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RANK k VECTORS IN SYMMETRY CLASSES OF 
TENSORS* 

BY 

MING-HUAT LIM 

1. Introduction. Let F be a field, G a subgroup of Sm9 the symmetric group 
of degree m, and % a linear character on G, i.e., a homomorphism of G into the 
multiplicative group of F. Let Vl9... , Vm be vector spaces over F such that 
V~ Va{i) for / = 1 , . . . , m and for all a e G. If W is a vector space over F, then a 
m-multilinear func t ion / :X^ F ^ W i s said to be symmetric with respect to G and 

xif 
/C*<r(l), • • > X«(m)) = #<*>/(*!, • • • , *m) 

for any a GG and for arbitrary x{ G ^ . A pair (P, /J) consisting of a vector space 
P over i7 and a m-multilinear function /JL'.X^ Vi->P9 symmetric with respect to 
G and %9 is a symmetry classes of tensors over Vl9. . . 9 Vm associated with G and 
% if the following universal factorization property is satisfied: for any vector space 
U over F and any ra-multilinear function/: X ^ Vi-+U9 symmetric with respect to 
G and %9 there exists a unique linear mapping g:P-+U such that /=g/ j . 

The symmetry class over Vl9.. . , Vm associated with G and % always exists and 
is unique up to vector space isomorphism (see [11], [12]). We shall denote such a 
space by (Vl9... , Vm)x(G). If Vx-=- • «=K m =F, then such a space is usually 
denoted by V™(G) [11]. The vector p,(xl9... , xm) is called decomposable and is 
denoted by * ! * • • • * xm. The most familiar symmetry classes are the tensor, 
Grassmann and symmetric spaces. 

Let Tf. Vf-^Vi be linear mappings such that 7 ^ = 7 ^ ) for f = l , . . . , m and for 
all oeG. Then 

<£:(*!, . . . , xm) -> Ti*! * • • • * Tmxm 

is symmetric with respect to G and % and hence induces a unique linear mapping 
K(T19... , T J on ( J ^ , . . . , VJX(G) such that 

K(7i, . . . , TJXl * • • • * xm = 7 ^ * • • • * TmxM. 
K(Tl9... 9 Tw) is called the associated transformation of 7 i , . . . , Tm. When 
r1==. • .=Tm=T9 we shall denote X ( 7 \ , . . . , TJ simply by K(T) [9, 11]. 

A non-zero vector in (Vl9.. . , FW)X(G) is said to have rank k if it is the sum of A: 
but not less than k non-zero decomposable elements in (Vl9... , Vm)x(G). The 
set of all rank k vectors in (Vl9... 9 VJX(G) is denoted by Rk((Vl9... 9 Vm)x(G)). 
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In this paper we prove that (i) the rank of each vector in (Vl9... , Vm)x(G) is 
unchanged if we extend Vl9.. . , Vm\ (ii) for each rank k vector in (Vl9... , 
Vm) (G) and each orbit 0 of G there associates a unique subspace of Vi where feO; 
(iii) if there is an orbit 0 of G such that |0|>2, dim F;.>|0|+2(fc-l) where; G 0, 
then (Vl9... , Vm)x(G) has a basis consisting of rank k vectors, (i) and (ii) genera­
lize two results of Lim [8]. We also give some criteria for determining the rank of a 
vector in (Vl9. . . , Vm)x(G). From (i) and (ii) we obtain an application on 
intersections of symmetry classes and an application on equalities of two associated 
transformations. 

2. Properties of rank k vectors. Throughout this section, let (Vl9..., Vm)x(G) 
denote a symmetry class of tensors over Vl9.. . , Vm associated with a subgroup 
G of Sm and a linear character % on G. 

For any vectors zl9... , zn in a vector space Z, let (zl9. . . , zn) denote the 
subspace of Z spanned by zl9... , zn. 

LEMMA 1. Let xx+- • -+Xk=yi+. • •+yqeRk((Vl9... , VJX(G)) where x t= 
*ti * ' ' * * xim9 yn=ynl * • • • *ynmfor each z = l , . . . ,k and w = l , . . . ,q. Then 
for each orbit 0 ofG, 

i<xw:deO>c2<y«d:deO>. 

Proof. Suppose that for some j9 l<j<k9 

< x i d : d e 0 > $ i < y w d : d e 0 ) . 
n=l 

Then for some .s G 0, xis <£ 2«=i OW* G 0)-
Consider the associated transformation i£(7\ , . . . , Tm) on (P^, . . . , Vm)x(G) 

where T~Ta(i) for all o* G G, i = l , . . . , m and Tx . . . , Tm are defined as follows: 
If i G 0, Til Vi->Vi is a linear mapping such that rf(*,s)=0 and 7; | 2 L i OW 

d G 0) is the identity mapping. 
If / <£ 0, T{: Vj-^Vi is the identity mapping. 
We have K(Tl9... , TJ^ti *ù=K(Tl9... , r j Q ^ i y J. Since tf(rls... , 

^ J ^ , » ^ » for w= 1 , . . . , ^ and 

K(T19 . . . , TJx, = TlXjl * • • • * Twx,w = 0, 
it follows that 

X(Tl5 . . . , TJ& + - • •+*._1+x.+1+. • •+**) 

= yi + - ' '+yQ e **((*i,. . . , FJZ(G)). 

This is a contradiction since the left hand side is a vector of rank less than k or the 
zero vector. Hence 

Q 

(xjd:de0)<= 2(yna:de0) 
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for each 7 = 1 , . . . 9k. Hence 
k Q 

i=l w = l 

THEOREM 1. Let x±+- • '+xk=y1+- • -+ykeRk((Vl9... 9 Vm)x{G)) where *,= 
xa * • • • * x,-m and yi=^yH * • • • *y3mfor eachj=l9... 9k. Then for each orbit 0 
o/G, 

2<x,d:deO>=2<y,d:deO>. 
Proof. This follows immediately from Lemma 1. 

COROLLARY 1. Suppose that x± * • • • * xm=y1 * • • • * ym e V™(G) and xx * • • • * 
xm^0. Then (xl9... , xj=(yl9... , ym). 

This corollary generalizes a lemma of Marcus and Mine [11]. 

EXAMPLE. Let ®m V denote the mth tensor product space of a vector space V. 
Let z G ®m F be a rank k vector. Then for any non-zero vector v e V, v <g> z is of 
rank k in ®w+1 V. To prove this, we first note that v ® z^O. Suppose v 0 z= 
J i+ ' - -+Jnei* n (® w + 1 *0 where #=j>a®- • '®yiifM.1)9 l<i<n. Clearly «<£. 
By Lemma 1, (v)^(yll9... ,yn l) . This implies that yn=^iV for some non-zero 
scalars Xt. Hence ^®z=y(H)(2̂ w=l>l 7̂*2(S)• * #®Ji(m+i))- Thus z=2Li ^<y«®' • -<8> 
Jt(m+i) 6 -K*(®w *0- This shows that n=k. Hence i?®z G Rk(®

m+1 V). 

DEFINITION. Let z=zx-\ \-zk be a rowfc k vector in ( F l s . . . , Vm)x(G) where 
^•=^1 * ' ' ' * zjm> 1 </<£• F° r e a ch orbit 0 of G9 we define 0(z) to be the subspace 
ZU(zjd:deO). 

THEOREM 2. Let Ul9... , Um be subspaces ofVl9...9 Vm respectively such that 
Ui— U<j{i) for 1= 1,. . . , w and for all a eG. Then 

Rk((Ul9. . . , Um\(G)) s ^ ( ( F l 5 . . . , VJX(G)). 

Proof. Let j e Rk((Ul9... 9 UJX(G)). For each orbit 0 of G and each r G 0, 
0(y)ç Ur. Suppose 

y=Iy^Rn((vl9...9vm)x(G)) 
3=1 

whereyi is a decomposable element for each j. Then n<k. According to Lemma 1, 
we have for each 0 of G9 

i<Ky,) s 0(y) s ur 
J=I 

where r e 0. If «<&, then the rank of j is less than k in ( t /1 ? . . . , Um)x(G) which 
is a contradiction. Therefore n=k and y e Rk((Vl9... , Vm)x(G)). 

THEOREM 3. Let x e Rk((Vl9... 9 Vm)x(G)). Let y=y± * • • • * ym^0. If for 
some orbit 0, there is a s G 0 such that ys $ 0(x)9 then x+y is of rank k or k+l. 
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Proof. If x + j = 0 , then x = — y. This implies k=l. By Theorem 1, ys e0(x), 
a contradiction. 

If x + j = 2 L i z i is °f r a n ^ w where l<n<k, then * = 2 L i Z;~~J- This implies 
that n=k—l since x is of rank k. By Theorem 1, 

0(x) = 0(z1) + ' - -+0(z,_1)+0(j) . 

Hence ys e 0(x) which is a contradiction. 
Therefore x-j-j is of rank k or k+1. 

THEOREM 4. Lef x be a rank k vector in (Vl9... , FW)X(G). Lef J = j i * • • • * 
JWT^O. Tjf/ar 5ome ore// OofG, there are d,q e 0 swc/z that yd, yq are linearly inde­
pendent and 

{y* yÙ n o(x) = {o}, 
/Ae« x+y is of rank k+\. 

Proof. By Theorem 3, x+y is of rank k or £ + 1 . Assume that x+y=z is of 
rank A; where ^ = 2 L i z i a n ( l ^ • = % * , , , * ^ m 5 !<. /</ : . Since j = — x + z , it 
follows from Lemma 1 that 

0(JO Ç 0 ( X ) + 0 ( Z ) . 

If 0(z)g0(x), then 0(y)cO(jc), which is a contradiction to the hypothesis. Hence 
0(z)$Q(x). Thus for some s e O and some l<r<k, zrs$Q(x). We have either 
(yd)+((zrs)+Q(x)) or (ja)+((z r s)+0(x)) is a direct sum. We may assume that 
(yd) + ((zrs)+Q(x)) i s a direct sum. 

Let gs: V8->VS be a linear mapping such that 

gs(yd) = 0, gs(zrs) = 0 
and 

gs|0(a) = identity mapping. 

Let gi'. Vf-^Vi be the identity mapping if / ^ 0 and gi=gs if / e 0. Then 

^(gi , • • • > gJ(x+y) = £(gi, • • • ? g j z = x = X(gl9 . . . , g j ( 2 z i | -

Since x is of rank k and ^ (g 1 ? . . . , gw)Q^Vr z;) ^s either the zero vector or of rank 
<&, we obtain a contradiction. Hence x + j is of rank k+l. 

THEOREM 5. Zef x be a rank k vector in (Vl9. . . , ^TO)Z(CJ). Ze/ j 6e a non-zero 
decomposable element. If there are two orbits 0X and 02 of G such that 

0&) $ 0x(x) and 0a(y) $ 02(x), 

f/*etf x + j /.y of rank k+l. 

Proof. Let y=yx * • • • * j w . Choose J e 0 such that yd $ 01(x). Let x + j = z . 
By Theorem 3, z is of rank k or k+l. Suppose z=]£Li z,- is of rank k where zt 

is a decomposable element for each j . 
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L e t ga: v<r+vd b e a l i n e a r mapping such that gd(yd)=0 and gd \ 0iix) =identity 
mapping. Let gs: VS->VS be the linear mapping such that g8=gd if se 0l9 and gs is 
the identity mapping if s £ Ô  Let K(gl9... , gw)z,=z^, l<,j<k. Then 

K(gi> • • • > &»)(*+)0 = * = *(&> • • • > gm)* = 2 4 

In view of Theorem 1, 02(x)=2/==i %(ZJ)- Since gs: VS->VS is the identity mapping 
if 5 G 02, it follows that 02(z,)=02(z>), 1 <j<k. Hence 

02(*)=io2(z,) = 02(z). 
i=i 

Since y= — x+z, it follows from Lemma 1 that 

02(j)£02(x)+02(z) = 02(x). 
This contradicts the hypothesis. Hence x+y is of rank k+1. 

LEMMA 2. Let x=xx * • • • * xm e (Vl9..., Vm)x(G). If x=0 then dim(x,.: 
/ e 0)<|0|/<?r some orbit OofG where |0| denotes the number of elements in 0. 

Proof. Suppose that dim(x t:/e0)=|0| for all orbits 0 of G. For each j , let 
f: V5->F be a linear map such that f(x3)=l, f(xd)=Q> for all d where j^d and 
y, rf belong to the same orbit of G. Since 

m 

/ : K , . . . , w J -> 2 (̂(T) n/*«)(w<)> w* G ** 
creG ,_x 

is symmetric with respect to G and %9 there exists a linear mapping h:(Vl9.. ., 
^ ( G ) - - ^ such that 

ft(Wi * • • • * W j = /(Wi, . . . , WJ. 

Since/ff0)(xy)=l if and only if c(j)=j, it follows that lKLi/a(y)(^)=0 if °'^1-
Hence 

m 

/ te , . . . , x j = (̂i) n/ iW = L 

Therefore A(xx * • • • * xm)=l. This is a contradiction since xx * • • • * xm=0. 
Hence the proof is complete. 

THEOREM 6. Let Xj=xn * • • • * xjm,j= 1 , . . . , k, be k decomposable elements in 
(Vu • • • , Vm)x(G)' If for each orbit 0, 

dim(i<x,d:de0>) = |0| k, 

//ie« 2r/=i ** & of rank k. 

Proof, This follows from Lemma 2, Theorem 4 and Theorem 5 by induction. 

REMARK. Taking G=Sm9 #="sign of permutation" character in Theorem 1, 
Theorem 2 and Theorem 6 we obtain Theorem 3, Theorem 5 and Theorem 6 in 
[8] respectively. 
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LEMMA 3. Let Ul9... 9Utbe vector spaces over the same field such that dim U^ 
mi where m{ is a positive integer for each i. Then (®w* t/j)®- • -®(®w< Ut) has a 
basis consisting of decomposable elements of the form 

(xu®- • -®xlmi) ®- • -®(xa®- • -®xtmt) 

in which xil9. . . , xim. are linearly independent for each i. 

Proof. It suffices to show that the set of all decomposable elements x t l®- • '<8>xim 

such that xil9. . . , xim are linearly independent in £/f spans ®m* £/t. This can be 
shown easily by induction on m{. 

LEMMA 4. (Vl9... , ^TO)Z(G) Aos a basis consisting of decomposable elements v 
such that dim 0(V)=|0| for each orbit 0 of G provided dim Vj>\Q\for j e 0. 

Proof. Let 0l9... 90t be all the orbits of G. In view of Lemma 3 and the canoni­
cal isomorphism between V^---<&Vm and (®l01' F^)®- • -(g^®10*1 F ^ where 
j i G 0 1 5 . . . ,yf G 0 t, Fj®- • -® Fm has a basis consisting of decomposable elements 
i?!®* • *®i?m in which dim^ry e 0)= |0 | for each orbit 0. 

Since the mapping/: Fj®- • -®Vm-+(Vl9 • • • , ^ ^ ( G ) such that 

/ f a ® - • -®i?J = Ax * • • • * vm9 v{e Vi9 

is onto, it follows that (Vl9. . . , Vm)x(G) has a basis consisting of decomposable 

elements v such that dim 0(t»)=|0) for each orbit 0. 

THEOREM 7. Suppose for each orbit 0 ofG, dim Vô> |0| where j e 0. TTzefl ( J ^ , . . . , 
FOT)X(G) te a tew consisting of rank k vectors if one of the following conditions holds : 

(i) There is an orbit 0t such that |0i |>2 and dim Fr>|01|+2(A:~-1), r e 0X. 
(ii) There are two orbits 0t and 02 such that 

dimF r > IOil+fc-1, reOl9 

dim Vs > | 0 2 | + fc - l , s e 0 2 . 

Proof. Case (i). The result is trivial when k=l. Let k>2. Let / b e the set of all 
decomposable elements v such that dim 0(V)=|0| for each orbit 0. Let x=x1* • • • * 
xm be an element of / . We shall show that there are two rank k vectors A and B 
such that x=A—B. 

Let 01={jl9. . . , / , } • Then xji9 . . . , xj are linearly independent vectors. Choose 
vectors ul9... , W2(*-D

 s u c ^ that 

Xjl9 . . . , X i s , M l9 . . . , W2(fc_i) 

are linearly independent. Let y=yx * • • • * ym such that 7t-=xf for i^j29 yj = 
Xj2+ux. Let z=z1 * - - - * zm where z~x,- for i^j29 ^ 2 = w i - Then x=j—z . Let w= 
Wj * • • •* wm where w~Xi for iVji, z ? ^ and w5 =Xj , ŵ  =w2. If k>39 then 
for each positive integer/?<k—2, let 1^=1^1 * • • • * t^m such that vpi=Xi for J V / I , 
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zV;2 and Vj)ji=u2p+l9 v^=u2p+2. Finally let 
fc-2 

A = y+w+^vp9 

fc-2 

Then x=A-B. 
In view of Lemma 2 and Theorem 4, A and i? are both of rank k. Since / spans 

(Vl9... , ^W)X(G) (Lemma 4), it follows that the set of all rank k vectors spans 
(Vi> • • • > Vm)x(G)- This proves case (i). 

Case (ii) can be proved similarly by applying Lemma 4 and Theorem 5. 
Corollary 2 was proved by Brawley [2] using matrix language. 

COROLLARY 2. Let U and V be two vector spaces over the same field. Then U®V 
has a basis consisting of rank k vectors for each A:<min{dim U, dim V}. 

COROLLARY 3. Let A2U be the second Grassmann space over a vector space U. 
Then A2U has a basis consisting of rank k vectors if2k <dim U. 

EXAMPLE. Let U be a finite dimensional vector space over an algebraically 
closed field of characteristic 0. Let U(m) be the mth symmetric product space of 
U with decomposable elements denoted by ux... um9 u{ e U. For each ueU, 

m times 

let um=u . . . u. Let yl9... , yn be n linearly independent vectors in U. In view 
of Propositions 9 and 10 of [5], 

y?+y? = zi---zm 

for some zi where (zl9. . . , zm)=(yl9 y2). Hence Theorem 4 and Theorem 5 imply 
that j>r+* ' 9+y™ i s of rank [(/i+l)/2]. Since {um:u e U} spans £/<m> [1; p. 131,] 
it is easily shown that U{m) has a basis consisting of rank k vectors if dim U>2k—l. 

THEOREM 8. Let x9 y and z be three non-zero decomposable elements of 
(Vi> • • • > Vm)x(G)- Let 0 l 5 . . . , 0É be all the orbits ofG. Ifx+y=z9 then for all /, 
0a(x)=0i(>y), except possibly for one value j ofi, in which case 

dim 0,O) < d i m ^ O ) n O,O0)+l. 

Proof. Suppose that there exist distinct s and q such that 

0.(x) * 0s(y)9 0Q(x) * 0Q(y). 

We may assume Os(x)$Os(}0- Let x=x± * • • • * xm. Choose de0s such that 

*«*0.(y). 
Let Td: Vd->Vd be a linear mapping such that Td(xd)=0 and Td 10siy) is the iden­

tity mapping. Let Tn:Vn->Vn be the identity mapping if n<£0s and Tn=Td if 
n e 0S. Then 

K(T19. . . , Tm)(x+y) = K(T19. . . , Tjz = y. 
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Since Tn is the identity mapping if n £ Os, by Theorem 1, 0a(y)=0g(z). In view of 
Lemma 1, 

0ff(x) s 0 , ( J O + 0 , ( Z ) = 0q(y) 

Therefore 0q(y)^0q(x). Let z=z1 * • • • * zm. Choose r eOq such that zr $ 0q(x). 
Let / r : Vr-+Vr be a linear mapping such that / r (z r )=0 a n d / . | 0 {x) is the identity 
mapping. Let/n : Vn->Vn be the identity mapping if n $ 0q andfn=fr ifneOq. Then 

K(fi, • • • ,/*)(*+JO = *+K(fl9... , / J y = K(fl9... , / J z = 0. 

Therefore i5T(/i,... ,fm)y= —x. Since / n is the identity mapping for n e 0S, it 
follows from Theorem 1 that 0s(x)=0s(y)9 which is impossible. 

Hence there is possibly only one/ such that O^xj^O^j). 
Now assume that such a / exists and 

dim 0,(x) > l+dim(0,(x) n 0,(j;)). 

Then it is not hard to see that there are linearly independent vectors xd9 xv, where 
d,p eOj such that 0^(y) n (xd, xp)={0}. By Theorem 4, x + j is of rank 2. This 
contradicts the hypothesis. Hence the proof is complete. 

The above theorem contains the known facts in tensor, Grassmann and sym­
metric spaces as special cases. See Lemma 3.1 [14], Lemma 5 [3] and Theorem 1.14 
[4]. 

3. Applications. As an application of Theorem 1 and Theorem 2, we prove 
the following theorem which generalizes the result concerning intersection of tensor 
products in [6, section 1.15]. 

THEOREM 9. Let U{ and Wt be subspaces of V€ where U~Ua{i)i W~W^i)9 

V~ VaH) for i= 1, . . . , m and for all a e G. Then 

(ul9..., ujx(G) n(wl9...9 wjx(G) = (u1nwl9...9umn wjx(G). 

Proof. Clearly 

(U± nwl9...9Umn wm\(G) s (ul9...9 Um\(G) n(Wl9...9 WJX(G). 
Let z be a non-zero vector of (Ul9... 9 UJX(G) n (Wl9... 9 Wm)x(G). Then 
z e Rk((Vl9... , Vm)x(G)) for some positive integer k. By Theorem 2, 

z G Rk((Ul9 ...9 UJX(G)) n Rk((Wl9 ...9 WJX(G)). 
Hence 

z = xx+- • -+xk = yx+- - -+yk 

for some Xi e Rx{{Ul9... , UJX(G)) and some j , e R1((Wl9 ...9 WJX{G))9 

\<i<m. By Theorem 1, for each orbit 0 of G9 we have 

| o ( x ; ) = | o ( y , ) ç : TT a nU a , ^ G 0 . 

Therefore z e (6^ n J F l 5 . . . , Um n FFJ^G). This completes the proof. 
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As an application of Theorem 1, we prove the following generalization of a 
result of Marcus [9]. 

THEOREM 10. Let K(fl9... , /m) , K(gl9... ,gm) be two non-zero associated 
transformations on (Vl9... , Vm)x(G). Suppose that (i) for each orbit 0 of G and 
each i eO, rank f>\0\ or (ii) ^ = 1 . Then K(fl9... ,fJ=K(gl9 ...,gm) if and 
onty îffi=^igifor some scalar s At with XXX2... Am=l. 

Proof. The sufficiency of the theorem is trivial. We proceed to prove the necessity. 
Case (i). Let 01={jl9j29... 9jk} be any orbit of G and s e 0lm Let v1 e Vs such that 

/s(y1)=z17é0. Let zl9... , zk+1 be k+1 linearly independent vectors in the range 
space of/s. Choose v{ e Vs such that/s(t?t-)=zf, i>2. 

By the hypothesis on the rank offj9 we are able to choose for each \<i<k a 
decomposable element ya * • • • * yim such that 

bin* • • • > yuù = K> • • > %u}~Ru} 
and 

dim(fl(yil):le0r) = \0r\9 r > 2, 

where 02,. . . , 0̂  are the other orbits of G. In view of Lemma 2, 

K(fi> • • • >fJ(ya * ' • • * ttJ = ^(gi> • • • » gJGh * ' " ' * ttm) 5e 0. 
By Theorem 1, 

0i(/i0>ii) * ' • • *fm(yiJ) = OiCgiOa) * • • • * gm(^J). 
Hence 

<Zl, • • > 4f l> • • • , ZJc+l) = <gSOl)> • • • » gS<X+l)> • • • > g.0>*+l)\ Î = 1, . . . , fe. 

This implies that 

(i) n < z i , . . . , f i + i , . . . , zfc+1> = n (g s(t^i) , . . . , g s o * + i ) , . . . , gs(^+i)> 
Since zl9. . . , z&+1 are linearly independent, the left hand side of (1) is (zx). Since 
the right hand side of (1) contains (g8(t?i)) and gs(v1)9

£09 it follows that (z1>= 
(/s(l?i))=(^s(î;i))- This shows that the rank of gs>k+l. By symmetry, gs(u)j£§ 
implies that (gs(u))=(fs(u)). Hence (f8(v))=(g8(v)) for all ve Vs. This implies 
that/s=Asgs for some scalar As. Clearly Xx... Am=l. 

Case (ii). #=1. Let « 1 e F 1 , . . . , i / m e F m such that/^w^^O and Ui=ua{i) for 
all / and for all <r e G. Then 

^(/ l> • • • >/m)(Wl * ' * * * W J = # ( g i , • • > gm)("l * ' • * * "m)-

Since z s l f fx{u^ * • • • */«.(« J=gi(*i) * • • • « gm(ww)^0. Theorem 1 implies 
that (fi(ui))=(gi(ut))9 / = 1 , . . . , w. Similarly if w, e K,,g<(Hv)?*0and w,=wa(<) for 
all i and oeG9 then (g,(wi))=(/i(wt.)). Hence </,(»,)>=<&(!><)> for all VieV4. 
This implies that/i=Atgi for some scalar Xi9 \<,i<m. Clearly Xx... Am=l. 
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