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A geometric proof of the binomial identity
                   

FRANTI�EK MARKO AND SEMYON LITVINOV

We give a geometric proof of the binomial identity

(a + b)n = ∑
n

i = 0
( ) aibn − in
i

for all natural  and real , . This work was inspired by the book [1], where
the binomial identity for  and  is proved by breaking a cube

 of size  into eight rectangular boxes and
counting their volumes as follows.

n a b
n = 3 a, b > 0

C (a + b) × (a + b) × (a + b)
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FIGURE 1: Breakdown of cube  ( )C n = 3

Looking at Figure 1, the reader can see that the volume of the cube  is
, in which there is one box of volume , three boxes of volume ,

three boxes of volume , and one box of volume . It follows that
.

C
(a + b)3 a3 a2b

ab2 b3

(a + b)3 = a3 + 3a2b + 3ab2 + b3

It is also mentioned in [1] that the same type of colouring could be
carried out in higher dimensions, yielding the identity

(a + b)n = ∑
n

i = 0
( ) an − ibi for a, b > 0, (1)n
i

where  is the binomial coefficient.( ) =
n!

i! (n − i)!
n
i

In this Article we present a geometric argument − one that does not
involve induction − to establish the binomial identity for all natural  and all
real .

n
a, b
In doing so, for a given natural , we first expand the above argument to

prove identity (1) and then provide a geometric counting argument to show that
n

(a − b)n = ∑
n

i = 0

(−1)i ( ) an − ibi for a > b > 0. (2)n
i
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The desired binomial identity

(a + b)n = ∑
n

i = 0
( ) an − ibin
i

for any real ,  then easily follows; this argument is provided at the end of
the Article.

a b

We now proceed to verifying identities (1) and (2). Let us call two
objects in -dimensional Euclidean space weakly disjoint if the volume of
their intersection is zero. If this volume is positive, we will say that they
intersect strongly.

n

Identity (1): Consider the -dimensional cube  given by the inequalities
 for . Divide  by the hyperplanes , for

, into  rectangular boxes. Each edge of these rectangular boxes
is given by either  or . If a box has exactly
edges given by , then its volume is . The number of
such boxes equals the number of subsets of the set  consisting of

 elements, which is known to be . Since different boxes are weakly

disjoint, and the sum of volumes of all boxes equals the volume of the cube
, which is , the argument is complete.

n C
0 ≤ xj ≤ a + b 1 ≤ j ≤ n C xj = a
1 ≤ j ≤ n 2n

0 ≤ xj ≤ a a ≤ xj ≤ a + b i
a ≤ xj ≤ a + b an − ibi

{1, … , n}
i ( )n

i

C (a + b)n

Identity (2): Consider the -dimensional cube  given by  for
. Divide  by the hyperplanes , for , into

rectangular boxes of the first kind, where each edge of a box is given by
either  or . To a box of the first kind we associate
the set  such that this box is given by  for

 and by  for . Denote this box by . For ,
the breakdown of the cube  into boxes  of the first kind is shown in
Figure 2. In addition, individually, boxes  are displayed in Figure 3.

n C 0 ≤ xz ≤ a
1 ≤ j ≤ n C xj = b 1 ≤ j ≤ n 2n

0 ≤ xj ≤ b b ≤ xj ≤ a
K ⊆ {1, … , n} b ≤ xj ≤ a

k ∈ K 0 ≤ xj ≤ b k ∉ K B1
K n = 3

C B1
K

B1
K

x3

a
bx2

x1

a
ba

b

FIGURE 2: Breakdown of cube  into boxes of the first kind ( )C n = 3
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FIGURE 3: Boxes  of the first kind ( )B1
L n = 3

Also consider  rectangular boxes of the second kind, where each edge
is given by either  or . To a box of the second kind
we associate the set  such that this box is given by

 for  and by  for . Denote this box by
. For , the boxes  of the second kind are given in Figure 4.

2n

0 ≤ xj ≤ b 0 ≤ xj ≤ a
L ⊆ {1, … , n}

0 ≤ xl ≤ a l ∈ L 0 ≤ xl ≤ b l ∉ L
B2

L n = 3 B2
L

Note that the boxes of the first kind are pairwise weakly disjoint, while
the boxes of the second kind, each of which is a union of some boxes of the
first kind, are not. A critical relationship between the boxes of the first and
second kind is given in the following statement. Since it is used several
times in the sequel, we state it as a lemma.

Lemma: The boxes  and  intersect strongly if, and only if,
which happens if, and only if, .

B1
K B2

L K ⊆ L
B1

K ⊆ B2
L

Proof: If , then , so  and  intersect strongly. If ,
then there exists an index . The coordinate  of each point in the
box  satisfies the inequalities  and ,
implying that . Therefore the projection of the box  on the

-th coordinate axis consists of a single point, implying that the volume of
 is zero, so  and  are weakly disjoint and .

K ⊆ L B1
K ⊆ B2

L B1
K B2

L K ⊄ L
k0 ∈ K \  L xk0

B1
K ∩ B2

L b ≤ xk0 ≤ a b ≤ xk0 ≤ b
xk0 = b B1

K ∩ B2
L

k0
B1

K ∩ B2
L B1

K B2
L B1

K ⊄ B2
L
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FIGURE 4: Boxes  of the second kind ( )B2
L n = 3

Denote the volume of the box  by  and the volume of the box  by .B1
K V1

K B2
L V2

L

The case : For , we use Figure 4 and apply the inclusion-
exclusion principle, see [2], to evaluate the volume  as follows:

n = 3 n = 3
V1

{1,2,3}

V1
{1,2,3} = V2

{1,2,3} − V2
{1,2} − V2

{1,3} − V2
{2,3} + V2

{1} + V2
{2} + V2

{3} − V2
∅. (3)

Calculating the volumes in the above equation yields identity (2) for :n = 3

(a − b)3 = a3 − 3a2b + 3ab2 − b3 = ∑
3

i = 0

(−1)i ( ) a3 − ibi.3
i

Let us now use a slightly different approach − that can readily be
employed in higher dimensions − to establish decomposition (3).

Counting contributions of boxes of the first kind approach: Since each box
of the second kind is a weakly disjoint union of some boxes of the first kind,
we can rewrite the right-hand side

E = V2
{1,2,3} − V2

{1,2} − V2
{1,3} − V2

{2,3} + V2
{1} + V2

{2} + V2
{3} − V2

∅

of (3) in terms of the volumes of boxes of first kind.

Using the Lemma, we observe that in , the volume of the box  is
counted once, the volumes of the boxes ,  and  are counted

 times, the volumes of the boxes ,  and  are counted
 times, and the volume of the box  is counted

 times. Therefore , and (3) follows.

E B1
{1,2,3}

B1
{1,2} B1

{1,3} B1
{2,3}

1 − 1 = 0 B1
{1} B1

{2} B1
{3}

1 − 2 + 1 = 0 B1
∅

1 − 3 + 3 − 1 = 0 E = V1
{1,2,3}
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Let us illustrate the above argument by an example:
Example: For the  with volume , we haveB1

{1,3} V1
{1,3}

E = V2
{1,2,3} − V2

{1,2} − V2
{1,3} − V2

{2,3} + V2
{1} + V2

{2} + V2
{3} − V2

∅

∪                             ∪                                                              
V1

{1,3}                          V1
{1,3}                                                         

using the Lemma, and hence the volume of the box  is counted
 times.

B1
{1,3}

1 − 1 = 0
Similarly, for the box :B1

{2}

E = V2
{1,2,3} − V2

{1,2} − V2
{1,3} − V2

{2,3} + V2
{1} + V2

{2} + V2
{3} − V2

∅

   ∪             ∪                          ∪                      ∪                    

                 V1
{2}             V1

{2}                         V1
{2}                     V1

{2}                               
hence its volume is counted  times.1 − 2 + 1 = 0

The general case: Now we will employ the above counting approach to
establish (2). We need the following identity:

∑
n

i = 0

(−1)i ( ) = 0  n ∈ �. (4)n
i

for every

The statement is obvious for . If , we haven = 1 n ≥ 2

∑
n

i = 0

(−1)i ( ) = ( ) + ∑
n − 1

i = 1

(−1)i ( ) + (−1)n ( )n
i

n
0

n
i

n
n

= ( ) + ∑
n − 1

i = 1

(−1)i (( ) + ( )) + (−1)n ( )n
0

n − 1
i − 1

n − 1
i

n
n

= ( ) − ∑
n − 2

i = 0

(−1)i ( ) + ∑
n − 1

i = 1
( ) + (−1)n ( )n

0
n − 1
i − 1

n − 1
i

n
n

= 0,
due to telescoping.

Let us establish the main result of the Article, identity (2).
Theorem

(a − b)n = ∑
n

i = 0

(−1)i ( ) an − ibi for a > b > 0.n
i

Proof: Denote by  the cardinality of a set . We say that a box  of the
second kind has the depth . We will show now that, in general,

|S| S B2
L

|L|

(−1)n V1
{1,…,n} = ∑

S ⊆ {1,…,n}
(−1)|S| V2

S , (5)

from which (2) will easily follow.
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Each box of the second kind is a union of boxes of first kind:
. Indeed, if , then , showing .

For the opposite inclusion, take  and define  to be the set of
indices  for which . Then . Besides, as noted earlier, the
union  is weakly disjoint.

B2
L = ∪

K ⊆ L
B1

K K ⊆ L B1
K ⊆ B2

L ∪
K ⊆ L

B1
K ⊆ B2

L

x ∈ B2
L K ⊆ L

j ∈ L xj > b x ∈ B1
K

∪
K ⊆ L

B1
K

Thus we can count contributions of the volumes of the boxes of the first
kind  inV1

K

E = ∑
S ⊆ {1,…,n}

(−1)|S| V2
S ,

as previously illustrated in the case . We will show that if the
cardinality of  is , then the contribution of  in the
expression  is zero.

n = 3
K ∈ {1, … n} k < n V1

K
E

By the Lemma, a box  is included in a box  if, and only if,
and if , then  and  are weakly disjoint. Therefore, contributes to

if, and only if, . We count the contributions of  to  as follows.
does not contribute to any  when . It contributes to , where ,

if and only if . If , where , there are  boxes

of the second kind  corresponding to sets  of cardinality . Thus

 contributes  times towards the sum . By the inclusion-

exclusion principle,  is counted  times in the sum . If

, then (4) implies that its contribution is zero.

B1
K B2

S K ⊆ S
K ⊄ S B1

K B2
S V1

K
V2

S K ⊆ S V1
K E V1

K

V2
S |S| < k V2

S |S| = k

S = K |S| = k + i 1 ≤ i ≤ n − k ( )n − k
i

B2
S S ⊃ K k + i

V1
K ( )n − k

i ∑
|S| =k + i

V2
S

V1
K (−1)k ∑

n− k

i = 0
(−1)i ( )n − k

i
E

k < n
If , the contribution to  is . Thus, (5) follows.k = n E (−1)n V1

{1,…,n}

Now let us count the right-hand side of the expression in (5) in a
straightforward way. The volume of each box of the second type of depth

is , the number of boxes of the second kind of depth  is , the sum

of the volumes of the boxes of the second kind of depth  equals .

Therefore, the right-hand side of (5) is

j

ajbn − j j ( )n
j

j ( ) ajbn − jn
j

∑
n

j = 0

(−1)j ( ) ajbn − j = (−1)n ∑
n

j = 0

(−1)n − j ( ) ajbn − jn
j

n
n − j

= (−1)n ∑
n

j = 0

(−1)i ( ) an − ibi,n
i

where we used the property  and set . Since

, the result follows from (5).

( ) = ( )n
j

n
n − j i = n − j

V1
{1,…n} = (a − b)n
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Finally, let us show how the binomial identity

(a + b)n = ∑
n

i = 0
( ) an − ibin
j

for any real  follows from (1), (2) and (4).a, b

First, it is clear that one can assume without loss of generality that
, and also, due to symmetry, that .a, b ≠ 0 a ≥ b

Next, to verify the identity for , it is sufficient to consider
these three cases:

a + b ≥ 0

1. ;a, b > 0
2. ;a > 0 > b > −a
3. , .a > 0 b = −a

In Case 1, the identity is (1). In Case 2, the identity follows from Theorem
(identity (2)) if we replace  with . And, in Case 3, the identity follows
from (4).

b −b

At last, if , we have , so one can writea + b < 0 −a + (−b) > 0

(a + b)n = (−1)n (−a + (−b))n = ∑
n

i = 0

(−1)n ( ) (−a)n − i (−b)in
i

= ∑
n

i = 0

(−1)n (−1)n ( ) an − ibi = ∑
n

i = 0
( ) an − ibi.n

i
n
i
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