each category system consists of j = 1, . . ., Jk categories Ckj . In the
pair-clustering model, there are K = 2 category systems, one for the word pairs and one for the
singletons. The first system consists of four categories: C11, C12, C13, and C14; and the singleton
system contains two categories: C21 and C22. We further assume that data from t = 1, . . ., T
individuals is available. For each single individual t , the data for category system k are given as
a vector of frequencies, nkt = (nk1t , . . . , nk Jk t ). For instance, n1t contains the four frequencies
of person t for the four word pair categories (i.e., k = 1). These frequencies are assumed to stem
from a multinomial distribution

f (nkt |θ) =
(

Nkt

nk1t ...nk Jk t

)
pnk1t

k1t · pnk2t
k2t · · · p

nk Jk t

k Jk t =
(

Nkt

nk1t ...nk Jk t

) Jk∏
j=1

p
nkjt
k j t (2)

where Nkt = nk1t +... + nk Jk t and pk1t + · · · + pk Jk t = 1. This definition requires the vector of
all frequencies across all category systems K of person t , that is, nt = (n1t , ..., nK t ), to follow a
product multinomial distribution:

f (nt |θ) =
K∏

k=1

(
Nkt

nk1t ...nk Jk t

) Jk∏
j=1

p
nkjt
k j t . (3)
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The idea behind MPT models is that the probability of the occurrence of an event category
can be modeled as a function of the cognitive process parameters. In the standard model (i.e.,
without person-level random effects), these process parameters θ are unknown constants that do
not vary between individuals. Thus, pkjt is written as

pkjt = P(Ckj |θ) (4)

where θ contains the S cognitive process parameters and is thus an element of [0, 1]S , s = 1, ..., S.
In the example, θ = (c, r, u, a), and the probability of C14 (see above) is p14t = P(C14|θ) =
c(1 − r) + (1 − c)(1 − u)2. To write P(Ckj |θ) more generally, we define Ik j to be the number
of branches of the tree that terminate in Ckj , with i = 1, ..., Ik j indexing a specific branch Bkji

that terminates in category j of category system k. As described by Hu and Batchelder (1994),
we define:

P(Bkji |θ) =
S∏

s=1

θ
ask ji
s (1 − θs)

bsk ji (5)

where ask ji and bsk ji indicate how often a process parameter θs and its complement 1 − θs ,
respectively, appear on the branch Bkji . For instance, there are two paths that terminate in C14.
To illustrate, we just consider the first of these branches, B141:

P(B141|θ) =
4∏

s=1

θas141
s (1 − θs)

bs141

= θ
a1141
1 (1 − θ1)

b1141 · θ
a2141
2 (1 − θ2)

b2141 · θ
a3141
3 (1 − θ3)

b3141 · θ
a4141
4 (1 − θ4)

b1141

= c1(1 − c)0 · r0(1 − r)1 · u0(1 − u)0 · a0(1 − a)0 = c(1 − r) (6)

According to these definitions, the probability of Ckj is

P(Ckj |θ) =
Ik∑

i=1

P(Bkji |θ) =
Ik∑

i=1

S∏
s=1

θ
ask ji
s (1 − θs)

bsk ji (7)

and the multinomial probability of the data for a single individual t is

f (nt |θ) =
K∏

k=1

(
Nkt

nk1t ...nk Jk t

) Jk∏
j=1

⎡
⎣

Ik j∑
i=1

S∏
s=1

θ
ask ji
s (1 − θs)

bsk ji

⎤
⎦

nk jt

. (8)

Equation8 can be used to obtain ML estimates of the process parameters θ . For instance, Hu
and Batchelder (1994) showed how the parameters can be estimated with an EM algorithm. Alter-
natively, methods based on the analytical gradient or finite difference methods can be used forML
parameter estimation. Both approaches are implemented in the R package MPTinR (Singmann
&Kellen, 2013; Singmann et al., 2020) or the package mpt (Wickelmaier &Zeileis, 2011, 2020)
. Also, a Bayesian approach can be used to estimate the parameters (e.g., Lee & Wagenmakers,
2014).
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3. MPT Models with Person-Level Random Effects

In the previous section, the process parameters contained in θ were assumed not to differ
between individuals. In the latent-trait MPT model, this assumption is relaxed because R≤S
elements of θ are written as a function of person-specific random effects that stem from a multi-
variate normal distribution

bt ∼ M N V (μ,�) (9)

where μ is an R × 1 vector of expectations and � is an R × R covariance matrix. Because each
single θst is a probability parameter, we need to make sure that the resulting coefficient remains
in the unit interval [0, 1]. On the basis of the literature on the Generalized Linear Model (GLM),
we use the logit-link function (see Coolin et al., 2015)

θst = 1

1 + exp [−(βs + bst )]
(10)

or the probit-link function (see Klauer, 2010)

θst = �(βs + bst ) (11)

to map a real-valued person parameter bst on a probability parameter θst , with βs serving as a
parameter-specific intercept constant (in Eq. 11, � denotes the cumulative normal distribution).
The two approaches typically result in very similar parameter estimates (at least in the GLM
framework). To allow for comparisons in the framework of random effects MPT models, we
have implemented both link functions in the R package that implements the statistical methods
proposed in this article.

We can now define the conditional distribution of the category frequencies of person t given
the random effects bt :

f (nt |β, bt ) =
K∏

k=1

(
Nkt

nk1t ...nk Jk t

) Jk∏
j=1

⎡
⎣

Ik j∑
i=1

S∏
s=1

θ
ask ji
st (1 − θst )

bsk ji

⎤
⎦

nk jt

(12)

where θst is defined as in Eqs. 10 or 11. Along with the multivariate normal density of the random
effects bt , Eq. 12 can then be used to obtain ML estimates of the model parameters. We refer to
this model as the random effects MPT model.

Before we proceed, we would like to point out that the mean structure in our model is not
identified because the expectation of the random effects is μ and the conditional distribution
contains the vector of intercept terms β. To identify the mean structure, we define all elements of
β to be zero when all process parameters are assumed to differ between individuals (i.e., R = S,
where R denotes the number of random effects parameters). In this case, our random effects
model corresponds to the model described by Klauer (2010). However, when only some (but not
all) of the process parameters are assumed to be random, we estimate the respective entries in β

for the (S − R) fixed parameters while setting the remaining R entries (corresponding to random
parameters) to zero and reducing the dimensions of μ and � accordingly. Thus, by writing the
model as proposed here, we achieve a high degree of flexibility to estimate MPT models with
both random and fixed effects. This can be very useful, for example, when MPT models include
guessing parameters that need to be estimated and are assumed to be constant across individuals.
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Furthermore, we can also extend the model to include person-level covariates contained in
the person-specific column vectors X t . This can be achieved in two ways: First, when the person-
level covariates are used to predict R process parameters that are assumed to be random, μ is
person-specific, and we write it as function of the predictor values:

μt = μ + �X t , (13)

where � is an R × p matrix of weights, and p is the number of person-level predictors used
to predict the random process parameters. Note that when there is an assumption that a process
parameter is not affected by a predictor in X t , the respective entry in � is simply set to zero.
Furthermore, μ represents the values of the person parameters when the covariates are zero.
Second, when a fixed process parameter θs is assumed to vary as a function of person-level
covariates so that the intercept βst may differ between individuals t , we follow the procedure
outlined by Coolin et al. (2015) and write

βst = βs + γsX t (14)

where βs is the value of the parameter-specific intercept when all person-level covariates are zero
and γs is a row vector containing the weights of the p covariates used to predict θs .

3.1. Marginal Maximum Likelihood Estimation

The goal is to estimate the free parameters contained in β, γ , μ, �, and �, where β and γ

denote the (S − R)-dimensional vector of intercepts and the (S − R) × p matrix of predictor
weights, respectively, in the fixed-effects part of our model (corresponding to the model of Coolin
et al., 2015) while μ, �, and � denote to the R-dimensional vector of parameter means, the
R × p matrix of predictor weights, and the R × R parameter covariance matrix, respectively, in
the random-effects part of our model (corresponding to the model of Klauer, 2010). We employ
a marginal ML approach that is based on the marginal density of the response frequencies. For a
single individual t , this density is

f (nt ) =
∫
bt

f (nt |β, γ , bt ) f (bt |μ,�,�)dbt . (15)

and for the entire sample, it is

f (n) =
T∏

t=1

f (nt ) (16)

Eq.16 can be used to define the likelihood

L(β, γ ,μ,�,�) =
T∏

t=1

∫
bt

f (nt |β, γ , bt ) f (bt |μ,�,�)dbt =
T∏

t=1

∫
bt

Lt dbt (17)

and the log-likelihood of the data

ll(β, γ ,μ,�,�) =
T∑

t=1

log

(∫
bt

Lt dbt

)
. (18)
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One problem with the marginal ML approach is that there is no analytical solution for the
values of β, γ , μ, �, and � that maximize Eq.18. Rather, numerical approximations have to be
used to estimate the model parameters. For these approximations, we use the analytical gradient
of the log-likelihood function given by

∂ll

∂τk
=

T∑
t=1

1

f (nt )

∫
bt

Lt
∂log(Lt )

∂τk
dbt (19)

where τ denotes an element of β, γ , μ, �, or �. To implement the gradient, one needs the first
derivative of the log-likelihood function for a single person t with regard to a parameter. Note
that log(Lt ) is

log f (nt |β, γ , bt ) + log f (bt |μ,�,�) (20)

Thus, for a single element σl contained in �, the derivative is

∂logLt

∂σl
= −1

2
tr

(
�−1 ∂�

∂σl

)
+ 1

2

(
bt − μt

)′
�−1 ∂�

∂σl
�−1(bt − μt ) (21)

with
∂�

∂σl
= 1l + 1

′
l − 1l · 1′

l (22)

and 1l is an R x R matrix that contains a 1 in the position of σl and zeroes in all other positions.
For elements in μ or �, the derivative is

∂logLt

∂μtl
= (bt − μt )

′
�−1 ∂μt

∂μtl
(23)

where
μt

∂μl
= 1l and

μt

∂γl
= 1l X t (24)

and 1l is an R x 1 vector or an R x p matrix that contains a 1 in the position of the parameter that
is being estimated and zeroes in all other positions. Finally, the derivative of log(Lt ) with regard
to the elements in β is

∂logLt

∂βl

T∑
t=1

K∑
k=1

Jk∑
j=1

nkjt

P(Ckj |θ t )

Ik j∑
i=1

[
ask ji ·

(
∂θst

∂βl

)−1

− bsk ji ·
(
1 − ∂θst

∂βl

)−1
]

· P(Bkji |θ t )

(25)
where ∂θst

∂βl
is the derivative of the chosen link function with respect to the intercept parameter βl .

The same formula can be used for the parameters in γ , but the derivative of the link function has
to be computed for the element γsl rather than βl (i.e.,

∂θst
∂γsl

).
A secondproblemwith using themarginalMLapproach is that the likelihoodor log-likelihood

function, respectively, and the gradient involve integrals that are not tractable. However, one can
approximate the integrals using a number of numerical techniques (see Tuerlinckx et al., 2006;
Nestler, 2020, 2021). In the R package that implements marginal ML estimation methods, we
implemented three approaches: the Laplace approximation, the Adaptive Gauss–Hermite Quadra-
ture (AGHQ), and Quasi Monte Carlo (QMC) Sampling.
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Laplace Approximation The basic idea behind the Laplace approximation is that it can be used to
replace the function within the integral with another function that has a closed-form expression.
Imagine that the modes of the random effects bt of

l(bt ) = f (nt |β, γ , bt ) f (bt |μ,�,�) (26)

are available for each of the T individuals. One can then show (see, e.g., Pinheiro & Bates, 1995)
that the likelihood function given in Eq.17 can be approximated by

L(β, γ ,μ,�,�) ≈
T∏

t=1

(2π)S/2|�̂|1/2 f (nt |β, γ , b̂t ) f (b̂t |�,μ,�) (27)

where b̂t denotes the modes, and �̂ is the asymptotic covariance matrix of these modes.
A problem with using Eq.27 is that one has to estimate the modes b̂t for all T individuals

given the (unknown) parameters contained in β, γ , μ, �, and �. In practical implementations,
this problem is circumvented by first estimating the modes given the current parameter estimates.
Then, the model parameters are estimated by maximizing Eq.27 given the current modes b̂t . This
two-step procedure is repeated until the algorithm converges. The Laplace approximation is very
fast (compared with the other methods), and, in the well-known R package lme4 (Bates et
al., 2015) , it is the default method for estimating the parameters of a Generalized Linear Mixed
Model (GLMM).

Gauss–Hermite Quadrature The basic idea behind quadrature approaches is that they can be
used to approximate the numerical value of the integral. When one assumes that the random
effects are normally distributed (as we did), one first generates M vectors of size R x 1 of Gauss–
Hermite (GH) nodes x and weights w. For each of the node vectors (e.g., xm), one then computes
f (nt |β, γ , bt = xm). The integral for person t can then be approximated by a weighted sum

Lt (β, γ ,μ,�,�) ≈
M∑

n1=1

· · ·
M∑

nS=1

f (nt |β, γ , bn1···nR )wn1 · · · wnR . (28)

Themain problemwith this GH quadrature is that the number of points M increases exponentially
with the size of R. For example, when M = 10 and R = 4, there are 104 = 1000 single node vectors.
This is problematic because f (nt |β, γ , bt = xm) needs to be computed for each vector xm and
each person t . Thus, when M is large, the computational burden associated with approximating
the integral is too large to be feasible. For instance, when M = 10 and R = 10, one would need to
compute 1010 vector values for each person t . For this reason, we use Adaptive GH quadrature
in our implementation (AGHQ, Rabe-Hesketh et al., 2002; Tuerlinckx et al., 2006). In AGHQ,
the GH quadrature points x for each individual are first centered and scaled with the individual’s
modes b̂t . These scaled nodes and weights are then used to compute a weighted sum that is
similar to the one provided in Eq.28. By scaling the node vectors with the modes, fewer nodes
are required to achieve a precise approximation of the integrals.

Quasi Monte Carlo Integration Even when using AGHQ, the computational burden is too high
for high-dimensional random effect distributions. An alternative one could use is Monte Carlo
(MC) integration. MC integration rests on the observation that the integral in Eq.15 can be seen
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as an expectation of the function f (nt |β, γ , bt ) with respect to the random effect distribution
f (bt |μ,�,�):

∫
bt

f (nt |β, γ , bt ) f (bt |μ,�,�)dbt = E
[

f (nt |β, γ , bt )
]
. (29)

One can thus draw M random samples from f (bt |μ,�,�) to approximate the integral (Robert
& Casella, 2010) with

Lt (β, γ ,μ,�,�) ≈ 1

M

M∑
m=1

f (nt |β, γ , btm). (30)

where one inserts them-th randomdraw for bt . The advantage ofMC integration is that the number
of draws M does not have to increase when another random effect is added. However, one disad-
vantage of the technique is that M must be sufficiently large to be precise. Furthermore, because
samples are randomly drawn from the random effect distribution, a (Monte Carlo) sampling error
is introduced into the estimation. For these two reasons, here, we use Quasi Monte Carlo (QMC)
integration, which builds on deterministic sequences of points instead of randomly drawn points
in MC integration (hence the name “Quasi”). There are different ways to generate such sequences
(see González et al., 2006, for an introduction). In accordance with the GLMM literature (e.g.,
Crowther, 2017; González et al., 2006), we use Halton sequences in our implementation because
smaller numbers of draws M are required to achieve a precise approximation. To further decrease
the computational burden, we additionally scale the Halton numbers with b̂t and 
̂.

3.2. Standard Errors, Goodness-of-Fit Tests, and Random Effects

Once theML estimates have been determined, the estimates and their corresponding standard
errors can be used to compute z statistics and confidence intervals. From standard ML theory, it
follows that the parameters are asymptotically normally distributed with a covariance matrix that
is obtained by calculating the inverse of the information matrix. This matrix is the negative of the
matrix of second derivatives that is given by

∂ll

∂τkτ j
=

T∑
t=1

1

f (nt )2

[
f (nt )

∂dt

∂τ j
− dt d

T
t

]
(31)

where

dt =
∫
bt

Lt
∂log(Lt )

∂τk
dbt (32)

and
∂dt

∂τ j
=

∫
bt

[
∂2log(Lt )

∂τkτ j
+ ∂log(Lt )

∂τk

∂log(Lt )

∂τ j

]
Lt dbt (33)

Again, due to the integrals involved in Eqs. 32 and 33, the matrix of second derivatives is hard to
compute. In our implementation of the ML approach users can therefore choose whether standard
errors are based on a numerical approximation of the Hessian with finite-differencemethods using
the analytical gradient (see Eq.19) or on the exact hessian computed with Eq.31.

Furthermore, before researchers interpret MPT parameter estimates, they need to show that
their model actually fits the observed data. In addition, researchers very often want to compare the
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fit of a currentmodelwith the fit of amore restrictedmodel that imposes psychologicallymotivated
constraints on the parameters (e.g., equality constraints or parameter fixations). Goodness-of-fit
tests and model comparisons can both be conducted by means of a likelihood ratio test

L R = −2 · (llr − llu) (34)

where llr (llu) is the log-likelihood value of the restricted (unrestricted) model. Under certain
regularity conditions (see Reed & Cressie, 1988), the L R test statistic asymptotically follows a
central χ2 distribution with degrees of freedom equal to the difference between the parameters of
the unrestricted and restricted models if the more restricted model actually holds. The likelihood
ratio test can be used to compare the fit of two models that differ in the mean structure (e.g., u =
a in the pair-clustering model) or in the covariance structure (e.g., σua = 0).

The likelihood ratio test is based on the assumption that themodels being compared are nested.
For non-nested model comparisons, we suggest using the Akaike or the Bayesian Information
Criterion (AIC or BIC, respectively):

AI C = −2 · ll + 2 · d f

B I C = −2 · ll + log(n) · d f, (35)

where n = ∑T
t=1 nt and d f = R + (S − R) + p� + pγ + dim(�). Here, R is the number of

estimated cognitive process parameters set to be random (i.e., parameters in μ), S − R is the
number of fixed cognitive process parameters (i.e., parameters in β), p� + pγ gives the total
number of to-be-estimated weights of the person-level covariates in the random and the fixed
effects part of the model (i.e., parameters in � and γ ), respectively, and dim(�) represents the
number of estimated covariance parameters (see Bates et al., 2015).

Finally, it can also be of interest to obtain estimates of the individual random effects for each
participant t . As a random effects estimator, b̂t , it is possible to use a participant’s mode, which
can be obtained bymaximizing Eq.26, while treating the final model parameter estimates as fixed.
Fortunately, these values are already required when estimating the model so that they do not have
to be estimated again. Another choice would be the empirical Bayes estimator (Bock & Aitken,
1981) :

b̂t =
T∏

t=1

1

f (nt )

∫
bt

bt log( f (nt |β, γ , bt )) f (bt |μ,�,�)dbt . (36)

In this approach, we approximate the integrals using one of the integral approximation methods
described above.

4. Simulation Study

We performed a simulation study to assess the frequentist properties of the suggested ML
estimation approaches and also compare it with the performance of a Bayesian approach. Specif-
ically, we examined the effect of the number of participants and the number of responses per
participant on the bias of the parameter estimates and the coverage rate of the corresponding
confidence or credibility intervals, respectively. In addition, we examined for the ML estimator
how the number of quadrature points in the AGHQ approach and the size of the Halton sequence
in the QMC method affect the adequacy of the model parameter estimates.
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Population Model and Simulation Conditions. We used the pair-clustering model for this sim-
ulation. This MPT model comprises two category systems, including four and two categories,
respectively, with response probabilities described by four process parameters c, r , u, and a. In
our simulation study, the population covariance matrix of these four parameters (describing how
they vary across participants) was set to

� =

⎛
⎜⎜⎝
0.50 0.08 0.04 0.00
0.08 0.35 0.03 0.00
0.04 0.03 0.20 0.07
0.00 0.00 0.07 0.20

⎞
⎟⎟⎠ (37)

where the non-zero covariance terms reflect correlations of 0.30, 0.20, and 0.10. The mean values
of the parameters were set to μc = 0.50, μr = 0.40, μu = 0.25, and μa = 0.15 (see Batchelder
& Riefer, 1986).

We manipulated the number of simulated participants (75 vs. 125) and the number of sim-
ulated responses per participant (25 vs. 75 vs. 125). In accordance with Batchelder and Riefer
(1986), about 80% of the responses were assigned to the first category system (i.e., 20 vs. 60 vs.
100), leaving 20% for the second system (i.e., 5 vs. 15 vs. 25). The R package mvtnorm and
the function rmultinorm were used to generate the samples. We drew 500 samples from the
population for each of the six simulation conditions.

Estimators All the functions that were required to estimate the parameters with ML were imple-
mented in R (R Core Team, 2020; a working version of the package can be downloaded from
https://osf.io/w97m5/). To examine the properties of the ML estimation procedures, the number
of quadrature points in the AGHQ method was set to 3, 4, or 5, resulting in 43 = 64, 44 = 256 or
45 = 1, 024 node vectors per participant. For the QMC method, the size of the Halton sequence
was set to 500, 1000, or 2000. To obtain Bayesian estimates, we employed the TreeBUGS pack-
age (Heck et al., 2018a) . TreeBUGS uses the JAGS-MCMC sampler (Plummer, 2003) to
approximate the posterior distribution of the model’s parameters. For each replication, we fitted
the model with the traitMPT function using the default settings. That is, weakly informative
priors were specified for all parameters (i.e., normal distributions for the means and a scaled
Wishart distributions for the covariance matrix). Furthermore, three chains of 20,000 samples
were generated from the posterior distributions, whereby the first 2000 samples were discarded
for parameter estimation (i.e., burn-in period). Since TreeBUGS by default provides the means of
the posterior distributions as parameter estimates, we decided to used them as the Bayes estimates.

Dependent Measures We used the relative bias (RB) of the parameter estimates and the cov-
erage rate (CR) to investigate the statistical performances of the ML approaches and the Bayes
estimator. For the relative bias, we first computed the average parameter estimate in a simulation
condition. We then computed the difference between this average and the true parameter and
thereafter divided the difference by the true parameter. We consider relative biases below 10% to
be acceptable, biases of 10–20% to be substantial, and biases above 20% to be unacceptable (e.g.,
Forero et al., 2009; Morris et al., 2019). For ML, the confidence interval with the standard error1

of an estimate was computed in each replication to determine the observed coverage of the 95%
confidence intervals. The coverage was then coded 1 if the true parameter value was included
in the interval and 0 if the true parameter was not. We used the same approach to determine the

1We used the numerically approximated Hessian matrix to compute the standard errors of the parameter estimates in a
replication. Additional analyses with 100 replications from the simulation condition with 75 participants and 25 responses
showed that differences between standard errors based on the numerically approximated Hessian and the analytically
computed Hessian were very small. Therefore, we conclude that all unsatisfactory results regarding the coverage rate are
not due to the numerical approximation of the Hessian matrix.
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Table 1.
Relative frequencies of converged replications (CR) and average computation time (in s), depending on the estimator, the
type of ML approximation method, the number of individuals T , and the number of responses N per individual.

Variable T N Bayes Laplace ML-AGHQ ML-QMC
3 4 5 500 1000 2000

CR 75 25 0.56 0.01 0.68 0.84 0.85 0.56 0.61 0.62
75 0.90 0.38 0.75 0.89 0.84 0.83 0.86 0.89

150 0.95 0.64 0.95 0.99 0.98 0.96 0.97 0.98
125 25 0.66 0.01 0.71 0.88 0.89 0.61 0.62 0.64

75 0.91 0.33 0.90 0.98 0.95 0.88 0.93 0.96
150 0.94 0.65 1.00 1.00 1.00 1.00 1.00 1.00

Time 75 25 53.53 4.29 12.35 18.78 31.44 25.76 36.18 57.50
75 53.65 6.73 15.64 22.46 31.46 32.52 42.65 69.05

150 54.38 7.72 12.60 19.50 29.35 23.75 32.63 54.57
125 25 85.46 8.52 17.63 27.46 49.13 56.91 83.99 106.4

75 86.84 10.78 30.60 35.69 41.09 70.24 88.03 111.9
150 88.18 12.65 26.98 32.92 40.13 46.21 61.35 87.32

AGHQ = Adaptive Gauss–Hermit quadrature with 3, 4, or 5 nodes; QMC = Quasi Monte Carlo integra-
tion with 500, 1000, or 2000 points. In case of Bayes, convergence rates were calculated using R̂ values.
Computation times were determined on an Intel Core i7-6700 with four cores and 16GB RAM.

observed coverage of the 95% credibility intervals, but employed the 95% credibility intervals as
provided by TreeBUGS as the basis for the coding.

ResultsWe first examined the percentage of samples in which the estimation algorithm converged
for the two estimators, the different approximation methods, the different numbers of simulated
participants, and the different numbers of simulated responses per participant. In case of ML, a
sample was counted as converged when there were neither inadmissible estimates nor undefined
standard errors in the final solution. For Bayes, judging the convergence is a more difficult issue
(Hoff, 2009) . Here, we decided to use R̂ > 1.05 as the criterion, because it can be used well in
simulation studies and it is suggested in the literature (e.g., Lynch, 2007). However, we acknowl-
edge that a more or less stringent cutoff may lead to different results and that this should be taken
into account in the interpretation of our findings.

As can be seen in Table 1, convergence rates for both estimators increased with the number of
participants and the number of responses. In case of ML, the larger the number of points used by
a method to approximate the integrals, the better the convergence of the ML estimator. When the
number of responses was 75 or 125, convergence rates were acceptable for the AGHQ and QMC
methods. In conditions with 25 responses, convergence rates were highest for conditions with the
largest size of points. In this case, convergence rates were also similar to the convergence rate of
the Bayes estimator. With regard to the Laplace approximation, we found that convergence rates
were always below 70% (and even near 0% when number of responses was 25). Further analyses
showed that all convergence failures occurred because some (or all) of the standard errors were
undefined for the final estimates. These estimates were also very biased. We think that this bias
can be explained by noting that the precision of the Laplace approximation depends on whether
the shape of the function that is being integrated resembles a multivariate normal distribution.
Hence, the method does not perform well for highly non-normal cases (e.g., when the responses
are Bernoulli distributed; see Engel, 1998), and we suspect that similar performance problems
occur for the MPT model. Finally, Table 1 also contains the average run times of the different
methods.We note that comparing the computation times acrossML and Bayes is difficult, because
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Table 2.
Relative bias of parameter estimates in percent, depending on the approximation method, the number of individuals T ,
and the number of responses N per individual.

Method No. Points Parameter T =75 T = 125
N = 25 N = 75 N = 125 N = 25 N = 75 N = 125

AGHQ 43 μ 2.72 1.35 0.36 − 1.07 − 0.34 0.74
σ 2

b − 23.6 − 1.62 − 2.94 − 12.4 − 3.86 − 3.53
σbb 12.5 11.8 7.42 15.0 9.91 3.13

44 μ 2.11 1.34 0.60 0.27 − 0.59 0.71
σ 2

b 8.44 0.41 − 1.85 − 1.31 − 1.26 − 2.05
σbb − 13.8 1.76 3.76 4.53 2.04 − 1.20

45 μ 3.99 1.98 0.70 1.71 − 0.79 0.69
σ 2

b 7.38 2.29 − 1.11 1.28 0.02 − 1.45
σbb − 8.65 1.59 3.59 − 1.30 − 0.05 − 2.39

QMC 500 μ − 5.64 − 2.65 − 1.59 − 6.71 − 3.17 − 1.93
σ 2

b 11.4 − 5.07 − 4.98 9.01 − 7.39 − 5.58
σbb − 55.6 − 3.84 2.40 − 36.4 − 8.32 − 3.28

1000 μ − 2.19 − 0.91 − 0.77 − 3.95 − 2.68 − 0.75
σ 2

b 2.96 − 0.95 − 2.01 − 1.73 − 2.95 − 2.53
σbb − 33.3 − 3.77 − 0.55 − 19.4 − 6.28 − 5.96

2000 μ 0.94 − 0.14 − 0.32 − 0.25 − 1.99 − 0.09
σ 2

b 4.52 − 1.55 − 3.05 − 3.67 − 4.03 − 3.44
σbb − 3.67 6.63 4.20 0.82 3.69 − 0.25

Bayes – μ − 2.18 − 2.59 − 2.19 − 2.69 − 3.34 − 1.99
σ 2

b 1.73 1.83 2.51 − 1.44 1.44 1.13
σbb − 55.7 − 16.5 − 9.31 − 33.4 − 11.3 − 8.91

AGHQ = Adaptive Gauss–Hermit quadrature with 3, 4, or 5 nodes; QMC = Quasi Monte Carlo integration
with 500, 1000, or 2000 points.

they depend on how the approaches are implemented in R (i.e., using C++ in the background or
parallelization), how many chains are generated etc. In case of Bayes, all methods were slower
for larger numbers of participants. Similarly, ML methods became slower the larger numbers of
points used to approximate the integrals and the larger the number of participants.

In the following, we drop the Laplace approximation from further consideration when we
discuss the precision of the ML estimates (i.e., RB) and the confidence intervals (i.e., CR).
Furthermore, to facilitate the interpretation of the results, we decided to average the results for
the indices per parameter group (i.e., for the cognitive process parameter mean values c, r , u,
and a, called μ; the variance parameters in �, termed σ 2

b ; and the covariance parameters in �,
termed σbb). The resulting values for the relative bias are displayed in Table 2. When we consider
relative biases below 10% to be acceptable and biases of 10–20% to be substantial (Forero et
al., 2009; Morris et al., 2019) , we found for both ML methods that relative biases decreased as
the numbers of node vectors, sample sizes, and numbers of responses per participant increased.
Importantly, relative biases were generally low and acceptable in all simulation conditions for the
cognitive process parameters and the variance parameters. For the latter, however, biases were
somewhat larger but still acceptable in case of AGHQ when the number of responses was 25 and
the number of persons was 75. For the covariance parameters, the relative biases were larger and
more substantial the smaller the number of points used and the smaller the number of responses.
For the Bayes estimator, the relative bias was negligible for the cognitive process parameters and
the variance parameters in all conditions. However, replicating the results of Klauer (2010), the
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Table 3.
Coverage rate of parameter estimates, depending on the approximation method, the number of individuals T , and the
number of responses N per individual.

Method No. Points Parameter T = 75 T = 125
N = 25 N = 75 N = 125 N = 25 N = 75 N = 125

AGHQ 43 μ 84.5 92.3 92.9 87.8 93.9 94.3
σ 2

b 79.7 89.8 91.1 75.3 90.3 91.4
σbb 85.1 91.6 94.5 83.3 91.6 94.3

44 μ 88.7 94.3 93.7 92.1 94.7 94.8
σ 2

b 88.1 90.9 92.4 88.5 93.0 92.8
σbb 86.9 94.0 95.1 89.6 93.8 95.2

45 μ 94.6 94.6 93.9 93.9 95.0 94.8
σ 2

b 96.7 93.4 92.9 93.1 94.0 93.0
σbb 93.4 95.5 95.4 92.7 94.1 95.2

QMC 500 μ 77.9 89.0 92.4 80.1 89.3 94.0
σ 2

b 71.6 83.2 88.1 78.1 83.7 88.7
σbb 68.0 85.5 92.7 74.9 86.6 93.2

1000 μ 81.8 91.9 93.4 78.9 93.4 94.6
σ 2

b 74.9 86.3 90.5 79.6 88.4 91.1
σbb 66.4 89.8 94.2 76.6 90.3 94.3

2000 μ 86.7 92.2 93.5 84.5 93.6 94.5
σ 2

b 77.3 86.7 90.5 77.4 90.1 91.1
σbb 83.2 90.5 94.4 82.1 90.3 94.2

Bayes – μ 94.0 94.3 94.5 95.4 94.9 94.8
σ 2

b 95.1 94.3 94.7 95.9 94.7 95.3
σbb 98.8 96.6 97.3 98.4 96.0 96.0

AGHQ = Adaptive Gauss–Hermit quadrature with 3, 4, or 5 nodes, QMC = Quasi Monte Carlo integration
with 500, 1000, or 2000 points.

covariance parameters were unacceptably and substantially biased when the number of responses
was 25 or 75. When the number of responses was 125, the relative biases were still large but
acceptable.

With regard to the CR (see Table 3), we found that for all three types of parameters, the CR
moved closer to the nominal value as the sample size and the number of responses increased. For
AGHQ, the CR was near its nominal value when the number of points was 44 and the number of
responses at least 75. When the number of responses is 25, the CR was near the nominal value
when 45 points were used. A similar pattern of results was observed for the QMC approximation,
although the amount of undercoverage was greater than for the AGHQ approximation. Further-
more, when the number of responses was 25, undercoverage occurred irrespective of how many
points were investigated in our simulation. In case of Bayes, we found that the coverage was nom-
inal for the cognitive process parameters and the variance parameters. However, overcoverage
occurred for the covariance parameters although this tendency disappeared the larger the number
of responses.

To summarize, the simulation study reveals that the AGHQ method works better than the
QMC method when the number of nodes is at least four. Relative biases were low even for small
sample sizes and few responses per participant and confidence interval estimates were close to
nominal. When the number of responses was 75, the QMC also provided acceptable results, at
least when the number of points was 1000. Finally, when the number of responses was small (i.e.,
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R = 25), AGHQ with five nodes yield estimates that are at least as good as the estimates of a
Bayesian approach.

5. Illustrative Example

To illustrate the proposedML approach, we analyzed neuropsychological data from Schilken
(1998), who employed the pair-clusteringmodel to analyze and compare thememory performance
of 22 epileptic patients with a right-temporal focus of epileptic seizures, 21 epileptic patients with
a left-temporal focus, and 20 healthy controls matched with respect to age and intelligence. Each
participant learned word lists consisting of 10 semantically strongly related word pairs (e.g.,
armchair-sofa) and 5 singletons that were not related to other words in the list (e.g., sunflower).
All wordswere comparable in terms of difficulty andmemorizabilitywhen considered in isolation.
In addition, three words were added to the beginning and another three words to the end of the
word list to absorb primacy and recency effects in free recall. Because these primacy and recency
bufferwordswere excluded from further analysis, N = 15 responses per participant and study-test
cycle remained for analysis-10 responses for the pairs and 5 for the singletons. The studying of
the word list and the subsequent free recall test were repeated 6 times to examine learning effects
on the c, r , and u parameters of the pair-clustering model, resulting in a total of six study-test
trials per participant.

The same data set was also analyzed by Klauer (2006, 2010), thus providing us with the
opportunity to compare our results with Klauer’s, which were based on the Bayesian Latent-Trait
model (cf. Klauer, 2010, pp. 86/87). Tomaximize heterogeneity between participants, we followed
the procedure outlined byKlauer (2006, 2010) and analyzed all T = 22+21+20 = 63participants
conjointly in our first model. Also following Klauer’s guidelines, we restricted our attention to
the first two study-test cycles for each participant. This left us with T = 63 participants, K = 4
category systems (i.e., those for word pairs and singletons in Trials 1 and 2) with J1 = J3 = 4
and J2 = J4 = 2 categories (for word pairs and singletons, respectively), and N1 = N3 = 10 as
well as N2 = N4 = 5 responses per participant within the four category systems. Finally, again
in line with Klauer (2010)’s suggestions, we imposed the restriction that unclustered words in a
pair must match the singletons in terms of trial-specific storage and retrieval probabilities (i.e.,
u = a). Hence, there were three parameters to estimate per trial, c(1), r (1), u(1) for Trial 1 and
c(2), r (2), u(2) for Trial 2.

To test the goodness of fit, we estimated the model that we just specified and a more general
model with four parameters c(d), r (d), u(d), and a(d) per trial. For both models, we used the AGHQ
approximation method with 4 nodes to fit the two models. The LR test statistic comparing the
original and the more general model was L R = 9.02, which is not significantly different from
zero, χ2

cri t = 30.1, p =.98, d f = 19. Table 4 shows the parameters of the mean structure (i.e., μ) in
the restricted model. As can be seen, parameter values increased from Trial 1 to Trial 2, and the
probability-transformed parameters were very similar to the probability-transformed parameters
reported in Klauer (2010). Variance and correlation parameters were also quite similar across
the two approaches (see Table 5). A notable exception was the variance of r (1), where the ML
estimate was considerably larger than the Bayesian estimates. Also, the correlations involving
this parameter were smaller for ML compared with Bayes.

We decided to go one step further than Klauer (2010) and also analyze effects of the clinical
group on the parameter estimates. For this purpose, we added two dummy variables as covariates
to our model, the first one coded “1” for the right-temporal epileptic patients (patients in the
two other groups were coded 0) and the second dummy variable coded “1” for the left-temporal
epileptic patients (again, all other patients were coded “0”). This model provided us with the
opportunity to estimate the average (negative) effect of each clinical group relative to the control
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Table 4.
Parameter estimates of the mean structure for the illustrative data example.

Model 1 Model 2
Est CI TE Bayes Est CI �D. TE

μc(1) −0.58 [−0.87, −0.27] 0.28 0.31 −0.21 [−0.39, −0.03] 0.42
δc(1),D1

−0.90 [−1.14, −0.64] −1.11 0.13
δc(1),D2

−0.47 [−0.71, −0.23] −0.68 0.24
μr (1) −0.33 [−0.68, 0.01] 0.37 0.35 −0.35 [−0.56, −0.14] 0.36
δr (1),D1

0.16 [−0.01, 0.32] −0.19 0.42
δr (1),D2

0.10 [−0.06, 0.27] −0.25 0.40
μu(1) −0.93 [−1.06, −0.79] 0.18 0.18 −0.72 [−0.90, −0.53] 0.23
δu(1),D1

−0.37 [−0.61, −0.12] −1.09 0.14
δu(1),D2

−0.30 [−0.56, −0.04] −1.02 0.15
μc(2) 0.10 [−0.13, 0.34] 0.53 0.52 0.17 [ 0.02, 0.32] 0.57
δc(2),D1

−0.12 [−0.40, 0.14] −0.29 0.39
δc(2),D2

−0.31 [−0.59, −0.04] −0.48 0.32
μr (2) −0.06 [−0.25, 0.12] 0.47 0.50 0.28 [−0.08, 0.64] 0.61
δr (2),D1

−0.55 [−0.98, −0.13] −0.83 0.20
δr (2),D2

−0.43 [−0.91, 0.06] −0.71 0.24
μu(2) −0.36 [−0.51, −0.21] 0.36 0.34 −0.35 [−0.55, −0.15] 0.36
δu(2),D1

−0.13 [−0.40, 0.12] −0.48 0.32
δu(2),D2

−0.07 [−0.32, 0.17] −0.42 0.34

Parameters were obtained with AGHQwith 4 nodes. Est = Parameter estimates; CI = confidence interval; TE
= probability-transformed estimates; Bayes = Bayesian Estimates as reported in Table 2 in Klauer (2010).
D1 = First dummy variable, that is, 1 for right-temporal epileptic patients (all other participants are coded
zero). D2 = Second dummy variable, that is, 1 for left-temporal epileptic patients (all other participants are
coded zero). �D. is the estimate of the parameter for the group coded in the respective dummy variable (i.e.,
δ.,D.

+ μ.). For model 2, probability transformed estimates (column TE) indicate parameter means in the
three groups (control group, right-temporal epileptics, left-temporal epileptics, respectively).

Table 5.
Parameter estimates of the covariance structure for the illustrative example with real data.

Variances Correlations
Est Bayes 1. 2. 3. 4. 5. 6.

1. c(1) 0.37 0.35 – 0.54 0.73 0.78 0.72 0.71
2. r (1) 0.31 0.10 0.25 – 0.55 0.69 0.60 0.64
3. u(1) 0.12 0.06 0.73 0.22 – 0.72 0.70 0.78
4. c(2) 0.32 0.34 0.76 0.23 0.66 – 0.69 0.75
5. r (2) 0.13 0.09 0.71 0.22 0.62 0.65 – 0.69
6. u(2) 0.14 0.15 0.95 0.29 0.83 0.87 0.83 –

The first two columns present variance estimates based on the AGHQ method with 4 nodes (Est) and the
correspondingBayesian estimates (Bayes) as reported byKlauer (2010,Table 2), respectively. The correlation
matrix displays the Bayesian estimates of Klauer (2010) above the diagonal and the corresponding AGHQ
estimates using 4 nodes below the diagonal.
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group on each of themodel parameters, that is, c(1), r (1), u(1) for Trial 1 and c(2), r (2), u(2) for Trial
2. The results are also shown in Table 4. The results indicate that estimates for the c(.) parameters
were lower for epileptic patients compared with control patients whereas this pattern is less clear
for the remaining parameters.

6. Discussion

The aim of this articlewas to describe how the parameters in the latent-traitMPTmodel can be
estimatedwith amarginalMLapproach. Specifically,we introduced threemethods to approximate
the integrals that are involved when the goal is to maximize the marginal log-likelihood function,
and we investigated the statistical properties of these methods in a simulation study. Finally, we
presented an empirical example that illustrated the suggested approaches.

The results of the simulation study showed that AGHQ and QMC performed well with regard
to the relative bias and the coverage rate. However, we also found thatAGHQperformed somewhat
better than QMC in most simulation conditions. We would therefore recommend that researchers
use AGHQ as the default method for parameter estimation but switch to QMC when the number
of random effects becomes too large to approximate the integral with AGHQ in a reasonable
amount of time. Strictly speaking, however, our results refer to the range of simulation conditions
examined here only. Hence, further simulation research is needed to examine the performance of
ourML approaches for otherMPTmodels or, for example, models with low variance components.
In these simulation studies, one could then also examine some additional approximation methods
we ignored in the current study, such as a Monte Carlo EM algorithm (Booth & Hobert, 1999) ,
variational approximation (Ormerod & Wand, 2010) , or Laplace importance sampling (Kuk,
1999) . The latter method is a modification to the Laplace approximation which we dropped from
further consideration because of unsatisfactory performance in our simulation study. Laplace
importance sampling is an interesting alternative that is definitely worth to investigate.

So far, the parameters of the latent-traitMPTmodel canbe estimatedwith aBayesian approach
only (Heck et al., 2018a; Klauer, 2010) . Our simulation study suggests that the maximum likeli-
hood approach introduced here-specifically, theAGHQapproximationmethod-provides estimates
that are at least as good as Bayesian estimates (provided the number of nodes is sufficiently high).
For covariance parameters, in particular, both relative estimation bias and coverage rates of con-
fidence intervals appear to be clearly superior for AGHQ-based ML estimates compared to their
Bayesian counterparts. These results are important for empirical applications, especially those
focusing on parameter correlations. In addition, the maximum likelihood approach has some
pragmatic advantages compared to the Bayesian approach, for example, because prior distribu-
tions are not required, the convergence of the estimation algorithm is easier to determine, and the
asymptotic optimality properties of ML-estimated parameters have been well-known in the statis-
tical literature for decades. This does not mean that we are rejecting a Bayesian approach; rather,
we believe that the two approaches complement each other and that there likely are situations in
which one approach is preferable to the other (Wasserman, 2004) .

Webelieve that further simulation research is needed to determine the best-performingmethod
for a variety of situations. For example, on the one hand, estimation of covariances between
MPT parameters may turn out to be a specific strength of ML methods. On the other hand, the
Bayesian approach may outperform ML methods when the number of participants and/or the
number of responses is small. In fact, the results of our simulation study suggest these tentative
interpretations. However, our results require replication and definitely need to be extended to
other MPT models before they can provide a basis for general recommendations. Furthermore,
another interesting question for future research is whether there are circumstances under which
the twomethods produce discrepant results concerning model comparisons. Finally, we also think
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that it is interesting to investigate whether a combination of the two estimators (e.g., using the
ML estimates as starting values for BayesianMCMC estimation) has better asymptotic properties
compared to each single approach alone.

Additionally, there are a number of further research questions that we think would be worth-
while to study. First, it would be interesting to extend the ML estimator proposed here to handle
both random participant and random item effects (Matzke et al., 2015) . Implementing such
a crossed random effects MPT model would be a challenging task for future research. Another
challenging issue concerns recent extensions of MPT models to include continuous variables
such as response times (Heck et al., 2018b; Klauer & Kellen, 2018) . These generalized MPT
models could also be embedded in a hierarchical random effects framework and analyzed using
the marginal ML methods proposed here.

Amajor problem involves convergence problemsofmarginalMLmethods, for example,when
the number of responses per participant is very small or when the true variance components are
small. It would be interesting to investigate whether a penalized maximum likelihood estimator
(Chung et al., 2013) can solve the convergence issues of the ML estimator. Finally, both the
Bayesian approach and the ML approach proposed here assume that the random effects are
multivariate normally distributed. From a statistical point of view, however, this assumption does
not need to be true, and it would be interesting to examine how robust the two approaches are with
respect to such a misspecification when the true underlying distribution is actually, for example,
a finite mixture distribution (a reasonable assumption for the illustrative example). We note that
one can specify arbitrary distributions for the random effects in ML with QMC sampling and that
the implementation of these “robust” ML estimators would also be interesting for future research.

In summary, the present article shows how marginal maximum likelihood estimation can be
used to obtain the parameters of a random effects MPT model with or without covariates. Using
the pair-clustering model as a running example, we found for both simulated and real data that
the ML approach is a reasonable alternative to Bayesian hierarchical MPT analyses that are based
on the Latent-Trait Model (Heck et al., 2018a; Klauer, 2010) . Future research should extend
these results to other, more complex MPT models and perhaps also explore alternative numerical
methods of marginal ML estimation.
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