
TPLP 25 (4): 507–521, 2025. c© The Author(s), 2025. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068425100331

507

Splitting a Disjunctive Logic Program

RACHEL BEN-ELIYAHU-ZOHARY
School of Software and Electrical Engineering, Azrieli College of Engineering (JCE),

Jerusalem, Israel

(e-mail: rbz@jce.ac.il)

submitted 15 August 2025; revised 15 August 2025; accepted 20 August 2025

Abstract

Answer Set Programming (ASP) is a successful method for solving a range of real-world appli-
cations. Despite the availability of fast ASP solvers, computing answer sets demands significant
computational resources, since the problem tackled is on the second level of the polynomial
hierarchy. Answer set computation can be accelerated if the program is split into two disjoint
parts, bottom and top. Thus, the bottom part is evaluated independently of the top part, and
the results of the bottom part evaluation are used to simplify the top part. Lifschitz and Turner
have introduced the concept of a splitting set, that is, a set of atoms that defines the splitting.

In a previous paper, the notion of g-splitting set , which generalize the concept of splitting
sets for disjunctive logic programs, was introduced. In this paper, we further investigate the topic
of splitting sets and g-splitting sets. We show that the set inclusion problem for splitting sets can
be reduced to a classic Search Problem and solved in polynomial time. We also show that the
task of computing g-splitting sets with desirable properties is relatively easy and straightforward.
Finally, we show that stable models can be decomposed to models of rules inspired by g-splitting
sets and models of the rest of the program. This interesting property can assist in incremental
computation of stable models.

KEYWORDS: logic programming, stable model semantics, splitting sets

1 Introduction

Answer Set Programming (ASP) has proven to be an effective approach for addressing

a wide variety of real-world problems. Although modern ASP solvers are quite efficient,

generating answer sets remains computationally intensive due to the inherent complexity

of the problem, which resides at the second level of the polynomial hierarchy. One strat-

egy to accelerate the computation process involves decomposing the logic program into

smaller, independently evaluable modules (Lifschitz and Turner (1994); Janhunen et al.

(2009); Ferraris et al. (2009)). In their work, Lifschitz and Turner introduced a method

for dividing a program into two non-overlapping sections–referred to as the bottom and

top parts–where the bottom can be evaluated independently, and its output is then used

to simplify the evaluation of the top. This technique relies on the concept of a splitting

set, a collection of atoms that determines how the program is partitioned (Lifschitz and

Turner (1994)).

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available

https://doi.org/10.1017/S1471068425100331
https://orcid.org/0000-0002-9585-5014
mailto:rbz@jce.ac.il
https://crossmark.crossref.org/dialog?doi=10.1017/S1471068425100331&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

R. Ben-Eliyahu-Zohary508

Beyond their utility in enabling incremental ASP solving (Gebser et al. (2008)),

splitting sets have also contributed to a deeper understanding of answer set semantics

(Oikarinen and Janhunen (2008); Dao-Tran et al. (2009); Ferraris et al. (2009)).

In earlier work (Ben-Eliyahu-Zohary (2021)), the concept of a g-splitting set was

introduced, extending the traditional notion of splitting sets to better accommodate

disjunctive logic programs. In this paper, we build upon that foundation, offering new

insights into both splitting and g-splitting sets. We demonstrate that the set inclusion

problem can be transformed into a classical search problem and solved efficiently in

polynomial time. Furthermore, we show that identifying g-splitting sets with desirable

characteristics is relatively straightforward. Finally, we present a novel result showing

that stable models can be divided into models of subsets of rules based on g-splitting

sets and models of the remainder of the program – an approach that could facilitate more

efficient, incremental computation of stable models for disjunctive logic programs.

The paper is organized as follows. In the next section, we present preliminary definitions

and results concerning stable models, program graphs, splitting sets, and search problems

in AI. In Section 3, we introduce a polynomial-time algorithm for solving the set inclusion

problem. Section 4 analyzes the relationship between g-splitting sets and program graphs.

In Section 5, we present the program decomposition lemma for g-splitting sets. Section 6

discusses related work, and Section 7 concludes the paper.

2 Preliminaries

In this section we introduce basic definitions and discuss previous results.

2.1 Disjunctive logic programs and stable models

A propositional Disjunctive Logic Program (DLP) is a collection of rules of the form

A1| . . . |Ak←−Ak+1, . . . , Am, not Am+1, . . . , not An, n≥m≥ k≥ 0,

where the symbol “not” denotes negation by default, and each Ai is an atom (or variable).

For k+ 1≤ i≤m, we will say that Ai appears positive in the body of the rule, while for

m+ 1≤ i≤ n, we shall say that Ai appears negative in the body of the rule. If k= 0, then

the rule is called an integrity rule. We here assume that the program does not contain

integrity rules. When the problem of computing stable models is at stake, models can

be computed without the integrity rules and then some of them can be eliminated based

on the integrity rules. We can also support integrity rules of the form ←−X via the

known simulation A←− not A,X. If k > 1, then the rule is called a disjunctive rule. The

expression to the left of ←− is called the head of the rule, while the expression to the

right of ←− is called the body of the rule. Given a rule r, head(r) denotes the set of

atoms in the head of r, and body(r) denotes the set of atoms in the body of r. We shall

sometimes denote a rule by H←−Bpos, Bneg, where Bpos is the set of positive atoms in

the body of the rule (Ak+1, . . . , Am), Bpos is the set of negated atoms in the body of the

rule (Am+1, . . . , An), and H the set of atoms in its head. The set of all the atoms that

appear in a rule r will be denoted Lett(r). From now on, when we refer to a program, it

is a DLP.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

Splitting a Disjunctive Logic Program 509

A set of atoms S satisfies the body of a rule r if all the atoms that appear positive in

the body of r are in S and all the atoms that appear negative in r are not in S. A set of

atoms S satisfies a rule if it does not satisfy the body of the rule r or if one of the atoms

in head(r) is in S. Stable Models (Gelfond and Lifschitz (1991)) of a program P are

defined as follows: Let Lett(P) denote the set of all atoms occurring in P. Let a context

be any subset of Lett(P). Let P be a negation-by-default-free program. Call a context S

closed under P if for each rule A1| . . . |Ak←Ak+1, . . . , Am in P, if Ak+1, . . . , Am ∈ S,
then for some i= 1, . . . , k, Ai ∈ S. A Stable Model of P is any minimal context S, such

that S is closed under P. A stable model of a general DLP is defined as follows: Let the

reduct of P w.r.t. P and the context S be the DLP obtained from P by deleting (i) each

rule that has not A in its body for some A∈ S, and (ii) all subformulae of the form not A

of the bodies of the remaining rules. Any context S which is a stable model of the reduct

of P w.r.t. P and the context S is a stable model of P.
Head-Cycle-Free (HCF) programs (Ben-Eliyahu and Dechter (1994)) are DLPs such

that in the associated dependency graph there is no cycle including two atoms occurring

in the head of the same rule.

2.2 Programs and graphs

With every program P we associate a directed graph, called the dependency graph of P,
in which (a) each atom in Lett(P) is a node, and (b) there is an arc directed from a node

A to a node B if there is a rule r in P such that A∈ body(r) and B ∈ head(r).
A super dependency graph SG is an acyclic graph built from a dependency graph G

as follows: For each strongly connected component (SCC) c in G there is a node in SG,

and for each arc in G from a node in a SCC c1 to a node in a SCC c2 (where c1 �= c2)

there is an arc in SG from the node associated with c1 to the node associated with c2.

A program P is Head-Cycle-Free (HCF), if there are no two atoms in the head of some

rule in P that belong to the same component in the super dependency graph of P. HCF
programs were first introduced in Ben-Eliyahu and Dechter (1994).

Example 2.1

(Running Example). Suppose we are given the following program P:
1. a ←− not b

2. e | b ←− not a

3. f ←− not b

4. g | d ←− c

5. c | f ←− not d

6. h ←− e

7. e ←− a, not h

8. h ←− a

In Figure 1 the dependency graph of P is illustrated in solid lines. The SG is marked

with dotted lines.

Let G be a directed graph and SG be a super dependency graph of G. A source in G

(or SG) is a node with no incoming edges. By abuse of terminology, we shall sometimes

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

R. Ben-Eliyahu-Zohary510

e

a

h f g

b d c

Fig. 1. The [super]dependency graph of the program P.

use the term “source” or “SCC” as the set of nodes in a certain source or a certain SCC

in SG, respectively, and when there is no possibility of confusion we shall use the term

rule for the set of all atoms that appears in the rule. Given a node v in G, scc(v) denotes

the set of all nodes in the SCC in SG to which v belongs, and tree(v) denotes the set of

all nodes that belongs to any SCC S such that there is a path in SG from S to scc(v).

Similarly, when S is a set of nodes, tree(S) is the union of all tree(v) for every v ∈ S. A set

of nodes will be called simply a tree if it is tree(v) for some node v. A set of trees will be

called a forest . Given a node v in G, scc(v) will be sometimes called the root of tree(v).

A source in a program will serve as a shorthand for “a source in the super dependency

graph of the program.” Given a source S of a program P, PS denotes the set of rules in

P that uses only atoms from S.

Example 2.2

(Running Example continued). Given the program P from Example 2.1 above, and the

corresponding super dependency graph in Figure 1 , scc(e) = {e, h}, tree(e) = {a, b, e, h},
tree{f, g}= {a, b, c, d, f, g} and tree(r), where r= c|f ←− not d is actually tree{c, d, f}
which is {a, b, c, d, f}. The set P{a,b,e,h} is {r1, r2, r6, r7, r8}.

2.3 Splitting sets

The definitions of splitting set and the Splitting Set Theorem are adopted from a paper

by Lifschitz and Turner (Lifschitz and Turner (1994)). We restate them here using the

notation and the limited form of programs discussed in our work.

Definition 2.3

(splitting set). A splitting set for a program P is a set of atoms U such that for each rule

r in P, if one of the atoms in the head of r is in U , then all the atoms in r are in U .

The empty set is a splitting set for any program. For an example of a nontrivial splitting

set, the set {a, b, e, h} is a splitting set for the program P introduced in Example 2.1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

Splitting a Disjunctive Logic Program 511

Algorithm 1 Reduce (P , X , Y)

Input: A program P and two sets of atoms: X and Y

Output: An update of P assuming all the atoms in X are true and all atoms in
Y are false

1 foreach atom a ∈ X do
2 foreach rule r in P do
3 If a appears negative in the body of r delete r ;
4 If a is in the head of r delete r;
5 Delete each positive appearance of a in the body of r;

6 foreach atom a ∈ Y do
7 foreach rule r in P do
8 If a appears positive in the body of r, delete r ;
9 If a is in the head of r, delete a from the head of r;
10 Delete each negative appearance of a in the body of r;

11 return P;

For the splitting set theorem, we need the a procedure called Reduce, shown above,

which resembles many reasoning methods in knowledge representation, as, for example,

unit propagation in DPLL and other constraint satisfaction algorithms (Davis et al.

(1962); Dechter (2003)). Reduce(P, X, Y) returns the program obtained from a given

program P in which all atoms in X are set to true, and all atoms in Y are set to false.

Example 2.4.

Reduce(P, {a, e, h}, {b}), where P is the program from Example 2.1 , is the following

program (the numbers of the rules are the same as the corresponding rules of the program

in Example 2.1):

3. f ←−
4. g | d ←− c

5. c | f ←− not d

Theorem 2.5

(Splitting Set Theorem). (adopted from Lifschitz and Turner (1994)) Let P be a pro-

gram, and let U be a splitting set for P. A set of atoms S is a stable model for P if

and only if S =X ∪ Y , where X is a stable model of PU , and Y is a stable model of

Reduce(P, X, U −X).

Looking again at Example 2.1, we can see that a source is not necessarily a splitting

set. The set {a, b} is a source in the SG of P, but it is not a splitting set. For example,

see Rule 2 - e|b ←− not a. The atom b is in {a, b}, but the atom e is not in {a, b}.
A slightly different definition of a dependency graph is possible. The nodes are the

same as in our definition, but in addition to the edges that we already have, we add a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

R. Ben-Eliyahu-Zohary512

directed arc from a variable A to a variable B whenever A and B are in the head of the

same rule. It is easy to show that a source in this variation of dependency graph must be

a splitting set, and every splitting set is a source in this graph. The problem is that the

size of a dependency graph built using this new definition is not linear but polynomial

in the size of the head of the rules, since each atom in the head of the rule should be

connected to every other atom in the same head. So for each head, if there are n atoms

in the head, we have n ∗ (n− 1) arcs in the graph for this head.

In Ben-Eliyahu-Zohary (2021) it was shown that a splitting set is actually a tree in

the SG of the program P.
The following lemma states that if an atom Q is in some splitting set, all the atoms in

scc(Q) must be in that splitting set as well.

Lemma 2.6.

(Ben-Eliyahu-Zohary 2021)

Let P be a program, let SP be a splitting set in P, let Q∈ SP , and let S = scc(Q). It

must be the case that S ⊆ SP .

The next Lemma states the connection between splitting sets and trees.

Lemma 2.7.

(Ben-Eliyahu-Zohary 2021)

Let P be a program, let SP be a splitting set in P, let r be a rule in P, and S an SCC

in SG – the super dependency graph of P. If head(r)∩ SP �= ∅, then tree(r)⊆ SP .

Corollary 2.8.

(Ben-Eliyahu-Zohary 2021) Every splitting set is a collection of trees.

Note that the converse of Corollary 2.8 does not hold. In our running example, for

instance, tree(g) = {c, d, g}, but {c, d, g} is not a splitting set.

2.4 g-Splitting sets

The concept of g-splitting sets was introduced in Ben-Eliyahu-Zohary (2021).

Definition 2.9

(Generalized Splitting Set). (Ben-Eliyahu-Zohary 2021) A Generalized Splitting Set

(g-splitting set) for a program P is a set of atoms U such that for each rule r in P,
if one of the atoms in the head of r is in U , then all the atoms in the body of r are in

U .

Note that in splitting sets, if an atom belongs to the set, then for every rule in which it

appears in the head, all atoms appearing in the head of that rule must also be included in

the splitting set. In contrast, in g-splitting sets, for every rule in which the atom appears

in the head, we require that only the atoms in the body of the rule be included in the

g-splitting set. Thus, g-splitting sets that are not splitting sets can arise only in programs

containing disjunctive rules.

Example 2.10.

Suppose we are given the following program P:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

Splitting a Disjunctive Logic Program 513

1. a ←− not b
2. b ←− not a
3. b | c ←− a
4. a | d ←− b

The program has only the two trivial splitting sets – the empty set and {a, b, c, d}.
However, the set {a, b}, which is not a splitting set, is a g-splitting set of P.

In Ben-Eliyahu-Zohary (2021) the following was shown.

Theorem 2.11

(Program decomposition). Let P be a HCF program. For any g-splitting-set S in

P, let X be a stable model of PS . Moreover, let P ′ = Reduce(P, X, S −X), where

Reduce(P, X, S −X) is the result of propagating the assignments of the model X in

the program P. Then, for any stable model M ′ of P ′, M ′ ∪X is a stable model of P.
In the rest of the paper, when we refer to splitting sets or g-splitting sets we refer to

nontrivial sets.

2.5 Search problems

The area of search is one of the most studied and most known areas in AI (see, e.g.

Pearl (1984)). In a previous paper (Ben-Eliyahu-Zohary (2021)) we have shown how the

problem of computing a minimum-size splitting set can be expressed as a search problem.

In this paper, we will address the problem of computing a minimum-size splitting set that

contains a specific set of atoms. We first recall basic definitions in the area of search. A

search problem is defined by five elements: set of states, initial state, actions or successor

function, goal test, and path cost. A solution is a sequence of actions leading from the

initial state to a goal state. Algorithm 2 is a basic search algorithm (Russell and Norvig

(2010)).

Algorithm 2: Tree Search Algorithm

Require: problem, strategy

Ensure: solution or failure

loop

if there are no candidates for expansion then

return failure

else

choose a leaf node for expansion according to strategy

if the node contains a goal state then

return the corresponding solution

end if

expand the node and add the resulting nodes to the search tree

end if

end loop

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

R. Ben-Eliyahu-Zohary514

The algorithm works as follows. It first initializes a tree, starting with a node that

represents the initial state. Then it loops forever, unless you either find a solution or

exhaust all possibilities. In each step, it first checks whether there are no more nodes

to expand. If yes, it returns failure – no solution exists. Otherwise, it uses the chosen

strategy to pick the next leaf node (i.e. a node with no children yet). If this node is a

goal state, you’re done – return the solution! If not, expand the node by generating its

successors (next possible states) and adding them to the search tree as children of the

node.

There are many different strategies to employ when we choose the next leaf node to

expand. In this paper we will use uniform cost , according to which we expand the leaf

node with the lowest path cost.

3 Computing a splitting set having a desirable property

The work of Ben-Eliyahu-Zohary (2021) addresses the problem of computing a splitting

set of minimal size. In what follows, we consider the related problem of computing a

minimum-size splitting set that also satisfies a desirable property. In this section, we

develop an algorithm for computing a splitting set that includes certain atoms. The

motivation for this problem is as follows. Consider a situation where the user is interested

in the value of certain atoms, that represent the most important pieces of information

that she needs at a certain point of time. Then, if we find a splitting set that includes

these atoms, we can compute models of only a fraction of the program and hence speed

up the computation. We will next call the problem of computing a splitting set that

includes a given set of atoms the set inclusion problem.

In Ben-Eliyahu-Zohary (2021), the task of computing a minimum-size splitting set was

treated as a search problem. Here, we solve the set inclusion problem. This problem is

also treated as a search problem and we develop an efficient algorithm for this task as

well.

We first define the problem formally.

Definition 3.1

(The set inclusion problem). The set inclusion problem is defined as follows: given a

program P and a set of atoms B, find a splitting set S for P such that S includes B and

S is minimal - that is - there is no other splitting set S′ such that S′ includes B and S′

is a proper subset of S.

We now present the algorithm for solving the set inclusion problem. We assume that

there is an order over the rules in the program. We denote the set of atoms which we

need to include in the splitting set by B.

State Space. The state space is a collection of forests which are subgraphs of the super

dependency graph of P and include tree(B).

Initial State. The initial state is the empty set.

Actions.

1. The initial state unites with the set of all tree(v) such that v ∈B.

2. A state S, which is not the initial state, has only one possible action, which is

computed as follows:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

Splitting a Disjunctive Logic Program 515

(a) Find the lowest rule r (recall that the rules are ordered) such that

head(r)∩ S �= ∅ and Lett(r) �⊆ S;

(b) Unite S with tree(r).

Transition Model The result of applying an action on a state S is a state S′ that is a
superset of S as the actions describe.

Goal Test A state S is a goal state, if there is no rule r ∈P such that head(r)∩ S �= ∅
and Lett(r) �⊆ S. (In other words, a goal state must represents a splitting set.);

Path Cost The cost of moving from a state S to a state S′ is |S′| − |S|, that is, the

number of atoms added to S when it was transformed to S′. So, the path cost is

actually the number of atoms in the final state of the path, which is the size of the

splitting set.

Once the problem is formulated as a search problem, we can use any of the search

algorithms developed in the AI community to solve it. We do claim here, however, that

the computation of a minimum-size splitting set that includes a certain set of atoms can

be done in time that is polynomial in the size of the program. This search problem can

be solved, for example, by a search algorithm called Uniform Cost. Algorithm Uniform

Cost (Russell and Norvig (2010)) is a variation of Dijkstra’s single-source shortest path

algorithm (Dijkstra (1959); Felner (2011)). Algorithm Uniform Cost is optimal, that is,

it returns a shortest path to a goal state. Since the search problem is formulated so that

the length of the path to a goal state is the size of the splitting set that the goal state

represents, Uniform Cost will find a minimum-size splitting set.

The time complexity of the search algorithm is O(bm), where b is the branching factor

of the search tree, and m is the depth of the optimal solution. It is straightforward to

see that m cannot exceed the number of rules in the program, since each rule can be

used at most once: once a rule is applied to generate a new state, it cannot be reused in

any subsequent state. Regarding the branching factor b, note that each state generates

at most one child. Specifically, to generate a child state, we apply the lowest-index rule

that demonstrates the current state is not a splitting set.

Constructing the dependency graph takes O(n) time, where n is the number of atoms

in the program. For a given state S, computing its child requires polynomial time in n.

This involves identifying a rule r showing that S is not a splitting set (O(n2)), computing

tree(r) (O(n)), and then taking the union of tree(r) and S (O(n)). Therefore, the overall

search problem can be solved in polynomial time. This result is formalized in the following

proposition.

Proposition 3.2.

The set inclusion problem for splitting sets can be computed in time polynomial in the

size of the program.

The following example demonstrates how the search algorithm works, assuming that

we are looking for a minimum-size splitting set that contains the variable g, and we are

using uniform cost search.

Example.

Suppose we are given the program P of Example 2.1, and we want to apply the search

procedure to compute a minimum-size splitting set that contains the variable g. Our

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

R. Ben-Eliyahu-Zohary516

initial state is the empty set. By the definition of the search problem, the successor of

the empty set is tree(g) in the super dependency graph of the program, which in this

case is {c, d, g} with action cost 3. Since {c, d, g} is the only leaf we now check whether

{c, d, g} is a splitting set and find that Rule no. 5 is the lowest rule that proves that it

is not. We add the tree of Rule no. 5 and get the child {c, d, g, f, a, b} with a path cost

6. {c, d, g, f, a, b} is the only leaf. We find that it is also a splitting set, and we stop the

search.

4 Between g-splitting sets and dependency graphs

In Ben-Eliyahu-Zohary (2021) it was shown that every splitting set of a program P is a

forest in the SG of the program P.
Note that the converse does not hold. In our running example, for instance, tree(g) =

{c, d, g}, but {c, d, g} is not a splitting set.

In this section we show that a g-splitting set is also a forest in the SG of the

program P. We also show the opposite claim: every forest in SG is a g-splitting set.

The first lemma in this part states that if an atom Q is in some g-splitting set, all the

atoms in scc(Q) must be in that g-splitting set as well.

Lemma 4.1.

Let P be a program, let SP be a g-splitting set in P, let Q∈ SP , and let S = scc(Q). It

must be the case that S ⊆ SP .

Proof.

Let R ∈ S. We will show that R ∈ SP . Since Q∈ S, and S is a SCC, it must be that for

each Q′ ∈ S there is a path in SG - the super dependency graph of P - from Q′ to Q,

such that all the atoms along the path belong to S. The proof goes by induction on i,

the number of edges in the shortest path from Q′ to Q.

Case i= 0. Then Q=Q′, and so obviously Q′ ∈ SP .

Induction Step. Suppose that for all atoms Q′ ∈ S, such that the shortest path from

Q′ to Q is of size i, Q′ belongs to SP . Let R be an atom in S, such that the shortest

path from R to Q is of size i+ 1. So, there must be an atom R′ such that there is

an edge in SG from R to R′, and the shortest path from R′ to Q is of size i. By the

induction hypothesis, R′ ∈ SP . Since there is an edge from R to R′ in SG, it must

be that there is a rule r in P, such that R ∈ bodyr and R′ ∈ head(r). Since R′ ∈ SP
and SP is a g-splitting set, it must be the case that R ∈ SP .

Lemma 4.2.

Let P be a program, let SP be a g-splitting set in P, let r be a rule in P, and SG – the

super dependency graph of P. If head(r)∩ SP �= ∅, then tree(body(r))⊆ SP .

Proof.

We will show that for every Q∈ body(r), tree(Q)⊆ SP . Let Q∈ body(r). The set tree(Q)

is a union of SCCs. We shall show that for every SCC S such that S ⊆ tree(Q), S ⊆ SP .

Let S′ be the root of tree(Q). The proof is by induction on the distance i from S to S′

in SG.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

Splitting a Disjunctive Logic Program 517

Case i= 0. Then S = S′, and S is the root of tree(Q). Since head(r)∩ SP �= ∅, Q∈ body(r)
and SP is a g-splitting set, Q∈ SP . So by Lemma 4.1 S ⊆ SP .

Induction Step. Suppose that for all SCCs S ∈ tree(Q) such that the distance from S

to S′ is of size i S ⊆ SP . Let R be an SCC in tree(body(r)), such that the distance

from R to S′ is of size i+ 1. So, there must be an SCC R′, such that there is an

edge in tree(body(r)) from R to R′, and the distance from R′ to S′ is of size i. By

the induction hypothesis, R′ ⊆ SP . Since there is an edge from R to R′ in tree(Q),

it must be the case that there is a rule r in P, such that an atom from R, say P ,

is in bodyr, and an atom from R′, say P ′, is in head(r). Since P ′ ∈R′, and R′ ⊆ SP ,

P ′ ∈ SP , and since SP is a g-splitting set, it must be that P ∈ SP . Since R= scc(P),

By Lemma 4.1, R⊆ SP .

Corollary 4.3.

Every g-splitting set is a forest.

Lemma 4.4.

Let P be a program. Then S is a g-splitting set for P if S is a forest in the super

dependency graph of P.
Proof.

It was already shown above (See Corollary 4.3) that every g-splitting set is a forest in the

super dependency graph of P. It is left to show that every forest in the super dependency

graph of P is a g-splitting set.

Let S be a forest in the super dependency graph of P. We will show that S is a

g-splitting set. Assume v ∈ S, and assume there is a rule r in P such that v ∈ head(r).
Let v′ ∈ body(r). By definition of dependency graph, there is an edge in the graph from

v′ to v. hence it must be the case that v′ ∈ S as well, since S is a set of trees in the graph.

So every forest in the dependency graph of P must be a g-splitting set.

In the previous section we have presented an algorithm for solving the inclusion prob-

lem for splitting sets. What about the set inclusion problem for g-splitting sets? We have

shown that every forest is a g-splitting set. We have also shown that if v ∈ S, where v is

a variable and S a g-splitting set, then tree(v) must be in S. It follows that given a set

of variables A, if we need to compute a minimum-size g-splitting set that contains A we

can simply take all tree(v) such that v ∈A, and this is very easy to compute.

5 Relaxing the splitting set condition

We now prove that g-splitting sets have the desirable property that splitting sets have.

That is, we show that g-splitting sets allow us to split the disjunctive logic programs to

several parts and compute each part separately.

Theorem 5.1

(Program decomposition). Let P be a program. For any g-splitting-set S in P, let X be a

stable model of PS . Moreover, let P ′=Reduce(P, X, S −X). Then, for any stable model

M ′ of P ′, M ′ ∪X is a stable model of P.
Proof.

Note that it must be the case that M ′ ∩X = ∅. The proof has two steps. We prove that

(1) - (M ′ ∪X) is a model of P and (2) - that it is minimal.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

R. Ben-Eliyahu-Zohary518

1. Assume that (M ′ ∪X) is not a model of P. Then, there is a rule δ :H←−B in

P whose body B is satisfied by (M ′ ∪X), and the head H has empty intersection with

(M ′ ∪X). Note that δ is not in PS . Otherwise it would not be violated by (M ′ ∪X),

since X is a model of PS , and no atom in PS is in M ′.
Since B is satisfied by (M ′ ∪X), B can always be written as (BM ′ ∪BX), where

BM ′ = (B ∩M ′), BX = (B ∩X), and BM ′ ∩BX = ∅. Analogously, since H has empty

intersection with (M ′ ∪X), it can always be written as H ′ ∪HS−X , where HS−X =

(H ∩ (S −X)), and H ′ is the set of all the other atoms occurring in H.

After executing procedure Reduce, P ′ will contain the rule δ′ :H ′←−BM ′ . The set

BM ′ is a subset of M ′. But, since H has an empty intersection with (M ′ ∪X) and

H ′ ⊆H, H ′ has an empty intersection with M ′. Thus δ′ is violated by M ′, and then M ′

is not a model of P ′ which contradicts the hypothesis.

2. Assume that (M ′ ∪X) is not a minimal model of P. Then there is a non-empty

set of atoms A, such that (M ′ ∪X)−A is a model of P. Let AX denote the atoms of

A belonging to X and AM ′ the atoms of A belonging to M ′. Note that since M ′ is a

minimal model of P ′ and P ′ has no atoms from X, it must be the case that M ′ ∩X = ∅.
For A to be non-empty, AM ′ or AX has to be non-empty. We prove that in both cases

there is a contradiction.

Case [AX �= ∅]: SinceX is a minimal model of PS , (X −AX) is not a model of PS . Then,

in PS there must be a rule δS :H←−B, such that B is satisfied by (X −AX) and

no atom of H is in (X −AX). Since δS is in PS , by definition of PS no atom of H

is outside S, and then no atom of H is in M ′. Thus, δS is a rule of PS (and then of

P) which is satisfied by X −AX (and then by M ′ ∪X) and any atom in the head

of δS is neither in M ′ nor in X −A. Thus, δS is violated by (M ′ ∪X)−A. Since

δS ∈P, (M ′ ∪X)−A is not a model of P, a contradiction to the assumption that

it is.

Case Case [AM ′ �= ∅]: Since M ′ is a minimal model of P ′, (M ′ −AM ′) is not a model

of P ′. So there must be a rule δ′ :H←−B in P ′, such that B is satisfied by

(M ′ −AM ′) and no atom of H is in (M ′ −AM ′). Since δ′ is in P ′, by the way

Reduce works there must be in P a rule δ : (H ∪HS−X)←− (B ∪BX) with BX a

possibly empty subset of X and HS−X a possibly empty subset of S −X. Clearly,

the body of δ is satisfied by (M ′ −AM ′)∪X, and then, sinceX andM ′ are disjoint
sets, also by (M ′ ∪X)−A). However, no atom of δ’s head is in (M ′ ∪X)−A.

This is because it is assumed that H ∩M ′ is empty, and H ∩X is empty as well

since otherwise, by the way Reduce works, δ′ would not have been a rule in P ′. In
addition, HS−X ∩ (M ′ ∪X)−A) is empty. This is because no atoms of S −X are

in P ′ (and M ′ is a minimal model of P ′), and certainly no atom of X is in S −X.

Thus, δ is violated by (M ′ ∪X)−A and hence (M ′ ∪X)−A is not a model of

P, a contradiction to our assumption.

We show that it is possible to compute a stable model of any disjunctive program P,
not necessarily HCF program, and then propagating the values assigned to atoms in S

to the rest of the program.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

Splitting a Disjunctive Logic Program 519

The next theorem that we prove claims that stable models of programs can be decom-

posed to stable models of the part of the program induced by a g-splitting set and a

stable model of the rest of the program. This allows for incremental computations of

stable models.

Theorem 5.2

(Stable model decomposition). Let P be a program, and let M be a stable model of P.
Moreover, assume there is a g-splitting set S in P such that X =M ∩ S is a stable model

of PS , and let P ′ = Reduce(P, X, S −X). Then M −X is a stable model of P ′.

Proof.

We first show that M ′ =M −X is a model of P ′. Let H←−B ∈P ′ and assume M ′

satisfies B. Since P ′ was obtained from P using the procedure Reduce, and by the way

Reduce works, there must be a possibly empty sets BX and HS−X such that BX is

satisfied by X and HS−X ⊆ S −X, and such that (H ∪HS−X)←− (B ∪BX)∈P, and
H ∩X = ∅. Since M ′ satisfies B and X satisfies BX , M satisfies B ∪BX , and since

M must satisfy the rule (H ∪HS−X)←− (B ∪BX), In M there is at least one atom

from (H ∪HS−X). Since H ∩X = ∅ and (HS−X ∩X) = ∅, (H ∪HS−X)⊆M −X. Hence

H←−B is satisfied by M ′.
We now show that M ′ =M −X is a minimal model of P ′. Assume conversely that it

is not. Then there must be a non-empty subset of atoms W ⊆M ′ such that M ′ −W is a

model of P ′. Note that since M ′ =M −X and X =M ∩ S, M ′ ∩ S = ∅. So it must be the

case that W , which is a subset of M ′, does not have atoms from S. We show that M −W

is model of P, a contradiction toM being a minimal model of P. Let δ=H←−B ∈P and

assume M −W satisfies B. We will show that H ∩ (M −W) �= ∅, and so M −W satisfies

δ. The head H of δ may be written as H ′ ∪HS , where HS =H ∩ S, and H ′ =H − S.

The body B of δ may be written as B′ ∪BS , where BS =B ∩ S and B′ =B − S. If H ′ is
empty, then δ is of the formHS←−B, and hence δ ∈PS (remember that S is a g-splitting

set). Since M satisfies δ and W ∩ S is empty, M −W must satisfy δ as well. If H ′ is not
empty, by the way Reduce works, the rule H ′←−B′ must belong to P ′. Since M −W

satisfies B′, B′ =B − S and X ⊆ S, it must be the case that M −X −W satisfies B′.
Since M −X −W is a model of P ′, it must be the case that H ′ ∩ (M −X −W) �= ∅.
So clearly H ′ ∩ (M −W) �= ∅. Since H ′ ⊆H, H ∩ (M −W) �= ∅, so M −W satisfies δ, a

contradiction to M being a minimal model of P.

6 Related work

The idea of splitting has been discussed in many publications. Here, we focus on papers

that address the generation of splitting sets and the relaxation of the definition of a

splitting set.

The work in Ben-Eliyahu-Zohary (2021) is highly relevant to this paper and has been

referenced throughout. The paper Angiulli et al. (2022) presents similar ideas regarding

the decomposition of a theory to compute a minimal model. However, Angiulli et al.

(2022) addresses propositional theories rather than DLPs. Moreover, it does not pro-

vide algorithms for computing s-splitting sets or introduce the concept of g-splitting

sets.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

R. Ben-Eliyahu-Zohary520

The work in Ji et al. (2015) proposes a novel splitting method that may introduce an

exponential number of new atoms into the program. The authors demonstrate that their

method is efficient for certain typical programs, but it can be quite resource-intensive in

the worst case.

Baumann (2011) discusses splitting sets and graphs, but does not provide a complete

method for computing classical splitting sets using a polynomial-time algorithm, as we

do here. The authors of Baumann et al. (2012) propose quasi-splitting , a relaxation of the

splitting set concept that requires the introduction of new atoms into the program. They

also present a polynomial-time algorithm, based on the program’s dependency graph, to

efficiently compute a quasi-splitting set.

Our approach, by contrast, is essentially a search algorithm, where states in the search

space correspond to fragments of the dependency graph. Unlike quasi-splitting, our

method does not require the introduction of new atoms to define g-splitting sets.

7 Conclusions

The concept of splitting plays a significant role in logic programming.

This paper makes several contributions. First, we show that the task of set inclusion

for splitting sets can be formulated as a classical search problem and solved in time that

is polynomial in the size of the program.

Search has been extensively studied in AI. By formulating the problem in terms of

search, we benefit from the extensive library of search algorithms and strategies that

have been developed over the years – and will continue to evolve.

Second, we further investigate the notion of g-splitting sets, a generalization of the

splitting set definition originally introduced by Lifschitz and Turner.

This generalization enables a broader class of programs to be split into nontrivial parts.

Finally, we show that g-splitting sets possess several useful properties that are easy

to compute. In the future, we plan to implement the promising algorithms developed in

this work and evaluate their performance empirically. In particular, it will be important

to assess whether g-splitting sets offer practical advantages in computing stable models.

References

Angiulli, F., Ben-Eliyahu-Zohary, R., Fassetti, F. and Palopoli, L. 2022. Graph-based
construction of minimal models. Artificial Intelligence 313, 103754.

Baumann, R. 2011. Splitting an argumentation framework. In Logic Programming and
Nonmonotonic Reasoning, Delgrande, J. P. and Faber, W. (ed.), Berlin, Heidelberg:
Springer, 40–53.

Baumann, R., Brewka, G., Dvořák, W. and Woltran, S. 2012. Parameterized Splitting: A
Simple Modification-Based Approach. Springer, Berlin, Heidelberg, 57–71.

Ben-Eliyahu, R. andDechter, R. 1994. Propositional semantics for disjunctive logic programs.
Annals of Mathematics and Artificial Intelligence 12, 53–87.

Ben-Eliyahu-Zohary, R. 2021. How to split a logic program. In Proceedings 37th
International Conference on Logic Programming (Technical Communications), ICLP
Technical Communications 2021, Porto (virtual event), 20–27th September 2021, volume 345
of EPTCS, Formisano, A., Liu, Y. A., Bogaerts, B., Brik, A., Dahl, V., Dodaro, C.,
Fodor, P., Pozzato, G. L., Vennekens, J. and Zhou, N.-F., Eds. 27–40.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

Splitting a Disjunctive Logic Program 521

Dao-Tran, M., Eiter, T., Fink, M. and Krennwallner, T. 2009. Modular nonmonotonic
logic programming revisited. In Logic Programming, Hill, P. M. and Warren, D. S., Eds.
Springer, Berlin, Heidelberg, 145–159.

Davis, M., Logemann, G. and Loveland, D. 1962. A machine program for theorem-proving.
Communications of the ACM 5, 7, 394–397.

Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische
Mathematik 1, 1, 269–271.

Felner, A. 2011. Position paper: Dijkstra’s algorithm versus uniform cost search or a case
against dijkstra’s algorithm. In Fourth Annual Symposium on Combinatorial Search.

Ferraris, P., Lee, J., Lifschitz, V. and Palla, R. 2009. Symmetric splitting in the gen-
eral theory of stable models. In Twenty-First International Joint Conference on Artificial
Intelligence.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Thiele, S. 2008.
Engineering an incremental asp solver. In Logic Programming, de la Banda, M. G. and
Pontelli, E., Eds. Springer, Berlin, Heidelberg, 190–205.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385.

Janhunen, T., Oikarinen, E., Tompits, H. and Woltran, S. 2009. Modularity aspects of
disjunctive stable models. Journal of Artificial Intelligence Research 35, 813–857.

Ji, J., Wan, H., Huo, Z. and Yuan, Z. 2015. Splitting a logic program revisited. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15. AAAI Press,
1511–1517.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. ICLP 94, 23–37.

Oikarinen, E. and Janhunen, T. 2008. Achieving compositionality of the stable model
semantics for smodels programs. Theory and Practice of Logic Programming 8, 5-6,
717–761.

Pearl, J. 1984. Heuristics: intelligent search strategies for computer problem solving.

Russell, S. J. and Norvig, P. 2010. Intelligence – A Modern Approach. Third International
Edition. Pearson Education.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068425100331
Downloaded from https://www.cambridge.org/core. IP address: 10.8.252.39, on 29 Oct 2025 at 20:09:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068425100331
https://www.cambridge.org/core

	Introduction
	Preliminaries
	Disjunctive logic programs and stable models
	Programs and graphs
	Splitting sets
	g-Splitting sets
	Search problems

	Computing a splitting set having a desirable property
	Between g-splitting sets and dependency graphs
	Relaxing the splitting set condition
	Related work
	Conclusions
	References

