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We develop a nonparametric Bayesian analysis of regression discontinuity (RD)
designs, allowing for covariates, in which we model and estimate the unknown
functions of the forcing variable by basis expansion methods. In a departure from
current methods, we use the entire data on the forcing variable, but we emphasize the
data near the threshold by placing some knots at and near the threshold, a technique
we refer to as soft-windowing. To handle the nonequally spaced knots that emerge
from soft-windowing, we construct a prior on the spline coefficients, from a second-
order Ornstein–Uhlenbeck process, which is hyperparameter light, and satisfies the
Kullback–Leibler support property. In the fuzzy RD design, we explain the diver-
gence between the treatment implied by the forcing variable, and the actual intake,
by a discrete confounder variable, taking three values, complier, never-taker, and
always-taker, and a model with four potential outcomes. Choice of the soft-window,
and the number of knots, is determined by marginal likelihoods, computed by the
method of Chib [Journal of the American Statistical Association, 1995, 90, 1313–
1321] as a by-product of the Markov chain Monte Carlo (MCMC)-based estimation.
Importantly, in each case, we allow for covariates, incorporated nonparametrically by
additive natural cubic splines. The potential outcome error distributions are modeled
as student-t, with an extension to Dirichlet process mixtures. We derive the large sam-
ple posterior consistency, and posterior contraction rate, of the RD average treatment
effect (ATE) (in the sharp case) and RD ATE for compliers (in the fuzzy case), as the
number of basis parameters increases with sample size. The excellent performance of
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the methods is documented in simulation experiments, and in an application to edu-
cational attainment of women from Meyersson [Econometrica, 2014, 82, 229–269].

1. INTRODUCTION

For causal inference with observational data, regression discontinuity (RD) and
fuzzy RD designs (Thistlethwaite and Campbell, 1960; Campbell, 1969) have been
an active area of research for many years, for example, Hahn, Todd, and Van der
Klaauw (2001), Imbens and Lemieux (2008), Lee and Lemieux (2010), Frandsen,
Froelich, and Melly (2012), Calonico, Cattaneo, and Titiunik (2014) and Cattaneo,
Titiunik, and Vazquez-Bare (2017).

Our aim in this article is to develop a nonparametric Bayesian perspective on
RD designs. One organizing theme is that we estimate the unknown functions of
the forcing variable by basis expansion methods, which is relatively unexplored
in this area. In a departure from most current methods, we use the entire data
on the forcing variable, but we emphasize the data near the threshold by a
technique that we call soft-windowing. The key advantage of this approach is
that we can use marginal likelihoods to compare different versions of the models,
say different soft-window characteristics crossed with different distributional
assumptions or covariates. Such comparisons are infeasible in methods based
on hard-windowing (the dominant approach in the frequentist literature) since
different hard-windowing specifications produce different datasets.

To handle the nonequally spaced knots that emerge from soft-windowing,
we introduce a second-difference prior on the spline coefficients that acts as a
suitable regularizer, even when the number of knots is large. For the fuzzy RD
design, we explain the divergence between the treatment implied by the forcing
variable, and the actual intake, by a new model that adds a fresh perspective to the
existing literature on these designs. Another central concern is the derivation of
the theoretical large sample properties of the posterior distributions, and the rates
of contraction.

The distinguishing feature of the sharp design is that the intake (the treatment)
x ∈ {0,1} is determined by a forcing variable z by the deterministic rule x = I[z ≥ τ ],
where I[.] is the indicator function, and τ is a known discontinuity point. As usual,
there are two potential outcomes, y0 and y1 (say both in R), with the observed
outcome given by y = (1 − x)y0 + xy1. We suppose that yj = gj(z)+ h(w)+ σjεj,
where gj(·) are smooth unknown functions of z that are each continuous at τ ,
w ∈ R

kw are covariates, h(·) is an unknown smooth function additive in each
component of w, and the errors are student-t with ν > 2 degrees of freedom with
separate dispersion parameters σj. The student-t assumption is a reasonable base-
line starting point, especially when the sample size is not large, but, in Section 6,
we also consider a nonparametric formulation by putting a Dirichlet process prior
on this distribution.

We rely on basis expansion techniques with cubic splines to nonparametrically
estimate g0 from data on z < τ , and g1 from data on z ≥ τ . Instead of splines,
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a Gaussian process as, for example, in Branson et al. (2019), could be used.
Estimation in much of the frequentist literature, on the other hand, is based on
variants of local polynomial methods (or kernel methods) to data limited to a
window around the threshold, for example, Hahn, Todd, and Van der Klaauw
(2001), Imbens and Kalyanaraman (2012) and Calonico, Cattaneo, and Titiunik
(2014), or on variants of local randomization methods, see for example, Cat-
taneo, Frandsen, and Titiunik (2015) and Cattaneo, Titiunik, and Vazquez-Bare
(2017).

Although we use the entire data on the forcing variable to estimate gj, we
emphasize the data near τ by soft-windowing, placing some knots at and near
the threshold. We show that the choice of the soft-window, and the number of
knots, affect the marginal likelihood (the integral of the sampling density over the
prior) and, thus, these design parameters can be adjusted/optimized by the resulting
marginal likelihoods, which we can compute by the method of Chib (1995) as a
by-product of the Markov chain Monte Carlo (MCMC)-based estimation. In this
way, the data determine the soft-window around the threshold that is most relevant
for inferences about the RD effect.

In the fuzzy RD design, we explain the divergence between the assignment rule,
I[z ≥ τ ], and the treatment, x, (the hallmark of such designs) by an unobserved
confounder that denotes subject type, taking the values {c,n,a} for complier,
never-taker, and always-taker, respectively. See Chib and Jacobi (2016) for a
concrete illustration of this approach. There are now four potential outcomes,
y0 and y1 for the compliers, and y0n and y1a for never-takers and always-takers,
respectively. Conditioned on (z,w) and s = c, the potential outcomes y0 and y1

are generated as in the sharp model. For the new types, conditioned on (z,w)

we have y0n = g0n(z)+ hn(w)+σ0nε0n, and y1a = g1a(z)+ ha(w)+σ1aε1a, where
the functions g0n and g1a are continuous at τ . These functions can be identified
because never-takers and always-takers exist on both sides of τ . The functions
hn(·) and ha(·) are unknown smooth functions of the control variables w. The
(4 + 3 × kw) nonparametric functions in this model are also estimated by basis
expansion techniques. The object of interest is the RD average treatment effect for
compliers, limz↓τ+ E[y1|z,w,s = c]− limz↑τ− E[y0|z,w,s = c], which we show is
identified under weak assumptions.

In both models, we derive the large-sample rates of contraction of the average
treatment effect (ATE) and complier average treatment effect (CATE) posterior
distributions. These results (for non-Gaussian error distributions) are new to the
Bayesian nonparametric literature. Branson et al. (2019) also present a posterior
consistency result, but their result is only for the sharp design and under Gaussian
errors with known variances. Our derivations exploit a representation of the ATE
as a linear functional on the space of square integrable functions with respect
to the empirical distribution of the forcing variable, along with new techniques
for bounding functions that arise under our error assumptions. Interestingly, the
posterior contraction rate we derive is the same, up to a logarithmic factor, as the
one in Calonico, Cattaneo, and Titiunik (2014).
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The methods proposed in this article complement and broaden the frequentist
approach in several directions. Soft-windowing avoids the need to specify, or
select, a hard-window. As a result, we are seamlessly able to compare models with
different soft-windows by marginal likelihoods. Such comparisons of different
hard-window specifications are infeasible in the frequentist case because different
hard-windows produce different datasets. In addition, the posterior distribution of
the ATE supplies the entire summary of the effect, conditioned on the data. This
can be useful because in finite samples, the posterior distribution is not necessarily
symmetric, or even unimodal. In the frequentist case, interval estimates are based
on large-sample theory and are always symmetric around the point estimate. Our
approach is also useful from a purely frequentist perspective. We document that the
Bayesian posterior mean and interval estimates have excellent sampling properties
in finite samples, competitive with the root mean square error (RMSE) optimal, and
coverage-optimal, frequentist estimators. In addition, we prove that our procedures
in the sharp and fuzzy cases are asymptotically valid from a frequentist point of
view. Finally, these procedures are easy to implement by software produced by us.
Thus, it is possible now to calculate the Bayesian effects, along with the frequentist
effects, with ease that rivals that of the existing approaches.

The remainder of the article is organized as follows. In Section 2, we consider
the sharp RD design and introduce the key ideas, while in Section 4, we consider
the fuzzy RD design. Large sample analysis is provided in Sections 2 and 4.
Simulation studies are given in Sections 3 and 5. In Section 3, we also provide
a real data application of our method to an application from Meyersson (2014).
Extensions of the model to nonparametric error distributions are in Section 6,
and conclusions in Section 7. Details related to the basis expansions and the
main proofs of the theorems are given in Appendixes A–C, and in the Online
Supplementary Appendix.

2. SHARP RDD

We make the following assumptions.

Assumption 1 (Conditional expectations). For j = 0,1, there exists two func-
tions gj and h that depends only z and w, respectively, such that:

E[yj|z,w] = gj(z)+h(w) .

Assumption 2 (Smoothness).

1. For j = 0,1 and δ > 0, the function z �→ gj(z) is δ times continuously
differentiable on an interval that contains τ .

2. The function h(w) is continuous.

Assumption 3 (Distributions).

1. The forcing variable z and the covariates w have a continuous Lebesgue joint
density.
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2. The potential outcomes are generated as: for j = 0,1,

yj = E[yj|z,w]+σjεj,

where εj is distributed as standard student-t with ν > 2 degrees of freedom
and σj > 0.

Some remarks. Apart from the presence of the covariates w, Assumptions 1
and 2.1 correspond to Hahn et al. (2001, Assumptions (A1), (A2)), Imbens and
Lemieux (2008, Assumption 2.1) and Calonico et al. (2014, Assumption 1(b)).
Assumption 3.1 is also required in Calonico et al. (2014, Assumption 1(a)). The
local conditional independence assumption corresponds to the first assumption in
Hahn et al. (2001, Theorem 2) except for the presence of w. It is automatically
satisfied in the sharp model since x is determined given z. We use this fact in
showing identification. The distributional Assumption 3 relaxes the Gaussianity
assumption in Branson et al. (2019). Finally, these assumptions rule out the
possibility that individuals are manipulating z around τ strategically, that is, the
possibility that z is related to εj, for example, see Lee (2008) and McCrary (2008).

The object of interest is the RD ATE, that is, the average treatment effect at τ ,
defined as

lim
z↓τ+ E[y1|z,w]− lim

z↑τ− E[y0|z,w] = lim
z↓τ+ g1(z)− lim

z↑τ− g0(z). (2.1)

By continuity of gj(·), this is equal to g1(τ )−g0(τ ).
Under Assumptions 1 and 2, the RD ATE is identified. Fix a w in the support of

w|(z around τ ). Then, from the observed data on the right side of τ ,

lim
z↓τ+ E[y|z,w] = lim

z↓τ+ E[x|z,w] lim
z↓τ+ E[y1|z,w]

= lim
z↓τ+ g1(z)+h(w)

since the first term on the right-hand side in the first line is 1. Similarly, from the
observed data on the left side of τ ,

lim
z↑τ− E[y|z,w] = lim

z↑τ− E[(1− x)|z,w] lim
z↑τ− E[y0|z,w]

= lim
z↑τ− g0(z)+h(w).

The RD ATE is the difference in these two observed data limits.

2.1. Sample Data

The available data are n independent observations (yi,xi,zi), i ≤ n, where yi is equal
to y0i when xi = 0 and y1i when xi = 1 and satisfies the above assumptions. For sim-
plicity, until Section 6, suppose that w is absent to minimize the notational burden.
Let n0 (resp. n1) denote the number of observations to the left (resp. right) of τ ,
with n = n0 +n1. Assemble the vector of observations on (y,z) to the left of τ as

y0 � (y1, . . . ,yn0)
′ (n0 ×1), z0 � (z1, . . . ,zn0)

′ (n0 ×1),
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and those to the right of τ as

y1 � (yn0+1, . . . ,yn)
′ (n1 ×1), z1 � (zn0+1, . . . ,zn)

′ (n1 ×1).

For later reference, define zj,min �min(zj), zj,max �max(zj), for j = 0,1, and the pth
quantile of zj by zj,p. Moreover, we note that the likelihood function of this model is

p(y|z,g0,g1,σ
2
0 ,σ 2

1 ) =
n0∏

i=1

tν(yi|g0(zi),σ
2
0 )

n1∏
i=1

tν(yn0+i|g1(zn0+i),σ
2
1 ),

where y � (y′
0,y

′
1)

′, z � (z′
0,z

′
1)

′ and tν is the student-t density function.

2.2. Soft Windowing and Basis Expansions

We apply natural cubic spline basis expansion techniques, and the basis functions
in Chib and Greenberg (2010), to estimate g0(z) and g1(z). In this basis, the basis
coefficients are the function heights at the chosen knots. We take advantage of this
property by expanding g0(z) and g1(z) with knots at τ . This reduces the RD ATE
to the difference of two basis coefficients. As a side-benefit, by locating knots at τ ,
the estimates of the g functions over (z0,max,τ ) and (τ,z1,min) are not necessarily
linear.

We now explain the placement of the remaining knots. A key element of the
approach is soft-windowing. We start by partitioning [z0,min,τ ] and [τ,z1,max] into
intervals that are proximate and far from τ . We determine these four intervals
from the quantiles z0,p0 and z1,p1 , for specific values of p � (p0,p1), for example,
p = (0.9,0.1). We allocate knots to each of the four intervals under the constraint
that there is at least one observation between each successive pair of knots. We
let mz,τ = (mz,0,τ,mz,1,τ ) denote the maximum number of knots in the intervals
proximate to τ , and mz = (mz,0,mz,1) to denote the maximum number of knots in
the intervals further away from τ . Note that the no empty interval constraint means
that the actual number of knots can be smaller than the maximum numbers.

Our algorithm for placing knots under the constraint of no-empty intervals may
be characterized as “propose-check-accept-extend.” Consider the two intervals
to the left of τ . Place a knot at τ and let �τ = (τ − z0,p0)/(mz,0,τ − 1) be the
initial spacing for the remaining knots in the interval proximate to τ . Propose the
next knot at τ − �τ , and accept it as a knot if it produces a nonempty interval.
Otherwise, propose a knot at τ − 2�τ , check for a nonempty interval, accept
or extend the interval, and continue in this way until either z0,p0 is reached or
exceeded. Then calculate the spacing �0 = (z0,p0 − z0,min)/mz,0 and proceed from
the last accepted knot in the same way as before, making sure that z0,min is a
knot at the end of this stage. The same propose–check–accept–extend approach
is used on the right of τ , with the first knot at τ and the last at z1,max. Let{
z0,min,κ0,2, . . . ,κ0,m0−1,τ

}
denote the m0 knots to the left of τ determined by this

procedure, and let
{
τ,κ1,2, . . . ,κ1,m1−1,z1,max

}
denote the m1 knots to the right of

τ . A particular allocation of knots is shown in Figure 1, where m0 = 10 and m1 = 7.
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Figure 1. Example of knot locations in the basis expansions of g0 (top panel) and g1 (bottom panel),
determined by mz = (6,5), mz,τ = (5,5); these specify the maximum number of knots. Note that the
no empty interval constraint means that the actual number of knots can be smaller than the maximum
numbers. The circled points are the p0 and p1 quantiles of z0 and z1, respectively. Both g0 and g1 have
a knot at τ .

When using this algorithm, note that

m0 ≤ mz,0 +mz,0,τ and m1 ≤ mz,1,τ +mz,1,

and that, in general, the knots are not equally spaced.
Now, by basis expansions, the function ordinates,

g0(z0) �
(
g0(z1), . . . ,g0(zn0)

)
and g1(z1) �

(
g1(zn0+1), . . . ,g1(zn)

)
can be approximated as

g0(z0) ≈ gm0(z0) � B0α and g1(z1) ≈ gm1(z1) � B1β, (2.2)

respectively, where Bj : nj ×mj are the basis matrices evaluated at zj, and α and β

are the basis coefficients. As shown in Section 2.5, posterior consistency requires
that mj increase with sample size at the rate (nj/ log(nj))

ν , where ν is a constant
dependent on the smoothness of the function gj, j = 0,1.

Since, in our basis,

α
(m0×1)

=

⎛⎜⎜⎜⎜⎜⎝
g0(z0,min)

g0(κ0,2)
...

g0(κ0,m0−1)

g0(τ )

⎞⎟⎟⎟⎟⎟⎠, β
(m1×1)

=

⎛⎜⎜⎜⎜⎜⎝
g1(τ )

g1(κ1,2)
...

g1(κ1,m1−1)

g1(z1,max)

⎞⎟⎟⎟⎟⎟⎠, (2.3)

the RD ATE is the first component of β minus the last component of α:

ATE = β [1] −α[m0]. (2.4)
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τ z

αi = g0(κ0,i) βj = g1(κ1,j)

κ0,i−2 κ0,i−1 κ0,i κ1,j κ1,j+1 κ1,j+2

αi−2 αi−1
αi

βj βj+1

βj+2

h0,i h1,j+1

Figure 2. Prior formulation: three successive knots on either side of τ and the corresponding function
ordinates. The latter are the basis coefficients in the natural cubic spline basis expansions of g0 and
g1. The prior on these coefficients is defined through a second-order O–U process. The process moves
from left to right on the αi(i > 2), and from right to left on the βj( j < m1 −1).

2.3. Prior Distribution

To handle the nonequally spaced knots that emerge from soft-windowing, we
introduce a new second-difference prior on the spline coefficients that acts as a
suitable regularizer even when the number of knots is large. The prior in Lang and
Brezger (2004) and Brezger and Lang (2006) assumes that the knots are equally
spaced and that the first two knots have an improper prior, which precludes model
comparisons by marginal likelihoods.

We develop our prior of α and β from a second-order Ornstein–Uhlenbeck
(O–U) process, which, in continuous time, for a diffusion {ϕt}, is given by the
stochastic differential equation

d2ϕt = −a(dϕt −b)dt + sdWt,

where a > 0, and {Wt} is the standard Wiener process. We Euler-discretize this
process, letting dt equal the spacing between successive knots, a = 1, b = 0, and
s = 1/

√
λ, where λ is a penalty parameter.

Prior of α: Consider the situation shown in Figure 2 for values of g0 computed
at three successive knots, represented by αi = g0(κ0,i), αi−1 = g0(κ0,i−1) and αi−2 =
g0(κ0,i−2).

Let

�2αi � (αi −αi−1)− (αi−1 −αi−2) , i > 2,
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and define the spacings between knots by h0,i � κ0,i − κ0,i−1, as shown in Figure
2. We suppose now that, a priori, (α3,α4, . . . ,αm0), conditioned on (α1,α2), follow
the process

�2αi = −(αi−1 −αi−2)h0,i +u0i, (2.5)

u0i|λ0 ∼ N
(
0,λ−1

0 h0,i
)
, (2.6)

where (αi−1 −αi−2)h0,i introduces mean reversion and λ0 is an unknown precision
(smoothness) parameter.

To complete this process, we specify a distribution of (α1,α2). Let T−1
α,1:2 �(

B′
0B0
)

1:2 denote the first two rows and columns of B′
0B0. We then let(

α1

α2

)
=
(

g0(z0,min)

g0(κ0,2)

)
∼ N2

((
α1,0

α2,0

)
,λ−1

0 Tα,1:2

)
,

where α1,0 and α2,0 (the prior expected levels of g0 at the first two knots) are the
only two free hyperparameters.

By straightforward calculations, the implied joint prior distribution is

α|λ0 ∼ Nm0

(
D−1

α α0,λ
−1
0 D−1

α TαD−1′
α

)
, (2.7)

where α0 � (α1,0,α2,0,0, . . . ,0)′ is m0 × 1, Dα is a tri-diagonal matrix (given in
Appendix B) that depends entirely on the spacings, and Tα � blockdiag(Tα,1:2,

Im0−2) is m0 ×m0. Note that, under this prior, the diagonal elements of D−1
α TαD−1′

α

increase as one moves down the diagonal, which implies that Var
(
g0(z0,min)

)
<

Var(g0(τ )). Also note that this prior is fully specified by the two hyperparameters,
α1,0 and α2,0, which is convenient.

Prior of β: The prior of β is similar except that we orient the process from
right to left. We do this in order that the prior of β1 = g1(τ ) is determined by
the O–U process. Consider the three successive knots of g1, shown in Figure 2,
and the corresponding function values βj = g1(κ1,j), βj+1 = g1(κ1,j+1) and βj+2 =
g1(κ1,j+2). Conditioned on the right end-points (βm1−1,βm1), let

�2βj � (βj −βj+1)− (βj+1 −βj+2) , j < m1 −1

denote a sequence of second differences. Then, under the prior, we suppose that

�2βj = −(βj+1 −βj+2)h1,j+1 +u1j, (2.8)

u1j|λ1 ∼ N
(
0,λ−1

1 h1,j+1
)
, (2.9)

where h1,j+1 = κ1,j+1 − κ1,j is the spacing between knots and λ1 is an unknown
precision parameter, specific to β.

For (βm1−1,βm1), let T−1
β,m1−1:m1

�
(
B′

1B1

)
m1−1:m1

denote the last two rows and

columns of B′
1B1 . Then, assume that(

βm1−1

βm1

)
=
(

g1(κ1,m1−1)

g1(κ1,m1)

)
∼ N2

((
βm1,0

βm1−1,0

)
,λ−1

1 Tβ,m1−1:m1

)
,
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which implies that

β|λ1 ∼ Nm1

(
D−1

β β0,λ
−1
1 D−1

β TβD−1′
β

)
, (2.10)

where β0 � (0, . . . 0,βm1−1,0,βm1,0)
′ is m1 × 1, Dβ is the tri-diagonal matrix in

Appendix B, and Tβ � blockdiag(Im1−2,Tβ,m1−1:m1) is m1 ×m1.
The preceding prior on α and β induces a prior on the approximating functions

gmj , j = 0,1, which, together with a degenerate prior on zero for the remaining part
gj −gmj , gives a prior for the whole function gj, j = 0,1. This is a sieve type prior
as we let the number of components mj increase with n.

Prior of λ and σ 2: We complete our prior with a Gamma prior distribution on
λj, j = 0,1. It is important to keep in mind that for any value of n, λj → 0 implies
an unpenalized regression spline, and λj → ∞ implies that the second differences
are forced to zero, leading to piece-wise linearity. Therefore, depending on the
situation, we fix the Gamma hyperparameters in two ways. The first, the default,
we specify prior values of E(λj) and sd(λj) and match a Gamma distribution to
these choices. For example, we let E(λj) = 1 and then let sd(λj) = 5, where the
latter typically increases with the sample size. The second is to choose E(λj) to
make the smallest diagonal element of the variance matrix equal to one, that is,
choose E(λj) so that

min

{
diag

(
1

E(λj)
D−1

j TjD
−1′
j

)}
= 1,

and let sd(λj) be a multiple of this prior mean. Given the prior mean and standard
deviation (SD), we can then find independent matching Gamma distributions,
denoted (say) as

λj ∼ Ga

(
aj0

2
,

bj0

2

)
, ( j = 0,1). (2.11)

Note that if we let the prior mean of λj be small (relative to the prior SD), then
that puts more weight on the unpenalized regression spline. On the other hand, a
large value for aj0 puts more weight on the penalty, as required when the number
of knots increase with sample size. We prove below that for posterior consistency,
aj0 = C(nj/ log(nj))

ν , for positive constants C and ν that depend on the smoothness
of the function gj, for j = 0,1.

The prior on σ 2 � (σ 2
0 ,σ 2

1 ) is of the usual form. Independent of λ � (λ0,λ1), we
suppose that

σ 2
j ∼ IG

(
ν00

2
,
δ00

2

)
, ( j = 0,1), (2.12)

an inverse-gamma distribution, where ν00 and δ00 are chosen to reflect the
researcher’s views about the mean and standard deviation of σ 2

j .

Remark. As shown later, this prior satisfies an important property. Suppose
that one admits the existence of a true value (g∗

j ,σ
2
j∗) of (gj,σ

2
j ) for j = 0,1. Then,
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one is interested in knowing whether these true values are in the Kullback–Leibler
(KL) support of the prior. More precisely, the true data distribution characterized
by (g∗

j ,σ
2
j∗) belongs to the KL support of the prior distribution if the prior assigns

positive probability to any KL neighborhood of the true distribution. Our prior
satisfies the KL support property if the functions g0 and g1 are well approximated
by gm0 and gm1 , respectively. In particular, the KL support property is satisfied
even for a shrinking KL neighborhood if the hyperparameter aj0 of the Gamma
prior for λj is set equal to aj0 = C(nj/ log(nj))

ν , for positive constants C and ν that
depend on the smoothness of the function gj, for j = 0,1. We use this property to
derive large-sample asymptotic results using KL neighborhoods that shrink at a
rate εn → 0 indexed by the sample size n that is decreasing in n.

2.4. Posterior Distributions and MCMC Sampling

For observations on either side of τ , the following Bayesian linear models hold
(after we integrate with respect to the degenerate prior on zero for gj −gmj ):

yj
(nj×1)

= Bjθ j + εj
(nj×1)

,εj ∼ Nnj(0,�j), (2.13)

θ j|λj ∼ Nk
(
θ j0,Aj0

)
, λj ∼ Ga

(
aj0

2
,

bj0

2

)
, (2.14)

σ 2
j ∼ IG

(
ν00

2
,
δ00

2

)
, (2.15)

where θ j is α for j = 0 and β for j = 1, and by the Gamma scale-mixture of normals
representation of the student-t distribution,

�−1
0 � diag

(
ξ1

σ 2
0

, . . . ,
ξn0

σ 2
0

)
, �−1

1 � diag

(
ξ(n0+1)

σ 2
1

, . . . ,
ξn

σ 2
1

)
,

where

ξi ∼ Ga
(ν

2
,
ν

2

)
, 1 ≤ i ≤ n,

and

θ00 � D−1
α α0 , θ10 � D−1

β β0,

A00 � 1

λ0
D−1

α TαD−1′
α , A00 � 1

λ1
D−1

β TβD−1′
β .

The joint posterior distribution of the parameters (α,β), (λ0,λ1), σ 2 � (σ 2
0 ,σ 2

1 ),
and {ξi} can be sampled easily by MCMC methods (Chib and Greenberg, 1996).
The MCMC steps are iterated N0 + M times, where N0 is the number of burn-in
iterations and M is the number of iterations retained:

• Given (yj,σ
2
j , {ξi},{λj}), sample θ j from Nk(θ̂ j,Aj), where θ̂ j = Aj(A

−1
j0 θ j0 +

B′
j�

−1
j yj) and Aj = (A−1

j0 +B′
j�

−1
j Bj)

−1.
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• Given (yj,θ j, {ξi},{λj}), sample σ 2
j from IG

(
ν00+nj

2 ,
δ00+(yj−Bjθ j)

′
�−1

0 (yj−Bjθ j)
2

)
.

• Given (yj,θ j,σ
2
j ), sample {ξi} from

Ga

(
v+1

2
,

(
yji −Bjiθ j

)2
/σ 2

j

2

)
.

• Given θ , sample λ from

λ0|α ∼ Ga

(
a00 +m0

2
,

b00 + (Dαα −α0)
′T−1

α (Dαα −α0)

2

)
,

λ1|β ∼ Ga

(
a10 +m1

2
,

b10 + (Dββ −β0)
′T−1

β (Dββ −β0)

2

)
.

• After the burn-in iterations, extract the last element of α and the first element of
β to obtain drawings of the ATE from its posterior distribution.

We also use the output of this MCMC simulation to calculate the marginal
likelihood by the method of Chib (1995). Marginal likelihoods are used to optimize
p and the number of knots.

2.5. Large Sample Analysis

Assume for simplicity that there are no control variables w. In this section,
we conduct large sample analysis from a frequentist point of view, that is, we
assume a true value of the parameters that generates the data. We use these
notations and definitions: g∗

0(·), g∗
1(·), σ 2

0∗, and σ 2
1∗ denote the true values of g0(·),

g1(·), σ 2
0 , and σ 2

1 , respectively. The true data distribution, conditional on z(n) is
denoted by P(n)∗ (y(n)|z(n)), or P(n)∗ for short, where y(n) � {yi,i = 1, . . . ,n} and
z(n) � {zi,i = 1, . . . ,n} (and similarly for n replaced by n0 and n1). Denote by
‖ · ‖2 the norm in L2(Pz) where Pz is the distribution of z, that is, ∀f ∈ L2(Pz),
‖f ‖2 �

(∫ | f (z)|2dPz(z)
)1/2

and by ‖ · ‖n the norm in L2(Pn) where Pn is the
empirical distribution of z, that is, ∀f ∈ L2(Pn),

‖ f ‖2
n � 1

n

n∑
i=1

| f (zi)|2.

Moreover, for a vector v we denote ‖v‖∞ � maxi |vi| and for a,b ∈ R, Cδ[a,b] �
{h : [a,b]→R; h is δ times continuously differentiable}. For a probability measure
P, the notation Ph = ∫ hdP.

For j = 0,1 denote by Cmj the set of piecewise cubic functions and by Smj ⊂ Cmj

the subspace of natural cubic splines on the set of mj knots defined in Section
2.2. Therefore, gm0(z) � B0(z)′α ∈ Sm0 ⊂ Cm0 (resp. gm1(z) � B1(z)′β ∈ Sm1 ⊂
Cm1 ) is the unique natural cubic spline interpolating g0 (resp. g1) at the knots
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{z0,min,κ0,2, . . . ,κ0,m0−1,τ } (resp. {τ,κ1,2, . . . ,κ1,m1−1,z1,max}), where Bj(z) is a mj-
vector defined in Appendix A. We denote by α∗ and β∗ the coefficients corre-
sponding to the interpolations of g∗

0 and g∗
1, respectively, which in turn are denoted

by g∗
m0

(z) and g∗
m1

(z). Finally, π denotes both the prior on (g0,g1,σ
2
0 ,σ 2

1 ,λ0,λ1)
′

that is specified in Section 2.3 and the corresponding posterior.

2.5.1. Posterior Contraction Rate. The goal of the asymptotic analysis is
to establish the consistency of the ATE posterior distribution and to find the
corresponding contraction rate. To derive these results, we first have to find the
contraction rate for the posterior distribution of (gj,σ

2
j ) for j = 0,1, which, given

our model assumptions, is a new, interesting result in its own right. Our result
shows that there exist two sequences εn0,εn1 → 0, such that for all Mn,M̃n → ∞,

P(n)
∗ π

(
‖gj −g∗

j ‖nj ≥ Mnεnj,

∣∣∣∣1− σj

σj∗

∣∣∣∣≥ M̃n√
nj

for j = 0,1

∣∣∣∣∣y(n),z(n)

)
→ 0.

Since the posterior of (g0,g1,σ
2
0 ,σ 2

1 ) is equal to the product of the posteriors of
(g0,σ

2
0 ) and of (g1,σ

2
1 ), it is enough to show the separate convergence to zero of

the following probability for j = 0,1:

P
(nj)∗ π

⎛⎜⎜⎜⎝‖gj −g∗
j ‖nj ≥ Mnεnj, |1−σ 2

j /σ 2
j∗| ≥ M̃n/

√
nj︸ ︷︷ ︸

�Bc∗(εnj,n
−1/2)

∣∣∣∣∣∣∣∣∣y
(nj),z(nj)

⎞⎟⎟⎟⎠→ 0

for all Mn,M̃n → ∞. This means that the posterior distribution of (gj,σ
2
j ) con-

centrates on balls of radius of the order (εnj,n
−1/2
j ) around the true (g∗

j ,σ
2
j∗).

The sequence (εnj,n
−1/2
j ) is a posterior contraction rate and, by definition, every

sequence that tends to zero at a slower rate is also a contraction rate.
We make the next assumption to establish that (g∗

j ,σ
2
j∗) lies in the KL support of

the prior distribution and that π(Gj \Cn,j) is at most of the order e
−njε

2
nj , where Gj

and Cn,j are introduced below, as sketched in Section 2.5.2.

Assumption 4. (i) For every m0,m1 ∈ N+, there exist finite w0 ∈ R
m0 and w1 ∈

R
m1 such that α∗ −D−1

α α0 = D−1
α T1/2

α w0 and β∗ −D−1
β β0 = D−1

β T1/2
β w1.

(ii) For every m0,m1 ∈ N+, the maximum eigenvalues of D−1
α TαD−1′

α and
D−1

β TβD−1′
β are bounded away from zero and infinity.

Assumption 4 (i) is quite standard in settings with Gaussian process priors
and is a condition about the smoothness of the true function. It requires that the
parameters α∗ and β∗ associated with the true functions belong to the ellipsoid
associated with the prior covariance operator. Assumption 4 (ii) is weak and is
satisfied for instance if the prior covariance matrix is a discretization of a bounded
covariance operator.
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We then have the following theorem. The notation � denotes equality up to a
fixed constant.

THEOREM 2.1. Assume that for some −∞ < a < b < ∞ there exists a δ > 0
and a constant C2 > 0 such that: g∗

0 ∈ G0 � Cδ[a,τ ) and g∗
1 ∈ G1 � Cδ[τ,b], and

‖g∗
j − g∗

mj
‖∞ ≤ C2m−δ

j for j = 0,1. Moreover, 0 < σ 2
j < σ 2

j∗ < σ 2
j < ∞, for j =

0,1 and two constants σ 2
j ,σ

2
j . Let π denote the prior on (g0,g1,σ

2,{λj,j = 0,1})′
that is specified in Section 2.3 with mj = m∗

j �
(

nj
log(nj)

)1/(2δ+1)

, ν00 > 2, δ00 > 2,

and aj0 = 2ηm∗
j for j = 0,1, and η > min{3,δ00}(2δ + 1). Moreover, suppose that

Assumptions 1–4 hold. Then, for all Mn,M̃n → ∞ the posterior of (g0,g1,σ
2
0 ,σ 2

1 ),
denoted by π(·|y(n),z(n)) satisfies the following:

P(n)
∗ π

(
(gj,σ

2
j ) ∈ Gj ×R+ for j = 0,1;‖gj −g∗

j ‖nj

≥ Mnεnj,

∣∣∣∣1− σj

σj∗

∣∣∣∣≥ M̃n√
nj

∣∣∣∣∣y(n),z(n)

)
→ 0, (2.16)

where εnj �
(
log(nj)

nj

)δ/(2δ+1)

.

We remark that if nj � n for j = 0,1 then the two posterior distributions contract

at the same rate
(
log(n)

n

)δ/(2δ+1)

. The smoothness assumption in this theorem is

standard in the literature (see e.g., Calonico et al., 2014, Assumption 1; Imbens
and Kalyanaraman, 2012, Assumption 3.3). The rate εnj for the nonparametric
parameter corresponds to the minimax rate, up to a logarithmic factor. The
logarithmic factor in the convergence rate is typical in Bayesian nonparametric
problems, see for example, (Ghosal, 2017). The constant Mn can be any diverging
sequence and so it does not affect the rate of contraction. For the parametric
component σj the usual parametric rate is obtained since the sequence M̃n is
allowed to grow indefinitely. Therefore, the joint posterior of (gj,σ

2
j ) contracts at

the rate n−1/2
j along the σ 2

j -direction, but at a slower nonparametric rate εnj along
the gj direction. We point out that our result (2.16) has been established in terms of
the norm ‖·‖n but it holds also for the norm ‖·‖2 as long as we add the assumption
that the sets Cδ[a,τ ) and Cδ[τ,b] are Glivenko–Cantelli with respect to Pn. In fact,
in this case Pn converges to Pz uniformly over g0 ∈ Cδ[a,τ ) and g1 ∈ Cδ[τ,b].

2.5.2. Main Idea of the Proof of Theorem 2.1. The general strategy to establish
(2.16) in a semiparametric setting is the test and metric entropy approach. In our
framework this means that, given an eventAj and its complementAc

j , the following
upper bound holds: for j = 0,1
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π
(

Bc
∗(εnj,n

−1/2)

∣∣∣y(nj),z(nj)
)

≤ φnj + (1−φnj)π
(

Bc
∗(εnj,n

−1/2)

∣∣∣y(nj),z(nj)
)

≤ φnj + I[Ac
j ]+ (1−φnj)π

(
Bc

∗(εnj,n
−1/2)

∣∣∣y(nj),z(nj)
)

I[Aj], (2.17)

where φnj is a testing function for the null hypothesis H0 : (gj,σ
2
j ) = (g∗

j ,σ
2
j∗)

against the complement of a neighborhood U of (g∗
j ,σ

2
j∗) denoted by U c, where the

posterior probability of U converges to one. The event Aj, which has probability
converging to 1, is used to lower bound the denominator of the posterior distribu-

tion. This lower bound also depends on the KL property of P
(nj)∗ . That is, the true

data distribution P
(nj)∗ characterized by (g∗

j ,σ
2
j∗) has to belong to the KL support of

the prior distribution: namely, for some constant C > 0 the prior has to assign a

probability not smaller than e
−Cnjε

2
nj to any KL neighborhood of P

(nj)∗ (see definition
D.1 in the Online Supplementary Appendix). This requires lower bounding the

prior of the KL neighborhood of P
(nj)∗ . While with a normal sampling distribution,

and a known variance σ 2
j , it is easy to show that the KL neighborhood contains a

set that admits an immediate characterization in terms of ‖gj −g∗
j ‖2

nj
, showing this

for a student distribution and an unknown σ 2
j is considerably more involved. We

rely on upper bounds for the logarithmic function and a Taylor expansion which

is valid over a set with prior probability of order at least equal to e
−njε

2
nj .

The test φnj formalizes the idea that (g∗
j ,σ

2
j∗) and U c can be separated. It has to

be a uniformly exponentially consistent test, that is, a test for which there exist

constants C > 0, ε > 0 such that P
(nj)∗ φnj ≤ e−njε and inf(gj,σ

2
j )∈Uc P

(nj)

gj,σ
2
j
φnj ≥ 1 −

Ce−njε where P
(nj)

gj,σ
2
j

� P
(nj)

gj,σ
2
j
(y(nj)|z(nj),gj,σ

2
j ). Such tests exist for nonparametric

regression models with normal errors and known variance. We develop such tests
for our context. In the proof of Theorem 2.1, we exploit the fact that the student
distribution can be written as a mixture of normal distributions and, conditional
on the latent mixing variable, the true model is normal with unknown variance.
Then, conditional on the latent mixing structure, we construct uniformly exponen-
tially consistent tests for our set-up with an ε of the order ε2

nj
.

One way to guarantee the existence of such tests is to use the fact that the models
inU c are not too complex, where complexity is measured in terms of metric entropy
and prior mass. More precisely, if Gj ×R+ denotes the parameter space for (gj,σ

2
j ),

for ε to be of the order ε2
n one needs to find a sequence of measurable sets Cn,j ⊂ Gj

such that: (i) as nj → ∞, Cn,j becomes big enough to approximate Gj, (ii) the

prior π(Gj \Cn,j) is at most of the order e
−njε

2
nj , and (iii) Cn,j can be written as the

countable union of sets whose metric entropy is at most of the order njε
2
nj

.
The proof of Theorem 2.1 is constructed around these arguments, developed

precisely in Appendix C.2 and in the Supplementary Appendix.

2.5.3. Posterior Consistency of the ATE. We now have the following result on
the consistency of the ATE posterior distribution and its contraction rate.
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THEOREM 2.2. Let the assumptions of Theorem 2.1 hold. Then, for all
M1,n → ∞
P(n)

∗ π
( |ATE−ATE∗|≥M1,nεn, |1−σj/σj∗| ≥ M̃n/

√
nj, for j = 0,1

∣∣y(n),z(n)
)→0,

where

εn � max

{(
log(n0)

n0

)δ/(2δ+1)

,

(
log(n1)

n1

)δ/(2δ+1)
}

.

Note that if n0 � n1, then the contraction rate εn is the same as the rate in
Calonico, Cattaneo, and Titiunik (2014) for δ = 3, up to a logarithmic factor, which
is usual in Bayesian nonparametric estimation. To establish this result, we have
used the characterization of the ATE as β [1] − α[m0] and then expressed β [1] and
α[m0] as two linear functionals on the L2(Pnj) space for j = 1,0, respectively. This
strategy is an alternative to the use of point evaluation functionals to express the
ATE, as in Branson et al. (2019), which is unbounded in the L2(Pz) space because
its representer does not belong to L2(Pz).

It is also possible to consider the ATE consistency under the assumption of fixed
variances, as in Branson et al. (2019). Unless σ 2

j = σ 2
j∗, however, which Branson

et al. (2019) apparently assume, the conditional model is misspecified and the
posterior concentrates around the least-favorable model, see Bickel and Kleijn
(2012). Therefore, to establish the ATE consistency (without assuming that the
variances are equal to the true values), one has to consider the contraction of the
conditional posterior of gj, and of the ATE, conditioned on a sequence of variances,
σ 2

jn � σ 2
jn(hn) � σ 2

j∗ +hn/
√

nj for all bounded, stochastic sequences hn. By slightly
modifying our proofs, we can show that the contraction rate of these conditional
posteriors is the same as the rate given in Theorems 2.1 and 2.2. That is, under the
assumptions of Theorems 2.1 and 2.2: for all Mn,M̃n → ∞ and every bounded,
stochastic hn:

P(n)
∗ π

(
gj ∈ Gj;‖gj −g∗

j ‖nj ≥ Mnεnj for j = 0,1
∣∣∣

σ 2
j = σ 2

j∗ +n−1/2
j hn for j = 0,1;y(n),z(n)

)
→ 0

and for all M1,n → ∞
P(n)

∗ π
(
|ATE−ATE∗| ≥ M1,nεn

∣∣σ 2
j = σ 2

j∗ +n−1/2
j hn for j = 0,1;y(n),z(n)

)
→ 0.

3. EXAMPLES: SHARP DESIGN

3.1. Design

We simulate data from the following data generating process: yj = gj(z)+σεj for
j = 0,1, where ε0 ∼ tν(0,1) and ε1 ∼ tν(0,1) with ν = 3, and the z variable and the
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Table 1. Sharp Design: Simulated Data with Error Distributed as 0.1295 ×
t3(0,1). This table shows that the soft-window quantiles influence the log marginal
likelihood (computed by the method of Chib, 1995) and that the log marginal
likelihood worsens as the degrees of freedom used in the estimation moves further
away from the true value. The log marginal likelihood of the best model, for each
sample size, is highlighted in bold.

p mz mz,τ log marg lik

n = 500

t3 (0.7,0.3) (3,3) (3,2) 55.61
t3 (0.9,0.1) (3,3) (3,2) 52.48

t4 (0.7,0.3) (3,3) (3,2) 55.20

t5 (0.7,0.3) (3,3) (3,2) 53.12

t100 (0.7,0.3) (3,3) (3,2) 8.99

n = 4,000

t3 (0.7,0.3) (4,3) (3,2) 1,026.47

t3 (0.9,0.1) (4,3) (3,2) 1,027.71
t4 (0.9,0.1) (4,3) (3,2) 1,016.16

t5 (0.9,0.1) (4,3) (3,2) 992.84

t100 (0.9,0.1) (4,3) (3,2) 568.95

parameters are chosen as in Imbens and Kalyanaraman (2012) (IK) and Calonico,
Cattaneo, and Titiunik (2014) (CCT), that is,

g0(z) = 0.48+1.27z+7.18z2 +20.21z3 +21.54z4 +7.33z5,

g1(z) = 0.52+0.84z−3.00z2 +7.99z3 −9.01z4 +3.56z5,

z ∼ 2×Beta(2,4)−1,

σ = 0.1295. The true value of the RD ATE at the break-point τ = 0 is 0.04.
In this design, there are relatively fewer treated observations than controls,

which makes the estimation of the ATE challenging in small samples. We consider
two sample sizes, n = 500 and n = 4,000.

We estimate the model as follows:

1. The prior mean and SD of σ 2 are 0.3 and 1.0, respectively.
2. The prior mean and SD of λ are (1,1) and (5,5), our default choices.
3. The soft-window quantiles p � (p0,p1) are based on the distribution of z. We

optimize these values according to the value of the marginal likelihoods, as
shown in Table 1.

4. The number of knots is also chosen based on marginal likelihoods. In general,
as n increases, we shrink the soft-window width and increase the number of
knots.

5. Finally, the degrees of freedom parameter is set on the grids 3, 4, 5, and 100.
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Figure 3. Sharp design: Simulated data with error distributed as 0.1295 × t3(0,1). This shows the
function estimates and credibility bands for two different sample sizes for the best models selected
in Table 1. The right panel are the corresponding zoom plots, zoomed to the interval given by the
soft-window quantiles.

The results in Table 1 show that the choice of the soft-window width matters
and leads to different marginal likelihoods. For n = 500, the wider soft-window is
supported while for n = 4,000 there is more support for a narrower soft-window.

3.1.1. Function Estimates. The Bayes estimates of g0 and g1 are given in
Figure 3. The true value of the functions are the dotted lines, the estimates are the
solid lines, the 95% point-wise credibility intervals of the functions are the shaded
bands, and the distribution of the z values is notched on the horizontal axis. This
figure shows that when n = 500, g1 is not well estimated (because of the sparseness
of the data) but the function estimate improves with n. The right panel displays the
same function estimates, but restricted to the soft-window intervals.

3.2. Sampling Experiments

We now consider the sampling performance of the Bayes RD ATE estimate along
two dimensions—the sampling root mean square error (RMSE) and the coverage
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Table 2. Simulated Data: Sharp RD Designs, True Value of the ATE is 0.04.
Summary of Results from 1,000 Repeated Samples of Student-t data generating
process (DGP) and Two Different Sample Sizes.

Mean Coverage RMSE

n = 500

0.043 0.961 0.073

n = 4,000

0.040 0.945 0.045

of the 95% posterior credibility interval. In these experiments, p, mz and mz,τ are
determined once. We have found, however, that the final sampling results are not
improved greatly by optimizing these choices for every new sample.

Finally, as in the preceding section, the prior mean and standard deviation of
σ 2 are 0.3 and 1.0, respectively, and the prior mean and standard deviation of
λ are (1,1) and (5,5), respectively. No tuning was used to arrive at this prior to
demonstrate that the performance of our approach is not dependent on a tuned
prior.

The results show that, as the sample size increases, the Bayes estimate gets
closer to the true value, the coverage approaches the nominal value, and the RMSE
declines.

3.3. Example: Meyersson (2014)

For an application of the sharp RD design to real data, we consider the study of
Meyersson (2014), used as an example by Cattaneo, Idrobo, and Titiunik (2020)
to discuss various frequentist procedures. The study (based on data from Turkey)
deals with the effect of an Islamic mayor on the percentage of women aged
15–20 in 2000 who had completed high school in 2000 (this is the outcome variable
y). The running variable z is the vote margin obtained by the Islamic party in the
1994 mayoral election over its strongest secular party opponent (the cut-point τ is
zero). The treatment variables x is 1 if the Islamic party candidate won the mayoral
election, and 0 otherwise. Four regional indicator variables, which we denote by v,
and three continuous variables, w1,w2,w3, representing the Islamic vote percentage
in 1994, the number of parties receiving votes in 1994, and the logarithm of the
population in 1994, respectively, are available as controls.

Cattaneo, Idrobo, and Titiunik (2020) calculate the sharp RD effect by different
local polynomial based methods without and with covariate adjustment and under
various procedural choices involving the kernel and bandwidth parameters. These
different methods and choices produce estimates that are similar, but it is not clear
from the frequentist analysis if covariate adjustment should be done, and which
procedural choices are preferred. It is also possible that some covariates are more
important for some bandwidths, and not for others, but these sort of comparisons
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Figure 4. Meyersonn (2014) data: scatter plot of y against x with least squares fits from data on each
side of τ .

are not possible by hard-windowing methods where different bandwidths produce
different data sets.

As we have demonstrated above, soft-windowing plus marginal likelihoods
enable a systematic comparison (and ranking) of the different modeling choices.
One primary choice is about p, mz, and mz,τ . A scatter-plot of y against z, with
least squares fits on each side of τ , given in Figure 4, shows (noisy) observations
concentrated close to τ , right-skewness in the distribution of y with some rather
outlying observations, and a small positive jump at τ , at least as measured by
the (inappropriate) global linear fits. These observations suggest that covariate
adjustment will be required to reduce the noise, that the student-t distribution
with its thicker tails should outperform the Gaussian (both assumptions should
be viewed as approximations given that the support of y is limited in these data),
and that a few knots should be adequate to model gj.

Hence, we consider Gaussian (approximated by ν = 100) and student-t (ν = 5)
models, with and without covariate adjustment. A range of soft-window param-
eters are scanned, starting with p = (0.7,0.4). In these models, mz = (2,2), and
mz,τ = (3,2), as other larger number of knots have substantially lower marginal
likelihoods, regardless of p. In each of these models, the prior on σ 2

j , has a mean
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and sd of 70 and 30, respectively, and the prior of each element of λ has a mean of
1 and sd of 5.

Consider first the case of models without covariate adjustment. The best
model (selected by the marginal likelihood) has p = (0.4,0.3) and a log-marginal
likelihood of −9669.249. It shows a preference for a wider soft-window to the
left of τ , and a narrower soft-window to the right of τ . From this best model, the
posterior mean of the ATE is 3.213, with a 95% posterior credibility interval of
(−0.398, 6.864).

A similar analysis can be conducted with covariates. One can consider all
possible adjustments, by taking different combinations of the four geographical
indicators and three continuous covariates. As an illustration, however, and to draw
a contrast with the preceding no-covariate adjusted analysis, we only consider
models in which all seven covariates are included, that is, where

yj = gj(z)+ v′δv +
3∑

l=1

hl(wj)+σjεj.

Thus, the three continuous covariates are entered additively and nonparametrically.
Each is estimated as natural cubic splines with five knots. Again, we consider the
same soft-window parameters and Gaussian and student-t distributions as in the
no-covariate model scan. The best model now is the student-t model with ν = 5
and p = (0.60,0.50) indicating support for different soft-window dimensions. The
substantially larger log-marginal likelihood of −9330.464 shows decisive support
for covariate-adjustment. Within the covariate-adjusted models, the support for the
student-t over the Gaussian error distribution is also decisive. The nonparametric
estimates of the three covariate functions, given in Figure 5, show the importance
of entering (w1,w2,w3) nonparametrically.

From this best model, the posterior mean of the ATE is 3.254, with a 95%
credibility interval of (0.430, 6.049), with a positive lower-limit, and a narrower
interval than before. Cattaneo et al. (2020, pg 73) report similar estimates: an ATE
estimate of 3.108 and a 95% confidence interval of (0.194, 6.132). A graphical
summary of the posterior means of the g0 and g1 functions and of the ATE, is
given in Figure 6.

4. FUZZY RD DESIGN

We now formalize our Bayesian approach for the fuzzy RD design, inspired
by the principal stratification framework of Frangakis and Rubin (2002) and
Chib and Jacobi (2008). Our essential idea is to capture the mismatch between
the assignment process I[z ≥ τ ] and the treatment intake x by an unobserved
discrete confounder variable s that represents one of three subject types (or strata):
compliers, never-takers, and always-takers.

https://doi.org/10.1017/S0266466622000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000019


502 SIDDHARTHA CHIB ET AL.

Figure 5. Meyersson (2014) data: Posterior mean and 95% credibility bands of nonparametric
covariate functions.

4.1. Assumptions

Assumption 5 (Local conditional independence). x is independent of y0,y1

conditional on z around τ and w, that is,

x⊥⊥(y0,y1)|z around τ,w.

Note that this assumption is trivially satisfied in the sharp RD design. Also note
that this assumption does not restrict the dependence between x and (y0,y1) for
values of z far from τ .

Assumption 6. The unobserved confounder s is an unobserved discrete random
variable that represents subject type. A subject can be of three types, a complier,
never-taker, or always-taker, who acts as follows on the treatment intake x:

x = I[z ≥ τ ] if s = c,
x = 0 if s = n,
x = 1 if s = a.

Our next assumption is about the distribution of these types.
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Figure 6. Meyersson (2014) data (sharp RD covariate-adjusted): posterior means of the g0 and g1

functions (along with the 95% point-wise credibility bands) and the posterior distribution of the ATE
from m = 10,000 MCMC draws from the best fitting model in which there are four geographical
indicators and three continuous covariates that are entered nonparameterically and the error distribution
is student-t with 5 degrees of freedom. The posterior mean of the ATE is 3.254, with a 95% credibility
interval of (0.430, 6.049).

Assumption 7. Subject types are distributed around τ with unknown distribu-
tion Pr(s = k) = qk > 0, where qc +qn +qa = 1.

The model for the subject type probability in Assumption 6 encapsulates
the assumption that the distribution of types around τ is independent of z. For
simplicity, we assume that these type probabilities are also free of w.

Note from the first row of Assumption 6 that for subjects of type s = c, the
compliers, assignment, and intake agree, that is, as z passes the break-point τ , the
treatment state changes from 0 to 1 with probability one:

Pr(x = 0|z < τ,w,s = c) = 1 and Pr(x = 1|z ≥ τ,w,s = c) = 1. (4.1)

It follows that, for compliers, the sharp design holds. On the other hand, for
subjects of the type s = n, the never-takers, Pr(x = 0|z,w,s = n) = 1, and for
subjects with s = a, the always-takers, Pr(x = 1|z,w,s = a) = 1, both regardless
of the value of (z,w).
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Table 3. Sample Data in the Fuzzy RD Case.

x = 0 x = 1

z < τ y00,z00 y01,z01

z ≥ τ y10,z10 y11, z11

Four potential outcomes emerge: y0 and y1 for compliers, and y0n and y1a for
never-takers and always-takers, respectively. We make the following assumption.

Assumption 8. Conditioned on (z,w) and s, Assumptions 1–4 hold for s = c. In
addition, the following conditional expectations hold

E[y0n|z,w,s = n] = g0n(z)+hn(w),

and

E[y1a|z,w,s = a] = g1a(z)+ha(w)

both over the entire support of z, where the function g0n and g1a are δ-times
continuously differentiable on an interval that contains τ with δ > 0, and hn(w)

and ha(w) are continuous in w. Furthermore, these two potential outcome are
independently distributed as standard student-t with ν > 2 degrees of freedom.

4.2. Sample Data

Suppose that the data consist of n independent copies of (y,x,z), where for
simplicity, we assume that w is absent from the model. Because observations on
either side of τ can be controls or treated, we place the sample data into four cells,
cross-classified by I[z ≥ τ ] = l, l = 0,1 and x = j, j = 0,1. We indicate each of
these cells by (lj). The observations in each of these cells are indicated in vector
notation and displayed in Table 3.

Indices of the observations in each cell are denoted by I00 = {i : zi < τ,xi = 0},
I10 = {i : zi ≥ τ,xi = 0}, I01 = {i : zi < τ,xi = 1} and I11 = {i : zi ≥ τ,xi = 1},
and the number of observations in these cells by nlj(l,j = 0,1). We also denote
the union of data down the columns of this table by a single subscript, as before,
since the columns indicate the treatment state. Thus, for example, z0 = (z00,z10)

and z1 = (z01,z11).

4.3. Possible Types Cross-Classified by z and x

In the manner of the preceding data table, the possible subject types are shown
in Table 4. Specifically, an individual in cell (00) can be either a complier or
never-taker, a person in cell (10) is of type never-taker, a subject in cell (01) is
of type always-taker, while a person in cell (11) can be either a complier or an
always-taker.
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Table 4. Possible Subject Types on Either Side of τ by Treatment State.

x = 0 x = 1

z < τ c, n a

z ≥ τ n c, a

This division of types by cell is key to understanding the subsequent inferential
procedure. It also clarifies that this model is a mixture model. For instance,
consider the case where zi < τ (the first row of this table). Then,

p(yi,xi = j|zi < τ,θ) =
∑

k∈{c,n,a}
p(yi,xi = j|zi < τ,θ,si = k)Pr(si = k|θ)

=
∑

k∈{c,n,a}
p(yi|xi = j,zi < τ,θ,si = k)Pr(xi = j|zi < τ,θ,si = k)Pr(si = k|θ),

(4.2)

which for j = 0, cell (00), reduces to tν(yi|g0(zi),σ
2
0 )qc + tν(yi|g0n(zi),σ

2
0n)qn and

for j = 1, cell (01), reduces to tν(yi|g1a(zi),σ
2
1a)qa (since the middle term is either

one or zero).

4.4. Identification of the RD CATE

Under our assumptions, the RD CATE, the ATE for compliers at τ :

CATE = lim
z↓τ+ E[y1|z,w,s = c]− lim

z↑τ− E[y0|z,w,s = c]

= g1(τ )−g0(τ ). (4.3)

is identified. The proof involves showing that there is a function of the data that
gives the CATE.

THEOREM 4.1. Suppose Assumptions 1–3 and 5–8 hold. Also suppose that
g0(τ ) �= g0n(τ ) and g1(τ ) �= g1a(τ ). Then, the CATE is identified.

First consider limz↓τ+ E[y|z,w]. By extending the argument along the second
row of Table 4,

lim
z↓τ+ E[y|z,w] = lim

z↓τ+ E[y|z,w,s = c,x = 1]Pr(x = 1|z,w,s = c)Pr(s = c)

+ lim
z↓τ+ E[y|z,w,s = n,x = 0]Pr(x = 0|z,w,s = n)Pr(s = n)

+ lim
z↓τ+ E[y|z,w,s = a,x = 1]Pr(x = 1|z,w,s = a)Pr(s = a),
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which is

lim
z↓τ+ E[y|z,w] = lim

z↓τ+ E[y1c|z,w,s = c]Pr(s = c)

+ lim
z↓τ+ E[y0n|z,w,s = n]Pr(s = n)

+ lim
z↓τ+ E[y1a|z,w,s = a]Pr(s = a),

since to the right of τ each of the conditional probabilities of x is equal to one.
Similarly, limz↑τ− E[y|z,w] is equal to

lim
z↑τ− E[y|z,w] = lim

z↑τ− E[y0c|z,w,s = c]Pr(s = c)

+ lim
z↑τ− E[y0n|z,w,s = n]Pr(s = n)

+ lim
z↑τ− E[y1a|z,w,s = a]Pr(s = a).

By the assumed continuity, the second and third terms in each of these expressions
are equal. Therefore,

lim
z↓τ+ E[y|z,w]− lim

z↑τ− E[y|z,w]

=
(
lim
z↓τ+ E[y1c|z,w,s = c]− lim

z↑τ− E[y0c|z,w,s = c]

)
Pr(s = c).

Now consider

lim
z↓τ+ E[x|z,w] = lim

z↓τ+Pr(x = 1|z,w),

which by extending the argument along the second row of Table 4 is

lim
z↓τ+Pr(x = 1|z,w) = lim

z↓τ+Pr(x = 1|z,w,s = c)Pr(s = c)

+ lim
z↓τ+Pr(x = 1|z,w,s = a)Pr(s = a)

+ lim
z↓τ+Pr(x = 1|z,w,s = n)Pr(s = n),

where the first and second conditional probabilities are one and the third is zero.
Thus,

lim
z↓τ+Pr(x = 1|z,w) = Pr(s = c)+Pr(s = a).

By similar calculations,

lim
z↑τ− E[x|z,w] = lim

z↑τ−Pr[x = 1|z,w]
= Pr(s = a).
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Hence,

limz↓τ+ E[y|z,w]− limz↑τ− E[y|z,w]
limz↓τ+ E(x|z,w)− limz↑τ− E[x|z,w] = g1(τ )−g0(τ ),

since all the functions involving w cancel, as well Pr(s = c) in the numerator and
denominator. Thus, the CATE is identified.

4.5. Basis Expansions

We construct the basis matrices in the same way as in the sharp model but
with data taken from the appropriate cells in Table 3. For instance, for the
g0 function, we use the data z00, padded with τ at the right, to locate the
desired number of knots according to the soft-windowing method. These knots
are given by

{
z00,min,κ0,2, . . . ,κ0,m0−1,τ

}
. For the g1 function, the knots are

calculated from the data z11, padded with τ at the left. These knots are given by{
τ,κ1,2, . . . ,κ1,m1−1,z11,max

}
. Then, the function ordinates

gj(zjj) �
(

gj(zjj,1), . . . ,gj(zjj,njj)
)
, j = 0,1

are approximated using the natural cubic spline basis functions given in the
Appendix as

g0(z00) ≈ gm0(z00) � B00α,

g1(z11) ≈ gm1(z11) � B11β, (4.4)

respectively, where Bjj : njj ×mj are the basis matrices evaluated at zjj, and α and β

are the basis coefficients. The notation Bjj emphasizes the fact that these matrices
are based on data in the ( jj) cell. Under our basis, the basis coefficients are the
function ordinates at the knots,

α
(m0×1)

=

⎛⎜⎜⎜⎜⎜⎝
g0(z00,min)

g0(κ0,2)
...

g0(κ0,m0−1)

g0(τ )

⎞⎟⎟⎟⎟⎟⎠, β
(m1×1)

=

⎛⎜⎜⎜⎜⎜⎝
g1(τ )

g1(κ1,2)
...

g1(κ1,m1−1)

g1(z11,max)

⎞⎟⎟⎟⎟⎟⎠, (4.5)

which implies that the CATE is simply the first component of β minus the last
component of α:

CATE = β [1] −α[m0]. (4.6)

Now consider the functions g0n and g1a. The support of these functions is given
by the z values in each treatment state (in other words from both sides of τ ), zj �
(z′

0j,z
′
1j)

′, (nj ×1), where nj = n0j +n1j, for j = 0,1. Our way for placing knots for
these functions is as follows. Some knots are based on the data z0j and some are
based on (τ,z1j), making sure that τ is one of the knots and that every pair of knots
has at least one observation in between. Locating knots in this way is relatively
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straightforward. Note that by placing a knot at τ , we ensure that the functions g0n

and g1a at τ are continuous, which is required by our assumptions.
Suppose then that mn and ma knots are used in the basis expansions of the g0n

and g1a, respectively. The function ordinates at these knots

g0n(z0) �
(
g0n(z00,1), . . . ,g0c(z10,n10)

)
,

and

g1a(z1) �
(
g1a(z01,1), . . . ,g1a(z11,n11)

)
can then be approximated by the basis functions given in the Appendix as

g0n(z0) ≈ gmn(z0) �

⎛⎜⎝ B00,n
(n00×mn)

B10,n
(n10×mn)

⎞⎟⎠αn � B0,nαn, (4.7)

and

g1a(z1) ≈ gma(z1) �

⎛⎜⎝ B01,a
(n01×ma)

B11,a
(n11×ma)

⎞⎟⎠βa � B1,aβa, (4.8)

respectively, where αn : mn ×1 and βa : ma ×1 are the basis coefficients.
As for g0 and g1, for every zj, j = 0,1, the goodness of the approximation of

g0n and g1a at zj depends on the smoothness of g0n and g1a, respectively, and
the approximation bias decreases as mn and ma increase. We show in Section 4.9
that, for posterior consistency, mj must increase at the rate of (n/ logn)ν , for some
constant ν dependent on the smoothness of the function gj, j = 0,1,n,a.

4.6. Likelihood Function

The basis function approximations of g0, g1, g0n, and g1a given in Section 4.5
suggest to construct a prior that puts all its mass on the approximations gmj , for
j = 0,1,n,a, as we construct in the next section. This corresponds to specify a
Dirac probability at zero for the remaining part of gj, that is, gj −gmj . The marginal

likelihood function of θ � (α,β,αn,βa) and σ 2 = (σ 2
0 ,σ 2

1 ,σ 2
n ,σ 2

a

)
is obtained by

integrating with respect to this Dirac probability and follows straightforwardly
from Theorem 1. Let B00,i denote the ith row of B00, with similar notation for
the other basis matrices. Then, the likelihood contribution of the ith observation
by cell is

L00,i = qctν(yi|B00,iα,σ 2
0 )+qntν(yi|B00,n,iαn,σ

2
n ), i ∈ I00,

L10,i = qntν(yi|B00,n,iαn,σ
2
n ), i ∈ I10,

L01,i = qatν(yi|B01,a,iβa,σ
2
a ), i ∈ I01,

L11,i = qctν(yi|B11,iβ,σ 2
1 )+qatν(yi|B11,a,iβa,σ

2
a ), i ∈ I11, (4.9)
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and the likelihood function is the product of these contributions over all the
observations:

L =
∏
i∈I00

L00,i ×
∏
i∈I10

L10,i ×
∏
i∈I01

L01,i ×
∏
i∈I11

L11,i. (4.10)

4.7. Prior

Except for an increase in dimension of the parameter space, the prior on the
parameters is specified in the manner of the sharp RD model. The prior on (α,β) is
exactly the same as in (2.7) and (2.10) except that the matrices Dα and Dβ , which
have the form given in the Appendix, are built up from the data in the cells (00) and
(11), respectively. The prior on the parameters αn and βa of the n and a models, is
given by

αn|λn ∼ Nmn

(
D−1

n α0n,λ
−1
n D−1

n TnD−1′
n

)
,

βa|λa ∼ Nma

(
D−1

a β0a,λ
−1
a D−1

a TaD−1′
a

)
,

where the matrices Dn and Da are constructed analogously to Dα and Dβ . The
penalty parameters, now given by (λ0,λ1,λn,λa), have a prior distribution as in

the sharp model: λj ∼ Ga
(

aj0
2 ,

bj0
2

)
, j = 0,1,n,a. As in the sharp case, to obtain

frequentist asymptotic results we require that aj0 = C(n/ logn)ν , for positive
constants C and ν that depend on the smoothness of the function gj, for j =
0,1,0n,1a. Similarly as in the sharp case, the prior on the variance parameters

is independent of λ and inverse Gamma: σ 2
j ∼ IG

(
ν00
2 ,

δ00
2

)
, for j = 0,1, and

for j = n,a: σ 2
j ∼ IG

(
ν0j
2 ,

δ0j
2

)
. In the examples below, for simplicity, we specify

a Gamma distribution for each λ with a prior mean of 1 and prior SD of 10.
Finally, we suppose that the prior of q = (qc,qn,qa) is Dirichlet with parameters
(n0c,n0n,n0a), where we set the hyperparameters to imply that half the sample
consists of compliers and the remaining half is equally divided between never-
takers and always-takers.

4.8. MCMC Sampling

We estimate the model by sampling the posterior distribution of the parameters,
the type variables si(i ≤ n), and the Gamma mixing variables, by MCMC methods.
Note that conditioned on the parameters, the type variables have to be sampled only
in the (00) and (11) cells. Specifically, for observations in the set I00, conditioned
on the data and

(
θ,σ 2

)
, the type variables are sampled from the conditional

distributions

Pr(si = c|yi,θ,σ
2) ∝ qctν(yi|B00,iα,σ 2

0 ),

Pr(si = n|yi,θ,σ
2) ∝ qntν(yi|B00,n,iαn,σ

2
n ),
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and for observations in the set I11 from

Pr(si = c|yi,θ,σ
2) ∝ qctν(yi|B11,iβ,σ 2

1 ),

Pr(si = a|yi,θ,σ
2) ∝ qatν(yi|B11,a,iβa,σ

2
a ).

Suppose that in a particular MCMC iteration, in the cell (00), the sampling of {si}
produces nc

00 compliers and nn
00 = n00 − nc

00 never-takers. Similarly, suppose that
in the cell (11), the sampling produces nc

11 compliers and na
11 = n11 −nc

11 always-
takers. Then, in the next MCMC step, we sample q = (qc,qn,qa) from an updated
Dirichlet distribution with parameters

(n0c +nc
00 +nc

11,n0n +nn
00 +n10,n0a +n01 +na

11).

Again, conditioned on the sampled types, the posterior distribution decomposes
into three independent distributions, one for each type. These distributions take the
following form. For the observations classified as s = c, using the basis matrices
in (4.4), we can write

yc
00

(nc
00×1)

= Bc
00α

(nc
00×m0)

+ εc
00

(nc
00×1)

,

and

yc
11

(nc
11×1)

= Bc
11β

(nc
11×m1)

+ εc
11

(nc
11×1)

,

where the c superscript indicates the subvectors and submatrices consisting
of the rows (observations) classified as compliers in the indicated cells, and
each component of the error conditioned on

{
ξ c

i

}
is distributed as N (0,σ 2

j /ξ c
i ).

These models are analogous to (2.13) in the sharp RD model. Therefore, the
posterior distribution of the parameters (α,β), (λ0,λ1), σ 2 = (σ 2

0 ,σ 2
1 ) and

{
ξ c

i

}
,

conditional on si(i ≤ n), can be sampled according to one step of the sharp MCMC
algorithm.

Similarly, given the nn
00 observations sampled as never-takers in the cell (00),

using the basis matrices in (4.7), we can write⎛⎜⎝ yn
00

(nn
00×1)

y10
(n10×1)

⎞⎟⎠=
⎛⎜⎝ Bn

00,n
(nn

00×mn)

B10,n
(n10×mn)

⎞⎟⎠αn +
⎛⎜⎝ εn

00,n
(nn

00×1)

ε10,n
(n10×1)

⎞⎟⎠, (4.11)

where yn
00 and Bn

00,n consist of the rows of y00 and B00,n in cell (00) that are
classified as never-takers, and each component of the error, conditioned on

{
ξ n

i

}
is distributed as N (0,σ 2

n /ξ n
i ). Again, the model of these data is analogous to that

of the sharp RD model and, therefore, the conditional posterior distribution of the
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parameters αn, λn, σ 2
n and

{
ξ n

i

}
can be sampled using one step of the sharp MCMC

algorithm.
Last, given the na

11 observations classified as always-takers in the cell (11), using
the basis matrices in (4.8), we can write⎛⎜⎝ y01

(n01×1)

ya
11

(na
11×1)

⎞⎟⎠=
⎛⎜⎝ B01,a

(n01×ma)

Ba
11,a

(na
11×ma)

⎞⎟⎠βa +
⎛⎜⎝ ε01,a

(n01×1)

εa
11,a

(na
11×1)

⎞⎟⎠, (4.12)

where ya
11 and Ba

11,a consist of the rows of y11 and B11,a in cell (11) that are
classified as always-takers, and each component of the error, conditioned on

{
ξ a

i

}
is distributed as N (0,σ 2

a /ξ a
i ). This shows that conditioned on {si}, the parameters

βa, λa, σ 2
a and

{
ξ a

i

}
can be sampled as in the sharp model.

These simulation steps, which constitute one iteration of the MCMC algorithm
in the fuzzy RD model, are repeated, and beyond the burn-in phase the last element
of α and the first element of β are extracted to create drawings of the CATE from
its posterior distribution.

Finally, for any version of the fuzzy RD model—defined by differing number
of knots and differing soft-window widths—we calculate the marginal likelihood
by the method of Chib (1995). The details are straightforward and hence omitted.

4.9. Large Sample Analysis

As in Section 2.5, we now derive the large-sample properties of our Bayesian
procedure for the fuzzy RD design without control variables w. We denote g �
(g0,g1,g0n,g1a), σ 2 � (σ 2

0 ,σ 2
1 ,σ 2

0n,σ
2
1a), q � (qc,qn,qa), and by g∗, σ 2∗ and q∗

their true values. The true data distribution, conditional on z(n), of the sample
is denoted by P(n)∗ (y(n),x(n)|z(n)), or P(n)∗ for short, where y(n) � {yi,i = 1, . . . ,n},
x(n) � {xi,i = 1, . . . ,n}, and z(n) � {zi,i = 1, . . . ,n}.

The quantities ‖ · ‖n and Cδ[a,b] are defined as in Section 2.5 while for every gj

and j = 0,1,0n,1a, ‖gj‖sup � maxi∈Ij |gj(zi)| with I0 � I00, I1 � I11, I0n � I10, and

I1a � I01. For j = 0,1,n,a denote by Cmj the set of piecewise cubic functions and
by Smj ⊂ Cmj the subspace of natural cubic splines on the set of mj knots defined

in Section 4.5. Therefore, gm0(z) � B00(z)′α ∈ Sm0 ⊂ Cm0 is the unique natural
cubic spline interpolating g0 at the knots {z00,min,κ0,2, . . . ,κ0,m0−1,τ }. Similarly,
define gm1(z) � B11(z)′β, gmn(z) � B0,n(z)′αn, and gma(z) � B1,a(z)′βa for given
m1, mn, and ma and corresponding knots described in Section 4.5, where Bj� and
Bj,� are m�-vectors defined in Appendix A. We denote by α∗, β∗, α∗

n, and β∗
a the

coefficients corresponding to the interpolations of g∗
0, g∗

1, g∗
0n, and g∗

1a, respectively.
Finally, π denotes both the prior on (g,σ 2,q,λ0,λ1,λn,λa)

′ that is specified in
Section 4.7 and the corresponding posterior, and for a probability measure P, the
notation Ph will abbreviate

∫
hdP.
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To derive our consistency result, we need the following assumption, which is
similar to Assumption 4, and the same remarks apply.

Assumption 9. (i) For j = 0,1,n,a and for every mj ∈ N+ there exists a finite
wj ∈ R

mj such that α∗ − D−1
α α0 = D−1

α T1/2
α w0, α∗

n − D−1
n α0n = D−1

n T1/2
n wn, β∗ −

D−1
β β0 = D−1

β T1/2
β w1, and β∗

a −D−1
a β0a = D−1

a T1/2
a wa.

(ii) For j = 0,1,n,a, for k = α,β,n,a, and for every mj ∈ N+ the maximum
eigenvalue of D−1

k TkD−1′
k is bounded away from zero and infinity.

We are now ready to establish the consistency and contraction rate of the
posterior distribution of the RD CATE.

THEOREM 4.2. Assume that for some −∞ < a < b < ∞ there exists a δ >

0 and a constant C2 > 0 such that: g∗
0 ∈ G0 � Cδ[a,τ ), g∗

1 ∈ G1 � Cδ[τ,b] and
g∗

0n,g
∗
1a ∈ Cδ[a,b], and ‖g∗

j − g∗
mk

‖∞ ≤ C2m−δ
k for j = 0,1,0n,1a and k = 0,1,n,a.

Moreover, 0 < σ 2
j < σ 2

j∗ < σ 2
j < ∞, for j = 0,1,0n,1a and two constants σ 2

j ,σ
2
j .

Let π be the prior on (g,σ 2,q,{λj,j = 0,1,n,a})′ specified in Section 4.7 with mj =
m∗

j �
(

n
logn

)1/(2δ+1)

, ν00 > 2, δ00 > 5, and aj0 = 2ηm∗
j for j = 0,1,n,a, and η >

min{7,δ00}(2δ +1)/4. Moreover, suppose that Assumptions 1–3 and 5–9 hold and
let nlj � n for l,j = 0,1. Then, for all M1,n,M̃n → ∞ we have that

P(n)
∗ π

(|CATE−CATE∗| ≥ M1,nεn,|1−σj/σj∗|
≥ M̃n/

√
n for j = 0,1,0n,1a|y(n),x(n),z(n)

)→ 0,

where εn �
(
logn

n

)δ/(2δ+1)

.

The smoothness assumption in this theorem is standard in the literature (see
e.g., Calonico et al., 2014, Assumption 3). To prove this result, we write the
RD CATE as a linear functional of g with respect to the empirical measure,
as in the proof of Theorem 2.2. Other than this connection, however, the proof
of this theorem is substantially different because the fuzzy model is a mixture
over two types of latent variables: the scaling variable ξ in the normal model
(which is also present in the sharp case), and the unobserved confounder s.
Among other things, under this double mixture, the construction of an uniformly
exponentially consistent test is more difficult. Moreover, determining whether the
true distribution P(n)∗ , characterized by (g∗,σ 2∗ ,q∗), is in the KL support of the prior
is more complex. This is due to the fact that the KL divergence, and the KL second
moment, involve the logarithms of the mixture over the unobserved confounder
s. We give the essentials of the proof in Appendix C.3, but because the proof is
long and involved, we provide its complete version in the Online Supplementary
Appendix F.
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5. EXAMPLE: FUZZY DESIGN

To illustrate our ideas, we consider simulated data from a relatively simple design
that satisfies the conditions of Theorem 4.1. The four unknown functions are
defined as:

y0c = −8z+ z2 + z3 + sin(2z)+ ε0,

y1c = 4z+ z2 + z3 +5sin(z)+1+ ε1,

y0n = 0 + 10z + ε0n and y1a = 3 − 20z + ε1a, where z ∼ 0.1295 ×N (0,1), τ =
0, ε0 ∼ t3(0,1) and ε1 ∼ t3(0,1), and ε0n and ε1a are .5t3(0,1) and 2t3(0,1),
respectively, and the types s ∈ {c,n,a} are generated from a discrete distribution
with probabilities q = (0.5,0.25,0.25). In this design, the true value of the CATE
is 1.0. We also consider the same design with student-t errors by letting ε0 and ε1

be distributed as standard student-t, and ε0n and ε1a distributed as 0.5 and 2 times
standard student-t, respectively. Our simulated data consists of a sample of size n
and we consider n = 500 and n = 4,000.

For the prior distribution, we assume that σ 2
0 = σ 2

1 = σ 2 and a priori, (σ 2,σ 2
n ,σ 2

a )

have a mean equal to (2,2,2) and standard deviation equal to (10,10,10), and that
the four smoothness parameters (λ0,λ1,λn,λa) have a mean equal to (1,1,1,1)

and SD equal to (5,5,5,5). A priori, we also assume that q is Dirichlet with
hyperparameters equal to (2,2,2). In addition, on the basis of marginal likelihood
comparisons, for n = 500, the soft-windowing parameter p is (0.5,0.5), and for
n = 4,000, it is (0.6,0.4). For both sample sizes, the knots for the four functions
are set by the values mz = (3,3), mz,n = 5, and mz,a = 5. Finally, for n = 500,
mz,τ = (2,2), and for n = 4,000, mz,τ = (3,3).

We apply our procedure to each sample size for data generated from t3 dis-
tributed errors. The results from the estimation, given in Table 5, show that even
for the smaller sample size, which is a particularly challenging case, the 95%
posterior credibility intervals include the true values and that the marginal posterior
distributions concentrate around the true values with the sample size.

Also interesting is to consider the inferences about the four smoothness
parameters (λ0,λ1,λn,λa). The results, given in Table 6, show that the marginal
posterior distribution of λ0 is relatively more dispersed and includes some mass
on larger values. In addition, since the g0n and g1a functions in this DGP are linear,
enforcing smoothness on the second differences of the basis coefficients through
the prior is unnecessary with few knots and, correctly, the marginal posterior
distributions of the corresponding smoothness parameters are concentrated on
values close to zero. Note that the posterior distributions of λ0 and λ1 also
concentrate on small values with sample size because the number (and proportion)
of knots used in the estimation of the g0 and g1 functions remain small. The Bayes
estimates of the four functions g0, g1, g0n, and g1a are given in Figure 7. In this
figure, the true value of the functions are the dotted lines, the estimates are the
solid lines, the 95% point-wise credibility intervals of the functions are the shaded

https://doi.org/10.1017/S0266466622000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000019


514 SIDDHARTHA CHIB ET AL.

Table 5. Fuzzy RD with Data Simulated with Student t3 errors: Summary Results
for the Dispersion Parameters (σ 2,σ 2

n ,σ 2
a ) and Probabilities of Types. Inefficiency

Factors in the Last Column. For Each Parameter, the 95% Posterior Credibility
Intervals Include the True Values and the Marginal Posterior Distributions Con-
centrate Around the True Values with the Sample Size.

Parameter True value Prior Posterior

Mean SD Mean Lower Upper Ineff

n = 500

σ 2 1 2 5 0.998 0.746 1.313 4.402

σ 2
n 0.25 2 5 0.290 0.202 0.408 2.466

σ 2
a 4 2 5 3.371 2.246 4.942 4.641

qc 0.5 0.33 0.178 0.513 0.460 0.566 2.374

qn 0.25 0.33 0.178 0.216 0.180 0.252 1.000

qa 0.25 0.33 0.178 0.271 0.223 0.321 2.730

n = 4,000

σ 2 1 2 5 0.973 0.880 1.076 4.707

σ 2
n 0.25 2 5 0.279 0.246 0.314 2.981

σ 2
a 4 2 5 4.101 3.547 4.727 4.302

qc 0.5 0.33 0.178 0.510 0.491 0.529 2.312

qn 0.25 0.33 0.178 0.246 0.232 0.260 1.035

qa 0.25 0.33 0.178 0.244 0.228 0.261 2.557

bands, and the distribution of the z values is notched on the horizontal axis. As can
be seen from this figure, the functions are well estimated.

Finally, for this sample size, the posterior mean of the CATE is 1.007, with
95% credibility interval equal to (0.542, 1.463). The true value of the CATE as
mentioned above is 1.

5.0.1. Sampling Experiments

We conclude this discussion with some evidence about the sampling properties of
the Bayes CATE estimate based on 1,000 replications of the design used above.
The results, which are given in Table 7, parallel those in the sharp design.

6. EXTENSION

We briefly mention that the framework we have developed is straightforwardly
extended to a nonparametric distribution of the errors. For example, in the sharp-
design, we could let

y0i = g0(zi)+h(wi)+σ0ε0i , z < τ,

y1i = g1(zi)+h(wi)+σ1ε1i , z ≥ τ,
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Table 6. Fuzzy RD with Discrete Confounder and Student t3 Errors: Summary
Results for (λ0,λ1,λn,λa). The marginal posterior distributions of λn and λa are
concentrated on small values because the underlying functions gn and ga in this
DGP are linear and there are only few knots involved in the fitting. Because the
number of knots in the fitting of g0 and g1 also remains small with sample size,
the enforcement of the smoothness condition is less important, and the marginal
posterior distributions of λ0 and λ1 show the move to small values.

Parameter Prior Posterior

Mean SD Mean Lower Upper Ineff

n = 500

λ0 1 5 3.877 0.171 15.066 2.259

λ1 1 5 1.275 0.084 4.416 2.007

λn 1 5 0.086 0.009 0.297 1.254

λa 1 5 0.039 0.006 0.107 1.239

n = 4,000

λ0 1 5 1.236 0.082 6.391 6.444

λ1 1 5 0.060 0.008 0.182 2.051

λn 1 5 0.327 0.035 1.103 1.254

λa 1 5 0.050 0.008 0.130 1.034

where now the error distributions are unknown and modeled (say) by a Dirichlet
process mixture (DPM) prior. For instance, following Chib and Greenberg (2010),
we could suppose that

ε0i|ξ0i ∼ N(0,ξ−1
0i ),

ξ0i|F
iid∼ F,

F|α0,F0 ∼ DP(α0F0),

F0 = Gamma
(ν

2
,
ν

2

)
,

where DP is the Ferguson (1973) and Antoniak (1974) Dirichlet process with
mass parameter α0 and base distribution F0. Thus, under the base measure, the
distribution of the error is student-t with ν degrees of freedom, as before, though
the distribution of the error is now nonparametric. We could model the distribution
of ε1 in the same way by letting

ε1i|ξ1i ∼ N(0,ξ−1
1i ),

ξ1i|G iid∼ G,

G|α0,G0 ∼ DP(α0G0),

G0 = Gamma
(ν

2
,
ν

2

)
.
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Figure 7. Fuzzy RD with discrete confounder and student t3 errors: This shows the function estimates
and credibility bands for n = 4,000. Note that, as required by our conditions, the functions g0n and g1a

are both continuous at τ . This is achieved by having a knot at τ . See text for further details.

Table 7. Summary of Results from 1,000 Repeated Samples: Fuzzy RD Design
with t3 Errors and Two Sample Sizes, True Value of the CATE is 1.0.

Mean Coverage RMSE

n = 500

0.976 0.970 0.358

n = 4,000

1.014 0.970 0.222

The advantage of using this specific construction of the DPM prior is that the
MCMC updates are all tractable (see Chib and Greenberg, 2010) and the marginal
likelihood of the model is also tractable, being calculable by the method of Basu
and Chib (2003). We can complete the model using a basis expansion approach for
the h(w) function, making sure that a knot is placed at τ to ensure continuity of the
function at τ . Thus, in this model, both the mean functions and error distributions
are nonparametric.
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6.1. Example

As an illustrative example, consider the design of Section 3.1 where as before

g0(z) = 0.48+1.27z+7.18z2 +20.21z3 +21.54z4 +7.33z5,

g1(z) = 0.52+0.84z−3.00z2 +7.99z3 −9.01z4 +3.56z5,

z ∼ 2×Beta(2,4)−1,

but with the model modified to include the effect of the control covariate w through
the function

h(w) = sin(πw/2)

1+w2(sign(w)+1)
,

w ∼ Uniform(−π,π),

and with the error distribution defined by σ0 = 0.1295, σ1 = 0.20 and ε0 and ε1

following a multi-modal mixture of three-component normal distributions with
component means equal to (−2.5,0,2.5), component SDs equal to (1,1,1), and
component weights equal to (1/3,1/3,1/3). The true value of the RD ATE at the
break-point τ = 0 is 0.04. We draw a sample of n = 500 and n = 4,000 from this
design.

This design is clearly considerably more complex than the one considered in
Section 3.1. Estimation of the RD ATE is based on adding two steps to our MCMC
algorithm, one in which the ξ0i and ξ1i are sampled, and a second step in which
the DPM mass parameters are sampled, both as described in Chib and Greenberg
(2010). The prior is, once again, not tuned to the specifics of this model. For n =
500, we use a soft-window specification defined by p = (0.6,0.4), with number
of knots in the basis expansion of g0 and g1 given by mz = (3,3), mz,τ = (3,2),
the number of knots in the basis expansion of h(w) equal to 8, prior mean of the
two initial ordinates of each of the three unknown functions equal to (0,0), the
prior mean of the (now) three λ’s equal to (1,1,1) with prior standard deviations
equal to (15,15,15), and the prior mean and prior standard deviations of σ0 and
σ1 equal to 0.3 and 5, respectively. The prior of the two DP mass parameters α0

and α1 is defined by a prior mean equal to 5 and prior standard deviation of 1. We
fix the value of ν at 3. The prior for the larger sample size is exactly the same.
The only change is in the design of the window width parameters and the number
of knots in the basis expansions, which take the values p = (0.9,0.1), mz = (4,3),
mz,τ = (3,2), and 20 knots in the case of h(w). These values are determined by
marginal likelihoods, calculated by the method of Basu and Chib (2003).

The results on the RD-ATE from our fully nonparametric estimation are given in
Table 8. The posterior mean for the smaller sample size is 0.079 with posterior SD
equal to 0.168, and for the larger sample the posterior mean is 0.062 with posterior
SD of 0.078. In contrast, the frequentist estimator of the RD ATE is 0.2946 with
standard error equal to 0.1302, and for the larger sample size the estimate is 0.104
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Table 8. Sharp Design: Posterior Summaries for Two Different Sample Sizes
from the Dirichlet Process Mixture Estimation on Simulated Data with Nonpara-
metric Control, Error Distributed as Mixture of Normals and Different SDs.

Mean SD Median Lower Upper

n = 500: log marglik = −225.129

0.079 0.168 0.075 −0.240 0.410

n = 4,000: log marglik = 1277.468

0.062 0.078 0.062 −0.090 0.213

Table 9. Sharp Design (True Value of RD ATE is 0.04) Repeated Sampling
Results from 1,000 Samples Drawn from the Design with Error Distributed as
Mixture of Normals, a Control Covariate w and Different SDs on Each Side of τ
(See Text for Further Details). RMSE of the Bayesian posterior mean under the
Dirichlet process mixture assumption for the error, and frequentist coverage of the
Bayesian 95% credibility interval. The IK and CCT estimates are computed from
the R package rdrobust with the call outr = rdrobust(y, z, covs = w, all = TRUE),
where outr is a list object. The element coef of this list contains the IK and CCT
estimates as the first and third elements, respectively.

Mean Coverage RMSE

n = 500

Bayes 0.061 0.947 0.083

IK 0.053 1 0.252

CCT 0.046 0.915 0.294

n = 2,000

Bayes 0.018 0.926 0.066

IK 0.068 0.933 0.123

CCT 0.063 0.942 0.140

with standard error of 0.048. Despite the complexity of the problem, the Bayesian
results from the nonparametric control and error model are satisfactory.

As a final exercise, we consider 1,000 simulated data sets generated from the
preceding design. The simulation is geared to examining the sampling performance
of our Bayesian approach along two dimensions—the sampling RMSE of the
posterior mean, and the coverage of the 95% interval estimator. For comparison,
we also calculate the RMSE and coverage of two frequentist estimators: the
Imbens and Kalyanaraman (2012) (IK) estimator, which uses the MSE-optimal
bandwidth and should be expected to produce the minimal RMSE; and the
Calonico, Cattaneo, and Titiunik (2014) (CCT) estimator, which is coverage-
optimal and, by construction, uses a bandwidth that is smaller than the MSE-
optimal one. The results are in Table 9.

The table shows that the sampling performance of our Bayesian point and
interval estimators is excellent. Specifically, the sampling RMSE of the Bayesian
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posterior mean is the lowest of the three estimates, for both sample sizes. The
sampling coverage of the Bayesian posterior credibility interval is closer to the
nominal value for n = 500, but below that of the coverage-optimal frequentist
estimate for n = 2,000, at least in this example.

7. CONCLUSIONS

In summary, we have provided a Bayesian framework for inference in the sharp
and fuzzy RD designs that is based on several novel ideas. First, this framework
uses all the data in the sample, along with local nonparametric methods, to model
and estimate the distributions of the outcomes on either side of the threshold. We
use basis expansion techniques for the unknown functions of the forcing variable
with extra knots sprinkled in the vicinity of the threshold, and one knot (for each
function) exactly at the threshold. The local nature of our cubic spline procedure,
along with the strategic placement of knots, ensures that the data around the
threshold are automatically more important in inferences about the jump size. We
develop a new, flexible second-difference prior on the spline coefficients that is
capable of handling the situation of many unequally spaced knots. The information
required of the investigator to specify this prior—essentially a rough idea of the
first two ordinates at the extreme points on both sides of τ—should be known
to an investigator with knowledge of the specifics of the application. We show
that this prior satisfies the KL property and is key in our derivation of the large-
sample behavior of the posterior distribution of the RD effects. Our probability
model for the fuzzy RD design, inspired by the principal stratification framework,
is new. In this model, the unobserved confounder is a discrete random variable, not
continuous as in the literature to date. One interesting aspect of this formulation is
that the sharp design is a special case, and the estimation approach for the fuzzy
RD design also similarly reduces to that of the sharp case when all individuals are
compliers. Finally, for both designs, we establish the large-sample properties of
our procedures, and the consistency and posterior contraction rates for the causal
effects.

Given the importance of RD designs in practice, this broadening of the ana-
lytical framework for inference in such designs is likely to prove useful. Just as
researchers can apply different frequentist estimators to these designs to see how
the RD effects vary across estimators, it is now possible for researchers to also
calculate the effects from our Bayesian perspective with ease that rivals that of the
existing approaches. Comparing and contrasting the estimates (whether identical
or different in any particular instance) from the various approaches should deepen
understanding of the effects in practice.

A. APPENDIX: BASIS FUNCTIONS

In this Appendix, we let g(·) denote any function that is to be represented by a cubic spline
and let z ∈ R denote its argument. Let κj( j = 1, . . . ,m) denote the knots, and hj = κj −κj−1
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the spacing between the ( j − 1)st and jth knots. The basis functions are the collections of
cubic splines

{
�j(z)

}m
j=1 and {�j(z)}m

j=1, where for 2 ≤ j ≤ m−1,

�j(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, z < κj−1,

−(2/h3
j )(z−κj−1)2(z−κj −0.5hj), κj−1 ≤ z < κj,

(2/h3
j+1)(z−κj+1)2(z−κj +0.5hj+1, ), κj ≤ z < κj+1,

0, z ≥ κj+1,

(A.1)

�j(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, z < κj−1,

(1/h2
j )(z−κj−1)2(z−κj), κj−1 ≤ z < κj,

(1/h2
j+1)(z−κj+1)2(z−κj), κj ≤ z < κj+1,

0, z ≥ κj+1,

(A.2)

and for j = 1, �j and �j are defined by the last two lines of equations (A.1) and (A.2),
respectively, and for j = m, �j and �j are defined by the first two lines. In these two cases,
the strong inequality at the upper limit is replaced by a weak inequality.

The representation of g(z) as a natural cubic spline is given by

g(z) =
m∑

j=1

�j(z)fj +
m∑

j=1

�j(z)sj, (A.3)

where f = ( f1, . . . ,fm)′ and s = (s1, . . . ,sm)′ are the coefficients of this cubic spline.
Conveniently, fj = g(κj) is the function value at the jth knot, and sj = g′(κj) is the slope
at the jth knot.

The fact that g(z) is a natural cubic spline implies that g′′(κ1) = 0 = g′′(κm) and that the
second derivatives are continuous at the knot points. These conditions place restrictions on
the sj. If we define ωj = hj/(hj +hj+1), and μj = 1−ωj for j = 2, . . . ,m, then Lancaster and
Šalkauskas (1986, Sec. 4.2) show that the ordinates and slopes are related by the relations
Cf = As, s = A−1Cf , where

A =

⎛⎜⎜⎜⎝
2 1 0 0 0 ... 0 0 0
ω2 2 μ2 0 0 ... 0 0 0
0 ω3 2 μ3 0 ... 0 0 0
... ...

. . .
. . .

. . . ...
...

...
...

0 0 0 0 0 ... ωm−1 2 μm−1
0 0 0 0 0 ... 0 1 2

⎞⎟⎟⎟⎠,

and

C = 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
h2

1
h2

0 0 ... 0 0 0

− ω2
h2

ω2
h2

− μ2
h3

μ2
h3

0 ... 0 0 0

0 − ω3
h3

ω3
h3

− μ3
h4

μ3
h4

... 0 0 0

...
...

...
... ... 0 0 0

0 0 0 0 ... − ωm−1
hm−1

ωm−1
hm−1

− μm−1
hm

μm−1
hm

0 0 0 0 ... 0 − 1
hm

1
hm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For any observation of z, zi, it follows that g(zi) in (A.3) can be re-expressed as

g(zi) = 
(zi)
′f +�(zi)

′A−1Cf
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or as g(zi) = c′
if , where 
(zi)

′ = (�1(zi), . . . ,�m(zi)), �(zi)
′ = (�1(zi), . . . ,�m(zi)), and

c′
i = 
(zi)

′ +�(zi)
′A−1C, which implies the following representation for the n × m basis

matrix: B = (c1, . . . ,cn)′ = [b1, . . . ,bm]. This is the form of the basis matrices B0, B1, B00,
B01, B0n, and B1a. Further, we denote Bj(z) � (
(z)′ +�(z)′A−1C)′ the mj-vector used
in Sections 2.5 and 4.9.

B. APPENDIX: Dα, Dβ

Suppose that m is the dimension of α and β. Then, the matrices Dα and Dβ in equations
(2.7) and (2.10) take the following forms:

Dα =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 ... 0 0 0
0 1 0 0 0 ... 0 0

(1−h0,3)√
h0,3

(h0,3−2)√
h0,3

1√
h0,3

0 0 0 ... 0

0
(1−h0,4)√

h0,4

(h0,4−2)√
h0,4

1√
h0,4

0
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0
(1−h0.m−1)√

h0,m−1

(h0,m−2)√
h0,m−1

1√
h0,m−1

0

0 0 0 0 0
(1−h0,m)√

h0,m

(h0,m−2)√
h0,m

1√
h0,m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

Dβ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
h1,2

(h1,2−2)√
h1,2

(1−h1,2)√
h1,2

0 ... 0 0 0

0 1√
h1,3

(h1,3−2)√
h1,3

(1−h1,3)√
h1,3

0 ... 0 0

0 0 1√
h1,4

(h1,4−2)√
h1,4

(1−h1,4)√
h1,4

0 ... 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . 1√
h1,m−1

(h1,m−1−2)√
h1,m−1

(1−h1,m−1)√
h1,m−1

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

respectively.

C. PROOFS

C.1. Notation

The notation � (resp. �) will be used to denote inequality (resp. equality) up to a fixed
constant. For a vector v, denote by ‖v‖∞ � maxi |vi|. The indicator function of an event A
is denoted by both I[A] and 1A.

The true data distribution, conditional on z, of the sample is denoted by P(n)∗ in
both designs and is as specified in Assumptions 1 and 5–7, respectively. The true data
distribution, conditional on zi, for one observation is denoted by Pi∗ in both designs for
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short. The Lebesgue density of P(n)∗ (resp. Pi∗) is denoted by p(n)∗ (resp. p∗(yi|zi) in the
sharp RD design and p∗(yi,xi|zi) in the fuzzy RD design). In the proof, we exploit the fact
that we can write the student-t distribution as a mixture of Normal distributions: in the sharp
RD design p∗(yi|zi) = tν(yi|g∗

j (zi),σ
2
j∗) = ∫ N (yi|zi;g∗

j ,σ
2
j∗/ξi)Ga

(
ξi; ν

2 , ν
2

)
dξi for j = 0,1

(and similarly in the fuzzy RD design). The expectation taken with respect to P(n)∗ is denoted
by E∗. For a probability measure P, the notation Ph will abbreviate

∫
hdP. Define the KL

divergence between two probability measures P and Q as K (P,Q) � P log (p/q), where p
and q are the Lebesgue densities of P and Q respectively, and define the discrepancy measure

V (P,Q) � P |log (p/q)−K (P,Q)|2.

For a set F and a metric d on it let N(ε,F,d) be the ε-covering number which is defined as
the minimum number of balls of radius ε needed to cover F see for example, van der Vaart
(2000).

Notation specific to the Sharp RD design. Let G0 � Cδ[a,τ ), G1 � Cδ[τ,b] and

Bc∗(εnj,n
−1/2) � {(gj,σ

2
j ) ∈ Gj ×R+;‖gj −g∗

j ‖nj ≥ Mnεnj, |1−σj/σj∗| ≥ M̃n/
√

nj}

for j = 0,1 and any sequences Mn,M̃n → ∞. For j = 0,1, let P
(nj)

gj,σ
2
j

(resp. Pi
gj,σ

2
j

) denote the

conditional distribution of the sample y(nj) given (z(nj),gj,σ
2
j ) (resp. of yi given (zi,gj,σ

2
j )),

and p
(nj)

gj,σ
2
j

(resp. pgj,σ
2
j
(yi|zi)) denote the Lebesgue density of P

(nj)

gj,σ
2
j

(resp. of Pi
gj,σ

2
j

).

Denote the subsamples I0 � {i;zi < τ } and I1 � {i;zi ≥ τ }. For j = 0,1, the KL neighborhood
of (g∗

j ,σ
2
j∗) is defined as, ∀εnj > 0

BKL
n ((g∗

j ,σ
2
j∗),εnj) �{
(gj,σ

2
j ) ∈ Gj ×R+; K

(
P

(nj)∗ ,P
(nj)

gj,σ
2
j

)
≤ njε

2
nj

, V

(
P

(nj)∗ ,P
(nj)

gj,σ
2
j

)
≤ 2njε

2
nj

}
.

(C.1)

Finally, in the proofs we use the following sequence of measurable sets for Mk = 4γknkε
2
n �

nkε
2
n � nε2

n , where γk � max1≤j≤m∗
k
|(D−1

αk Tαk D−1′
αk )jj|, αk � αI[k = 0]+ βI[k = 1] and

m∗
k �

(
nk

log(nk)

)1/(2δ+1)
, k = 0,1:

Cn,0 �
m∗

0⋃
m0=1

{
gm0(z) ∈ Sm0 ; α ∈ [−M0,M0]

m0
}
,

Cn,1 �
m∗

1⋃
m1=1

{
gm1(z) ∈ Sm1 ; β ∈ [−M1,M1]

m1
}
,

(C.2)

where gm0(z) � B0(z)′α and gm1(z) � B1(z)′β.
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Notation specific to the Fuzzy RD design. For the Fuzzy RD design we in addition use
the following notation. Let G0n = G1a � Cδ[a,b], and

F �
{(

g0,0n(s,z)I[s ∈ {c,n}]+g1a(z)I[s = a]
)

I[z < τ ]+
(

g1,1a(s,z)I[s ∈ {c,a}]
+g0n(z)I[s = n]

)
I[z ≥ τ ], with g0,0n(s,z) � g0(z)I[s = c]+g0n(z)I[s = n],

g1,1a(s,z) � g1(z)I[s = c]+g1a(z)I[s = a], gj ∈ Gj,j = 0,1,0n,1a
}

.

We use the notation n̄10 � n00 +n10, n̄01 � n00 +n10 +n01. For the sample size of the cells
I10 and I01 we use both the notations n0n � n10 and n1a � n01; moreover, I0n � I10 and
I1a � I01. For a given sequence s � {s0,s1} where sk � {si}i∈Ikk with values in {c,n} if k = 0
and in {c,a} if k = 1 denote:

for f ∈ F, fs � ( f ′
s0

, f (n,zn00+1), . . . ,f (n,zn̄10), f (a,zn̄10+1), . . . , f (n,zn̄01), f ′
s1

)′,
fs0 � ( f (s1,z1), . . . ,f (sn00,zn00))

′, fs1 � ( f (sn̄01+1,zn̄01+1), . . . ,f (sn,zn))′,
σ 2

0s0
� (σ 2

0s1
, . . . ,σ 2

0sn00
)′, σ 2

1s1
� (σ 2

1sn̄01+1
, . . . ,σ 2

1sn
)′,

g0s0 � (g0s1(z1), . . . ,g0sn00
(zn00))

′, g1s1 � (g1sn̄01+1(zn̄01+1), . . . ,g1sn(zn))′.
(C.3)

Moreover, define B∗(εn,n−1/2) � {( f,σ 2
j ) ∈ F × R+ for j = 0,1,0n,1a;|1 − σj/σj∗| ≥

M̃n/
√

n, and ∀s,‖ fs − f∗
s ‖n ≥ Mnεn} for any sequences Mn,M̃n → ∞.

Prior specification for both the Sharp and the Fuzzy RD designs. The prior specifi-
cation for (α,β,αn,βa,λ,σ 2

0 ,σ 2
1 ,σ 2

n ,σ 2
a ,q), where λ � (λ0,λ1,λn,λa) and q � (qc,qn,qa)

is an independent prior as follows:

α|λ0 ∼ Nm0 (D
−1
α α0,λ

−1
0 D−1

α TαD−1′
α ), β|λ1 ∼ Nm1(D

−1
β β0,λ

−1
1 D−1

β TβD−1′
β ),

αn|λn ∼ Nmn (D
−1
n α0n,λ

−1
n D−1

n TnD−1′
n ), βa|λa ∼ Nma(D

−1
a β0a,λ

−1
a D−1

a TaD−1′
a ),

λj ∼ Ga

(
aj0

2
,

bj0

2

)
, j = 0,1,n,a,

σ 2
j ∼ IG

(
ν00

2
,
δ00

2

)
, for j = 0,1, σ 2

n ∼ IG
(

ν0n

2
,
δ0n

2

)
, σ 2

a ∼ IG
(

ν0a

2
,
δ0a

2

)
,

q ∼ Dir(n0c,n0n,n0a), (C.4)

where ν00 > 2.

C.2. Proofs for Section 2

C.2.1. Proof of Theorem 2.1. For every n, denote X(n) � (y(n),z(n)) and let I0 �
{i;zi < τ } = {i = 1, . . . n0} and I1 � {i;zi ≥ τ } = {i = n0 +1, . . . n1}. Moreover, for k = 0,1
denote by Dnk the denominator of the posterior distribution of (gk,σ

2
k ). In the following,

we use the notation αk � αI[k = 0]+βI[k = 1] for k = 0,1 (and similarly αk0 for the prior
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mean). Therefore, for k = 0,1, the marginal posterior of (gk,σ
2
k ) is

π((gk,σ
2
k )|X(nk)) = 1

Dnk

∫ ∏
{i∈Ik}

tν(yi|Bk(zi)
′αk +g⊥

k ,σ 2
k )Nmk

× (D−1
αk

αk0,λ
−1
k D−1

αk
Tαk D−1′

αk
)⊗ δ0(dg⊥

k )dπ(λk)π(σ 2
k ),

where δ0 denotes the Dirac mass at zero and g⊥
k � g⊥

k (z) � gk(z)−Bk(z)
′αk. For k = 0,1,

for some C > 0 and εnk > 0 denote by Ac
k the following event:

Ac
k �

⎧⎨⎩
∫ ∏

i∈Ik
pgk,σ

2
k
(yi|zi)

p(nk)∗
dπ(αk,g

⊥
k ,λk,σ

2
k ) ≤ e−(1+C)nkε

2
nk

⎫⎬⎭,

where dπ(αk,g
⊥
k ,λk,σ

2
k ) denotes the prior supported on BKL

n ((g∗
j ,σ

2
j∗),εnj). By Ghosal and

van der Vaart (2007), Lemma 10), P(nk)∗ [Ac
k] ≤ 1

C2nkε
2
nk

for every C > 0.

To prove the result of the theorem, we use the test approach which relies on the uniformly
exponential consistent test φnk constructed in Lemma C.3. By this lemma, for k = 0,1 there
exists a test φnk that satisfies:

Q(nk)

g∗
k,σ

2
k∗

φnk ≤ enkε
2
nk (1− e−KM2nkε

2
nk )−1e−KM2nkε

2
nk and

Q(nk)

gk,σ
2
k
(1−φnk ) ≤ e−KM2nkε

2
nk

j2
, ∀(gk,σ

2
k ) ∈ Cn,k ×

[
1

2nk
,e3nkε

2
nk

]
such that |1−σk/σk∗| > jεσ and ‖�1/2

k (gk −g∗
k )‖nk > Mεnk j, ∀j ∈ N (C.5)

for some εσ > 0, where Q(nk)

g∗
k,σ

2
k∗

�
∏

{i∈Ik}N (yi|zi;g∗
k,σ

2
k∗/ξi) which, conditional on

{ξi}n
i=1, is the true model, Q(nk)

gk,σ
2
k

�
∏

{i∈Ik}N (yi|zi;gk,σ
2
k /ξi) and �0 � diagonal

(ξ1, . . . ,ξn0), �1 � diagonal(ξn0+1, . . . ,ξn1).
We now use the tests φn0 and φn1 to upper bound the posterior of Bc∗(εnk,n

−1/2). For
this, we use the fact that, since tν(yi|g∗

j (zi),σ
2
j∗) = ∫ N (yi|zi;g∗

j ,σ
2
j∗/ξi)Ga

(
ξi; ν

2 , ν
2

)
dξi for

j = 0,1, the true Lebesgue density can be written as a mixture of Normal distributions:

p(n)∗ =
∫

Q(n0)

g∗
0,σ

2
0∗

Q(n1)

g∗
1,σ

2
1∗

n∏
i=1

Ga
(
ξi; ν

2
,
ν

2

)
dξi.

For k = 0,1:

E∗[π(Bc∗(εnk,n
−1/2)|X(nk))] ≤ E∗[

≤1︷ ︸︸ ︷
π(Bc∗(εnk,n

−1/2)|X(nk))φnk ]

+ E∗[
≤1︷ ︸︸ ︷

π(Bc∗(εnk,n
−1/2)|X(nk))1Ac

k
]+ E∗[π(Bc∗(εnk,n

−1/2)|X(nk))(1−φnk )1Ak
]
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≤
∫

e−(KM2−1)nkε
2
nk

(1− e−KnkM2ε2
nk )

∏
i∈Ik

Ga
(
ξi; ν

2
,
ν

2

)
dξi + 1

C2nkε
2
nk

+ E∗

⎡⎢⎢⎣
∫ ∫

Bc∗(εnk ,n−1/2)

∏
{i∈Ik}

p
gk,σ2

k
(yi|zi)

p∗(yi|zi)
dπ(αk,g

⊥
k ,λk,σ

2
k )

Dnk/p(nk)∗
(1−φnk )1Ak

⎤⎥⎥⎦,

where to get the second inequality, we have used the first line in (C.5) with M = ξ
1/2
minMn/J

for J ∈ N and ξmin � mini(�k)i,i. If M is sufficiently large to ensure that KM2 − 1 >

KM2/2, e
−(KM2−1)nkε2

nk

(1−e
−KnkM2ε2

nk )

≤ e−KM2nε2
nk

/2 and using the definition of Ak, we obtain

E∗[π(Bc∗(εnk,n
−1/2)|X(nk))]

≤
∫

e−KξminM2
nnkε

2
nk

/(2J2)
∏
i∈Ik

Ga
(
ξi; ν

2
,
ν

2

)
dξi + 1

C2nkε
2
nk

+ E∗

⎡⎢⎣
∫ ∫

Bc∗(εnk ,n−1/2)

∏
{i∈Ik}

pgk,σ
2
k
(yi|zi)

p∗(yi|zi)
dπ(α,g⊥

k ,λk,σ
2
k )(1−φnk )

⎤⎥⎦
× e(1+C)nkε

2
nk

π(BKL
n ((g∗

j ,σ
2
j∗),εnj))

.

Next, remark that∫
e−KξminM2

nnkε
2
nk

/(2J2)
∏
i∈Ik

Ga
(
ξi; ν

2
,
ν

2

)
dξi

≤
∫

e−KξminM2
nnkε

2
nk

/(2J2)nk
(ν/2)ν/2

�(ν/2)
(λmin)ν/2−1e−ξmin(ν/2)dξmin

≤ 2e−KcqM2
nnkε

2
nk

/(2J2)nk

∫ +∞
cq

(ν/2)ν/2

�(ν/2)
(λmin)ν/2−1e−ξmin(ν/2)dξmin

≤ 2e−nkε
2
nk

(KcqM2
n/(2J2)−log(nk)/(nkε

2
nk

))
, (C.6)

where, for q ∈ (0,1/2), cq is the q-quantile of a Ga

(
ν
2 , ν

2 + KM2
nnkε

2
nk

2J2

)
. Moreover, using the

result of Lemma C.1: π(BKL
n ((g∗

j ,σ
2
j∗),εnj)) � e−nkε

2
nk for k = 0,1, and by Fubini’s theorem

E∗[π(Bc∗(εnk,n
−1/2)|X(nk))] � e−nkε

2
nk

(KcqMn/(2J)−εnk ) + 1

C2nkε
2
nk

+ e(1+C+1)nkε
2
nk ×
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Bc∗(εnk ,n−1/2)

∫ ∏
{i∈Ik}

N (yi|zi;α,g⊥
0 ,σ 2

k /ξi)︸ ︷︷ ︸
=Q

(nk)

gk,σ2
k

(1−φnk )dyidπ(α,g⊥
k ,λk,σ

2
k )

×
∏
i∈Ik

Ga
(
ξi; ν

2
,
ν

2

)
dξi. (C.7)

Set for k = 0,1 and for j ∈ N:

Bk,j � {(gk,σ
2
k ) ∈ Cn,k ×

[
1

2nk
,e3nkε

2
nk

]
;Mεnk j < ‖�1/2

k (gk −gk∗)‖n ≤ 2jMεnk,

jεσ < |1−σk/σk∗| < 2jεσ }
and Gk,n � {(gk,σ

2
k ) ∈ Cn,k ×

[
1

2nk
,e3nkε

2
nk

]
;‖gk −gk∗‖n

≥ Mnεnk,|1−σk/σk∗| > M̃n/
√

n}
⊆
{
(gk,σ

2
k ) ∈ Cn,k ×

[
1

2nk
,e3nkε

2
nk

]
;‖�1/2

k (gj −g∗
j )‖n

≥ ξ
1/2
minMnεnk, |1−σk/σk∗| > M̃n/

√
n
}
,

then Bc∗(εnk,n
−1/2) ⊆ (Gk ×R+)\

(
Cn,k ×

[
1

2nk
,e3nkε

2
nk

])
∪Gk,n and Gk,n ⊆⋃j≥J Bk,j

for ξ
1/2
minMn = JM and M̃/

√
nk = Jεσ . Therefore, by decomposing the integral over

Bc∗(εnk,n
−1/2) in the sum of two integrals over the ranges (Gk × R+)\(

Cn,k ×
[

1
2nk

,e3nkε
2
nk

])
and Gk,n and by upper bounding (1 − φnk ) by 1 over Gk\Cn,k,

for k = 0,1, we get:∫ ∫
Bc∗(εnk ,n−1/2)

∫
Q(nk)

gk,σ
2
k
(1−φnk )dπ(α,g⊥

k ,λk,σ
2
k )
∏
i∈Ik

Ga
(
ξi; ν

2
,
ν

2

)
dξi

≤ π(Gk\Cn,k)

∫ e
3nkε2

nk

(2nk)
−1

π(σ 2
k )dσ 2

k +π(Gk)︸ ︷︷ ︸
≤1

(∫ (2nk)
−1

0
π(σ 2

k )dσ 2
k +

∫ +∞
e

3nkε2
nk

π(σ 2
k )dσ 2

k

)

+
∫ ∫

Gk,n

∫
Q(nk)

gk,σ
2
k
(1−φnk )dπ(α,g⊥

k ,λk,σ
2
k )
∏
i∈Ik

Ga
(
ξi; ν

2
,
ν

2

)
dξi

≤ e−nkε
2
nk

η/(2δ+1) + e−nkε
2
nk

δ00 + e−3nkε
2
nk δ00

ν00 −2

+
∫ ∑

j≥J

e−Kj2M2nkε
2
nk
∏
i∈Ik

Ga
(
ξi; ν

2
,
ν

2

)
dξi, (C.8)
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where we have used Lemma E.2 to upper bound π(Gk\Cn,k), the concentration inequality

for sub-Gamma random variables to upper bound the integral over
[
0, 1

2nk

]
(since (σ−2

k −
E[σ−2

k ]) is sub-Gamma

(
2 ν00

δ2
00

, 2
δ00

)
), and the second inequality in (C.5) with JM = ξ

1/2
minMn

to control the term Q(nk)

gk,σ
2
k
(1 − φnk ). Using the same argument to get (C.6), we obtain

E[e−KJ2M2nkε
2
nk ]≤ 2exp{−nkε

2
nk

(KcqM2
n −εnk )}. By putting this, (C.7) and (C.8) together,

we get that for k = 0,1:

E∗[π(Bc∗(εnk,n
−1/2)|X(nk))] � e−nkε

2
nk

(KcqM2
n/(2J2)−εnk ) + 1

C2nkε
2
nk

+ e(1+C+1)nkε
2
nk

×
(

e−nkε
2
nk

η/(2δ+1) + e−nkε
2
nk

δ00 + e−3nkε
2
nk

δ00

ν00 −2
+ e−nkε

2
nk

(KcqM2
n−εnk )

)
,

which converges to zero for every Mn,K sufficiently large and every 0 < C <min{1,δ00 −2}
such that 1 + C + 1 <

η
(2δ+1)

which implies η > min{3,δ00}(2δ + 1). This establishes the
statement of the theorem.

C.2.2. Proof of Theorem 2.2. For every n, denote X(n) � (y(n),z(n)). For given
m0,m1 ∈ N, define the functional spaces Gm0 and Gm1 as

Gm0 �
{

gm0 (z); gm0(z) = B0(z)′α, z ∈ {z1, . . . ,zn0},α ∈ R
m0
}

⊂ L2(Pn0)

Gm1 �
{

gm1 (z); gm1(z) = B1(z)′β, z ∈ {zn0+1, . . . ,zn1},β ∈ R
m1
}

⊂ L2(Pn1),

where Pnj has support z(nj) for j = 0,1. Associated to each space (and then to each measure
Pnj ), define the linear functionals

Lz(n0) : Gm0 → R

g �→ e′
m0,m0

B
−1
0

1

n0

n0∑
i=1

B0(zi)g(zi)I[zi < τ ],

Lz(n1) : Gm1 → R

g �→ e′
m1,1

B
−1
1

1

n1

n1∑
i=n0+1

B1(zi)g(zi)I[zi ≥ τ ],

where ei,j denotes the (i × 1) canonical vector with all components equal to zero but the

jth one, B0 � 1
n0

∑n0
i=1 B0(zi)B0(zi)

′I[zi < τ ] and B1 � 1
n1

∑n1
i=n0+1 B1(zi)B1(zi)

′I[zi ≥
τ ]. Therefore, for every gm0 ∈ Gm0 , gm1 ∈ Gm1 , α[m0] = Lz(n0)gm0 , and β[1] =
Lz(n1)gm1 . The linear functionals Lz(n0) and Lz(n1) can be written: ∀ϕ0 ∈ L2(Pn0) and
∀ϕ1 ∈ L2(Pn1),

Lz(n0)ϕ0 = 〈ϕ0,�z(n0) 〉Pn0
, Lz(n1)ϕ1 = 〈ϕ1,�z(n1) 〉Pn1

,
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where for j = 0,1, 〈·,·〉Pnj
(resp. ‖ ·‖nj ) denotes the scalar product (resp. the induced norm)

in L2(Pnj) and

�z(n0) (s) � e′
m0,m0

B
−1
0 B0(z)I[z < τ ] ∈ L2(Pn0),

�z(n1) (s) � e′
m1,1

B
−1
1 B1(z)I[z ≥ τ ] ∈ L2(Pn1).

Therefore, by the Riesz theorem, ‖Lz(n0)‖2
n0

= ‖�z(n0)‖2
n0

= e′
m0,m0

B
−1
0 em0,m0 and

‖Lz(n1)‖2
n1

= ‖�z(n1)‖2
n1

= e′
m1,1

B
−1
0 em1,1. By the definition of Bj(z), j = 0,1, there exists

a constant cj > 0 such that ‖�
z(nj)‖nj ≤ cj < ∞ for every nj.

Since
∣∣ATE−ATE∗∣∣ �

∣∣∣(β[1]−α[m0])− (β∗
[1]

−α∗
[m0]

)

∣∣∣ ≤ |β[1] − β∗
[1]

| + |α[m0] −
α∗
[m0]

| it holds that (by denoting with � the event {|1−σj/σj∗| ≥ M̃n/
√nj for j = 0,1})

π

⎛⎜⎜⎝ |ATE−ATE∗| ≥ M1,nεn, |1−σj/σj∗| ≥ M̃n/
√

nj for j = 0,1︸ ︷︷ ︸
��

∣∣∣∣∣∣∣∣X
(n)

⎞⎟⎟⎠
≤ π

(
|β[1]−β∗

[1]|+ |α[m0] −α∗
[m0]

| ≥ M1,nεn, �,|β[1]−β∗
[1]| ≥ M1,nεn

2

∣∣∣∣X(n)

)
+π

(
|β[1]−β∗

[1]|+ |α[m0] −α∗
[m0]

| ≥ M1,nεn, �,|β[1]−β∗
[1]| <

M1,nεn

2

∣∣∣∣X(n)

)
.

(C.9)

We analyze the two terms in the right-hand side of (C.9) separately by starting from the first
one. Since for two events A and B, π(A∩B|X(n)) ≤ π(B|X(n)) and using the independence
of the posterior of (σ 2

0 ) and (β[1],σ
2
1 ) we get:

π

(
|β[1]−β∗

[1]|+ |α[m0]−α∗
[m0]

| ≥ M1,nεn, �,|β[1]−β∗
[1]| ≥ M1,nεn

2

∣∣∣∣X(n)

)
≤ π

(
�,|β[1]−β∗

[1]| ≥ M1,nεn

2

∣∣∣∣X(n)

)
≤ π

(
‖Lz(n1)‖n1‖(gm1 −g∗

m1
)‖n ≥ M1,nεn1

2
,

∣∣∣∣1− σ1

σ1∗

∣∣∣∣≥ M̃n√nj

∣∣∣∣∣X(n1)

)
,

(C.10)

which converges to zero in P(n1)∗ -probability by the result of Theorem 2.1 with Mn =
M1,n/(2c1) and where we have used ‖Lz(n1)‖n1 ≤ c1 < ∞. We now analyze the second

term on the right-hand side of (C.9). Using the independence of the posterior of (α[m0],σ
2
0 )

and (β[1],σ
2
1 ) we get:

π

(
|β[1]−β∗

[1]|+ |α[m0]−α∗
[m0]

| ≥ M1,nεn, �,|β[1]−β∗
[1]| <

M1,nεn

2

∣∣∣∣X(n)

)
≤ π

(
M1,nεn

2
+|α[m0]−α∗

[m0]
| ≥ M1,nεn, �,|β[1]−β∗

[1]| <
M1,nεn

2

∣∣∣∣X(n)

)
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≤ π

(
|α[m0]−α∗

[m0]
| ≥ M1,nεn

2
,

∣∣∣∣1− σ0

σ0∗

∣∣∣∣≥ M̃n/
√

nj

∣∣∣∣X(n0)

)
×π

(
|β[1]−β∗

[1]| <
M1,nεn

2
,

∣∣∣∣1− σ1

σ1∗

∣∣∣∣≥ M̃n/
√

nj

∣∣∣∣X(n1)

)
︸ ︷︷ ︸

≤1

≤ π

(
|Lz(n0) (gm0 −g∗

m0
)| ≥ M1,nεn0

2
,

∣∣∣∣1− σ0

σ0∗

∣∣∣∣≥ M̃n/
√

nj

∣∣∣∣X(n0)

)
≤ π

(
‖Lz(n0)‖n‖(gm0 −g∗

m0
)‖n ≥ M1,nεn0

2
,

∣∣∣∣1− σ0

σ0∗

∣∣∣∣≥ M̃n/
√

nj

∣∣∣∣X(n0)

)
,

(C.11)

where we have used the independence of the posterior of (α[m0],σ
2
0 ) and (β[1],σ

2
1 ) to get the

second inequality. By the result of Theorem 2.1 with Mn = M1,n/(2c0), (C.11) converges

to zero in P(n0)∗ -probability. By putting together (C.9)–(C.11), we get the statement of the
theorem.

C.3. Proofs for Section 4

C.3.1. Proof of Theorem 4.2. For every n, denote X(n) � (y(n),x(n),z(n)). For given
m0,mn ∈ N and for every s ∈ {c,n}, let αs � αI[s = c]+αnI[s = n], α ∈ R

m0 , αn ∈ R
mn ,

and ∀z: B0s(z) � B00(z)I[s = c]+B00,n(z)I[s = n], with B00(z) ∈R
m0 and B00,n(z) ∈R

mn .
For given m0,mn,ma,m1 ∈ N, define the following functional spaces

Gm0,mn �
{

gm0,mn(s,z;α,αn) = B0s(z)
′αs : {c,n}× z00 → R, α ∈ R

m0,αn ∈ R
mn
}
,

Gmn �
{

gmn(z;αn) = B10,n(z)′αn : z10 → R, αn ∈ R
mn
}
,

Gma �
{

gma(z;βa) = B01,a(z)′βa : z01 → R, βn ∈ R
ma
}
,

Gm1,ma �
{

gm1,ma(s,z;β,βa) = B1s(z)
′βs : {c,a}× z11 → R, β ∈ R

m1,βa ∈ R
ma
}
,

where for every s ∈ {c,a}, βs � βI[s = c] + βaI[s = a], β ∈ R
m1 , βa ∈ R

ma , and
B1s(z) � B11(z)I[s = c]+ B11,a(z)I[s = a], with B11(z) ∈ R

m1 , ∀z, and B11,a(z) ∈ R
ma ,

∀z. Moreover, for m � (m0,mn,ma,m1) define

Fm �
{

f (s,z) =
(

gm0,mn(s,z)I[s ∈ {c,n}]+gma (z)I[s = a]
)

I[z < τ ]

+
(

gm1,ma(s,z)I[s ∈ {c,a}]+gmn (z)I[s = n]
)

I[z ≥ τ ], gm0,mn(s,z)

∈ Gm0,mn,gma(z) ∈ Gma,gm1,ma(s,z) ∈ Gm1,ma,gmn ∈ Gmn

}
and for every sequence s, Fm ⊂ L2(Pn,s) where Pn,s has support (s1,z1), . . . ,(sn00,zn00),
(n,zn00+1), . . . ,(n,zn̄10), (a,zn̄10+1), . . . ,(a,zn̄01), (sn̄01+1,zn̄01+1), . . . ,(sn,zn). Associated
to every sequence s, we also define two linear functionals: L0s : Fm → R and L1s :
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Fm → R as

L0sf �→ e′
m0,m0

B
−1
00

1

n

n∑
i=1

B00(zi)f (si,zi)I[si = c]I[zi < τ ]

= e′
m0,m0

�{i;si = c,zi < τ }
n

B
−1
00

∑n
i=1 B00(zi)gm0,mn (si,zi)I[si = c]I[zi < τ ]

�{i;si = c,zi < τ } ,

L1sf �→ e′
m1,1

B
−1
11

1

n

n∑
i=1

B11(zi)f (si,zi)I[si = c]I[zi ≥ τ ]

= e′
m1,1

�{i;si = c,zi ≥ τ }
n

B
−1
11

∑n
i=1 B11(zi)gm1,ma (si,zi)I[si = c]I[zi ≥ τ ]

�{i;si = c,zi ≥ τ } ,

where ei,j denotes the (i×1) canonical vector with all components equal to zero but the jth

one, B00 � 1
n
∑n

i=1 B00(zi)B00(zi)
′I[si = c]I[zi < τ ] = Pn,sB00(zi)B00(zi)

′I[si = c]I[zi <

τ ]and B11 � 1
n
∑n

i=1 B11(zi)B11(zi)
′I[zi = c]I[zi ≥ τ ]. Therefore, for every f ∈ Fm and

every sequence s, α[m0] = L0sf and β[1] = L1sf . The linear functionals L0s and L1s can be
written: ∀ϕ ∈ L2(Pn,s), L0sϕ = 〈ϕ,�0s〉Pn,s , L1sϕ = 〈ϕ,�1s〉Pn,s, where for every sequence
s, 〈·,·〉Pn,s (resp. ‖ · ‖n,s) denotes the scalar product (resp. the induced norm) in L2(Pn,s)

and

�0s(s,z) � e′
m0,m0

B
−1
00 B00(z)I[s = c]I[z < τ ],

�1s(s,z) � e′
m1,1

B
−1
11 B11(z)f (s,z)I[s = c]I[z ≥ τ ].

Therefore, by the Riesz theorem, for j = 0,1, ‖Ljs‖2
n,s = ‖�js‖2

n,s and ‖�0s‖2
n,s =

e′
m0,m0

B
−1
00 em0,m0 I[s = c]I[z < τ ], ‖�1s‖2

n,s = e′
m1,1

B
−1
11 em1,1I[s = c]I[z ≥ τ ]. By the

definition of Bjj(z), j = 0,1, there exists a constant cj > 0 such that ‖�js‖n,s ≤ cj < ∞ for
every n and for every s.

Since
∣∣CATE−CATE∗∣∣ � ∣∣∣(β[1]−α[m0])− (β∗

[1]
−α∗

[m0]
)

∣∣∣ ≤ |β[1] −β∗
[1]

| + |α[m0] −
α∗
[m0]

| it holds that (by denoting with � the event {|1 − σj/σj∗| ≥ M̃n/
√

n for j =
0,1,0n,1a})

π
(

|CATE−CATE∗| ≥ M1,nεn, �
∣∣X(n)

)
≤ π

(
|β[1]−β∗

[1]|+ |α[m0]−α∗
[m0]

| ≥ M1,nεn, �

∣∣∣X(n)
)

≤ π
(

∀s,∀f ∈ Fm; |L1s( f − f ∗)|+ |L0s( f − f ∗)| ≥ M1,nεn, �
∣∣X(n)

)
≤ π

(
∀s,∀f ∈ Fm; (‖L1s‖n,s +‖L0s‖n,s

) ‖ f − f ∗‖n,s ≥ M1,nεn, �
∣∣X(n)

)
. (C.12)

Remark that ∀f ∈Fm, for f ∗ ∈Fm and for every given s = (s0
′,s1)′ with s0 � (s1, . . . ,sn00),

s1 � (sn̄01+1, . . . ,sn):

‖ f − f ∗‖2
n,s ≤

1

n

∑
i∈I00

[
2(g0si(zi)−g∗

0si
(zi))

2 +4(gm0,mn (si,zi)−g0si(zi))
2 +4(g∗

0si
(zi)−g∗

m0,mn
(si,zi))

2
]
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+
∑

j∈{0n,1a}

1

n

∑
i∈Ij

[
2(gj(zi)−g∗

j (zi))
2 +4(gmj(zi)−gj(zi))

2 +4(g∗
j (zi)−g∗

mj
(zi))

2
]

+ 1

n

∑
i∈I11

[
2(g1si(zi)−g∗

1si
(zi))

2 +4(gm1,ma(si,zi)−g1si(zi))
2

+4(g∗
1si

(zi)−g∗
m1,ma

(si,zi))
2
]

= 2‖f s − f∗
s ‖2

n +4‖ f − f s‖2
n,s +4‖f∗

s − f ∗‖2
n,s, (C.13)

where f s (resp. f∗
s ) is defined in (C.3) (resp. for the true value of the parameters)

and remark that f ∗ ∈ Fm. Remark that the second term in the right-hand side of
(C.13) has zero prior mass and, under the assumption of the theorem ‖f∗

s − f ∗‖n,s ≤
C2(min{m0,m1,m0n,m1a})−δ . By plugging this in (C.12), we get:

π
(

|CATE−CATE∗| ≥ M1,nεn, �
∣∣X(n)

)
≤ π

(
∀s,∀f ∈ F; ‖f s − f∗

s ‖2
n

≥ 1

2

(
M2

1,nε2
n

(c0 + c1)2
−4C2

2(min{m0,m1,m0n,m1a})−2δ

)
, �|X(n)

)

= π

(
∀s,∀f ∈ F; ‖f s − f∗

s ‖2
n ≥ ε2

n
2

(
M2

1,n

(c0 + c1)2
−4C2

2

)
, �

∣∣∣∣∣X(n)

)
, (C.14)

where we have set m0 � m1 � m0n � m1a � (n/ log(n))1/(2δ+1) to get the last line. If M1,n

is large enough such that
M2

1,n
2(c0+c1)

2 −2C2
2 > 0, then (C.14) converges to zero by Theorem

F.1 in the Supplementary Appendix with Mn ≤ M2
1,n

2(c0+c1)
2 −2C2

2.

C.4. Technical Lemmas

The proof of the lemmas in this section is provided in Section E of the Online Supplementary
Appendix.

LEMMA C.1. Assume the conditions of Theorem 2.1 hold. Then, for k = 0,1 there exists
a N > 0 such that ∀nk ≥ N and ∀εnk > 0:

π(BKL
n ((g∗

k,σ
2
k∗),εnk )) � exp

{
−nkε

2
nk

}
.

LEMMA C.2. Assume the conditions of Theorem 2.1 hold. Then, for k = 0,1 the sequence
of measurable sets Cn,k defined in (C.2) satisfies

π(Gk\Cn,k) � exp

{
−nkε

2
nk

η

2δ +1

}
, (C.15)

where η is defined in Theorem 2.1.
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LEMMA C.3 (Testing). For each k = 0,1, let qk∗ � (g∗
k,σ

2
k∗) and Eqk∗ (resp.

Eqk ) denote the expectation taken with respect to the distribution Nnk (g
∗
k,σ

2
k∗) (resp.

Nnk (gk,σ
2
k )). For each k = 0,1, there exists a test φnk such that for some K,M > 0 and

∀� ∈ N:

Eqk∗φnk ≤ e−(M2K−1)nkε
2
nk

1− e−M2Knkε
2
nk

, sup
qk=(gk,σ

2
k )∈An,k,�

Eqk (1−φnk ) ≤ e−M2K�nkε
2
nk ,

(C.16)

where An,k,� � {gk ∈ Cn,k;‖�1/2
k (gk − g∗

k )‖nk > �Mεnk } ×
{
σ 2

k ∈
[

1
2nk

,enkε
2
nk

]
;

|1−σk/σk∗| > �εσ } for some εσ > 0, �0 � diagonal(ξ1, . . . ,ξn0), �1 � diagonal
(ξn0+1, . . . ,ξn1) and {ξi}i are the latent variables in the mixture representation of the
student-t distribution.

Supplementary Material

To view the supplementary material for this article, please visit:
https://doi.org/10.1017/S0266466622000019.
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