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Abstract

A cycle C of a graph G is dominating if V(C) is a dominating set and V(G)\V(C) is an independent set.
Wu et al. [‘Degree sums and dominating cycles’, Discrete Mathematics 344 (2021), Article no. 112224]
proved that every longest cycle of a k-connected graph G on n ≥ 3 vertices with k ≥ 2 is dominating if the
degree sum is more than (k + 1)(n + 1)/3 for any k + 1 pairwise nonadjacent vertices. They also showed
that this bound is sharp. In this paper, we show that the extremal graphs G for this condition satisfy
(n − 2)/3K1 ∨ (n + 1)/3K2 ⊆ G ⊆ K(n−2)/3 ∨ (n + 1)/3K2 or 2K1 ∨ 3K(n−2)/3 ⊆ G ⊆ K2 ∨ 3K(n−2)/3.

2020 Mathematics subject classification: primary 05C69; secondary 05C07, 05C38.
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1. Introduction

All terminology and notation not defined in this paper are the same as those in [2]. All
graphs considered in this paper are simple and undirected. Let G = (V(G), E(G)) be a
graph. Let H be a subgraph of G and v ∈ V(G). We use NH(v) to denote the neighbours
of v in H and dH(v) = |NH(v)|. If H = G, we write N(v) = NG(v) and d(v) = |N(v)|. If
S ⊆ V(G), then NH(S) = (

⋃
v∈S NH(v))\S, G[S] denotes the subgraph induced by S and

G − S = G[V(G) − S]. For two disjoint sets X, Y ⊆ V(G), E(X, Y) denotes the set of
edges between X and Y. For any x, y ∈ V(G), an (x, y)-path denotes a path starting at x
and ending at y.

The independence number and connectivity of G are denoted by α(G) and κ(G),
respectively. Denote by Kn a complete graph of order n. Let c(G) and p(G) denote the
order of a longest cycle and path in a graph G, respectively.

Let C be a cycle. We denote by
−→
C the cycle C with a given orientation and by

←−
C the

cycle C with the reverse orientation. If u, v ∈ V(C), then u
−→
Cv denotes the consecutive

vertices of C from u to v in the direction specified by
−→
C . The same vertices, in reverse
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order, are given by v
←−
Cu. If u = v, then u

−→
Cv = {u}. We will consider both u

−→
Cv and

v
←−
Cu as paths and vertex sets. We use u+i and u−i to denote the ith successor and

predecessor of u, respectively. In particular, u+ = u+1 and u− = u−1. If A ⊂ V(C), we
write A+i = {a+i | a ∈ A} and A−i = {a−i | a ∈ A}. In particular, A+ = A+1 and A− = A−1.
Similar notation is used for paths.

Let G be a simple connected graph. For an integer k ≥ 2, define

σk(G) = min
{ k∑

i=1

d(xi) | {x1, . . . , xk} is an independent set of G
}

if α(G) ≥ k and otherwise, σk(G) = ∞.
A cycle C of a graph G is dominating if V(C) is a dominating set and V(G)\V(C)

is an independent set. The problem of existence of cycles is a classic and widely
studied topic, of which the existence of dominating cycles is an interesting extension.
In 1980, Bondy [1] first gave a degree sum condition on 2-connected graphs such that
every longest cycle is dominating. In 2005, Lu et al. [4] studied the same problem to
3-connected graphs. In 2021, we extended these two results as follows.

THEOREM 1.1 (Wu et al. [5]). Let G be a k-connected graph on n vertices with k ≥ 2.
If σk+1(G) > (k + 1)(n + 1)/3, then every longest cycle is dominating.

In [1, 4, 5], the authors gave two examples G1 and G2 to show that the bounds
of their results are sharp: G1 = kK1 ∨ (k + 1)K2 and G2 = Kk ∨ (k + 1)K2. Let
G1 ⊆ G ⊆ G2 and S = V(G)\V((k + 1)K2). Clearly, n = |G| = 3k + 2, k = (n − 2)/3,
d(u) = (n + 1)/3 for u ∈ V(G)\S and d(u) ≥ (2n + 2)/3 for u ∈ S. Since G contains
Kk,2k+2 as its spanning subgraph and Kk,2k+2 is k-connected, G is k-connected. Any
independent set of G with cardinality k + 1 contains no vertex of S. Moreover, each
component of G − S = (k + 1)K2 contributes only one vertex to any independent
set of cardinality k + 1. Hence, σk+1(G) = (k + 1)(n + 1)/3. Since S is a vertex cut
of G and G − S = (k + 1)K2, any longest cycle uses at most k vertices of S and k
components of G − S. Therefore, G has no dominating cycle. Moreover, if k = 2 and
2K1 ∨ 3K(n−2)/3 ⊆ G ⊆ K2 ∨ 3K(n−2)/3, then σ3(G) = n + 1, G is 2-connected and G
has no dominating cycle. From this, we guess that these graphs are the extremal
graphs.

In this paper, we characterise the extremal graphs when the equality of the bound
of Theorem 1.1 holds. Our main result is the following.

THEOREM 1.2. Let G be a k-connected graph on n vertices with k ≥ 2. If
σk+1(G) ≥ (k + 1)(n + 1)/3, then every longest cycle is dominating or (n − 2)/3K1 ∨
(n + 1)/3K2 ⊆ G ⊆ K(n−2)/3 ∨ (n + 1)/3K2 or 2K1 ∨ 3K(n−2)/3 ⊆ G ⊆ K2 ∨ 3K(n−2)/3.

2. Proof of Theorem 1.2

Before proving Theorem 1.2, we shall give some notation and lemmas which were
introduced in [3, 5, 6].
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LEMMA 2.1 (Fournier and Fraisse [3]). Let G be a k-connected graph on n vertices
with k ≥ 2. If σk+1(G) ≥ c, then c(G) ≥ min{n, 2c/(k + 1)}.

Let G be a k-connected graph on n vertices with k ≥ 2 and C a longest cycle of
G with a given orientation. If C is not dominating, then we let H be a component of
G − V(C) with |H| ≥ 2 and NC(H) = {x1, x2, . . . , xt}, where the subscripts agree with
the orientation of C. Let ai be the first noninsertible vertex occurring on x+i

−→
Cx−i+1,

A = {a1, a2, . . . , at} and Ah = {ai | xi ∈ N(h)} for h ∈ V(H).

LEMMA 2.2 (Wu et al. [5]). A ∪ {h} is an independent set for h ∈ V(H).

LEMMA 2.3 (Wu et al. [5]). Suppose h1, h2 ∈ V(H) with h1 � h2 and ai, aj ∈ Ah1 with
i � j. Then d(h2) + d(ai) + d(aj) ≤ n + 1.

LEMMA 2.4 (Wu et al. [5]). Suppose h1, h2 ∈ V(H) with h1 � h2 and ai ∈ Ah1 , aj ∈ Ah2

with i � j. Then d(h1) + d(ai) + d(aj) ≤ n + 1.

LEMMA 2.5 (Wu et al. [5]). Suppose h1, h2, h3 are three distinct vertices of V(H)
and ai, aj, a� are three distinct vertices of A with ai ∈ Ah1 , aj ∈ Ah2 , a� ∈ Ah3 . Then
d(ai) + d(aj) + d(a�) ≤ n.

LEMMA 2.6 (Wu et al. [5]). Suppose h1, h2 ∈ V(H) with h1 � h2 and ai, aj, a� are three
distinct vertices of A with ai ∈ Ah1 , aj, a� ∈ Ah2 . Then d(ai) + d(aj) + d(a�) ≤ n + 1.

PROOF OF THEOREM 1.2. Let C be a longest cycle of G. Suppose C is not a domi-
nating cycle. Then |C| ≤ n − 2 and G − V(C) has a component H with |H| ≥ 2. Give C
an orientation

−→
C . Let NC(H) = {x1, x2, . . . , xt} where the appearance of {x1, x2, . . . , xt}

agrees with the orientation of
−→
C . Since G is k-connected, we have t ≥ k ≥ 2. Define

ai, A, Ah as at the beginning of this section. By Lemma 2.2, A ∪ {h} is an independent
set with at least k + 1 vertices for any h ∈ V(H). Let S = {v ∈ V(G) | d(v) ≤ (n + 1)/3}
and L = {v ∈ V(G) | d(v) > (n + 1)/3}.

Claim 1. d(u) = (n + 1)/3 for each u ∈ A ∪ NH(C).

PROOF. If A ∪ NH(C) ⊆ S, then since σk+1(G) ≥ (k + 1)(n + 1)/3 and A ∪ {h} is an
independent set with at least k + 1 vertices for any h ∈ NH(C), we can deduce that
d(u) = (n + 1)/3 for each u ∈ A ∪ NH(C). So it suffices to show that A ∪ NH(C) ⊆ S.

Suppose there exists a vertex ai of A such that ai ∈ L where 1 ≤ i ≤ t.
Assume ai ∈ Ah for some h ∈ V(H). Since G is k-connected and |H| ≥ 2, we have
|NC(V(H)\{h}))| ≥ k − 1. Take a subset X of NC(V(H)\{h})\{xi} with k − 2 vertices and
let AX = {aj | xj ∈ X}. We take a vertex x� ∈ NC(V(H) \ {h}) − X − {xi} if possible or
x� ∈ NC(h) − X − {xi} otherwise. By Lemma 2.2, {ai, a�, h} ∪ AX is an independent set
with k + 1 vertices. Since X ⊆ (NC(V(H − h))\{xi}), each vertex xj of X has a neighbour
in H different from h. Therefore, by Lemma 2.4, we have d(h) + d(ai) + d(a�) ≤ n + 1,
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and by Lemmas 2.5 and 2.6, we have d(ai) + d(ap) + d(aq) ≤ n + 1 for ap, aq ∈ AX .
Since ai ∈ L, we have d(ap) + d(aq) < 2(n + 1)/3 for ap, aq ∈ AX . Thus,

σk+1(G) ≤ [d(h) + d(ai) + d(a�)] +
∑

ap∈AX

d(ap)

< (n + 1) + (k − 2)(n + 1)/3 = (k + 1)(n + 1)/3,

which is a contradiction. Hence, A ⊆ S.
Suppose there is a vertex h∗ of NH(C) such that h∗ ∈ L. If t = 2, then

by Lemma 2.1, |C| ≥ 2(n + 1)/3 and as h∗ ∈ L, n = |G| ≥ |C| + |H| ≥ 2(n + 1)/
3 + d(h∗) − dC(h∗) + 1 > 2(n + 1)/3 + (n + 1)/3 − 2 + 1 = n, which is a contradiction.
Thus, t ≥ 3. Take xj ∈ NC(h∗). Since |NC(V(H)\{h∗}))| ≥ k − 1, we may assume
that hx� ∈ E(G) where h ∈ V(H)\{h∗} and � � j. By Lemma 2.4, we have d(h∗) +
d(aj) + d(a�) ≤ n + 1. Since h∗ ∈ L, we have d(aj) + d(a�) < 2(n + 1)/3. If t ≥ k + 1,
then we take a subset B of A\{aj, a�} with k − 1 vertices, and hence σk+1(G) ≤
d(aj) + d(a�) +

∑
ap∈B\{aj,a�} d(ap) < (k + 1)(n + 1)/3, which is a contradiction. Hence,

t ≤ k. Since t ≥ k, we have t = k. Therefore, A ∪ {h∗} is an independent set with k + 1
vertices. Since A ⊆ S and d(h∗) + d(aj) + d(a�) ≤ n + 1,

σk+1(G) ≤ [d(h∗) + d(aj) + d(a�)] +
∑

ap∈A\{aj,a�}
d(ap) ≤ (k + 1)(n + 1)/3.

As σk+1(G) ≥ (k + 1)(n + 1)/3, we have σk+1(G) = (k + 1)(n + 1)/3. Therefore,
d(h∗) + d(aj) + d(a�) = n + 1 and d(ap) = (n + 1)/3 for ap ∈ A\{aj, a�}. Since
h∗ ∈ L, we have d(aj) + d(a�) < 2(n + 1)/3. Hence, min{d(aj), d(a�)} < (n + 1)/3. If
max{d(aj), d(a�)} < (n + 1)/3, then as t ≥ 3 and d(ap) = (n + 1)/3 for ap ∈ A\{aj, a�},
we have d(h∗) + d(aj) + d(ap) > n + 1 for ap � Ah∗ or d(h∗) + d(a�) + d(ap) > n + 1,
for otherwise, we have a contradiction to Lemma 2.4. Thus, max{d(aj), d(a�)} =
(n + 1)/3 as A ⊆ S. Moreover, A\{a�} = Ah∗ if d(a�) < (n + 1)/3 and Ah∗ = {aj} if
d(aj) < (n + 1)/3. Since t ≥ 3, we take aq ∈ A\{aj, a�}. If d(aj) < (n + 1)/3, then
d(a�) = (n + 1)/3 and A∗h = {aj}. Hence, aq � Ah∗ . If aq ∈ Ah, then d(h∗) + d(a�) +
d(aq) > n + 1, which is in contradiction to Lemma 2.3. Thus, aq � Ah. By Lemma 2.4,
d(h) + d(a�) + d(aq) ≤ n + 1. Since d(ap) = (n + 1)/3 for ap ∈ A\{aj, a�},

σk+1(G) ≤ d(h) + d(a�) + d(aq) + d(aj) +
∑

ap∈A\{aj,a� ,aq}
d(ap) < (k + 1)(n + 1)/3,

which is a contradiction. Thus, d(aj) = (n + 1)/3 and so d(a�) < (n + 1)/3 and
A\{a�} = Ah∗ . Thus, aq ∈ Ah∗ and d(h) + d(aq) + d(aj) ≤ n + 1 by Lemma 2.3. Since
d(ap) = (n + 1)/3 for ap ∈ A\{aj, a�},
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σk+1(G) ≤ d(h) + d(aq) + d(aj) + d(a�) +
∑

ap∈A\{aj,a� ,aq}
d(ap) < (k + 1)(n + 1)/3,

which is a contradiction. Thus, NH(C) ⊆ S. �

Claim 2. dC(h) ≥ 2 for each h ∈ V(H).

PROOF. By Lemma 2.2, {h, a1, . . . , ak} is an independent set with k + 1 vertices for
each h ∈ V(H). By Claim 1, A ⊆ S and hence

(k + 1)(n + 1)/3 ≤ σk+1(G) ≤ d(h) +
k∑
�=1

d(a�) = d(h) + k(n + 1)/3.

Thus, d(h) ≥ (n + 1)/3. If dC(h) ≤ 1, then by Lemma 2.1,

n ≥ |C| + |H| ≥ |C| + d(h) − dC(h) + 1 ≥ 2(n + 1)/3 + (n + 1)/3 − 1 + 1 = n + 1,

which is a contradiction. Hence, dC(h) ≥ 2. �

By Claim 2, NH(C) = V(H), and hence by Claim 1,

d(u) = (n + 1)/3 for each u ∈ V(H) ∪ A. (2.1)

For convenience, we assume V(H) = {h1, h2, . . . , h|H|} in what follows.

Claim 3. |H| = 2 or |NC(H)| = 2.

PROOF. If there exists a matching M with three independent edges between V(H)
and V(C), we write M = {xihi, xjhj, x�hk} where hi, hj, hk ∈ V(H). By Claim 1,
d(ai) + d(aj) + d(a�) = n + 1, which is in contradiction to Lemma 2.5. Therefore,
the maximum matching number between V(H) and V(C) is no more than 2. If |H| = 2,
then the result holds. So we may assume that |H| ≥ 3. If k ≥ 3, then as G is k-connected
and |H| ≥ 3, there exist three independent edges between V(H) and V(C), which is a
contradiction. Hence, k = 2. Since k = 2 and |H| ≥ 3, there exist two independent edges
between between V(H) and V(C). Suppose xphp, xqhq ∈ E(G) where hp, hq ∈ V(H).
Since the maximum matching number between V(H) and V(C) is no more than 2, we
have NC(V(H)\{hp, hq}) ⊆ {xp, xq}, and hence by Claim 2, NC(V(H)) = {xp, xq}. That
is, |NC(H)| = 2. �

Claim 4. We have:

(1) NC(hi) = NC(H) for 1 ≤ i ≤ |H|;
(2) H is complete;
(3) |H| = 2, |C| = n − 2 and t = (n − 2)/3, or |H| = (n − 2)/3, |C| = (2n + 2)/3 and

t = 2;
(4) |x+i

−→
Cx−i+1| = |H| for 1 ≤ i ≤ t (where i + 1 is taken modulo t).

PROOF. First we consider the case |H| = 2. Clearly, H � K2. Since d(hi) = (n + 1)/3
for 1 ≤ i ≤ 2 and H � K2, we have dC(hi) = d(hi) − dH(hi) = (n − 2)/3. Suppose
|NC(h1) ∩ NC(h2)| = r. Since H � K2 and by the maximality of C, we have
|x+i
−→
Cx−i+1| ≥ 2 for xi ∈ NC(h1) ∩ NC(h2) and |x+i

−→
Cx−i+1| ≥ 1 otherwise. Therefore,
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n − 2 ≥ |C| ≥ 3r + 2[(n − 2)/3 − r] + 2[(n − 2)/3 − r] = (4n − 8)/3 − r and hence
r ≥ (n − 2)/3. Since r ≤ dC(hi) = (n − 2)/3 for i = 1, 2, we have r = dC(hi) = (n − 2)/3
for i = 1, 2, and hence NC(H) = NC(h1) = NC(h2) and t = (n − 2)/3. Finally, since
r = (n − 2)/3, we have n − 2 ≥ |C| ≥ (4n − 8)/3 − r = n − 2 and hence |C| = n − 2.
Moreover, |x+i

−→
Cx−i+1| = 2 for each 1 ≤ i ≤ t.

Now we consider the case |H| ≥ 3. Since |H| ≥ 3 and by Claim 3, |NC(H)| = 2,
and hence by Claim 2, NC(hi)=NC(H)= {x1, x2} for 1≤ i≤ |H|. Since d(hi)= (n+1)/3
and dC(hi) = 2, we have dH(hi) = (n − 5)/3 for 1 ≤ i ≤ |H|, and hence by Lemma 2.1,
n ≥ |H| + |C| ≥ 1 + dH(hi) + 2(n + 1)/3 = n. Therefore, |C| = 2(n + 1)/3 and |H| =
(n − 2)/3. Since dH(hi) = (n − 5)/3 for 1 ≤ i ≤ |H| and |H| = (n − 2)/3, H is complete
and so there exists a Hamiltonian path Q connecting h1 and h2 in H. Since
NC(hi) = {x1, x2} for 1 ≤ i ≤ |H|, we have x1h1, x2h2 ∈ E(G), and hence, x1h1Qh2x2

−→
Cx1

is a cycle. By the maximality of C, |x+1
−→
Cx−2 | ≥ |Q| = |H| = (n − 2)/3. Likewise,

|x+2
−→
Cx−1 | ≥ (n − 2)/3. Hence, (2n + 2)/3 = |C| = |x+1

−→
Cx−2 | + |x

+
2
−→
Cx−1 | + |{x1, x2}| ≥ (2n +

2)/3. Thus, |x+i
−→
Cx−i+1| = |H| for 1 ≤ i ≤ 2. �

By Claim 4(1), xih1, xi+1h2 ∈ E(G) where i is taken modulo t. By Claim 4(2),
H is complete. Let Q be a Hamiltonian path connecting h1 and h2 in H. Let
C = xih1Qh2xi+1

−→
Cxi. Clearly, C is a cycle of G. By Claim 4(4), |x+i

−→
Cx−i+1| = |H| = |Q|

and hence |C| = |C|. By the maximality of C, C is a longest cycle. Let H be a
component of G − V(C). Observing that x+i

−→
Cx−i+1 is a path of some component of

G − Cwith |x+i
−→
Cx−i+1| = |H| = n − |C| = n − |C|, it follows that x+i

−→
Cx−i+1 is a Hamiltonian

path of H . Hence, |H| = |H|. It is clear that (2.1) and Claim 4 hold for (C,H) with
respect to (C, H).

If |H| = (n − 2)/3, then |H| = |H| = (n − 2)/3. By Claim 4(3), |NC(H)| = 2,
and since x+i xi, x−i+1xi+1 ∈ E(G), x+i , x−i+1 ∈ V(H) and xi, xi+1 ∈ V(C), we have
NC(H) = {x1, x2}. By Claim 4(1), NC(u) = {x1, x2} for u ∈ V(H). Additionally,
|H| = (n − 2)/3 and by Claim 4(2), H � K(n−2)/3. Therefore, by the choice of i,

G[x+1
−→
Cx−2 ] � K(n−2)/3, G[x+2

−→
Cx−1 ] � K(n−2)/3 and N(u) = {x1, x2} for u ∈ V(C)\{x1, x2}.

By Claim 4(2) and (1), H � K(n−2)/3 and N(h) = {x1, x2} for any h ∈ V(H). It follows
that G � 2K1 ∨ 3K(n−2)/3 or G � K2 ∨ 3K(n−2)/3.

If |H| = 2, then |H| = |H| = 2 and hence H � K2. By Claim 4(3), |NC(H)| =
(n − 2)/3. Since (2.1) holds for H and H � K2, we have dC(x+i ) = (n − 2)/3.
Since x+i xi ∈ E(G) where x+i ∈ V(H) and xi ∈ V(C), we have xi ∈ NC(x+i ). Since
dC(x+i ) = (n − 2)/3, H � K2 and by Claim 4(1) and the maximality of C, we
have NC(x+i ) = {x1, x2, . . . , x(n−2)/3}. By Claim 4(1), NC(u) = {x1, x2, . . . , x(n−2)/3} for

u ∈ V(H). Thus, by the choice of i, G[x+i
−→
Cx−i+1] � K2 and NC(u) = {x1, x2, . . . , x(n−2)/3}

for u ∈ x+i
−→
Cx−i+1 for any 1 ≤ i ≤ (n − 2)/3. Therefore, together with Claim 4, we deduce

that (n − 2)/3K1 ∨ (n + 1)/3K2 ⊆ G ⊆ K(n−2)/3 ∨ (n + 1)/3K2.
This completes the proof. �
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