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Introduction. For various classes Q of metric spaces, there are several 
well-known results characterizing the local ^-connectivity of a metric space 
in terms of w-ANR(Ç)'s. Specifically, we have in mind the results of Kura-
towski (13, p. 265) and Kodama (10, p. 79). The main purpose of this paper 
will be to obtain similar results along these lines for non-metric classes Q. In 
the last part of the paper we specify Q to be the class of totally normal spaces 
and characterize the local ^-connectivity of an ^-dimensional separable metric 
space in terms of ANR(<2)'s. 

Preliminaries. All spaces are assumed to be Hausdorff. By the term dim X 
we shall mean the covering dimension of X. Let Q be a class of topological 
spaces and n a non-negative integer. A topological space X is called an n-AR(Q) 
(»-ANR(Q)) if 

(a) X e Q and 
(b) whenever Z Ç Q and X is embedded as a closed subset of Z with 

dim (Z — X) < n, then X is a retract of Z (X is a retract of some neigh­
bourhood of X in Z). 

If we drop the dimension requirement in (b), X is simply called an AR(Q) 
(ANR ((?)). An example of Borsuk (2, p. 179) serves to show that a space 
can be an w-ANR(Ç) for each n and yet fail to be an ANR(<2). A space X 
is called an n-ES(Q) (w-NES(Q)) if whenever F £ Q, C is a closed subset 
of F with dim ( F — C) < n, and / : C —» X is a continuous mapping, then 
/ has a continuous extension over F (over some neighbourhood of C in F) 
with respect to X. Again, if the dimension requirement is dropped, X is simply 
called an ES(Q) (NES(Q)). We define a space X to be locally connected in 
dimension n if for every point x £ X and every neighbourhood U of x, there 
exists a neighbourhood V C U of x such that every continuous map / : Sn —> V 
of the w-sphere into V extends to a continuous map g: En+1 —> U of the 
(n + l)-cell into U. A space is said to be locally ^-connected (i.e. hCn) if it 
is locally connected in dimension q for every q < n. It is known (13, p. 287) 
that a locally contractible space is LCW for every n. Finally, a metric space X 
is called an absolute Gs if whenever X is embedded in a metric space My X is 
a Gs set in Af. 

Our main objective is to prove the following theorem: 
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THEOREM 1. Let X be a separable metric space and an absolute G5. Let Q be 
any class of normal spaces containing the class of all metric spaces. Then the 
following statements are equivalent: 

(a) X is LCn-\ 
(b) X is ann-NES(Q). 
(c) X isann-ANR(Q). 
(d) If Y £ (?, dim F < n, and C is a closed subset of F, then any continuous 

map f:C—>X has a continuous extension F: V —> X over some neighbourhood 
V of C in Y with respect to X. 

Remarks. For a separable metric space X, Theorem 1 has been proved for 
the class Q of separable metric spaces by Kuratowski in (13, p. 265). In (10, 
p. 79), Kodama later generalized these results to the case where X is a metric 
space and Q is the class of all metric spaces. Using the concept of an adjunc­
tion space and the results of Katëtov in (9), McCandless in (14, p. 193) and 
(15, p. 205) proved Theorem 1 for the case where X is separable metric and 
Q is the non-metric class of perfectly normal spaces. Before we prove Theorem 
1, some preliminary results are in order. 

THEOREM 2 (Katëtov). Let C be a closed set of type Gd in a normal space X 
such that dim (X — C) < n. Let Y be a separable metric space and f: C —» Y a 
continuous map. Then there exists a separable metric space S such that Y is closed 
in S with dim (S — F) < n and a continuous extension f * of f over X with 
respect to S. 

For the proof see (9, p. 510). 

Remark. This result of Katëtov is a generalization of Kuratowski's classical 
theorem in (12, p. 217). 

LEMMA 1. A separable Banach space is an ES {normal). 

Proof. In (1, p. 18), Arens showed that a Banach space is an AR (fully 
normal). Since a Banach space is metrizable, it is an AR (metric). Separa­
bility and completeness ensure that it is an ES (normal) by a theorem of 
Michael in (16, p. 793). 

LEMMA 2. Let X be a normal space, C a closed subset of X with dim (X — C)< n. 
Let Y be a complete separable metric space andf: C —> F a continuous map. Then 
there exists a closed Gi set C* of X with C C C*, dim(X — C*) < n, and a 
continuous extension F of f over C* with respect to Y. 

Proof. By well-known results of Kuratowski (11, p. 543) and Wojdyslawski 
(19, p. 186), we may assume that F is embedded in a separable Banach 
space B. By Lemma 1, B is an ES(normal). Hence the m a p / : C —> F has a 
continuous extension g: X —-> B. Since F is complete, F is an absolute GV 
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Therefore 
CO 

where Gt is open in B for each i. 
We now use the normality of X to construct the closed G5 set G* of X 

such that C C G*. 
For each i, g_1(£ï) is open in X and C C g_1(Gz)- Since X is normal, there 

exist maps <j>ï. X -* I = [0, 1] such that <^(C) = 0 and 4> i(X — g-1 {G t)) = 1. 
For each i, let C* = 4>i~l (0). Then each G* is a closed GÔ set of X such that 
C C CtCr^Gi). If we let 

CO 

c* = nc, 
then C* is a closed G 5 set of X and C C C*. 

We now show that dim(X — C*) < n. Since C* is a closed G8 set of X, 
X — G* is an open 7v set of X, i.e., 

X - C* = U F i f 

where i7^ is closed in X for each j . By the normality of X, there exists i£ ; 

open in X such that Fj C ^ ^ C C l ^ j ) d X — C*. It is easily seen that 
C\(Kj) is normal in X — C* for each j . Moreover, since 

U Kj = X - C*, 

{Cl(i^i)} is a sequence of closed sets of X — C* whose interiors cover X — C*. 
Hence, by a lemma of Dowker (4, p. 475), X — C* is normal. 

By hypothesis, dim(X — C) < w. Since each 7^ is closed in X — C* and 
hence in X — C, we have by Cech (3, p. 280) that dim Fj < n for each j . 
Cech's sum theorem for normal spaces (3, p. 291) gives dim(X — C*) < n. 

Finally, we claim that F = g|C* is the desired continuous extension of / 
with respect to Y. Clearly F is a continuous extension of / over C* by defini­
tion of g. We need only check that g(C*) C Y, but this is easily verified by the 
definition of C*. 

We are now in a position to prove Theorem 1. Recall that X is separable 
metric and an absolute Ga, and Q is any class of normal spaces containing 
the class of all metric spaces. 

Proof of Theorem 1. (a) implies (b): We must show that X is an w-NES(Q). 
Let Y G (?, C a closed subset of F with d im(F - C) < n; and / : G-* X a 
continuous map. We must find an extension of / over some neighbourhood of 
C in Y with respect to X. 
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By hypothesis, X is homeomorphic to a complete separable metric space, 
say X'. Let h: X —> X' be the homeomorphism. Then we may use Lemma 2 
on the map h of: C—> Xf to get a closed G8 set C* of F with C C C * , 
d im(F — C*) < w, and a continuous extension i7: C* —> X' of h of. We can 
now apply Theorem 2 of Katëtov to obtain a separable metric space 5 such 
that X' is closed in S, dim (5 — X') < w, and a continuous extension g of T7 

over F with respect to 5. That is, g: Y —> 5 and g\C* = F. 
Since X is LCn - 1 , X ' is LCn _ 1 and so by Kuratowski (13, p. 265) we have 

that X' is an w-ANR(separable metric). Hence there exists a retraction 
r: U—> X' where U is some neighbourhood of X' in S. Let V = g^iU). 
Then F is a neighbourhood of C* and hence of C in F. Clearly, the composi­
tion h~l or o g\ V: V —> X is the desired continuous extension of / over a 
neighbourhood of C in F with respect to X. 

(b) implies (c). Since Q contains the class of all metric spaces, X Ç Q and 
so this implication follows from a fundamental property of NES(<2)'s (6, 
2.11, p. 318). 

(c) implies (d). By hypothesis, X is separable metric. Since X is an n-
ANR(Q), a fundamental property of ANR(Q)'s gives the result that X is 
an w-ANR (separable metric) (6, 2.13, p. 318). By a result of Kuratowski in 
(13, p. 265), X is LO1-1 . Thus the same argument as in "(a) implies (b)" 
goes through except that we observe that Lemma 2 remains true if dim 
(X — C) < n is replaced by dim X < n. 

(d) implies (a). This implication follows easily from Kuratowski's result 
(13, p. 265), for if (d) holds, then it holds a fortiori if " F G (?" is replaced 
by "Y is a separable metric." 

A space X is said to be Cn if every continuous map of the i-sphere into X 
can be extended to a continuous map of the (i + l)-cell into X for i < n. 
By slightly modifying the arguments in the proof of Theorem 1, the following 
theorem is easily proved: 

THEOREM 3. Let X be a separable metric space and an absolute G$. Let Q be 
any class of normal spaces containing the class of metric spaces. Then the follow­
ing statements are equivalent: 

(ar) X is LC*"1 and Cn~\ 
(b;) X isann-ES(Q). 
(c') X is ann-AR(Q). 
(d') If Y G Qj dim F < w, and C is a closed subset of F, then any continuous 

map f:C—*X has a continuous extension F: Y —> X. 

In (4, p. 267), Dowker introduced a new class of normal spaces called 
totally normal spaces. A normal space X is called totally normal if every 
open set G of X is the union of a collection {G\}, locally finite in G, of open 
Fff sets of X. We recall that a perfectly normal space is a normal space in 
which every closed set is of type GÔ, and a completely normal space is a normal 
space in which every subspace is normal. To clarify the relationship between 
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these classes of normal spaces, Dowker shows tha t every perfectly normal 
space is totally normal and every totally normal space is completely normal 
(4, pp . 273-6) . As stated in the Introduction, our aim in the final pa r t of 
this paper is to specify Q to be the class of total ly normal spaces and prove 
the following theorem: 

T H E O R E M 4. Let X be an n-dimensional separable metric space. Then X is 
an ANR (totally normal) if and only if X is hCn and an absolute Gs. 

Before giving a proof, some observations are in order. An example of 
Hanner in (7, p . 381) and a result of Michael in (16, p . 793) serve to show 
t h a t not every metric A N R (perfectly normal) is an absolute G§. We can, 
however, prove the following lemma: 

LEMMA 3. Every metric ANR (totally normal) is an absolute G^ 

Proof. Let F be a metric A N R (totally normal) and let Y be embedded in 
a metric space M. As in (6, p. 333), we construct a new space Z as follows: 
the points of Z are the points of M, and Uis open i n Z if and only if U = OVJ A, 
where 0 is open in M and A C_ Z — Y. I t is easily verified tha t Z is Hausdorff. 
We first wish to show tha t Z is totally normal. 

In (4, p . 273), Dowker shows tha t every hereditarily paracompact space 
is totally normal. Hence it is sufficient to show tha t Z is hereditarily para­
compact . In view of a well-known result of Stone (17, p. 977), it is sufficient 
to show tha t any subspace Z' of Z is fully normal. 

Let 0' = {0 ' \}X € A be an open cover of Z'. W e must show tha t 0' has an 
open star refinement. There exist sets Ox, open in Z, such tha t 0\ = 0\C\ Z' 
for each X Ç A. By the way we topologized Z, we have 0\ = U\^J A\ where 
U\ is open in M and A\ C Z — Y for each X £ A 

Let U = WAÇA U\. We now use an argument similar to t ha t of Hanner in 
(6, p . 333). Since U is metric, U is fully normal (18, p. 53). Let { Vy}yQr be 
an open star refinement of { £A}X<EA. Then, clearly, { Vy C\ Z'\y^ is an open 
s tar refinement of { U\ H Z'}X<:A. Using the fact t ha t each 0\ = (Uy\J A\) C\ Z' 
and t h a t 0' covers Z ' , a routine calculation shows t ha t Z' C\ Y C IJ C\ Z!. 

We define a covering G of Z' as follows. Let G be the collection { Vyr\Zf}yÇT 
together with the points of Z' — U. Observe tha t since Y is closed in Z, each 
point of Z' — U, being contained in Z — F, is open in Z and hence open in 
Z'. I t is not too difficult to see t ha t G is an open star refinement of 0'. Clearly 
each member of G is open in Z'. Let g be any member of G. We need only 
consider two cases: 

(i) g = Vy C\ Zf for some y G r . Then there exists a X G A such t h a t 
U\ C\ Z' contains the St(g, G) (St(g, G) is the union of all members of G 
which meet g). Observe tha t no point of Z' — U meets any Vy H Z'. Now 
since O'x = (Ux^J Ax) H Z ' , 0\ contains the St(g, G). 

(ii) g = a point p of Z' — U. Since 0' covers Z ' , there exists a X G A such 
t h a t p Ç 0\. Bu t since S t (£ , G) = p, we have tha t O'x contains St(g, G). 
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We have shown that Z' is fully normal. By the sequence of remarks made 
in the beginning of the proof, Z is totally normal. We now proceed to show 
that F is an absolute Gs. 

Since F is closed in Z and Y is an ANR (totally normal), there exists a 
retraction r: V —> Y where F is a neighbourhood of Y in Z. Let 

Vt= {ze V;d(z,r(z)) < 1/i}, 

where d is the metric on M. Then it is clear that for each i, Vi is open in 
Z and 

CO 

Y = nVi. 

Hence Y is a G s set in Z. Now Vt = 0t U At where 0t is open in M and 
A i C Z — F for each i. Clearly 

Y=not 

and so F is a Gs set in M. This completes the proof that F is an absolute Gs. 

The following corollary is a result of Iseki (8, p. 571): 

COROLLARY 1. Every metric ANR {completely normal) is an absolute Gs. 

Proof. Every metric ANR (completely normal) is an ANR (totally normal). 
By Lemma 3, it is an absolute Gs. 

It should be pointed out here that although Hanner (6, p. 333) proved 
Lemma 3 for the class of fully normal ( = paracompact) spaces, there exists 
an example of a paracompact space which is not totally normal (4, p. 277). 
Hence Lemma 3 is not a direct consequence of Hanner's result. 

The following result is easily verified by using Lemma 3 and a result of 
Dowker (5, p. 507): 

LEMMA 4. Let Y be a separable metric space. Then Y is an ANR (totally 
normal) if and only if Y is an ANR(metric) and an absolute Gs. 

THEOREM 4. Let Y be an n-dimensional separable metric space. Then Y is 
an ANR (totally normal) if and only if Y is LCW and an absolute Gs. 

Proof. Let F be LCW and an absolute Gs. Since dim F = n, a result of 
Kuratowski (13, p. 289) shows that F is an ANR (separable metric) and 
hence an ANR (metric) (6, p. 333). Thus F is an ANR (metric) and an abso­
lute Gs. But this is equivalent to F being an ANR (totally normal) by Lemma 4. 

Final remarks. In (16, p. 793), Michael characterizes an ANR (metric) in 
terms of ANR((2)'s for various classes Q of normal spaces. We emphasize, 
however, that in view of Borsuk's example in (2, p. 179) of a compact metric 
space which is an w-ANR (metric) for each n but not an ANR (metric), we 
cannot avail ourselves of Michael's results in our proof of Theorem 1. 
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Since every AR (separable metric) is contractible and locally contractible 
(13, p. 287), Hanner's example in (7, p. 381) serves as an example of a space 
X which is Cn and LCW for every n. By constructing a new space Z from X 
as in the proof of Lemma 3, it is not difficult to see that X is neither a 1-ANR 
(normal) nor a 1-AR(normal). However, this apparent contradiction to 
Theorem 1 is dispelled when we note that X is not an absolute Gt. Clearly, 
then, our requirement that X be an absolute Gs in Theorems 1 and 3 cannot 
be relaxed. 
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