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Abstract. In the present work, we have developed a two-dimensional gravitational model of
barred galaxies to analyse the fate of escaping stars from the central barred region. For that, the
model has been analysed for two different bar profiles viz. strong and weak. Here the phenomena
of stellar escape from the central barred region have been studied from the perspective of an
open Hamiltonian dynamical system. We observed that the escape routes correspond to the
escape basins of the two index-1 saddle points. Our results show that the formation of spiral
arms is encouraged for the strong bars. Also, the formation of grand design spirals is more likely
for strong bars if they host central super massive black holes (SMBHs). In the absence of central
SMBHs, the formation of less-prominent spiral arms is more likely. Again, for weak bars, the
formation of inner disc rings is more probable.
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1. Introduction

Stellar bars are quite common among the late-type galaxies. Observational studies
reveal that bars are found in nearly 70% of the local disc galaxies (Eskridge et al. 2000).
These robust stellar bodies are the result of rotational instabilities that arise in the
galactic centre due to the density waves radiating from the core. These instabilities
redistribute the stellar trajectories to generate a self-stabilising structure in the form
of the bar (Bournaud & Combes 2002). Stellar bars have a paramount role behind the
dynamical evolution of galaxies (Navarro & Henrard 2001; Ernst & Peters 2014).

Modelling of galaxies with a rotating bar component can be done via conservative
or Hamiltonian dynamical systems. More specifically, stellar escapes from the bar ends
can be studied from the viewpoint of escape phenomena observed in open Hamiltonian
systems. An open Hamiltonian system is a dynamical system where for energies above
an escape threshold, the energy shell is non-compact, and as a result a part of the
stellar orbits explores (in our case from potential holes to saddles) an infinite part of the
position space (Aguirre et al. 2001). In this dynamical set-up, the overall nature of the
stellar orbits has categorized into following categories – (i) escaping and (ii) bounded.
Bounded orbits are trapped inside the potential interior and exhibit both periodic (more
generally quasi-periodic) and chaotic motions. On the other hand, escaping orbits are
generally chaotic in nature. Now, the domains of bounded and chaotic motions in the
x− y plane have been observed via Poincaré surface section maps (Strogatz 1994) for
different escape energies (i.e. energies higher than the escape threshold).

The orbital and escape dynamics of barred galaxies have been studied in the recent
past and results are mainly concentrated towards the computation of the chaotic invari-
ant manifolds near the bar ends and their role behind subsequent structure formations
(Jung & Zotos 2016). In our work, we studied a two dimensional (2D) gravitational model
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of barred galaxies to study the orbital and escape dynamics of stars in the central region
and also analysed the fate of escaping stellar orbits for two different bar profiles viz.
strong (i.e. cuspy type) and weak (i.e. flat type).

2. Gravitational Model

To study the orbital and escape dynamics in barred galaxies, we developed a four
component gravitational model in 2D (i.e. along the plane of the bar). This model consists
of – (a) bulge, (ii) bar, (iii) disc and (iv) dark matter halo. In Cartesian coordinates (x, y),
for a test particle of unit mass (m= 1), we construct the following quantities –

total potential: Φt(x, y) = ΦB(x, y) + Φb(x, y) + Φd(x, y) + Φh(x, y), (2.1)

effective potential: Φeff(x, y) = Φt(x, y) − 1

2
Ω2

b(x2 + y2), (2.2)

Hamiltonian:H(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + Φeff(x, y), (2.3)

where ΦB, Φb, Φd, Φh are potentials corresponding to the bulge, bar, disc and dark matter
halo respectively, �Ωb ≡ (0, 0,Ωb) (in clockwise sense) is the pattern speed of the bar and
H is the Hamiltonian of this system. This gravitational model resembles a conservative
dynamical system, in that case H is a constant of motion and equivalent to the total
energy of the system (E). Hence, the equation of motion in the rotating reference frame
of the bar is –

�̈r= −�∇Φt − 2( �Ωb × �̇r) − �Ωb × ( �Ωb × �r), (2.4)

where �r ≡ (x, y) and �̇r ≡ (ẋ, ẏ) are position and linear momentum of the test particle

at time t respectively, and �∇≡ ( ∂
∂x ,

∂
∂y ). Now, the Lagrangian (or equilibrium) points of

the system are solutions of –

∂Φeff

∂x
= 0,

∂Φeff

∂y
= 0. (2.5)

Now, forms of the gravitational potentials for the bulge, bar, disc and dark matter
halo are –

• Bulge: ΦB(x, y) = − GMB√
x2+y2+cB2

(Plummer 1911), where MB is the bulge mass and

cB is the scale length.
• Strong Bar (Model 1): Φb(x, y) = − GMb√

x2+(αy)2+c2b
(Caranicolas 2002), where Mb is

the bar mass, α is the flattening parameter and cb is the scale length.

• Weak Bar (Model 2): Φb(x, y) = GMb

2a ln(
x−a+

√
(x−a)2+y2+c2b

x+a+
√

(x+a)2+y2+c2b
) (Jung & Zotos 2015),

where Mb is the bar mass, a is the semi-major axis length and cb is the scale length.
• Disc: Φd(x, y) = − GMd√

x2+y2+(k+h)2
(Miyamoto & Nagai 1975), where Md is the disc

mass and k, h are the horizontal and vertical scale lengths, respectively.

• Dark matter halo: Φh(x, y) =
v20
2 ln(x2 + β2y2 + c2h) (Zotos 2012), where v0 is the

circular velocity, β is the flattening parameter and ch is the scale length.

We analysed our gravitational model separately for two different bar profiles, namely –
(i) strong bar (model 1) and (ii) weak bar (model 2). Now, without loss of any generality,
we set G (gravitational constant) = 1 and other parameter values are given in Table 1
(Zotos 2012; Jung & Zotos 2016).
For these parameter values, we adopt the following scaling relations – unit of length:
1 kpc, unit of mass: 2.325 × 107M�, unit of time: 0.9778 × 108 yr, unit of velocity:
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Table 1. Parameter values.

Parameter Value

MB 9.3× 109M�
cB 0.25 kpc

Mb 81.375× 109M�
cb 1 kpc

α 2 kpc

a 10 kpc

Ωb 12.5 km s−1 kpc−1

Parameter Value

Md 162.75× 109M�
k 3 kpc

h 0.175 kpc

v0 150 km s−1

β 1.3 kpc

ch 20 kpc

Figure 1. The isocontours of the effective potential—Φeff(x, y) in the x− y plane, where
locations of the Lagrangian points are marked in red.

10 km s−1, Unit of angular momentum per unit mass: 10 km s−1 kpc−1 and unit of
energy per unit mass: 100 km2 s−2 (Jung & Zotos 2016). Now, from Eqs. 2.5, we cal-
culate the locations of the Lagrangian points for both the strong and weak bar models.
In both the models, system has five Lagrangian points, namely L1, L2, L3, L4 and L5

(viz. Fig. 1). Among these Lagrangian points only L1 and L2 (classified as index-1 saddle
points of the system) are corresponding to the bar ends i.e. responsible for stellar escapes.
For the strong bar model the locations of L1 and L2 are (±20.23113677, 0) respectively,
and for the weak bar model that locations are (±20.82978638, 0). Clearly, the bar area
of model 2 is bigger than the model 1.

3. Computational Results

The effective potential term (Φeff) (viz. Eq. 2.1) is symmetric about the y axis and
EL1

=EL2
, where EL1

and EL2
denotes the energy values of L1 and L2 respectively.

Hence, studying the dynamics near either of L1 and L2 is sufficient to analyse the system.
Now, escape of stars from the central barred region is only possible in the energy range:
E >EL1

, and for E �EL1
orbits are bounded inside the central barred region. To study

the escaping motion, we integrate the Eq. 2.4 for a time-scale of 102 time units, which
is equivalent to 10 Gyr i.e. the typical age of the bars (James & Percival 2018). For this
orbit integration we use the ode45 package of MATLAB. Further, in order to simplify the

calculations, we adopt the dimensionless energy parameter C =
EL1

−E
EL1

(Jung & Zotos

2016). Hence, orbital escapes are possible for C > 0.

3.1. 2D Orbits

To study the nature of orbits near the Lagrangian point L1 for both the bar models, we
choose an initial condition x0 = 10, y0 = 0, ẋ0 = 15, where ẏ0 is evaluated from Eq. 2.3,
and the corresponding trajectories in the x− y plane are drawn for several values of C > 0
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(a) (b)

Figure 2. Orbits in the x− y plane for (x0, y0, ẋ0) ≡ (10, 0, 15) andC = 0.1.

(a) (b)

Figure 3. Model 1—Poincaré surface sections of ẋ= 0 and ẏ � 0.

(see Fig. 2). Any other initial condition in the suitable neighbourhoods of the aforesaid
initial condition will follow the similar trend.

3.2. Poincaré Maps

Poincaré surface section maps in the x− y plane for both the bar models are shown in
Fig. 3 and Fig. 4 for several values of C > 0. In order to construct the Poincaré surface
section maps, we choose a 43 × 43 gird of initial conditions i.e. (x0, y0) in the x− y plane
with restriction: (x20 + y20)< r2L1

, where rL1
is the radial length of L1. Also, ẋ0 = 0 and

ẏ0(> 0) is evaluated from Eq. 2.3. In these maps our chosen surface cross sections are
ẋ= 0 and ẏ≤ 0.

4. Conclusions

From all the above analyses our findings are –
• Model 1 (strong bar): For galaxies with strong bars, escape of stars from the central

region has been encouraged (Fig. 2(a)). Again, the amount of escape from the bar ends
has been increased with increment in the escape energy (Figs. 3(a) and 3(b)). Hence,
for strong bars, the formation of spiral arms is more likely as a result of escape. Here,
the increment in escape for higher escape energy values have been interpreted by the
violence (viz. baryonic feedbacks from supernova, shocks etc.) occurring in the central
region (Melia & Falcke 2001). We know, the central black hole has a strong influence on
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(a) (b)

Figure 4. Model 2—Poincaré surface sections of ẋ= 0 and ẏ � 0.

the kinetic energy of random motions inside the bulge due to the central violence. Further,
these kinetic energy of random motions is strongly related with spiral arm strength (Al-
Baidhany et al. 2014). Galaxies with central Super Massive Black Holes (SMBHs) have
more kinetic energy of random motions inside the bulge and spiral arms with small pitch
angles (Seigar et al. 2008). Hence, for strong barred galaxies with central SMBHs, the
formation of tightly wound or full-fledged spiral arms is more likely. This is the case of
giant spiral galaxies, where grand design spiral arms are observed. Few examples of such
giant spiral galaxies are Milky Way, NGC 1300 (Helou et al. 1991) etc. While, in the
absence of central SMBHs, galaxies have competitively lesser kinetic energy of random
motions inside the bulge and spiral arms with competitively higher pitch angles. Hence,
for strong barred galaxies without central SMBHs, the formation of less prominent spiral
arms is more likely.

• Model 2 (weak bar): For galaxies with weak bars, escape of stars from the central
region has not been encouraged (Fig. 2(b)). Here also, the amount of escape from the
bar ends has been increased with increment in the escape energy (Figs. 4(a) and 4(b)).
Hence, for weak bars, the formation of inner disc rings is more likely as a result of escape.
While, the increment in violence occurring in the central region may strengthen the ring
patterns. Hence, for weak barred galaxies, the formation of inner disc rings is more likely.
Few examples of such ring galaxies are NGC 1533, NGC 6028 (Helou et al. 1991) etc.
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Discussion

Mellema: Question: The rotation pattern of the bar does not affect the position of
resonances, bar mass etc. Could you comment on this?
Answer: Here we only consider a fixed bar pattern speed and focus completely on the
overall nature of stellar escapes for different bar types. In our upcoming works, we are
planning to study the effect of the bar pattern speed on the position of bar resonances,
bar mass etc. to classify the stellar orbits under different bar types.
Question: What will be the outcome if the system has more than one pattern speed?
Answer: If the system has more than one bar pattern speed, then in general the potential
becomes time-dependent. So, the system becomes non-conservative and our Hamiltonian
approach fails. In that case, we can still use our Hamiltonian approach, if both the bars
are aligned perpendicularly to each other and have the same pattern speed.
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