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Abstract

We consider a discontinuous Sturm–Liouville equation together with two supplementary transmission
conditions at the point of discontinuity. We suggest our own approach for finding asymptotic
approximation formulas for the eigenvalues of such discontinuous problems.
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1. Introduction

The Sturmian theory is an important aid in solving many problems in mathematical
physics. Therefore this theory is one of the most current and extensively developing
fields in the spectral analysis of boundary-value problems of Sturm–Liouville type
(for various physical applications, see for example [2, 3, 5, 6]). There is a quite
substantial literature on such problems. Here we mention the results of [1, 2, 4, 8, 13]
and references cited therein.

Basically boundary-value problems that consist of ordinary differential equations
with continuous coefficients and endpoint boundary conditions have been investigated.
But in this study we shall consider one discontinuous eigenvalue problem that consists
of the Sturm–Liouville equation

τu := −a(x)u′′
+ q(x)u = λu, x ∈ [−1, 0) ∪ (0, 1], (1.1)

with boundary conditions at the endpoints

l1(u) := cos αu(−1) + sin αu′(−1) = 0, (1.2)

l2(u) := cos βu(1) + sin βu′(1) = 0, (1.3)
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and transmission conditions at the point of discontinuity

l3(u) := u(−0) − u(+0) = 0, (1.4)

l4(u) := u′(−0) − u′(+0) = 0, (1.5)

where a(x) = a2
1 for x ∈ [−1, 0) and a(x) = a2

2 for x ∈ (0, 1]; a1, a2 are positive real
numbers.

Boundary-value problems with transmission condition arise, as a rule, in the theory
of heat and mass transfer and in a varied assortment of physical transfer problems (see
for example [6]).

Note that some discontinuous problems with transmission conditions have been
investigated in [5, 7–10, 13].

2. An operator formulation in the adequate Hilbert space

We introduce the special inner product in the Hilbert space L2(−1, 0) ⊕ L2(0, 1)

and a symmetric linear operator A defined on this Hilbert space such that (1.1)–(1.5)
can be considered as the eigenvalue problem of this operator.

Let us introduce a new equivalent inner product on H := L2(−1, 0) ⊕ L2(0, 1) by

〈u, v〉H :=
1

a2
1

∫ 0

−1
u(x)v(x) dx +

1

a2
2

∫ 1

0
u(x)v(x) dx .

In the Hilbert space H we define a linear operator A with domain of definition

D(A):={u(x) | u(x) and u′(x) are absolutely continuous on [−1, 0) and (0, 1],

and have finite limits u(±0) and u′(±0),

−a(x)u′′
+ q(x)u ∈ L2(−1, 0) ⊕ L2(0, 1), li (u) = 0, (i = 1, 2, 3, 4)},

Au:=−a(x)u′′
+ q(x)u.

Now we can rewrite the considered problem (1.1)–(1.5) in operator form as

Au = λu.

The eigenvalues and eigenfunctions of the problem (1.1)–(1.5) are defined as
the eigenvalue and the first components of the corresponding eigenelements of the
operator A respectively.

THEOREM 2.1. The operator A is symmetric.

PROOF. Let u, v ∈ D(A). By two partial integrations we obtain

〈Au, v〉H − 〈u, Av〉H = W (u, v; −0) − W (u, v; −1)

+ W (u, v; 1) − W (u, v; +0), (2.1)
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where, as usual, by W (u, v; x) we denote the Wronskian of the functions u and v:

W (u, v; x) = u(x)v′(x) − v(x)u′(x).

Since u and v satisfy the boundary conditions (1.2)–(1.3) and transmission
conditions (1.4) and (1.5) we get

W (u, v; −0) = u(−0)v′(−0) − u′(−0)v(−0)

= u(+0)v′(+0) − u′(+0)v(+0)

= W (u, v; +0),

W (u, v; −1) = 0,

W (u, v; 1) = 0.

(2.2)

Finally substituting (2.2) in (2.1),

〈Au, v〉H = 〈u, Av〉H (u, v ∈ D(A)), (2.3)

so A is symmetric. 2

COROLLARY 2.2. All eigenvalues of the problem (1.1)–(1.5) are real.

We can now assume that all eigenfunctions of the problem (1.1)–(1.5) are real valued.

3. Asymptotic approximations of fundamental solutions

First we shall construct a special fundamental system of solutions of (1.1) for λ not
an eigenvalue.

Let us consider the following initial-value problem:

−a2
1u′′(x) + q(x)u(x) = λu(x), x ∈ [−1, 0], (3.1)

u(−1) = sin α, (3.2)

u′(−1) = −cosα. (3.3)

By virtue of [12, Theorem 1.5] this problem has a unique solution

u = φ1(x) ≡ φ1(x, λ),

which is an entire function of the parameter λ ∈ C for each fixed x ∈ [−1, 0]. Similarly
employing the same method as in the proof of [12, Theorem 1.5], we see that the
problem

−a2
2u′′(x) + q(x)u(x) = λu(x), x ∈ [0, 1], (3.4)

u(1) = − sin β, (3.5)

u′(1) = cos β, (3.6)

has a unique solution u = χ2(x) ≡ χ2(x, λ), which is an entire function of the
parameter λ ∈ C for each fixed x ∈ [0, 1].
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We shall define the functions φ2(x, λ) and χ1(x, λ) using φ1(x, λ) and χ2(x, λ),
respectively. Modifying the method of the proof of [12, Theorem 1.5], we can prove
that the next special type initial-value problem,

−a2
2u′′(x) + q(x)u(x) = λu(x), x ∈ [0, 1], (3.7)

u(0) = φ1(0, λ), (3.8)

u′(0) = φ′

1(0, λ), (3.9)

has a unique solution u = φ2(x) ≡ φ2(x, λ), which is an entire function of the
parameter λ ∈ C for each fixed x ∈ [0, 1]. Similarly, the following problem also has a
unique solution u = χ1(x) ≡ χ1(x, λ):

−a2
1u′′(x) + q(x)u(x) = λu(x), x ∈ [−1, 0], (3.10)

u(0) = χ2(0, λ), (3.11)

u′(0) = χ ′

2(0, λ). (3.12)

The Wronskians W (φ1(x, λ), χ1(x, λ)) and W (φ2(x, λ), χ2(x, λ)) are indepen-
dent of the variable x and φi (x, λ) and χi (x, λ) (i = 1, 2) are entire functions of the
parameter λ for each x .

Let us consider the Wronskians

w1(λ) := W (φ1(x, λ), χ1(x, λ)), w2(λ) := W (φ2(x, λ), χ2(x, λ)),

which are entire functions of the parameter λ and are independent of x . It is clear from
(3.8), (3.9), (3.11) and (3.12), because of

w1(λ) := W (φ1(x, λ), χ1(x, λ))

= φ1(0, λ)χ ′

1(0, λ) − φ′

1(0, λ)χ1(0, λ)

= φ2(0, λ)χ ′

2(0, λ) − φ′

2(0, λ)χ2(0, λ)

= W (φ2(x, λ), χ2(x, λ)) |x=0

= w2(λ).

Let us construct two basic solutions of (1.1) as

φ(x, λ) =

{
φ1(x, λ), x ∈ [−1, 0)

φ2(x, λ), x ∈ (0, 1]
and χ(x, λ) =

{
χ1(x, λ), x ∈ [−1, 0)

χ2(x, λ), x ∈ (0, 1].

By virtue of (3.8), (3.9), (3.11) and (3.12) these solutions satisfy both transmission
conditions (1.4) and (1.5).

NOTE. Below we shall denote by w(λ) the Wronskian of the functions φ(x, λ) and
χ(x, λ),

w(λ) := W (φ(x, λ), χ(x, λ)).
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THEOREM 3.1. The eigenvalues of the problem (1.1)–(1.5) consist of the zeros of the
functions w(λ).

PROOF. Let w(λ0) = 0. We shall show that χ(x, λ0) is an eigenfunction. By
definition of this solution, χ(x, λ0) satisfies the boundary condition (1.3). Further,
since

W (φ1(x, λ0), χ1(x, λ0)) = w(λ0) = 0,

the functions φ1(x, λ0) and χ1(x, λ0) are linearly dependent, that is,

φ1(x, λ0) = k1χ1(x, λ0), x ∈ [−1, 0),

for some k1 6= 0. Consequently, the function χ(x, λ0) also satisfies the boundary
condition (1.2). Recalling that the solution χ(x, λ0) satisfies both transmission
conditions (1.4) and (1.5), we have that χ(x, λ0) is an eigenfunction of the problem
(1.1)–(1.5) corresponding to the eigenvalue λ0. Thus, each zero of w(λ) is an
eigenvalue.

Now let λ0 be an eigenvalue and u0(x) be any eigenfunction corresponding to this
eigenvalue. Suppose, for a moment, that w(λ0) 6= 0. Thus

W (φ1(x, λ), χ1(x, λ)) 6= 0 and W (φ2(x, λ), χ2(x, λ)) 6= 0.

From this, by virtue of well-known properties of Wronskians, it follows that each of the
pairs φ1(x, λ), χ1(x, λ) and φ2(x, λ), χ2(x, λ) are linearly independent. Therefore
the solution u0(x) of (1.1) may be represented in the form

u0(x) =

{
c1φ1(x, λ0) + c2χ1(x, λ0), x ∈ [−1, 0),

c3φ2(x, λ0) + c4χ2(x, λ0), x ∈ (0, 1],

where at least one of the constants c1, c2, c3 and c4 is not zero. Considering the true
equalities

lk(u0(x)) = c1lk(φ1(x, λ0)) + c2lk(χ1(x, λ0)) (3.13)

+ c3lk(φ2(x, λ0)) + c4lk(χ2(x, λ0)), k = 1, 2, 3, 4,

as the homogenous system of linear equations of the variables c1, c2, c3 and c4, and
taking into account (3.8), (3.9), (3.11) and (3.12) it follows that the determinant of this
system is equal to∣∣∣∣∣∣∣∣

0 w(λ0) 0 0
0 0 w(λ0) 0

φ1(−0, λ0) χ1(−0, λ0) −φ2(+0, λ0) −χ2(+0, λ0)

φ′

1(−0, λ0) χ ′

1(−0, λ0) −φ′

2(+0, λ0) −χ ′

2(+0, λ0)

∣∣∣∣∣∣∣∣ = −w3(λ0),

and therefore is not equal to zero by assumption. Consequently this homogenous
system of linear equations has only the trivial solution (c1, c2, c3, c4) = (0, 0, 0, 0).
Thus we get contradiction, which completes the proof. 2
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LEMMA 3.2. Let λ = s2. Then the following integral equations hold for k = 0 and
k = 1.

dk

dxk φ1λ(x) = sin α
dk

dxk cos
s(x + 1)

a1
−

a1

s
cos α

dk

dxk sin
s(x + 1)

a1

+
1

sa1

∫ x

−1

dk

dxk sin
s(x − y)

a1
q(y)φ1λ(y) dy, (3.14)

dk

dxk φ2λ(x) = φ1λ(−0)
dk

dxk cos
sx

a2
+

a2

s
φ′

1λ(−0)
dk

dxk sin
sx

a2

+
1

a2s

∫ x

0

dk

dxk sin
s(x − y)

a2
q(y)φ2λ(y) dy. (3.15)

PROOF. For the proof it is enough to substitute

s2φ1λ(y) + a(y)φ′′

1λ(y) and s2φ2λ(y) + a(y)φ′′

2λ(y),

instead of q(y)φ1λ(y) and q(y)φ2λ(y), in the integral terms of (3.14) and (3.15)
respectively and integrate by parts twice. 2

LEMMA 3.3. Let λ = s2, Im s = t. Then for sin α 6= 0,

dk

dxk φ1λ(x) = sin α
dk

dxk cos
s(x + 1)

a1
+ O(|s|k−1e(|t |(x+1))/a1), (3.16)

dk

dxk φ2λ(x) = a2 sin α
dk

dxk

(
1
a2

cos
sx

a2
cos

s

a1
−

1
a1

sin
sx

a2
sin

s

a1

)
+ O(|s|k−1e(|t |(a1x+a2))/(a1a2)), (3.17)

as |λ| → ∞; while if sin α = 0,

dk

dxk φ1λ(x) = −
a1

s
cos α

dk

dxk sin
s(x + 1)

a1
+ O(|s|k−2e(|t |(x+1))/a1), (3.18)

dk

dxk φ2λ(x) = −
cos α

s

dk

dxk

(
a1 cos

sx

a2
sin

s

a1
+ a2 sin

sx

a2
cos

s

a1

)
+ O(|s|k−2e(|t |(a1x+a2))/(a1a2)), (3.19)

as |λ| → ∞ (k = 0, 1). Each of these asymptotic equalities holds uniformly for x.

PROOF. The asymptotic formulas for φ1(x, λ) can be found in same way as in [2]. Let
us prove the formula (3.17) for φ2(x, λ).

Let sin α 6= 0. Substituting (3.16) in (3.15) (for k = 0),

φ2λ(x) = sin α cos
s

a1
cos

sx

a2
−

a2

a1
sin α sin

s

a1
sin

sx

a2

+
1

a2s

∫ x

0
sin

s(x − y)

a2
q(y)φ2λ(y) dy

+ O(|s|−1e(|t |(a1x+a2))/(a1a2)). (3.20)
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Multiplying by e(−|t |(a1x+a2))/(a1a2) and denoting

F(x, λ) = e(−|t |(a1x+a2))/(a1a2)φ2λ(x),

we have the next ‘asymptotic integral equation’

F(x, λ) = e(−|t |(a1x+a2))/(a1a2)

{
sin α cos

s

a1
cos

sx

a2
−

a2

a1
sin α sin

s

a1
sin

sx

a2

}
+

1
a2s

∫ x

0
sin

s(x − y)

a2
q(y)e(−|t |(x−y))/a2 F(y, λ) dy + O

(
1
s

)
.

Denoting M(λ) := maxx∈[0,1] |F(x, λ)| from the last equation we derive that

M(λ) ≤

∣∣∣∣sin α

(
1 −

a2

a1

)∣∣∣∣ +
M0

|s|
,

for some M0 > 0. Consequently M(λ) = O(1) as |λ| → ∞, so

φ2λ(x) = O(e(|t |(a1x+a2))/(a1a2)) as |λ| → ∞. (3.21)

Substituting in (3.20) gives (3.17) for the case k = 0. The case k = 1 of (3.17) follows
by applying the same procedure as in the case k = 0.

The proof of (3.19) is similar to that of (3.17) and hence is omitted. 2

Similarly one can establish the following lemma for χi (x, λ) (i = 1, 2).

LEMMA 3.4. Let λ = s2, Im s = t . Then for sin β 6= 0,

dk

dxk χ1λ(x) = −a1 sin β
dk

dxk

(
1
a1

cos
sx

a1
cos

s

a2
+

1
a2

sin
sx

a1
sin

s

a2

)
+ O(|s|−1e(|t |(a1−a2x))/(a1a2)), (3.22)

dk

dxk χ2λ(x) = −sinβ
dk

dxk cos
s(x − 1)

a2
+ O(|s|−1e(|t |(1−x))/a2), (3.23)

as |λ| → ∞; while if sin β = 0,

dk

dxk χ1λ(x) =
cos β

s

dk

dxk

(
−a2 cos

sx

a1
sin

s

a2
+ a1 sin

sx

a1
cos

s

a2

)
+ O(|s|−2e(|t |(a1−a2x))/(a1a2)), (3.24)

dk

dxk χ2λ(x) =
a2

s
cos β

dk

dxk sin
s(x − 1)

a2
+ O(|s|−2e(|t |(1−x))/a2), (3.25)

as |λ| → ∞ (k = 0, 1). Each of these asymptotic equalities holds uniformly for x.

THEOREM 3.5. Let λ = s2, Im s = t . Then the characteristic function w(λ) has the
following asymptotic representations.
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CASE 1. If sin β 6= 0 and sin α 6= 0, then

w(λ) = − sin α sin βs

(
1
a2

sin
s

a2
cos

s

a1
+

1
a1

cos
s

a2
sin

s

a1

)
+ O(e(|t |(a1+a2))/(a1a2)). (3.26)

CASE 2. If sin β 6= 0 and sin α = 0, then

w(λ) = a1 sin β cos α

(
1
a2

sin
s

a2
sin

s

a1
−

1
a1

cos
s

a2
cos

s

a1

)
+ O(|s|−1e(|t |(a1+a2))/(a1a2)). (3.27)

CASE 3. If sin β = 0 and sin α 6= 0, then

w(λ) = a2 cos β sin α

(
1
a2

cos
s

a2
cos

s

a1
−

1
a1

sin
s

a2
sin

s

a1

)
+ O(|s|−1e(|t |(a1+a2))/(a1a2)). (3.28)

CASE 4. If sin β = 0 and sin α = 0, then

w(λ) = −
cos β cos α

s

(
a1 cos

s

a2
sin

s

a1
+ a2 sin

s

a2
cos

s

a1

)
+ O(|s|−2e(|t |(a1+a2))/(a1a2)). (3.29)

COROLLARY 3.6. The eigenvalues of problem (1.1)–(1.5) are bounded below.

PROOF. Putting s = i t (t > 0) in the above formulas it follows that w(−t2) → ∞ as
t → ∞. Consequently, w(λ) 6= 0 for λ negative and sufficiently large in moduli. 2

THEOREM 3.7. Let λ = s2, Im s = t . Then, the following asymptotic formula holds
for the eigenvalues of the boundary-value-transmission problem (1.1)–(1.5):

sn =
a1a2

a1 + a2
πn + O(1). (3.30)

PROOF. Let sin β 6= 0 and sin α 6= 0 (Case 1). By putting

sin z =
ei z

− e−i z

2i
and cos z =

ei z
+ e−i z

2
in (3.26) we derive that

w(λ) = − sin α sin βs

×

{
1
a2

eis((a1+a2)/(a1a2)) + eis((a1−a2)/(a1a2)) − eis((a2−a1)/(a1a2)) − e−is((a1+a2)/(a1a2))

4i

+
1
a1

eis((a1+a2)/(a1a2)) − eis((a1−a2)/(a1a2)) + eis((a2−a1)/(a1a2)) − e−is((a1+a2)/(a1a2))

4i

}
+ O

(
exp

|t |(a1 + a2)

a1a2

)
.

https://doi.org/10.1017/S0004972708000427 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000427


[9] Sturm–Liouville problems with discontinuous potential 493

Denoting w̃(λ) = (1/s)w(λ),

w̃(λ) =

[
−

sin α sin β

4i

a1 + a2

a1a2

]
eis((a1+a2)/(a1a2))

+

[
sin α sin β

4i

a2 − a1

a1a2

]
eis((a1−a2)/(a1a2))

+

[
sin α sin β

4i

a1 − a2

a1a2

]
eis((a2−a1)/(a1a2))

+

[
sin α sin β

4i

a1 + a2

a1a2

]
eis((−(a1+a2))/(a1a2))

+ O

(
exp

|t |(a1 + a2)

a1a2

)
.

Now denoting by w̃0(λ) and w̃1(λ) the first and O-term we shall represented the
function w̃(λ) in the form

w̃0(s) = M1em1ρ + M2em2ρ + M3em3ρ + M4em4ρ, (3.31)

where

ρ = is, m1 = −
a1 + a2

a1a2
, . . . , m4 =

a1 + a2

a1a2
, m4 > m2 > m3 > m1,

and

M1 =
sin α sin β

4i
s

a1 + a2

a1a2
, . . . , M4 = −

sin α sin β

4i
s

a1 + a2

a1a2
(M1 6= 0, M4 6= 0).

By virtue of [11, Page 100, Lemma 1] the function (3.31) has an infinite number of
roots s̃n with asymptotic expression

|s̃n| =
2πn

m4 − m1

(
1 + O

(
1
n

))
=

a1a2

a1 + a2
πn + ηn,

where ηn = O(1/n). By applying the well-known Rouche’s theorem, which asserts
that if f (s) and g(s) are analytic inside and on a closed contour 0, and |g(s)| < | f (s)|
on 0, then f (s) and f (s) + g(s) have the same number of zeros inside 0 provided
that each zero is counted according to its multiplicity, then

sn = s̃n + O(1),

sn =
a1a2

a1 + a2
πn + O(1).

This completes the proof for the case sin β 6= 0 and sin α 6= 0. 2
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