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Roots of Simple Modules

Burkhard Külshammer

Abstract. We introduce roots of indecomposable modules over group algebras of finite groups, and we

investigate some of their properties. This allows us to correct an error in Landrock’s book which has

to do with roots of simple modules.

The main motivation for this paper is an error in Section III.9 of Landrock’s

book [7]. In order to explain the error, we fix an algebraically closed field F of char-

acteristic p > 0, a finite group G, and a simple module U over the group algebra FG

with vertex D. Then U is relatively K-projective where K := DCG(D), so there is an

indecomposable FK-module Y with vertex D such that Y |ResG
K (U ) and U | IndG

K (Y ).

Let J := NG(D,Y ) denote the inertial group of Y in NG(D). In Theorem III.9.8 of [7],

Landrock claims that in this situation J/K is a p ′-group.

However, this is not correct. In fact, it is easy to construct a counterexample:

Let p = 2, let G = S4 denote the symmetric group of degree 4, and let U be the

simple FG-module of dimension 2. Then the Klein four-group D = O2(G) is the

unique vertex of U , and K = DCG(D) = D acts trivially on U , so Y is the trivial

FD-module F. Thus J = NG(D,Y ) = G, and | J/K| = 6 is even.

Landrock’s error is contained in the proof of Proposition III.9.3 in [7]. As a sub-

stitute for the invalid Theorem III.9.8 in [7], we will show in this paper that, in the

situation described above, we always have Op( J/K) = 1. This result is still strong

enough to imply Erdmann’s Theorem [5] on simple modules with cyclic vertex.

Our result is similar to a property of weights (in the sense of Alperin [1]): If

(Q,W ) is a weight for FG (i.e., if Q is a p-subgroup of G and W a projective simple

F[NG(Q)/Q]-module) then Op(NG(Q,V )/QCG(Q)) = 1 where V is a constituent of

ResNG(Q)

QCG(Q)
(W ) and W is regarded as an FNG(Q)-module via inflation.

The proof of our result makes use of roots of indecomposable modules: Let U be

an indecomposable FG-module with vertex D and source Z. Then U (together with

D and Z) defines an indecomposable projective F[DCG(D)/D]-module R̃ which we

call a root of U . Any other F[DCG(D)/D]-module which is a root of U is conjugate

to R̃ by an element in NG(D, Z)/D.

These roots appear, under a different name, in the work by Barker [3] on simple

modules for p-solvable groups; he calls the pair (D, R̃), a defect pair of U . The defect

pair of an indecomposable module U is a finer invariant than its vertex pair (D, bD)

considered by Sibley in [11] (which builds upon earlier work by Knörr [6]). More

precisely, bD is the block of FDCG(D) containing the inflation R̂ of R̃. It is known that

bD is in Brauer correspondence with the block B of FG containing U : (bD)G
= B. So

the vertex pair (D, bD) of U is a B-subpair in the sense of Alperin–Broué [2].
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Roots of Simple Modules 97

We prefer to talk about roots of indecomposable modules instead of defect pairs

because this terminology is analogous to the terminology introduced for blocks by

Brauer, cf. [7, p. 214]. If U is a simple FG-module (or, more generally, if U is an in-

decomposable FG-module with simple multiplicity module, cf. [12]) then, by Knörr’s

Theorem [6], its root R̃ is a projective simple F[DCG(D)/D]-module. A consequence

of this fact is that C∆(D) ⊆ D ⊆ ∆ for a defect group ∆ of the block B of FG con-

taining U . This implies that, in a block with abelian defect group ∆, every simple

module has vertex ∆.

This paper is organized as follows: In Section 1 we recall some facts about en-

domorphism algebras of modules. In Section 2 we prove a key lemma on blocks of

defect zero (or equivalently: on projective simple modules) and normal subgroups.

In Section 3 we recall some facts concerning vertices, sources, multiplicity modules

and the Green correspondence. In Section 4 we define roots of indecomposable mod-

ules and prove some of their elementary properties. Finally, in Section 5 we prove our

main result, mention some consequences, and give examples.

1 The Fitting Correspondence

Let A be a finite-dimensional algebra over a field F. In the following, all mod-

ules will be finitely generated. With this convention, every right A-module V has

a finite-dimensional endomorphism algebra E := EndA(V ), and V becomes an E-A-

bimodule via

f va := f (va) = f (v)a ( f ∈ E, v ∈ V, a ∈ A).

For any idempotent e in E, V has a decomposition into A-submodules:

V = eV ⊕ (1 − e)V.

Here, e is primitive if and only if eV is indecomposable. Furthermore, for idempo-

tents e, e ′ ∈ E, the right A-modules eV and e ′V are isomorphic if and only if the

(projective) right E-modules eE and e ′E are isomorphic. In this case the map

eE 7→ eEV = eV

induces a bijection between the set of isomorphism classes of indecomposable pro-

jective right E-modules and the set of isomorphism classes of indecomposable direct

summands of the A-module V . We will refer to this bijection as the Fitting correspon-

dence (defined by V ).

For any idempotent e in E, the multiplication map

eE ⊗E V → eV, f ⊗ v 7→ f (v),

is an isomorphism of A-modules. Conversely, for every direct summand W of the

right A-module V , the restriction map induces an isomorphism of right E-modules

eE → HomA(V,W ) where e is the projection map onto W . This gives a somewhat

more functorial interpretation of the Fitting correspondence.
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98 B. Külshammer

The Fitting correspondence can be used in order to reduce questions about arbi-

trary indecomposable modules to questions about projective indecomposable mod-

ules. For example, it can be used in order to reduce the proof of the Krull–Schmidt

Theorem to the Jordan–Hölder Theorem.

Let us introduce some more notation: For A-modules V and V ′, we write V ′|V
if V ′ is isomorphic to a direct summand of V . If B is a (unitary) subalgebra of A

then VB = ResA
B(V ) denotes the corresponding restricted B-module. Conversely,

for a right B-module W , we denote the corresponding induced A-module by W A
=

IndA
B(W ) = W⊗BA. If H is a subgroup of a finite group G and if A = FG and B = FH

denote the corresponding group algebras, then we write simply VH = ResG
H(V ) and

W G
= IndG

H(W ). Also, we use similar abbreviations for modules over twisted group

algebras.

2 Blocks and Normal Subgroups

In this section we will prove an elementary, but important fact concerning inertial

subgroups of blocks. We fix an algebraically closed field F of characteristic p > 0 and

a finite group G.

Proposition 2.1 Let M and N be normal subgroups of G such that N ⊆ M and M/N

is a p-group. Moreover, let B be a block of FG with defect group D ⊆ N, and let b be a

block of FN covered by B. Then the inertial group of b in M equals N.

Proof Let I be the inertial group of b in M. Since I/N is a p-group, there is a unique

block β of I covering b. Let ∆ be a defect group of β. Then, as is well known, we have

I = ∆N . Moreover, the induced block βM is defined and has defect group ∆. Since

M/N is a p-group, βM is the only block of M covering b. Thus βM is covered by B.

Hence the defect groups of βM are also contained in N . It follows that I = ∆N = N .

We obtain the following consequence.

Proposition 2.2 Let M and N be normal subgroups of G such that N ⊆ M and M/N

is a p-group. Moreover, let P be a simple projective FG-module, and let Q be an inde-

composable direct summand of PN . Then Q is simple and projective, and the inertial

group of Q in M equals N.

Proof Since PN is semisimple and projective, Q is simple and projective. Let B and b

be the blocks of FG and FN containing P and Q, respectively. Then B covers b, and

both blocks have defect zero. Moreover, the inertial group I of Q in M equals the

inertial group of b in M. Now Proposition 2.1 implies that I = N .

We need a version of Proposition 2.2 for twisted group algebras. So we fix a

2-cocycle γ : G × G → F× and denote the corresponding twisted group algebra by

FγG. Thus FγG has an F-basis {ux : x ∈ G} such that

uxuy = γ(x, y)uxy (x, y ∈ G).

For any subgroup H of G, FγH :=
⊕

x∈H Fux is a (unitary) subalgebra of FγG. More-

over, for any right FγH-module W , W x := W ⊗ux is a right Fγ[x−1Hx]-module, and
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we denote the inertial group of W in NG(H) by

NG(H,W ) := {x ∈ NG(H) : W x ∼= W},

so that H ⊆ NG(H,W ) ⊆ NG(H).

Proposition 2.3 Let M and N be normal subgroups of G such that N ⊆ M and M/N

is a p-group. Moreover, let P be a simple projective FγG-module, and let Q be an inde-

composable direct summand of PN . Then Q is a simple projective FγN-module, and the

inertial group of Q in M equals N.

Proof There exists a central group extension,

1 → Z → Ĝ → G → 1,

where Z is a cyclic p ′-subgroup of Ĝ and Z → Ĝ is the inclusion map, and there

exists a primitive idempotent e in FZ such that eFĜ ∼= FγG. We identify G with Ĝ/Z

and write M = M̂/Z, N = N̂/Z with normal subgroups M̂, N̂ of Ĝ containing Z.

Then N̂ ⊆ M̂, and M̂/N̂ is a p-group. We can view P as a (simple projective) FĜ-

module via FĜ → eFĜ ∼= FγG. Similarly, we can view Q as an (indecomposable)

FN̂-module, and then Q is a direct summand of PN̂ . By Proposition 2.2, Q is a simple

projective FN̂-module, and the inertial group Î of Q in M̂ equals N̂. Thus Q is a

simple projective FγN-module. Moreover, Z ⊆ Î, and I := Î/Z is the inertial group

of Q in M. We conclude that I = Î/Z = N̂/Z = N .

3 Vertices, Sources, Multiplicity Modules

In this section we recall some results on vertices, sources and multiplicity modules

of indecomposable modules. We fix an algebraically closed field F of characteris-

tic p > 0, a finite group G and an indecomposable right FG-module U . We recall

that a subgroup D of G is called a vertex of U if D is minimal subject to the con-

dition U |(UD)G. It is well known that the vertices of U form a conjugacy class of

p-subgroups of G.

We fix a vertex D of U and denote by Z a source of U . Thus Z is an indecomposable

right FD-module with vertex D such that Z|UD and U |ZG. Moreover, Z is unique up

to isomorphism and conjugation with elements in NG(D).

In the following, we set H := NG(D) and denote by V the Green correspondent

of U in H. Thus V is an indecomposable right FH-module with vertex D and

source Z. Moreover, V |UH with multiplicity 1, U |V G with multiplicity 1, and V

is uniquely determined by U and D, up to isomorphism. Conversely, U is uniquely

determined by V and D, up to isomorphism.

Next, let I = NG(D, Z) = {x ∈ NG(D) : Zx ∼= Z} denote the inertial group of Z

in NG(D). By Clifford theory, there is an indecomposable right FI-module W with

vertex D and source Z such that V ∼= W H . Moreover, W is uniquely determined, up

to isomorphism, by V and Z. We will refer to W as the Clifford correspondent of V

with respect to Z.
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100 B. Külshammer

The endomorphism algebra E := EndFI(ZI) is a finite-dimensional F-algebra

graded by the factor group Ī := I/D. This means that E has a decomposition into

F-subspaces,

E =

⊕

x̄∈Ī

Ex̄,

such that Ex̄E ȳ ⊆ Ex̄ ȳ for x̄, ȳ ∈ Ī. In our situation, we have

Ex̄ = { f ∈ E : f (Z ⊗ 1) ⊆ Z ⊗ x} ∼= HomFD(Z, Zx)

for x ∈ I and x̄ = xD ∈ I/D = Ī. The identity component E1 of E is a unitary local

subalgebra of E isomorphic to EndFD(Z), cf. [4, 9].

Since Z ∼= Zx for x ∈ I, the Ī-graded F-algebra E is in fact a crossed product.

This means that every x̄-component Ex̄ of E contains a unit of E. Such a unit can be

constructed in the following way: For x ∈ I, let ux : Z ⊗ 1 → Z ⊗ x be an FD-iso-

morphism. Then ux extends uniquely to an FI-automorphism of ZI which we denote

by ux again. Now ux is a unit of E and contained in Ex̄.

The induced left E-module ZE := E ⊗E1
Z becomes an E-FI-bimodule in the

following way: For z ∈ Z and x ∈ I, we write ux(z ⊗ 1) = vx(z) ⊗ x with vx(z) ∈ Z.

This defines an F-linear map vx : Z → Z satisfying

vx(zd) = vx(z)xdx−1 (z ∈ Z, d ∈ D).

The right FI-module structure of ZE is then defined by

( f ⊗ z)x := f ux ⊗ v−1
x (z) ( f ∈ E, z ∈ Z, x ∈ I).

In this way, ZE becomes an E-FI-bimodule.

In fact, ZE is an Ī-graded E-FI-bimodule. (Recall that an A-B-bimodule M, where

A and B are G-graded F-algebras, is called G-graded if M has a decomposition into

F-subspaces, M =
⊕

y∈G My , such that AxMyBz ⊆ Mxyz for x, y, z ∈ G.) Note that

in our situation both FI and ZE are naturally Ī-graded.

In a similar way, ZI
= Z ⊗FD FI is an Ī-graded E-FI-bimodule, and the map

Φ : ZE → ZI , f ⊗ z 7→ f (z ⊗ 1),

is an isomorphism of Ī-graded E-FI-bimodules. This isomorphism shows also that

the right FI-module structure on ZE is independent of the choice of the elements ux

(x ∈ I). In the following, we will often identify ZI and ZE via Φ.

Since Z is a source of W , W is an indecomposable direct summand of ZI (as a

right FI-module). So W has a Fitting correspondent P = HomFI(ZI ,W ), which is

an indecomposable projective right E-module such that

W ∼= P ⊗E ZI ∼= P ⊗E ZE ∼= P ⊗E1
Z.

The Jacobson radical Rad(E1) is a nilpotent ideal of E1. Hence Rad(E1)E = E Rad(E1)

is a nilpotent graded ideal of E. Thus Ẽ := E/E Rad(E1) is an Ī-graded F-algebra, with

x̄-component

Ẽx̄ = Ex̄ + E Rad(E1)/E Rad(E1) ∼= Ex̄/Ex̄ Rad(E1),
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for x̄ ∈ Ī. Since E is a crossed product, so is Ẽ. Moreover, since E1 is a local

F-algebra, we have Ẽ1
∼= E1/ Rad(E1) ∼= F. This means that Ẽ is in fact a twisted

group algebra of Ī over F. We denote a corresponding 2-cocycle by γ : Ī × Ī → F×

and write Ẽ = Fγ Ī.

Now P Rad(E1) is an E-submodule of P, and P̃ := P/P Rad(E1) becomes an inde-

composable projective right Ẽ-module which is called the multiplicity module of U . It

is uniquely determined, up to isomorphism, by U , D and Z. Conversely, P is the pro-

jective cover of P̃, considered as an E-module via inflation. We illustrate the situation

by the following diagram:

G,U
∣

∣

∣

H = NG(D),V = W H
∣

∣

∣

I = NG(D, Z),W E, P Ẽ = Fγ Ī, P̃
∣

∣

∣

∣

∣

∣

∣

∣

∣

D, Z E1, E1 Ẽ1 = F, F

4 Roots of Indecomposable Modules

We keep the setup of the previous section. Thus U is an indecomposable FG-module

with vertex D, source Z and multiplicity module P̃. We set K := DCG(D), so that K

is a normal subgroup of H = NG(D), and

D ⊆ K = DCG(D) ⊆ I = NG(D, Z) ⊆ H = NG(D) ⊆ G.

Since W is relatively K-projective, there is an indecomposable right FK-module Y

such that Y |WK and W |Y I . Then Y has vertex D and source Z; moreover, we have

Y |UK and U |Y G. Also, Y is uniquely determined up to isomorphism and conjugation

with elements in I.

Lemma 4.1 Let Y ′ be an indecomposable FK-module with vertex D such that Y ′|UK

and U |(Y ′)K . Then Y ′ is conjugate to Y in H.

Proof We write UH = V ⊕ V1 ⊕ · · · ⊕ Vn with indecomposable FH-modules

V1, . . . ,Vn. Then, for i = 1, . . . , n, no indecomposable direct summand of (Vi)K

has vertex D. Since Y ′|(UH)K , this implies that Y ′|VK . But any two indecompos-

able direct summands of VK are conjugate in H. Since Y |WK |(VI)K = VK , the result

follows.

The endomorphism algebra EndFK (ZK ) is graded by the factor group

K̄ := K/D = DCG(D)/D ∼= CG(D)/Z(D).

Moreover, EndFK (ZK ) is isomorphic to the subalgebra

EK̄ :=
⊕

x̄∈K̄

Ex̄
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of E via the restriction map

EK̄ → EndFK (ZK ), f 7→ f |ZK ,

where we consider ZK as a subset of ZI . We will usually identify EK̄ and EndFK (ZK )

in this way.

Now EK̄ Rad(E1) = Rad(E1)EK̄ is a nilpotent ideal of EK̄ , and the F-algebra ẼK̄ =

EK̄/EK̄ Rad(E1) coincides with the twisted subgroup algebra FγK̄.

We note that the group algebra FCG(D) is naturally graded by CG(D)/Z(D) ∼= K̄.

The following result is elementary, but important.

Lemma 4.2 For c ∈ CG(D), the F-linear map

ρc : ZK → ZK , z ⊗ x 7→ z ⊗ cx,

is an FK-isomorphism, and the map

ρ : FCG(D) → EndFK (ZK ) = EK̄ ,
∑

c∈CG(D)

αcc 7→
∑

c∈CG(D)

αcρc,

is a homomorphism of K̄-graded F-algebras. If ν : EK̄ → ẼK̄ denotes the canonical map,

then ν ◦ ρ : FCG(D) → ẼK̄ = FγK̄ induces an isomorphism of K̄-graded F-algebras

σ : FK̄ ∼= F[CG(D)/Z(D)] → ẼK̄ = FγK̄.

Proof It is obvious that ρc is an FK-isomorphism, for c ∈ CG(D). Moreover, we have

ρ1 = idZK and ρc ◦ ρc ′ = ρcc ′ for c, c ′ ∈ CG(D). Thus the map ρ defined above is a

homomorphism of F-algebras. For c ∈ CG(D) and z ∈ Z, we have ρc(z ⊗ 1) = z ⊗ c,

so ρc ∈ Ec̄. This shows that ρ is a homomorphism of Ī-graded F-algebras. Since

the K̄-graded F-algebra FCG(D) is a crossed product, ν ◦ ρ is surjective. Also, for

c ∈ Z(D), the map ρc − 1 ∈ E1 is nilpotent since (ρc − 1)(z ⊗ x) = z ⊗ (c − 1)x for

z ∈ Z and x ∈ K. Hence ρc −1 ∈ Rad(E1) and (ν ◦ρ)(c−1) = 0. Thus ν ◦ρ induces

an epimorphism of K̄-graded F-algebras σ : FK̄ → FγK̄. Comparing dimensions we

see that σ is an isomorphism.

In the following, we will often identify ẼK̄ = FγK̄ and FK̄ via σ. Since Y has

source Z, Y is an indecomposable direct summand of ZK (as an FK-module). Hence

Y has a Fitting correspondent R = HomFK (ZK ,Y ), which is an indecomposable

projective right EK̄ -module. Moreover, R Rad(E1) is an EK̄-submodule of R, and

R̃ := R/R Rad(E1) is an indecomposable projective module over

ẼK̄ = FK̄ = F[DCG(D)/D].

We call R̃ a root of U . It is uniquely determined by U , D, and Z, up to conjugation

with elements in I.

Lemma 4.3 In the situation above, we have R|PEK̄
and P|RE. This implies that R̃|P̃ẼK̄

and P̃|R̃Ẽ.
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Proof Since Y |WK we can write WK = Y ⊕ Y ′ with an FK-submodule Y ′ of WK .

Then

PEK̄
= HomFI(ZI ,W )EK̄

∼= HomFK (ZK ,WK)EK̄

∼= HomFK (ZK ,Y ) ⊕ HomFK (ZK ,Y ′) = R ⊕ R ′

with a left EK̄ -module R ′ := HomFK (ZK ,Y ′). This shows that R|PEK̄
.

Since W |Y I we can write Y I
= W ⊕ W ′ with an FI-submodule W ′ of Y I . There

is an isomorphism of right E-modules

HomFK (ZK ,Y )E → HomFI(ZI ,Y I)

sending an element of the form h ⊗ f , with h ∈ HomFK (ZK ,Y ) and f ∈ E, to hI ◦ f

where hI : ZI ∼= (ZK )I → Y I is induced from h : ZK → Y . We conclude that

RE
= HomFK (ZK ,Y )E ∼= HomFI(ZI ,Y I)

∼= HomFI(ZI ,W ) ⊕ HomFI(ZI ,W ′) = P ⊕ P ′

with a right E-module P ′ := HomFI(ZI ,W ′). This shows that P|RE.

It follows easily that R̃|P̃ẼK̄
and P̃|R̃Ẽ.

We illustrate the situation by the following diagram:

G,U
∣

∣

∣

H = NG(D),V = W H
∣

∣

∣

I = NG(D, Z),W E, P Ẽ = Fγ Ī, P̃
∣

∣

∣

∣

∣

∣

∣

∣

∣

K = DCG(D),Y EK̄ , R ẼK̄ = FK̄, R̃
∣

∣

∣

∣

∣

∣

∣

∣

∣

D, Z E1, E1 Ẽ1 = F, F

We have now attached to the indecomposable FG-module U with vertex D and source

Z an indecomposable projective F[DCG(D)/D]-module R̃, unique up to conjugation

with elements in I = NG(D, Z). The pair (D, R̃) appears in the work of Barker [3]

where it is called a defect pair of U .

Let B be the block of FG containing U , and let bD be the block of FK containing Y .

By Nagao’s Lemma, cf. [7], bD and B are in Brauer correspondence: (bD)G
= B. Thus

(D, bD) is a B-subpair in the sense of Alperin–Broué [2]. It is uniquely determined

by U , up to conjugation in G. Sibley [11] has called (D, bD) a vertex pair of U .

It is well known that the image b̄D of bD in F[DCG(D)/D] = FK̄ is a block of FK̄ ,

and it is easy to verify that the indecomposable projective right FK̄-module R̃ belongs

to b̄D. Indeed, let

a =

∑

c∈CG(D)

αcc ∈ Z(FCG(D)) ⊆ Z(FDCG(D)) = Z(FK).
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Then, for z ∈ Z and x ∈ K, we have

(ρ(a))(z ⊗ x) =

(

∑

c∈CG(D)

αcρc

)

(z ⊗ x) =

∑

c∈CG(D)

αc(z ⊗ cx)

= z ⊗
∑

c∈CG(D)

αccx = z ⊗ ax = z ⊗ xa = (z ⊗ x)a.

This shows that, for a ∈ Z(FCG(D)), ρ(a) ∈ EK̄ = EndFK (ZK ) is right multiplication

with a. Thus, for f ∈ EndFK (ZK ), z ∈ Z and x ∈ K, we have

(

f ◦ ρ(a)
)

(z ⊗ x) = f (z ⊗ xa) = f (z ⊗ x)a =
(

ρ(a) ◦ f
)

(z ⊗ x).

This means that ρ
(

Z(FCG(D))
)

⊆ Z(EndFK (ZK )). Now let e be an idempotent in

EndFK (ZK ) such that Y ∼= eZK . Then

0 6= Y = Y 1bD

∼= eZK1bD
= ρ(1bD

)eZK ,

so 0 6= ρ
(

1bD

)

e and 0 6= ν(ρ(1bD
e)) = 1b̄D

ẽ with ẽ = ν(e) ∈ ẼK̄ = F[DCG(D)/D].

This shows that indeed the projective indecomposable FK̄-module R̃ = ẽFK̄ belongs

to the block b̄D. This implies that the defect pair (D, R̃) determines the vertex pair

(D, 1bD
), so in general the defect pair (D, R̃) of U is a finer invariant than the vertex

pair (D, bD).

The situation above is already rather involved but we need to complicate it further

by introducing the inertial group J := NG(D,Y ) of Y in NG(D). Since Y |WK , the

restriction YD is isomorphic to a direct sum of copies of Z. Thus we have

K = DCG(D) ⊆ J = NG(D,Y ) ⊆ I = NG(D, Z).

The Fitting correspondence implies easily that J̄ := J/D is the inertial group of R

in Ī. Hence, by lifting theorems for idempotents, J̄ is also the inertial group of R̃ in Ī.

By Clifford theory, there is a unique indecomposable right F J-module X, up to

isomorphism, such that Y |XK and W ∼= XI . Then X has vertex D and source Z.

The J̄-graded F-algebra EndF J(Z J) is isomorphic to the subalgebra

E J̄ :=
⊕

x̄∈ J̄

Ex̄

of E. An isomorphism is given by the restriction map

E J̄ → EndF J(Z J), f 7→ f |Z J,

where we consider Z J as a subset of ZI . We identify both algebras in this way.

Since X|Z J , the Fitting correspondent Q := HomF J(Z J, X) of X is an indecompos-

able projective module over EndF J(Z J) = E J̄. Moreover, Y |XK and W ∼= XI imply

that R|QEK̄
and P ∼= QE, by a proof similar to that of Lemma 4.3.
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Now Rad(E1)E J̄ = E J̄ Rad(E1) is a nilpotent graded ideal of E J̄, and the J̄-graded

F-algebra Ẽ J̄ = E J̄/E J̄ Rad(E1) is isomorphic to the twisted group algebra Fγ J̄. More-

over, Q Rad(E1) is a submodule of Q, and Q̃ := Q/Q Rad(E1) becomes an indecom-

posable projective module over Ẽ J̄ = Fγ J̄. It follows easily that R̃|Q̃ẼK̄
and P̃ ∼= Q̃Ẽ.

We illustrate the whole situation by the following diagram:

G,U
∣

∣

∣

H = NG(D),V = W H
∣

∣

∣

I = NG(D, Z),W E, P Ẽ = Fγ Ī, P̃
∣

∣

∣

∣

∣

∣

∣

∣

∣

J = NG(D,Y ), X E J̄, Q Ẽ J̄ = Fγ J̄, Q̃
∣

∣

∣

∣

∣

∣

∣

∣

∣

K = DCG(D),Y EK̄ , R ẼK̄ = FK̄, R̃
∣

∣

∣

∣

∣

∣

∣

∣

∣

D, Z E1, E1 Ẽ1 = F, F

5 Roots of Simple Modules

We keep the notation of the previous section but assume, in addition, that the

FG-module U is simple (not just indecomposable). In this situation, Knörr [6] has

proved the following important fact.

Theorem 5.1 If U is a simple FG-module then, in the notation above, the multiplicity

module P̃ of U is a simple projective Fγ Ī-module.

Now Proposition 2.3 implies that the FK̄-module R̃ which is a root of U , is also

simple and projective. Hence the block b̄D of FK̄ containing R̃ has defect zero, and

R̃ is the only simple FK̄-module in b̄D, up to isomorphism. As is well-known, this

implies that the block bD of FK has defect group D; so the vertex pair (D, bD) is a

self-centralizing subpair. (We recall that bD is the block of FK containing Y .)

We know that J̄ is the inertial group of R̃ in Ī. Since R̃ is the only simple module

in b̄D, J̄ is also the inertial group of b̄D in Ī. Thus J is the inertial group of bD in I. We

can now prove our main result.

Theorem 5.2 Let U be a simple FG-module. Then, with the notation above, we have

Op( J/K) = 1.

Proof We write Op( J/K) = L/K with a normal subgroup L of J containing K. Then

K̄ = K/D and L̄ = L/D are normal subgroups of J̄ = J/D with K̄ ⊆ L̄, and

L̄/K̄ ∼= L/K is a p-group. Since Q̃Ẽ ∼= P̃ is simple by Theorem 5.1, so is Q̃. Thus Q̃ is

a simple projective Fγ J̄-module, and R̃ is an indecomposable direct summand of Q̃K̄ .

By Proposition 2.3, K̄ is the inertial group of R̃ in L̄. On the other hand, R̃ is L̄-stable,

so K̄ = L̄, K = L and Op( J/K) = L/K = 1.
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We note that Theorem 5.2 holds, more generally, for an arbitrary indecomposable

module U with a simple multiplicity module P̃. Let us briefly indicate that The-

orem 5.2 is still strong enough to prove Erdmann’s result on simple modules with

cyclic vertex, cf. [5].

Corollary 5.3 Let U be a simple FG-module with cyclic vertex D in the block B of FG.

Then D is a defect group of B.

Proof Let Y be as above. By the remarks following Theorem 5.1, the block bD of

FK = FCG(D) has defect group D and satisfies (bD)G
= B. The group algebra FD

has exactly one indecomposable module of dimension i, up to isomorphism, for i =

1, . . . , |D|. Thus I = NG(D, Z) = NG(D) = H. Since D is cyclic, its automorphism

group is abelian. Hence J/K = NG(D,Y )/CG(D) is abelian. Now Theorem 5.2

implies that Op( J/K) = 1, so J/K is a p ′-group. But J/K = NG(D, bD)/CG(D), so

Brauer’s Extended First Main Theorem (see [7]) implies that D is a defect group of

(bD)G
= B.

We may therefore view Theorem 5.2 as a generalization of Erdmann’s Theorem.

Let us return to the general situation where U is indecomposable (not necessarily

simple) with vertex D, but suppose also that the trivial FD-module FD is a source

of U . Then I = NG(D, Z) = H, and

E = EndFI(ZI) = EndFH

(

(FD)H
)

∼= F[H/D].

The corresponding left F[H/D]-module structure on (FD)H is given by

xD(α ⊗ y) = α ⊗ xy (x, y ∈ H, α ∈ F).

It follows that Ẽ ∼= F[H/D] also, so the multiplicity module P̃ can be viewed as an

indecomposable projective F[H/D]-module. In fact, the inflation of P̃ to FH is just

the Green correspondent V of U . Thus Knörr’s Theorem 5.1 and Theorem 5.2 imply

the following result of Okuyama [10].

Proposition 5.4 Let U be a simple FG-module with vertex D and trivial source FD.

Then the Green correspondent V of U is a simple projective F[NG(D)/D]-module. If Y

denotes a constituent of VDCG(D), then we have Op

(

NG(D,Y )/DCG(D)
)

= 1.

We would like to finish with an example, cf. [8]. Let p = 2, and let G = J1 be

the smallest Janko group, of order 175560. A Sylow 2-subgroup D of G is elementary

abelian of order 8, and NG(D)/D is a non-abelian group of order 21 acting faithfully

on D. There are 5 simple FG-modules in the principal block B of FG, of dimensions 1,

20, 56, 56, 76. By Knörr’s Theorem, they all have vertex D. The Green correspondents

of the simple FG-modules in B have dimensions 1, 12, 8, 8, 12, respectively, and their

sources have dimensions 1, 4, 8, 8, 12. The respective inertial groups have orders 168,

56, 168, 168, 168. In each case, the twisted group algebra Fγ Ī is isomorphic to FĪ

(where |Ī| = 21 in four cases and |Ī| = 7 in one case. The corresponding multiplicity

modules all have dimension 1.

On the other hand, the weights of B are just the simple modules in the principal

block of FNG(D), and their dimensions are 1, 1, 1, 3, 3. Although they are also
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modules for the non-abelian group NG(D)/D of order 21, there does not seem to be

a direct connection to the multiplicity modules.
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