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1. Introduction. The geometry of slides and turns of oriented lineal elements 
in the plane was first studied by Kasner [10]. Slides and turns generate whirls, 
which constitute a three-parameter group Wz. The product of Wz and Mz, the 
three-parameter group of Euclidean displacements in the plane, yields a six-
parameter group of whirl-motions1 G&. The geometry of turbines2, and also of 
general series of lineal elements, under G6 was investigated by Kasner in [10] 
and, in subsequent papers, by Kasner and DeCicco, particularly in [3], [4], [11], 
[12]. The author investigated the geometry of series of lineal elements under 
the seven-parameter group of whirl-similitudes G7 (of which GQ is a subgroup) 
in [6], [7], [8]. Among other things, the author showed that G7 is isomorphic to 
the group of collineations of the points in quasi-elliptic three-space, the geometry 
of which had been previously studied by Blaschke [1], [2] and Griinwald [9]; he 
also showed how the geometry of Wz, G%, and £7 can be interpreted kinematically 
as the displacement of one plane over another. 

In this paper we investigate the geometry of spherical whirls and whirl-
rotations of oriented lineal elements on a sphere. Some results in this field have 
already been obtained by Strubecker [15], who mapped the points of elliptic 
three-space Ez one-to-one upon the oriented lineal elements of a unit sphere. 
Using synthetic methods, Strubecker deduced, from the geometry of lines in Ez, 
theorems on spherical turbines and families of curves on a sphere, analogous to 
others found by Kasner for the plane [10]. We pursue the geometry of whirls 
and whirl-rotations on a sphere in other directions and by means of other 
methods. With the aid of quaternions we shall investigate the differential 
geometry of series of lineal elements on a sphere subject to two groups, SB3 

and @6—analogous respectively to Wz and Ge in the plane—determining their 
fundamental differential invariants and ''Serret-Frenet formulae." Our princi­
pal objective is to present a characterization of the geometry of whirls and 
whirl-rotations on a sphere in terms of the kinematic geometry of continuous 
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Glides and turns of non-oriented lineal elements in the plane had been previously used by 
Scheffers [14] in an investigation of certain groups of contact transformations. Whirls are 
not contact transformations. 

2A turbine is a series of oriented lineal elements the points of which lie on a circle (which 
may be a point circle), and the (oriented) lines of which are tangent to a concentric oriented 
circle. 

Turbines in space were studied by A. Narasinga Rao [13] and Feld [5]. 
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displacements of one unit sphere over another, similar to the kinematic in­
terpretat ion we gave in [8] of whirls and whirl-motions in the plane in terms of 
continuous displacements of one plane over another. The use of quaternions 
has the advantage of making it particularly easy to map oriented lineal elements 
on a sphere into the points of E 3 . We indicate by means of this mapping how 
the differential geometry under ©6 of series on a sphere can serve as a model for 
the geometry of curves in Ez. 

2. Whirl-rotations and turbines. Let the uni t sphere S have its centre a t 
the origin 0 of a right-hand orthogonal coordinate frame f0. If an oriented lineal 
element e is tangent to S a t the point P , we shall call the great circle through P 
tangent to e and oriented like e the great cycle of e. Let the lineal element eo have 
its point a t (1,0,0) and let it be directed so tha t its great cycle passes through 
(0,1,0) and is oriented in the counter-clockwise sense, when viewed from the 
point (0,0,1). We shall call Co the primitive lineal element on S, and |0 its 
associated frame. 

Let go, ei, 02, ^3 be the quaternion units such tha t 

eoe t = eteo = eu d = e2 = e?> = eie^e?, = — 1 ; 
and let 

X = Xo^O + X ^ i + X202 + #303, X = Xo^O — #1^1 ~ #2^2 "" #3^3. 

Then a rotation of S around an oriented diameter is given by Hamil ton 's formula 

N(x)u* = xux, N(x) = xx f 

where u and w* are unit vectors emanat ing from 0. The components xt of x are 
the homogeneous Euler parameters of the rotation. If e is any lineal element 
on S and x is the quaternion of the rotation Co —> e, we shall call the components 
of x the homogeneous coordinates of e. For convenience, when no confusion will 
result, we shall let the quaternion x designate both the rotation eo —> e and the 
lineal element e. Evidently, if x designates e, so does kx, where k is a non-zero 
scalar. If N(x) = 1, we shall call x a normalized quaternion and represent it 
in bold type : x. T o any quaternion x, N(x) 9e 0, correspond two normalized 
ones, namely ± x/[N(x) ] \ If the rotation x rotates Co —> e around the unit 
vector v through the angle 26, we can let 

X = — cos 9 + v sin 0 
and 

— X = — cos (T — 6) + v sin (ir — 6) (v = — v). 

The rotation x also rotates fo into another Cartesian frame f, si tuated relative 
to e as fo is si tuated relative to eo,' we shall call f the frame associated with e. 

A lineal element transformation x —•» x* given by the equation (in which we 
suppress the factor of proportionality) 

(2.1) x* = xa, 

where 
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a = — cos a + u sin a (it = — 1), 

represents a rotation of all the lineal elements on S around the unit vector u 
through the angle 2a. We shall call such transformations lineal element rotations, 
and we shall let the quaternion a represent the lineal element rotation (2.1). 
The lineal element rotations constitute a three-parameter group Wlz. 

A lineal element transformation x —» x* whereby every lineal element x is 
rotated through the same angle 2/3 around a unit vector ux, situated relative to 
the frame f associated with x as an arbitrarily given unit vector u(} is situated 
relative to fo, shall be called a (spherical) whirl. 

Let the rotation around u0 through the angle 2/3 be denoted by the quaternion 
b where 

b = — cos /3 + Uo sin £. 

Then x*x = xxb, so tha t the whirl x-*x* is given within a factor of proportion­
ality by the equation 

(2.2) x* = bx. 

The whirls constitute a three-parameter group of lineal element transformations 
2B3, skew-isomorphic to $ft3. 

The product of a whirl and a lineal element rotation is commutat ive. A 
transformation which is the. product of a whirl and a lineal element rotation 
shall be called a whirl-rotation. Whirl-rotations x —* x* are given by the equation 
(the factor of proportionality being suppressed) 

(2.3) x* = bxa. 

The whirl-rotations constitute a six-parameter group ®6. 
Let the symbol (x,y) represent the scalar product of two lineal elements x and 

y, defined as follows: 

Since xy -{- yx = xy + yx, we also have 

(x,y) = ife7 + 2/*). 
With the aid of this definition we obtain the following useful equalities: 

(x, y) = (y, x), (x, x) = N(x) — xx, 

(ax, y) = (x, ay) — a(x, y) (a a scalar), 
(2 4) 

(x, y + z) = (x, y) + (x, z), 

(bxa, bxy) = (a, a)(b, b)(x, y). 

Since iV(xy) = 1, we can let xy equal either — cos ô + v sin b or — cos(7r — b) 
+ z; sin(7T — ô), v2 = — 1. Therefore (x,y) = — cos b in the former case 
and — cos(7r — b) in the latter. Thus cosê = ± (x,y). We shall call b and 
7T — b (0 < <5 < x) , the distances between # and j : x and y coincide only when 
b = 0 or 7r. 
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Evidently 

(2.5) COS 0 = 
(x,y) 

(x,x)(y,y)' 
If (x,y) = 0, in which case ô = \-K, we shall say that x and y are orthogonal. 

If we subject x and y to the whirl-rotation (2.3) we obtain, by virtue of the 
last equation in (2.4), 

(x*fy*) = (a, a) (&,&)(*, y). 

This yields 

THEOREM 2.1. Under the group of whirl-rotations a pair of elements x and y 
have an invariant cos2 5, given by (2.5), ô andir — ô being the distances between 
x and y. 

Let the lineal elements x and y be distinct, that is, cos2 à 9e 1. The oo1 lineal 
elements z defined by the equation 

(2.6) z = ax + fty (a, p real scalars, a2 + 02 ^ 0), 

shall be called a linear series of lineal elements. From (2.6) we obtain with the 
aid of (2.4) 

(x, z) = a(x, x) + P(x, y)t 

(y,z) = a(x, y) + /3(y,y), 

(s, z) = a(x, z) + /3(y, z). 

Eliminating a and /3, we obtain 

(x, x) (x, y) (x, z) 

(2.7) D = I (y, x) (y, 3O (y, z) | = 0 . 

(s, x) (z,y) (z, z) 

The following theorems can now be easily established. 

THEOREM 2.2. Two distinct lineal elements determine a linear series. 

THEOREM 2.3. A necessary and sufficient condition that three lineal elements 
x,y and z lie on a linear series is that D — 0. 

Let q, N(q) = 1, be a given lineal element, and let a = — cos 6 + r sin 0, 
where r is a constant unit vector and 9 is variable. The lineal element 

(2.8) x = qa, N(q) = 1, 

is obtained by rotating q around the vector r through the angle 2d. It will be 
convenient hereafter to let a unit vector v designate also the point on 5 that has 
for its Cartesian coordinates the components of v. As 6 varies from 0 to ir, x 
describes a series of lineal elements, the points of which lie on a circle c (which 
may be a point circle) having its centre at r, and the great cycles of which make 
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the same angle with c. Such a series shall be called a spherical turbine; c shall 
be called the circle of the turbine, and the points r and — r the centres of the 
turbine. If we select three lineal elements (2.8) by assigning three arbitrary 
values to 0, we find that their quaternions satisfy (2.7); consequently, spherical 
turbines are linear series. 

Let us define 
I = qrq. 

Evidently / is a constant unit vector. Since 

xrx = (qa)rÇqâ) = q(ara)q = qrq = I, 

the turbine X defined parametrically by means of (2.8) has the non-parametric 
equation 

(2.9) xlx = r, (xx = 1). 

But the equation of X can also take the form x( — l)x = — r; therefore, the 
lineal elements of X are represented by those quaternions x which correspond 
to the rotations of the unit sphere S that carry point / to r, and point — / to 
— r; that is to say, the quaternions x correspond to the rotations of S that 
carry the oriented diameter — I—* I into — r —» r. 

3. The kinematic representation of turbines. Let us consider two concentric 
unit spheres Si (the left sphere) and ST (the right sphere). Let the pair of dia­
metrically opposite points I and — / lie on Sh and let the pair of points r and 
— r lie on Sr. We can now map the turbine X upon two ordered pairs of points 
on Si and Sr, namely, l,r and the diametrically opposite pair — /, — r. We 
shall call l,r (or, alternatively, — /, — r) respectively the left and right coordinates 
of Xj and let either of the symbols [/, r] or [— /, — r] represent X. Let this 
mapping whereby every turbine X on S corresponds to two pairs of image points 
on Si and Sr be called the kinematic representation ^T We can make ^ one-
to-one by orienting the turbines on S. With every turbine X we associate two 
oriented turbines X+ and X~ by assigning to X+ the centre r and to X~ the centre 
— r. A one-to-one kinematic representation of oriented turbines is brought about 
by choosing the pair of points l,r as the image and [/, r] as the symbol of X+, and 
the pair — /, — r as the image and [ — /, — r] as the symbol of X~~. The simul­
taneous reflection of the points on Si and Sr in their common centre corresponds 
to a reversal of the orientation of the turbines on 5. 

Let X: [/, r] be the turbine determined by the two lineal elements x and y. 
The parametric equation (2.8) of X yields 

y = x(— cos# + run 6). 

Since 

xy + yx = - 2 cos 6, 

6 is a distance between x and y; moreover, since 
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xy — yx = 2r sin 6 = 2r sin «5, 

where ô is either distance between x and y, we obtain 

T H E O R E M 3.1. The turbine determined by the lineal elements xy y (x ¥" d= y ) , has 
turbine coordinates I, r given by the formulae 

, _ yx — xy _ xy — yx 

2{(x,x)(y,y)}i ' 2{(x, x)(y, y)}* 

where 5 is a distance between x and y. 

Evidently all turbines have the same " length" w. 
Because equation (2.9) can be regarded as a necessary and sufficient condition 

for the incidence of a turbine [l,r] and a lineal element x, we obtain 

T H E O R E M 3.2. To the °°2 oriented turbines X incident to a given lineal element x 
on S correspond, by virtue of the one-to-one mapping ^, °o 2 left image points I on 
Si and oo 2 right image points r on Sr, so that the rotation of Si that corresponds to 
the quaternion x brings the °° 2 left image points into coincidence with their œ 2 

associated right image points. 

The whirl-rotation (2.3) transforms [/, r] into [/*, r*] where /* = b / b , 
r* = a r a. 

T h e set of œ 2 lineal elements orthogonal to a given lineal element u shall be 
called a planar field The elements x of this planar field g are given by the para­
metric equation 

(3.1) x — ua, a + a = 0, ad = 1. 

Eliminating a we obtain the non-parametric equation of g : 

(3.2) ûx + xu = 0. 

The four components of u determine % and shall be called the homogeneous 
coordinates of %. 

If the lineal elements y and z lie in the field u, x — ay + (3z (a and P real 
scalars) satisfies (3.2) identically. Therefore the turbine determined by y and z 
lies in u. 

By means of the whirl-rotation x —> bxa the planar field u is transformed into 
the planar field u* where 

(3.3) u* = bua. 

Hence we obtain 

T H E O R E M 3.3. Whirl-rotations transform planar fields into planar fields. 

We can regard (3.3) as the equation of ©6 in planar field coordinates. 
If the lineal elements y and z determine the turbine [/, r], then, in order t ha t 

[/, r] lie in the field u, it is necessary and sufficient tha t y and z satisfy (3.2). 
Hence 

ûy = — yu, ÛZ = — £u, 
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and therefore 

zy = Ûzyu, yz = uyzw, 
consequently 

yz — zy = û(yz — zy)u. 

Using the formulae for / and r given in Theorem 3.1 we obtain 

(3.4) û/u = - r 

as a necessary and sufficient condition that the turbine [/, r] lie in the field u. 
We now have 

T H E O R E M 3.4. By means of ^ the <*>2 oriented turbines that lie in a planar 
field u are mapped upon pairs of points Z, r on Si and ST respectively, so that a 
symmetry {that is, an improper orthogonal transformation) will transform the left 
image points into their corresponding right image points; the homogeneous Ruler 
parameters of this symmetry are the coordinates of the planar field u. 

The companion Theorems 3.2 and 3.4 justify calling $f a kinematic 
representation. 

Inasmuch as planar fields are transformed like lineal elements by whirl-
rotations, we define the angles <j> and TT — <j>, 0 < <j> < w, between the two planar 
fields u and v by an expression dual to tha t used for the distances between two 
lineal elements, namely, 

(3.5) cos <j> 
2 , (U, V)2 

(u, u)(v, v)' 

Let the lineal element u be called the pole of the planar field u. The following 
theorems are now easily established. 

T H E O R E M 3.5. The angle between two planar fields is equal to the distance 
between their poles. 

T H E O R E M 3.6. Two planar fields u and v intersect in a turbine [l,r] where 

. _ (uv — vu) esc 4> __ (ûv — vu) esc 4> 
" 2\{u,u)(v,v)}^' r " 2{ («,«)(*,*;)} * 

and 4> is either one of the angles between u and v. 

If xf y and z are three linearly independent lineal elements, there exists a 
unique lineal element u orthogonal to all of them. Since u must satisfy the 
equations 

Ux + xu = Uy + yu = ûz + zu = 0, 

the components of u are given by 

u0:ui:u2:uz = I^O^I : — l^o^s] : |x0yi23| : — |x0^iZ2|. 

This yields 
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THEOREM 3.7. A planar field is determined by three linearly independent lineal 
elements. 

THEOREM 3.S. If x, y, and z are linearly independent lineal elements, the <»2 

lineal elements 
w = ax + f3y + yz (a, 0, y real numbers) 

constitute the planar field determined by x, y, and z. 

4. Differential invariants of series of lineal elements under 28 3 and 9K3. 
A series of lineal elements on S is a one-dimensional extent of lineal elements 
defined by 

(4.1) x = x(t) 

where t is a real parameter. We assume that dx/dt ^ 0 in the interval t\ < t < t2 

and that x(t) has a continuous second derivative. We can, without loss of 
generality, also assume that x(t) is normalized, that is, that 

(4.2) x(t)x(t) = 1. 

In addition we assume, as we may, that the quaternions a and b that appear in 
the lineal element rotation and whirl x-^bx are normalized, so that 
normalized series are transformed by these transformations into normalized 
series. 

Let the whirl b transform the series @: (4.1) into the series ©*: x*(t). Then 

da = dxdx = dx*dx* 

is invariant. We shall call 
[t (dxdxyJl 

the 3B3-arc length of © measured from /0 to t. Let the equation of © be expressed 
in terms of the invariant parameter a. Then, letting x' = dx/da, we have 

(4.3) x(<r)x(a) = 1, x'x = 1. 

Evidently 

(4.4) Z = xx 

is a differential invariant under SB3. Equations (4.3) yield 

(4.5) xx + x'x = 0, N(x) = N(x) = 1. 

Therefore Z(a) is a unit vector. The three components of Z, namely 
Zi (i = 1,2,3) where Y,Z\ = 1, are differential scalar invariants of © under 8B3. 

We proceed to find geometric interpretations for <r and Z. Let us consider 
the distance A5 between the lineal elements x(<r) and x(a + Ac) on ©. Since 

2 cos A5 = x(a)x(a + Aa) + x(<r + Ac)x(o-) 

(see §3), we obtain 
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2( — ) = — (xx ' + x'x). 

But differentiation of the first equation in (4.5) yields 

(4.6) xx + x x = — 2. 

Hence 

da — ± do. 

Next, let us consider the turbine X:[l,r] with centres a t r and — r, tangent to 
© a t ao. By Theorem 3.1 

r = lim ^[x(a0)x(ao + Ao-) — X(CT0 + Ao-)x(o-0)] esc Ao-. 
Ac—>o 

Since xx' is a unit vector, we obtain 

r = i [ x ( ( 7 o ) x , ( o - 0 ) — ^ , (o -o )x ( (7o) ] = x((7o)x'((7o) = Z( (7o ) . 

Therefore Z(o-) and — Z(a) are the loci of the centres of the turbines tangent 
to the series ©. 

Under the group 9J?3 we obtain the same invariant parameter a as under 3353, 
and we assume again tha t © is expressed in terms of this parameter. I t is evident 
tha t the unit vector 

(4.7) W = xx 

is invariant under 9K3. The turbine tangent to © a t a0 has a left image vector I 
which, by Theorem 3.1, is given by 

/ = lim |[x(o"o + Acr)^(c70) — x(ao)x(a0 + Ao-)] esc Ao-

= X (a0)x(a0) = W(a0). 

Consequently we obtain a geometric interpretation of the differential invariant 
W(v) of © under 9W3, namely, the locus of the left image point / of the turbines 
tangent to ©. 

Differential invariants of © of higher order relative to SB3 Wtz] result from 
differentiating Z{o) \W(CF) ] with respect to a. 

T o find kinematic interpretations for Z(a) and W(a), we proceed as follows: 
Let Sf and Sm be two unit spheres concentric a t 0 ; Sr is fixed in position bu t 

Sm is mobile around 0. Let tf be a primitive lineal element on Sf and let Ff be 
its associated rectangular Cartesian frame. Let cTO be an arbi trary (primitive) 
lineal element on Sm and Fm its associated frame ; ew and its frame Fm are mobile 
with Sm relative to Sf and tf. Lineal elements and points on Sf will be referred 
to C/ and Ff, bu t lineal elements and points on Sm will be referred both to em and 
tf, or, what is equivalent, to their associated frames. Let the initial position 
of cTO, and therefore also of Sm, relative to 6/ be given by the quaternion .To, 
namely, the quaternion of the rotation tf —> em. As Sm undergoes a continuous 
displacement ^ a r o u n d 0, ew traces on Sf a series © which, referred to tfy has 
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the equation x = x(a), where x0 = X(<TQ) denotes the initial position of tm. © de­
fines completely the displacement ^. But ^ can be defined as well by a 
series ©* traced on Sf by any other lineal element e*m on Sm. Let the quaternion 
tha t determines the position of e*m relative to e /be x*0; then, if x*o = bxQ is the 
whirl em —> c*TO, this whirl also transforms © —» ©*. 

Let P be a point on Smi and let its coordinates, when referred to em, be the 
components of the unit vector v. Then, referred to tf on 5/ , P has for its co­
ordinates the components of the unit vector 

(4.8) V = xvx, 

because the rotation tha t t ransports ef —-> em transforms v —» V. During the 
motion x(a) of Sm the vector V describes a cone, the intersection of which with 
S; is the trajectory tha t the point P of Sm traces on Sf. T o find the poles (instan­
taneous centres of rotation) of the motion, we seek those points F on Sf for which 
Vf(a) = 0 . From (4.8) we getxV + x'V = vx''. Consequently V = xfvx\ and 
therefore x' Vx! = v = x Vx. Hence 

V — xxVxx , 

which implies tha t V is collinear with the vector xx'. Therefore the locus of the 
pole on the fixed sphere (the fixed ox space centrode) is ± Z{a). 

The locus of the pole on the mobile sphere (the mobile or body centrode), 
referred to em, is 

(4 .9) V = xVx — x ( z b Z)x = zb XXX X = db X X = dz W(( r ) . 

During the displacement 2$ defined by the series ©, the curve W(a) on Sm 

rolls without slipping on the curve Z(a) on 5/ , while, of course, — W(a), dia­
metrically opposite to W(a) on 5 m , rolls on — Z(a). The motion ^ is com­
pletely determined by the centrodes Z(a) and W(a)} which, in turn, are de­
termined by S*. However, it should be observed tha t the equation of the 
mobile centrode is referred not to tf bu t to any lineal element of ©, say to 
em:x(<ro). Therefore, if we replaced on .Smth.e primitive element em by another 
primitive element e*m: x*, the motion .5? tha t was defined by the series © traced 
out on Sf by tm would instead be defined by a series ©* traced out on 5 / by e*w. 
But now the mobile centrode would be referred to e*m and, according to (4.9), 
would be given by W = ± x*Zx*. Consequently the motion ($ is determined 
by the fixed centrode ± Z(a) and an arbi t rary primitive lineal element. If w 
is the whirl ew —> e*w, w transforms the series © generated by tm into the series 
©* generated by e*m. Since © and ©* define the same motion ^ , and & is 
defined by ± Z(a) and an arbi t rary lineal element on Sm, Z(o) determines a 
series within a whirl. We can therefore regard Z = Z(a) as the intrinsic equation 
of a series relative to 2B3. 

The motion defined by a turbine [/, r] is a continuous rotation of Sm around 
the diameter (— I —> I), and therefore has for its fixed [mobile] centrode the pair 
of diametrically opposite points ± r[ ± / ] . If Qt is a displacement defined by 
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a series © other than a turbine, the fixed [mobile] centrode of ^ is the locus 
of the right [left] image points ± r(a) [ ± 1(a) ] of the turbines tangent to @. 

5. Differential invariants of series under @6. Let the series © have the 
equation 

(5.1) x = x(t), x(t)x(t) = 1, 

where x(t) has a continuous third derivative in the interval t\ < / < h in which 
dx/dt 9e 0. Subjecting © to the whirl-rotation 

x* = bxa, N(a) = N(b) = 1, 

we obtain 
dx*dx* = b dx aâdxb — dx dx. 

We let the invariant dx dx = da*1 as before, but now we designate 

( dx dxy. 
dt dt / 

as the @6-arc length of © measured from /0 to /. Let the parameter / i n (5.1) 
be expressed in terms of a; then the equation of © becomes x = x(a) where 

(5.2) x(a)x(a) = 1, x(a)x'(a) = 1. 

We shall consider only series x(a) for which 

(x f x ) — 1 9^ 0 

in the interval o-i ^ a ̂  o-2. The significance of this restriction will be ex­
plained later. 

Let us associate with any lineal element a of © in the interval (0-10-2) a frame 
composed of four mutually orthogonal lineal elements represented by the normal­
ized quaternions £* (i = 1,2,3,4) in the following manner: 

According to (5.2), x and x' are normalized quaternions. Moreover, 

(5.3) xx + x x = 2(x, x ) = 0. 

Therefore x and x' are orthogonal lineal elements. Let 

(5.4) £x = x, £2 = x'. 

The second equations in (5.2) and (5.3) yield 

(5.5) (x , x ) = 0, (x, x ) = — 1. 

Let y = x + ax" where a is a scalar. We seek a value for a for which (x, 3/) = 0. 
Since 

(x, ;y) = (x, x) + a(x, x ) = 1 — a, 

we obtain a = 1. Therefore y = x + x", and 3/ is consequently orthogonal to 
x and to xf. Now 

iV(y) = (x + x ,x + x")= (x, x) + 2(x, x ') + (x , x ) = (x , x ) - 1 ^ 0 . 
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Let 

(5.6) É8 = 
X + X 

Thus £3 is a normalized quaternion that represents a lineal element orthogonal 
to £1 and to £2. 

Let z be the pole of the planar field determined by the linearly independent 
lineal elements x, xr and y. Then 

(x, z) = (x, z) = (y, z) = 0. 

Since (3/, z) = (x, z) + (#", z)> we get (x", z) = 0. Therefore 

(5.7) 

and 

XQ X\ x2 x3 

Xo Xi X2 Xz 

XQ X I X* X 3 1 

N(z) = 

Let 

(5.8) 

\vV J Jv J \Jir y Ji J {Jit y «V J 

\Jv j Jv J \Jv j vV / \ vV ) X J 

(x ,x) (x ,x ) (x ,x ) 

£4 

1 0 - 1 
= 0 1 0 

- 1 0 

z 

(x'\x") 
= (x", x") — 1. 

S4 [ ( * " , * " ) - 1 ] » -

Thus £4 is a normalized quaternion representing a lineal element orthogonal to 
the lineal elements £1, £2, and fa-

Let b represent the determinant of the components of the four £*. Then 

fa2= I ( £ „ * , ) I = 1. 
Consequently the four normalized quaternions £* are linearly independent. They 
therefore constitute a linear basis for arbitrary quaternions. Hence we can set 
the four quaternions £'*(= d£i/da) equal to the linear combinations 

(5.9) ii = aaii + a ^2 + aj3£3 + au£* (i = *> 2> 3, 4 ) -

Since (£*, £,•) =ô i3, we obtain 

(5.10) « „ ?;o + (?;, i,) = 0. 

Scalar multiplication of the equations (5.9) by the £,- yields 

a^ = (£*, £;) = — (£*, %j) = — aji. 

Therefore the matrix j |a^ | | is skew-symmetric. Furthermore, since £'i = £2> we 
find that 

«12 = 1, ai3 = ai4 = 0. 
Let 

(5.11) - = {(x ,x ) - 1] 
P 
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Then (5.4) and (5.5) yield 

£2 = 

Consequent ly 

~ £l + -£8. 
P 

<*23 = (?2, £3) = - and 
P 

«24 = 0. 

I t remains to find the value of a34 = (£'3, £4) = — (£%, £3). Since 

£3 = p(x + x " ) , 

£3 = p x + p * + px + px" . 

Scalar multiplication of J'3 by £4 = pz yields 

(£3, £4) = PP'(X, z) + p2(x, z) + pp(x\ z) + p\x", z). 

But z is orthogonal to x, x' and x" ; therefore 

(5.12) (£i,£4) = p\x"\z) = 

where 
1 - (*", x") 

(5.13) 

Let 

(5.14) 

xo x\ X2 xz 
Xo Xi XÏ X 3 

xo xï xï xï 
Xo X\ X« X3 

T 1 - (*", X"Y 

Then the system of equations (5.9) reduces to the following: 

(5.9*) & = - | ! 

1, + -*» 
p 

h 
T 

-*» 

This system of equations is the analogue for a series © under @6 of the Serret-
Frene t formulae for a curve in Euclidean space. We shall call 1/p and 1/r the 
®z-curvature and ®e-torsion of © respectively. Given two arb i t ra ry functions 
p(a) and r(o-), a series is determined within a whirl-rotation by means of (5.9*). 
W e can therefore regard p = p(a) and r = r(a) as the intrinsic equations of a 
series relative to ©6-

If © is a turbine, i ts parametr ic equation (see (2.8) ) may be expressed in 
the form 

q{ — cos t + rsint), qq = 1, - 1, 
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where q and r are constant quaternions. Since (dx/dt) (dx/dt) = 1, t = db a 
+ const. Consequently, if x(t) is a turbine, 

(x , x ) = 1 and (x , x ) — 1 = 0 

where x' and x" denote differentiation with respect to o\ Conversely, it can be 
shown that a series @ : x (<r), such that 

(5.15) # ( ? ) = (x",x") - 1 = 0 , 

is a turbine. For (5.15) implies that y = x" + x = 0. Therefore xx" + xx = 0. 
Consequently zx" = — 1. But the fixed centrode of ®, namely ± Z = ± ax'. 
Therefore 

^Z . „ , _, , 
-— = #x + £ x = 0, 

which implies that the fixed centrode of S is a pair of diametrically opposite 
points and consequently, that 3 is a turbine. Thus (5.15) is a necessary and 
sufficient condition that a series be a turbine; or, what is equivalent, a necessary 
and sufficient condition that 2 be a turbine is that 1/p = 0. Torsion is not 
defined for turbines. 

Reverting to the original parameter t, we find the following expressions for 
the differential invariants: 

(5.11*) 

and 

(5.14*) 

where 

_ (dx dx\f d2x d2 \ I dx d2xy I dx dx\* 
^ ~ VÎT"' dt)\JF Jt2 ) "" \dt' IF) ~ \dt' It) ' 

1 
9 

P~ 

/ I dx dx 
= CV Kdt'dF, 

1 = _ Ai 

r œ 

Ai = 
dxi d2x2 dzxz 

Xo' If1 Htv IF I 

6. Kinematic and non-Euclidean interpretations of the differential in­
variants p and r. Let the displacement « ^ defined by a series @: x(o-), have 
do Z(a) = ± rex' for its fixed centrode. We assume that © is not a turbine, 
that is, that (x", x") - 1 ^ 0 . Let the unit vector 

(6.1) fi = xx 

have its initial point at O, the centre of the fixed sphere Sf. Let 5 be the Eu­
clidean arc-length of the fixed centrode Z(a) measured from cr0 to a. Then 

ds = (Z , Z )d<i" — (fi, Çi)d(T . 

But Z' = xx,f + x'x' = 1 + .râ". Therefore 
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ds = [(x , x ) — 1] da = —da . 
P2 

We orient Z(a) so that ds/da = 1/p > 0. Now 

d£i _ /__" , -' j^da 

Let 

(6.2) f2 = | r = P x ( x " + x ) . 

Evidently f 2 is a unit vector tangent to the fixed centrode at the point a. 
Let f 3 be the vector product of f 1 and f 2. Then 

(6.3) f3 = fi X f2 - fif2. 

Therefore f 3 is a unit vector tangent to 5 / and orthogonal to f 1 and f 2. The 
three orthogonal unit vectors f* constitute a moving trihedral of the fixed 
centrode considered as a spherical curve. The vectors f'* (i = 1,2,3) being 
linearly dependent on the f *, we can let 

(6.4) f'< = /?afi + 0f2f2 + î isf3 (* = 1, 2, 3; /?„ real scalars). 
Evidently the (Euclidean) scalar product f * -f,- of the vectors f *, fy is equal to 
(f<f ft)- Since frfy = ôti, 

jY^ + fVf, = 0. 
Hence ||jft^|| is skew-symmetric. From (6.2) we obtain 

012 = - 021 = - • 
P 

We proceed to evaluate /323 = f'2 -f3 = (f'2, £3). Since fi and f2 are orthogonal 
vectors, (6.1), (6.2), and (6.3) yield 

f3 = fif2 = pxxx(x" + x). 

Observing that — 1, we obtain 

f3 = — p(x x + xx). 

Moreover, 

f2 = p'z(x' + x) + p(#'x ' + âx'") 

and, since (f2, fa) = 0, 

f2-f3 = (f'2, fs) = p(x'x" + xx" , f3). 

This can be reduced, by virtue of (2.4), (5.2), and (5.11), to 

— 1 — p [(xx ,xx) + (xx , xx)]. 

To evaluate the scalar products in the square brackets, write 
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Observing that, by reason of (5.5), (x, x,N) — 0, we obtain 

xx" = 61(̂ 01 - piz) + e2(po2 — pz\) + e3(po3 - pu), 

x'x" = ei(qoi - £23) + 2̂(̂ 02 - Qn) + eafeos - q12). 

Therefore 

{xx", x'x") = ] £ Piiïij - YJ Pitikh 

where i,j and k,l are complementary pairs of subscripts. But 

Hpi£ 

and 

Therefore 

Similarly 

But 

ij 
(x, x ) (x, x ) 0 - 1 

— (x , x ) (x , x ) 
• ( * " , * " ) 

YpijÇki = A. 

(xx , x x ) = — (x , x ) — A. 

(xx'", x'x) = ] £ Pihi - H Pifai 

]C Pifii 

and 
(x , x ) (x , x ) 

0 1 

•(a",*") 0 1 
(x , x ) 

^LPijhi = 0. 

Hence Orx'", z'x) = (x", x"). Consequently 

023 = - 032 = P i 1 - 1 - - 1 - i . 
T 

Substituting 1 the expressions we have found for the 0î7 in (6.4), we obtain 

ri = k. 
(6.4*) ri = -

P 

P , 44, 
r3 = (' + °f' If we change from the parameter <r to 5 (Euclidean arc -length), the system 

(6.4*) becomes 

^5 
= U 

(6.4**) # 2 

^ 3 

ds 

= - fi 

- *( 

0* 
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The system (6.4**) is the set of Serret-Frenet formulae of Z(s) regarded as a 
spherical curve. 

Evidently Kf = — p(l + 1/r) is the geodesic curvature of the fixed centrode, 
and represents the rate of turning (bending) of the plane tangent to the fixed 
(space) cone as its point of tangency with the fixed centrode moves on it with 
unit speed. If R is the radius of curvature of Z(s) regarded as a space curve, 
R-2 = K / + 1. 

In a similar manner, the Serret-Frenet formulae for the mobile centrode 
db W(a) on Sm can be found. Letting 771 be the unit vector W{o) = x'x at the 
point a-, 772 the unit vector tangent to W(o) at c, and 773 = 771X rj2 = 7̂1̂72, we 
obtain 

drji ___ 

(6.5) £ - - * +,(.-i)„ 
dm (< A 

where 5 is the Euclidean arc-length of the mobile centrode. The geodesic 
curvature of the mobile centrode is Km = p(l — 1/r). 

The geodesic curvatures Kf(s) and Km(s) determine the fixed and mobile 
centrodes on Sf and Sm respectively within rotations around O. Hence the 
differential invariants p(o) and T(O) which determine a series © within a whirl-
rotation also determine, within rotations, the fixed and mobile centrodes of the 
continuous motion ^def ined by ©. When Kf and Km are constant, the two 
centrodes are circles, and the motion -^becomes that of a circle of radius 
(1 + K w

2 ) - on Sm rolling without slipping on a circle of radius (1 -f- K/2) 2 on Sf. 
If we regard the four components x\ of the quaternion x as the homogeneous 

coordinates of a point in projective three-space, we obtain a continuous one-to-
one mapping of the lineal elements x on 5 upon the points x in three-space. By 
virtue of this mapping it is evident that to the 006 whirl-rotations (2.3) on S 
correspond the °°6 displacements in elliptic space Ez\ indeed, to the whirls 
correspond the left-translations in Ez and to the rotations correspond the 
right-translations. A series © as in (5.1) is mapped on a curve in is a. 
turbines being mapped on the straight lines. If © is not a turbine, the moving 
frame of lineal elements £* (i = 1,2,3,4) associated with © is mapped on a frame 
of four points associated with &. The invariants 1/p and 1/r can be interpreted 
as the elliptic curvature and torsion respectively of % and the equations 
(5.9*) become the Serret-Frenet formulae for a curve in Ez. A continuous 
motion of Sm over Sf which corresponds within a whirl-rotation to a series © on 
5 therefore also corresponds within an elliptic displacement to a curve in iis. 
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