Canad. Math. Bull. Vol. 19 (1), 1976

RANK k£ VECTORS IN SYMMETRY CLASSES OF
TENSORS*

BY
MING-HUAT LIM

1. Introduction. Let F be a field, G a subgroup of §,,, the symmetric group
of degree m, and x a linear character on G, i.e., a homomorphism of G into the
multiplicative group of F. Let V,,..., V,, be vector spaces over F such that
V=V, fori=1,...,mand for all ¢ € G. If W is a vector space over F, then a
m-multilinear function f:X;" ; V,—W is said to be symmetric with respect to G and
1y

Tows -+ v s Xotm) = Yo f X1+ -+ s Xm)
for any ¢ € G and for arbitrary x; € V,. A pair (P, u) consisting of a vector space
P over F and a m-multilinear function w:X;"; ¥V,—~P, symmetric with respect to
G and g, is a symmetry classes of tensors over Vi, ..., V,, associated with G and
7 if the following universal factorization property is satisfied: for any vector space
U over F and any m-multilinear function f:X;,; V,—U, symmetric with respect to
G and g, there exists a unique linear mapping g:P—U such that f=gpu.

The symmetry class over V7, ..., V,, associated with G and y always exists and
is unique up to vector space isomorphism (see [11], [12]). We shall denote such a
space by (Vy,..., V), (G). If Vi=--+=V,=V, then such a space is usually
denoted by V;'(G) [11]. The vector u(xy, ..., x,,) is called decomposable and is
denoted by x; * - - % x,. The most familiar symmetry classes are the tensor,
Grassmann and symmetric spaces.

Let T;: V,—V; be linear mappings such that T;=T,,, for i=1,...,m and for
all 0 € G. Then

(X ooy X)) > TiXy % 0o % T, X,
is symmetric with respect to G and y and hence induces a unique linear mapping
K(T,,...,T,)on (Vy,...,V,),(G) such that

K(Ty, ..., T)x % %X, =Tx;*x**xT,x,.
K(Ty,...,Ty,) is called the associated transformation of T,,...,T,. When
T,=--+=T,=T, we shall denote K(T3, . .., T,,) simply by K(T) [9, 11].

A non-zero vector in (V3, . . ., V,,),(G) is said to have rank k if it is the sum of k
but not less than k£ non-zero decomposable elements in (V3,. .., V,,),(G). The
set of all rank k vectors in (V73, . . . , V,,),(G) is denoted by Ry((V3, - . . , V), (G)).
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In this paper we prove that (i) the rank of each vector in (Vy,..., V,,),(G) is
unchanged if we extend Vi, ..., V,; (i) for each rank k vector in (V,...,
V),(G) and each orbit 0 of G there associates a unique subspace of V; where i € 0;
(iii) if there is an orbit 0 of G such that [0|>2, dim V;>|0|+2(k—1) where j €0,
then (Vy, .. ., ¥,,),(G) has a basis consisting of rank k vectors. (i) and (ii) genera-
lize two results of Lim [8]. We also give some criteria for determining the rank of a
vector in (V3,..., V,),(G). From (i) and (ii) we obtain an application on
intersections of symmetry classes and an application on equalities of two associated
transformations.

2. Properties of rank k vectors. Throughout this section, let (Vy,. .., V,),(G)
denote a symmetry class of tensors over V5, ..., V,, associated with a subgroup
G of S,, and a linear character y on G.

For any vectors z,,...,z, in a vector space Z, let (z;, ..., z,) denote the
subspace of Z spanned by z,, ..., z,.

LemMA 1. Let x4+ +x=y1+ " +Y, € Rl((V1, . . . » Viu),(G)) where x;=
Xy %00 % Xppy YV =Vu1 ** " * Yy for each i=1,...,k and n=1,...,q. Then
for each orbit 0 of G,

k q
zl(x,-d:d €0) c 2_:1<y,,d:d €0).

Proof. Suppose that for some j, 1<j<k,

q
(xja:d €0) & 21<ymi:d €0).

Then for some s €0, x;, ¢ > _3 (Ppq:d €0).

Consider the associated transformation K(T4, ..., T,) on (Vy,..., V,),(G)
where T;=T, forallo e G,i=1,...,mand T; ..., T, are defined as follows:

Ifi€0, T;:V,—V,is a linear mapping such that T;(x;)=0 and T} [ > 1 Duat
d € 0) is the identity mapping.

If i ¢ 0, T;: V,—V,is the identity mapping.

We have K(Ty, ..., T,) iy x)=K(Ty, . .., T,)(S%_1 y,). Since K(Ty, .. .,
T,)y.=y,forn=1,...,qand

KT, ..., T)x; = Tix;y % xT,x;, =0,

im

it follows that

K(Ty, ..., T,)0+ X0 4+X0+ 0 x)

=)+ '+yq € Rk((Vl, L) Vm)x(G))
This is a contradiction since the left hand side is a vector of rank less than &k or the
zero vector. Hence

(xj4:d €0) = i(ynd:d €0)

n=1
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for each j=1, ..., k. Hence

k q
§1<xid:d €0) §1<y”":d €0).

THEOREM 1. Let x1+. ¢ °+xk=y1+. : .+yk € Rk((Vla ceey Vm)x(G)) where Xi=
Xy %0tk X and y;=y;; %+ <+ * y;. for each j=1, ..., k. Then for each orbit 0
of G,

k k
Zl(x,-d:d €0) = zl(yjd:d €0).
i= i=

Proof. This follows immediately from Lemma 1.

COROLLARY 1. Suppose that x, %+ % X, =y, %+ %y, €V ,(G) and x; % - - - *
X #Z0. Then (xy, . oo s Xp)=(V1s+ « « s Ym)-

This corollary generalizes a lemma of Marcus and Minc [11].

ExAMPLE. Let ®™ V denote the mth tensor product space of a vector space V.
Let ze @™ V be a rank k vector. Then for any non-zero vectorve V, v ® z is of
rank k in @™*! V. To prove this, we first note that v ® z70. Suppose v ® z=
yite Y, € R (™ V) where y;=y;® * *@Vimeyy, 1<Li<n. Clearly n<k.
By Lemma 1, (0)2(yy;, - . . » Yma). This implies that y;;=A4, for some non-zero
scalars A, Hence v®@z=0® (i1 4,7:2®" * *®Yi(msn)- Thus z=37 ; 2,7,,Q - *®
Yims1) € Re(®™ V). This shows that n=k. Hence v®z € R,(Q™1 V).

DEFINITION. Let z=z,+- * -+z; be a rank k vector in (V3, ..., V,),(G) where
Z;=2Z; % * * * % Z;,, 1 <j<k. For each orbit 0 of G, we define 0(z) to be the subspace
1 (2:d €0).

THEOREM 2. Let U, ..., U, be subspaces of V5, . .., V,, respectively such that
U;=U,q fori=1,...,mand for all 0 € G. Then

Rk((Uh AR ] Um)x(G)) = Rk((Vl’ AL ] Vm)x(G))

Proof. Let y € Ry((Uy, . . . , U,),(G). For each orbit 0 of G and each r €0,
0(y)= U,. Suppose

y = g Y€ RU(Vas -+ Vi) ()

where y; is a decomposable element for each j. Then n<k. According to Lemma 1,
we have for each 0 of G,

éom) <0y € U,

where r € 0. If n<k, then the rank of y is less than k in (U, . .. , U,),(G) which
is a contradiction. Therefore n=k and y € Ry((V1, . . . , V,,),(G)).

THEOREM 3. Let x € Ri(Vy, ..., Vi), (G). Let y=y % xy,5#0. If for
some orbit 0, there is a s € 0 such that y, ¢ 0(x), then x+y is of rank k or k+1.
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Proof. If x+y=0, then x=—y. This implies k=1. By Theorem 1, y, € 0(x),
a contradiction.

If x4+y=> 7,z is of rank n where 1<n<k, then x=7 ; z;—y. This implies
that n=k—1 since x is of rank k. By Theorem 1,

0(x) = 0(z)+" - *+0(z;—1) +0(»).

Hence y, € 0(x) which is a contradiction.
Therefore x+y is of rank k or k+1.

THEOREM 4. Let x be a rank k vector in (Vy, ..., V,),(G). Let y=y %%
Ym#0. If for some orbit 0 of G, there are d, q € 0 such that y;, y, are linearly inde-
pendent and

(Ya> Yo N O(x) = {0},

then x+y is of rank k+1.

Proof. By Theorem 3, x+y is of rank k or k+41. Assume that x+y=z is of
rank k where z=Y}_,z; and z;=zj; % * - * % Zj,,, 1<j<k. Since y=—x+z, it
follows from Lemma 1 that

0(y) = 0(x)+0(z2).
If 0(z)=0(x), then 0(y)<0(x), which is a contradiction to the hypothesis. Hence
0(z)£0(x). Thus for some s €0 and some 1<r<k, z,, ¢ 0(x). We have either
D)+ (2, +0(x)) or (y)+({z,,)+0(x)) is a direct sum. We may assume that

(ya)+((z,5)+0(x)) is a direct sum.
Let g,: V,—V, be a linear mapping such that

g =0, g(z) =0
and

glox) = identity mapping.
Let g;: V,—V; be the identity mapping if i ¢ 0 and g,=g, if i €0. Then
K(gys -5 8)(x+y) = K(g1, - - ., )z =x = K(g1, - - -, gm)(gzj)'
IFr
Since x is of rank k and K(g;, . . . , g3 ; 4 2j) is either the zero vector or of rank
<k, we obtain a contradiction. Hence x4y is of rank k+-1.

THEOREM 5. Let x be a rank k vector in (Vy, ..., V,),(G). Let y be a non-zero
decomposable element. If there are two orbits 0, and 0, of G such that

0,(») & 0i(x) and 0y(y) & 0x(x),
then x+y is of rank k+-1.

Proof. Let y=y, * -+ *y,. Choose de€0 such that y; ¢0,(x). Let x+y=z.
By Theorem 3, z is of rank k or k+1. Suppose z=Y_; z; is of rank k where z;
is a decomposable element for each j.
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Let g;: V4~V be a linear mapping such that g,(y,)=0 and g, | ¢ (, =identity
mapping. Let g,: V,—V, be the linear mapping such that g,=g, if s €0,, and g, is
the identity mapping if s ¢ 0,. Let K(g;, . . . , gn)2;=2j, 1<j<k. Then

k
K(gla LA ] gm)(x+y) =X= K(gl’ AL | gm)z = lezli'
=
In view of Theorem 1, 05(x)=17_; 0,(z}). Since g,: V,—V, is the identity mapping
if 5 € 0,, it follows that 0,(z;)=0,(z}), 1<j<k. Hence
k
0x(x) = zloz(zi) = 0y(2).
=
Since y=—x+z, it follows from Lemma 1 that

05(y) € 0,(x)+0,(2) = 0y(x)-
This contradicts the hypothesis. Hence x+y is of rank k+1.

LeMMA 2. Let x=xy % %X, €(V1,...,V,),(G). If x=0 then dim(x;:
i € 0)<|0| for some orbit 0 of G where |0| denotes the number of elements in 0.

Proof. Suppose that dim(x;:i € 0)=|0| for all orbits 0 of G. For each j, let
fi:V;—F be a linear map such that f;(x;)=1, f;(x;)=0 for all d where j#d and
J» d belong to the same orbit of G. Since

f: (Wp CIIEIY wm) - 2 X(a) Hfa(i)(wz'), w, €V,
ged T i
is symmetric with respect to G and y, there exists a linear mapping 4:(V3, .. .,
V), (G)—F such that
hwy * - xw,) = f(Wy, ..., W)
Since f, ;) (x;)=1 if and only if ¢(j)=j, it follows that TT}~, f,(;(x;)=0 if o51.
Hence

FCo e xm) = 2(1) f;ﬁ(x,-) ~1.

Therefore h(x, *---%x,)=1. This is a contradiction since x; *---* x,,=0.
Hence the proof is complete.

THEOREM 6. Let x;=X;; * * * * * X;,,, j=1, ..., k, be k decomposable elements in
(V15 -« » Vin)y(G). If for each orbit 0,

dim(%(x,d:d € 0)) = |0] k,

j=1

then 35_y x; is of rank k.
Proof. This follows from Lemma 2, Theorem 4 and Theorem 5 by induction.

ReMARK. Taking G=3S,,, y="‘"sign of permutation” character in Theorem 1,
Theorem 2 and Theorem 6 we obtain Theorem 3, Theorem 5 and Theorem 6 in
[8] respectively.
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LEMMA 3. Let Uy, . .., U, be vector spaces over the same field such that dim U;>
m; where m; is a positive integer for each i. Then (@™ Up)®- + -@(®™ U,) has a
basis consisting of decomposable elements of the form

(X ®- ’®x1m1) ® Q(xy® - .®xtmg)

in which x4, ..., X;,. are linearly independent for each i.
i1 img

Proof. It suffices to show that the set of all decomposable elements x;; ®- - ®Xim,
such that x;, . . . , X,y are linearly independent in U, spans @™ U,. This can be
shown easily by induction on m;.

LemMA 4. (Vy, ..., V,),(G) has a basis consisting of decomposable elements v
such that dim 0(v)=|0]| for each orbit 0 of G provided dim V;>|0| for j € 0.

Proof. Let 0y, . .., 0, be all the orbits of G. In view of Lemma 3 and the canoni-
cal isomorphism between V,®: - ®V,, and (®*V,)®" (@™ V;) where
j1€04,...,j, €0, Vi®: - -®V, has a basis consisting of decomposable elements
,®- + *®v,, in which dim(y;:j € 0)=|0| for each orbit 0.

Since the mapping f:V1®: * *®@V,,—>(V1, * * *, V,,),(G) such that

J0i® - Qv,) = vy % %0, v, €V,

is onto, it follows that (V3, ..., V,,),(G) has a basis consisting of decomposable
elements v such that dim 0(v)=|0] for each orbit 0.

THEOREM 7. Suppose for each orbit 0 of G, dim V;>|0]| wherej € 0. Then (V, . . .,
Vm),(G) has a basis consisting of rank k vectors if one of the following conditions holds:

(i) There is an orbit 0, such that |0,|>2 and dim V,>|0,|+2(k—1), r € 0,.
(ii) There are two orbits 0, and 0, such that

dim V, > |0,| +k—1, reo,
dim V, > |0,|4+k—1, s €0,.

Proof. Case (i). The result is trivial when k=1. Let k>2. Let J be the set of all
decomposable elements v such that dim 0(v)=|0] for each orbit 0. Let x=1x% -« - %
x,, be an element of J. We shall show that there are two rank k vectors 4 and B
such that x=A4—B.

Let 0,={jy, ... ,j}. Then Xjps oo X;, are linearly independent vectors. Choose
vectors uy, . . . , Up_y) Such that

Kijgs oo os Xjs Upy o ooy Ug(1)
are linearly independent. Let y=y, % - - - % y, such that y,=x; for isj,, Vi, =
X;,+uy. Let z=z, % - - - % z,, where z,=x, for i#j,, z; =u,. Then x=y—z. Let w=
wy k *+ ok Wy, Where w,=x; for iz#j,, i#j, and w; =x;, w;=u,. If k>3, then
for each positive integer p<k—2, let v,=v,,; * - - * % v,,, such that v,,;=x; for i#j,,
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i7#], and v,; =gy 11, Uy, =Uspy,. Finally let
k—2

A=y+w+ D0,

p=1
k-2
B =z+w+ D v,
Then x=A—B. ”_1
In view of Lemma 2 and Theorem 4, 4 and B are both of rank k. Since J spans
(V15 - -+ 5 Vi), (G) (Lemma 4), it follows that the set of all rank k vectors spans
(V15 - -+ 5 V), (G). This proves case (i).
Case (ii) can be proved similarly by applying Lemma 4 and Theorem 5.
Corollary 2 was proved by Brawley [2] using matrix language.

COROLLARY 2. Let U and V be two vector spaces over the same field. Then UQV
has a basis consisting of rank k vectors for each k<min{dim U, dim V}.

COROLLARY 3. Let AU be the second Grassmann space over a vector space U.
Then A2U has a basis consisting of rank k vectors if 2k <dim U.

ExampLE. Let U be a finite dimensional vector space over an algebraically
closed field of characteristic 0. Let U™ be the mth symmetric product space of
U with decomposable elements denoted by u;...u,, u;€ U. For each ueU,

m times
let u™=u...u. Let y5,...,y, be n linearly independent vectors in U. In view
of Propositions 9 and 10 of [5],

VY =210 2,
for some z; where (zy, . . . , z,,)=(J,, o). Hence Theorem 4 and Theorem 5 imply
that yy"+- - ~+y, is of rank [(n+1)/2]. Since {u™:u € U} spans U™ [1; p. 131,]
it is easily shown that U™ has a basis consisting of rank k vectors if dim U>2k—1.

THEOREM 8. Let x, y and z be three non-zero decomposable elements of
(V15 « o s Vg (G). Let Oy, . . . , 0, be all the orbits of G. If x+y=z, then for all i,
0,(x)=0,(y), except possibly for one value j of i, in which case

dim 0,(x) < dim(0,(x) N 0,(y))+1.
Proof. Suppose that there exist distinct s and ¢ such that

0,(x) # 0,(y),  0y(x) # 0,().
We may assume 0,(x)&0,(y). Let x=x; *---*x,. Choose de€0, such that

Xa ¢ Os(y)

Let T,: V,~V, be a linear mapping such that T,(x,)=0 and T, | o, is the iden-
tity mapping. Let T,:V,—V, be the identity mapping if n¢ 0, and T,=T, if
n e€0,. Then

KT, ..., T)x+y) =K(T, ..., Tz =y.
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Since T, is the identity mapping if # ¢ O,, by Theorem 1, 0,(y)=0,(z). In view of
Lemma 1,

04(x) S 04(y)+04(2) = 0y(y)
Therefore 0,(y)$0,(x). Let z=z, % -+ - % z,,. Choose r €0, such that z, ¢ 0,(x).

Let f,: V,—V, be a linear mapping such that f,(z,)=0 and f; | o, 18 the identity
mapping. Let f,,: V,—V,, be the identity mapping if n ¢ 0, and f,,=f, if n € 0,. Then

K(fl’ o 5fm)(x+y) = x+K(f15 e 9fm)y = K(fla e 9fm)z = 0.

Therefore K(fy,...,fn)y=—x. Since f, is the identity mapping for n€0,, it
follows from Theorem 1 that 0,(x)=0,(y), which is impossible.

Hence there is possibly only one j such that 0,(x)#0;(y).

Now assume that such a j exists and

dim 0,(x) > 14dim(0,(x) N 0,(»)).
Then it is not hard to see that there are linearly independent vectors x,;, x,, where
d, p €0; such that 0,(y) N (x,, x,)={0}. By Theorem 4, x+y is of rank 2. This
contradicts the hypothesis. Hence the proof is complete.
The above theorem contains the known facts in tensor, Grassmann and sym-
metric spaces as special cases. See Lemma 3.1 [14], Lemma 5 [3] and Theorem 1.14

[4].

3. Applications. As an application of Theorem 1 and Theorem 2, we prove
the following theorem which generalizes the result concerning intersection of tensor
products in [6, section 1.15].

THEOREM 9. Let U; and W; be subspaces of V; where U;=U,;), W;=W,,
Vi=Vyu fori=1,...,mand for all 0 € G. Then
(U19 MR Um)x(G) N (VVb e ey Wm)x(G) = (Ul N VVl, ey Um N Wm)x(G)
Proof. Clearly
UnW, oo, Uy N W)(G) € (Us, oo, Up)(G) N (Wi, - .o, W) (G).

Let z be a non-zero vector of (Uy,..., U,),(G) O (Wy,..., W,),(G). Then
z€ Ry((V1, - - - » Vi), (G)) for some positive integer k. By Theorem 2,

z€e Rk((UI’ AR ] Um)x(G)) N Rk((VVla cre Wm)x(G))-
Hence

z=xpb X = b

for some x;€R((Uy,...,U,),(G)) and some y,€R((Wy,..., W,)(G)),
1<i<m. By Theorem 1, for each orbit 0 of G, we have

k k
glo(xi) =z§1 0y:) = Wy N U, q€0.

Therefore z € (U N Wy, ..., U, 0 W,,),(G). This completes the proof.
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As an application of Theorem 1, we prove the following generalization of a
result of Marcus [9].

THEOREM 10. Let K(f1,...,fn)> K(g1,-..,8m) be two non-zero associated
transformations on (V, ..., V,),(G). Suppose that (i) for each orbit 0 of G and
each i €0, rank f;>|0]| or (i) y=1. Then K(f1, ..., n)=K(g1 ..., 8m) if and
only if f;=2;8; for some scalars A; with 22, . . . A,=1.

Proof. The sufficiency of the theorem is trivial. We proceed to prove the necessity.

Case (i). Let 0,={jy, ji, - - - » ji} be any orbit of G and s € 0,. Let v; € V, such that
fs(v)=2,50. Let z;, . .., z;,; be k+1 linearly independent vectors in the range
space of f,. Choose v; € V, such that f,(v,)=z;, i>2.

By the hypothesis on the rank of f;, we are able to choose for each 1<i<k a
decomposable element y;; * - * * * y,,, such that

{yi:ip cees yijk} = {Ula cees ”k+1}—{”i+1}
and

dim(f(y):1€0,) =10, r=>2,

where 0,, . .. , 0, are the other orbits of G. In view of Lemma 2,

K(fi, oo s fdar %0 % Vi) = K(815 0+« 5 8)Wir * = * * * Yi) # 0.
By Theorem 1,

01(f1(y1'1) *00k f(Vin)) = 00(81(Vi) * % 8(Vim)-
Hence

A /\ -
(Zes oo s Bigty oo v s Zpp) = (gs(vy), s gs(vz‘+1), evs 85(Upr))s i=1,...,k

This implies that

x /3 N
@ Q (Zes oo s Bigty v ooy Zpg1) = n1 (8s(01)s + + + 5 &s(Vig1)s « « + 5 &s(Vses))

Since z;, . . . , Zxy; are linearly independent, the left hand side of (1) is (z;). Since
the right hand side of (1) contains (g,(v,)) and g,(v,)#0, it follows that (z;)=
{f,(v))={(g(vy)). This shows that the rank of g,>k-+1. By symmetry, g,(u)#0
implies that (g,(w))={(f,(w)). Hence (f,(v))=(g,(v)) for all v € V,. This implies
that f,=A,g, for some scalar 4,. Clearly 4, ... 4,=1.

Case (ii). y=1. Let ;€ V4, ..., u, €V, such that f;(u;)#%0 and u;=u,; for
all i and for all 0 € G. Then

K(fla e ’fm)(ul L um) = K(gls MR ] gm)(ul ook um)'

Since yx=1, fi(uy) * - * fro(u,)=g1(u) * - - * * g,,(u,,)#%0. Theorem 1 implies
that (f;(u,))=(g;(w,)), i=1, ..., m. Similarly if w; € V, g;,(w,)#0 and w;=w,,, for
all i and o € G, then (g,(w,))=(f;(w,)). Hence (f;(v;))=(g:(v,)) for all v, €V,.
This implies that f;=A4,g; for some scalar 4;, 1<i<m. Clearly 4, ... 4,=1.
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