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CMEC: China Multi-Ethnic Cohort study 

DASH: Dietary Approaches to Stop Hypertension 

FFQ: food frequency questionnaire 

HDS: healthy diet score 

hPDI: healthful plant-based diet index 

KDM-BA: biological age based on Klemera and Doubal's method 

KDM-AA: KDM-BA acceleration 

LEMRs: less-developed ethnic minority regions 

PDI: plant-based diet index 

QGC: quantile G-computation 

uPDI: unhealthful plant-based diet index  
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Abstract 

To investigate the associations between dietary patterns and biological aging, identify the 

most recommended dietary pattern for coping with biological aging and explore the potential 

mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This 

prospective cohort study included 8288 participants aged 30-79 years from the China 

Multi-Ethnic Cohort study (CMEC). Anthropometric measurements and clinical biomarkers 

were utilized to construct biological age based on Klemera and Doubal's method (KDM-BA) 

and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the 

baseline food frequency questionnaire (FFQ). Six dietary patterns were constructed: 

plant-based diet index (PDI), healthful plant-based diet index (hPDI), unhealthful plant-based 

diet index (uPDI), healthy diet score (HDS), Dietary Approaches to Stop Hypertension 

(DASH), and alternative Mediterranean diets (aMED). Follow-up adjusted for baseline 

analysis were employed to assess the associations between dietary patterns and KDM-AA. 

Additionally, quantile G-computation was utilized to evaluate the significant beneficial and 

harmful food groups. In the subsample of 764 participants with gut microbiota data obtained 

through 16S rRNA gene sequencing, we used causal mediation model to explore the 

mediating role of gut microbiota in the associations between dietary patterns and KDM-AA. 

The results showed that all dietary patterns were associated with KDM-AA. Transitioning 

from non-compliance to compliance, DASH exhibited the strongest negative association with 

KDM-AA [β = -0.91, 95%CI (-1.19, -0.63)]. The component analyses revealed that tea and 

soybean products were the significant beneficial food groups, while salt, preserved vegetables, 

red and processed meats were identified as the major harmful food groups. In mediation 

analysis, the decreased abundance of Synergistetes phylum and Pyramidobacter genus 

possibly mediated the negative associations between plant-based diets and KDM-AA 

(5.61%-9.19%). Overall, healthy dietary patterns, especially DASH, are negatively associated 

with biological aging in LEMRs. The Synergistetes and Pyramidobacter may mediate the 

associations between plant-based diets and biological aging. Developing appropriate 

strategies may promote healthy aging in LEMRs. 

Keywords: diet; biological aging; gut microbiota; mediation analysis; follow-up adjusted for 

baseline analysis   
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Introduction 

Aging has emerged as a significant global challenge, with the population aged 60 and older 

projected to reach 1.4 billion by 2030 and 2.1 billion by 2050
(1)

. This demographic shift may 

be accompanied by a rapid increase in the prevalence of age-related diseases. Biological age 

(BA) serves as a promising indicator for assessing the biological processes of aging
(2)

. The 

complex mechanisms underlying aging are closely linked to the development of age-related 

diseases
(3, 4)

. BA can be evaluated through various measures, including epigenetic clocks, 

telomere length, frailty, and composite biomarkers, each reflecting different aspects of the 

aging process
(5-7)

. Among these measures, the composite biomarker BA derived from clinical 

biochemical markers offers the advantages of affordability and accessibility, making it 

particularly suitable for routine screening. It provides an effective pathway for the early 

identification and intervention of age-related diseases. 

A healthy dietary pattern plays a crucial role in coping with biological aging 
(8, 9)

. Beyond 

traditional dietary patterns, such as the Dietary Approaches to Stop Hypertension (DASH)
(10, 

11)
 and alternative Mediterranean diets(aMED)

(12, 13)
, emerging dietary indices like the 

plant-based diet index (PDI) and healthy diet score (HDS) have demonstrated beneficial 

associations with healthy aging
(14-18)

. Among various recommended dietary patterns, the 

optimal dietary pattern for coping with biological aging is currently unclear. There is limited 

comprehensive research comparing associations between traditional and emerging dietary 

patterns and composite biomarker BA. Moreover, as the majority of previous comparative 

studies have been conducted in developed regions, the findings should be generalized with 

caution
(8, 13, 19)

. Significant disparities in dietary habits, living environments, and 

socioeconomic status (SES) exist between developed and less-developed regions, particularly 

in less-developed ethnic minority regions (LEMRs). Therefore, further research is 

necessary to explore the association between the advocated traditional and emerging dietary 

patterns and composite biomarker BA in LEMRs, along with identifying the most 

recommended dietary pattern to guide the rational utilization of limited food resources for 

enhanced health benefits. 

Previous studies have proposed potential mechanisms linking healthy dietary patterns with 

biological aging. For example, specific food components (e.g., polyphenols) in healthy 

dietary patterns may exerting anti-inflammatory effects and modulating gut microbiota 

composition or activity, thereby reducing the risk of adverse health outcomes
(20, 21)

. The gut 

microbiome, closely associated with diet, is recognized as one of the twelve primary 

mechanisms of aging
(5)

. However, population-based evidence exploring the mediating role of 

gut microbiota in the association between dietary patterns and BA remains limited. Similar to 

dietary pattern, the characteristics of the gut microbiota vary significantly across different 

geographical regions 
(22-27)

, which may lead to distinct mediation effects of the same 

microbial measurements. In LEMRs, investigating the mediating role of specific gut 

microbiota measurements in the associations between dietary patterns and composite 

biomarker BA potentially provides appropriate microbial strategies for addressing aging. 
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The China Multi-Ethnic Cohort (CMEC) Study is a large-scale epidemiological investigation 

conducted in Southwest China, a region characterized by significant diversity in SES, 

ethnicity, habitual diet, and living environments 
(28)

. It provides an ideal opportunity to 

explore the associations between dietary patterns and composite biomarker BA in LEMRs. 

Utilizing baseline and follow-up data from the CMEC, this study aims to investigate the 

associations between various dietary patterns [including DASH, aMED, PDI, healthful 

plant-based diet index(hPDI), unhealthful plant-based diet index(uPDI), HDS] and composite 

biomarker BA based on Klemera and Doubal's method (KDM-BA), and to identify the most 

recommended dietary pattern for coping with biological aging. Additionally, we propose to 

explore the potential mediating role of the gut microbiome in these associations. 

Method 

Study population 

The CMEC study is an ongoing community-based prospective cohort study covering five 

provinces in Southwest China, including Sichuan, Yunnan, Guizhou, Tibet, and Chongqing. 

A multistage, stratified cluster sampling method was employed to select the study population. 

Detailed information on the recruitment of the population in the CMEC study has been 

described in our previous study
(28, 29)

. The selected study population exhibits diverse SES, 

racial composition, population size, and disease patterns. The baseline survey was conducted 

from May 2018 to September 2019, involving data collection from 99,556 participants. The 

first follow-up survey took place from August 2020 to July 2021, including nearly 10% of the 

baseline participants. The study collected data through face-to-face interviews, medical 

examinations, laboratory tests, and obtained questionnaire data, physical examination data, 

biological samples, as well as disease occurrence and diagnosis information
(28)

. This study 

adhered to the ethical principles outlined in the Declaration of Helsinki, with all procedures 

involving human subjects approved by the Ethics Review Committee of Sichuan University 

(K2016038, K2020022) and local ethics committees at each participating site. Written 

informed consent was obtained from all subjects. 

In the present study, for the longitudinal associations between dietary patterns and KDM-BA, 

individuals with abnormal total energy intake (n = 227), implausible body mass index (BMI) 

(n = 52) and missing covariates (n = 475) were excluded. Finally, we included 8,288 study 

participants with complete diet related data and covariates in baseline survey, and biomarkers 

for constructing KDM-BA in follow-up survey. For the mediation analysis of gut microbiota, 

we excluded individuals who had an abnormal total energy intake (n = 44), implausible BMI 

(n = 3), had used antibiotics within one month prior to baseline (n = 553), self-reported 

baseline digestive conditions such as ulcers, gastritis, gallstones, and cholecystitis (n = 236), 

or had missing covariate data (n = 3). Ultimately, 764 study participants were included in the 

analysis, all of whom had fecal sample data, complete diet-related data, biomarkers for 

constructing the KDM-BA, and associated covariates. Detailed information on the enrollment 

process is provided in Supplementary Figure 1. 
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Dietary measurement 

We obtained self-reported information on participants' dietary habits in the year before the 

baseline survey through a semi-quantitative food frequency questionnaire (FFQ). The 

reproducibility and validity of the FFQ were evaluated by conducting repeated FFQs and 

24-hour dietary recalls
(30)

. The FFQ comprehensively assessed the intake of major food 

groups [include rice, wheat products, coarse grain, tubers, meat, poultry, fish/sea food, eggs, 

fresh vegetables, soybean products, preserved vegetables, fresh fruit, dairy products, alcohol, 

tea, sugar sweetened beverages (SSBs), vegetable oil, animal oil, and salt]. The consumption 

of each food group was measured using intake quantity (standard portion/grams) and intake 

frequency (daily, weekly, monthly, yearly). Ultimately, all consumption amounts for food 

groups were converted into weekly grams. 

Dietary pattern measurement 

Based on the consumption of food groups, we constructed six dietary patterns, including PDI, 

hPDI, uPDI, HDS, DASH and aMED. Detailed information on the scoring criteria for each 

dietary pattern can be found in Supplementary Methods, Supplementary Tables 1. In brief, 

plant-based diet indices were calculated based on 15 food groups [include tubers, fresh 

vegetables, soybean products, fresh fruits, coarse grain, tea, vegetable oil, preserved 

vegetables, fine grain (rice and wheat products), red and processed meats, poultry, fish/sea 

food, eggs, dairy products, animal oil], categorized into healthy plant foods, unhealthy plant 

foods, and animal foods according to their varying health effects
(18, 31, 32)

. The scoring criteria 

for healthy plant foods, unhealthy plant foods, and animal foods differ among the three 

plant-based diet indices. In general, each food group was assigned a score from 1 to 5. The 

total scores ranged from 15 to 75 for the three plant-based diet indices, reflecting adherence 

to a plant-based diet. The HDS
(16)

 was determined by evaluating 5 specific healthy dietary 

groups (fresh vegetables, soybean products, fresh fruits, fish/seafood, and dairy products), 

with each food group assigned a score ranging from 1 to 5. The total HDS score ranged from 

5 to 25, where higher scores reflect a healthier diet. We calculated the DASH score based on 

seven food groups (fresh fruit, fresh vegetables, soybean products, dairy products, coarse 

grain, red and processed meats, and salt) to evaluate adherence to the DASH diet, and the 

aMED score was calculated based on eight food groups (fresh vegetables, soybean products, 

fresh fruit, coarse grain, fish/seafood, MUFA: SFA (the ratio of monounsaturated fatty acids 

to saturated fatty acids), red and processed meats, and alcohol) to assess adherence to the 

Mediterranean diet among non-Mediterranean populations
(30)

. Each food group was assigned 

a value from 1 to 5. The theoretical range for total DASH scores was 7-35, while the 

theoretical range for total aMED scores was 8-40. 

Composite biomarker BA measurement 

We utilized clinical biomarkers, anthropometric measurements to construct biological age 

based on Klemera and Doubal's method (KDM-BA)
(33)

 , which has been well validated for 

predicting biological aging and age-related health status.
(34-36)

. The KDM-BA constructed 
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based on the CMEC population has been described and validated in our previous study
(29)

. In 

summary, we selected eligible biomarkers based on the assumptions and selection criteria 

necessary for constructing KDM-BA. A total of 15 indicators were included: systolic blood 

pressure (SBP), waist-to-hip ratio (WHR), peak expiratory flow, low-density lipoprotein 

cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), glycated hemoglobin 

(HBA1C), triglyceride (TG), aspartate aminotransferase (AST), gamma-glutamyl 

transpeptidase (GGT), albumin (ALB), alkaline phosphatase (ALP), creatinine, urea, mean 

corpuscular volume (MCV), and platelet count. Subsequently, we employed linear regression 

to predict chronological age (CA) using the selected biomarkers. This approach allowed us to 

obtain the regression coefficients, which were then integrated with the biological age (BA) 

formula to compute the KDM-BA
(33)

. 

Additionally, we calculated the KDM-BA acceleration (KDM-AA) by subtracting CA from 

KDM-BA. A positive KDM-AA indicates that the individual is physiologically older than 

expected in the reference population, while a negative KDM-AA suggests that the individual 

is physiologically younger than expected. 

Gut microbiota measurement 

We collected fecal samples and stored in -80°C biobank freezer prior to testing. DNA 

extraction from the samples was performed using the Mag-Bind® Soil DNA Kit (M5635, 

Omega Bio-tek, Georgia, USA), while concentration and quality measurements were 

conducted using a fluorescence spectrophotometer (E6090 QuantiFluor, Promega, 

Wis-consin, USA) and 1% agarose gel electropho-resis. The amplification of the 16S rRNA 

gene fragment was carried out using universal primers (338F and 806R). Following PCR 

amplification, gel purification, and quantification, we constructed the required DNA library 

and sequenced it using the Illumina Novaseq 6000 PE250 sequencing platform. The resulting 

raw sequencing data were subjected to corresponding analysis to obtain the operational 

taxonomic unit (OUT) data, which serves as the foundational dataset for constructing gut 

microbial measurements. Further details regarding fecal sample collection, DNA extraction, 

and sequencing can be found in our previous study 
(37)

. 

Covariates measurement 

Covariates information was obtained from questionnaires. We constructed directed acyclic 

graphs (DAGs) based on the protocol of "Evidence Synthesis for Constructing Directed 

Acyclic Graphs" (ESC-DAGs) (DAGs is presented in Supplementary Figure 2). Following 

causal diagrams and the backdoor criterion, the following covariates were included in the 

main analysis: age, sex, ethnicity, marital status, education, annual household income, 

occupation, family history of cardiovascular metabolic diseases, urbanicity, smoking status, 

total energy intake, physical activity, BMI, insomnia symptom, dietary supplement, 

depressive symptom, anxiety symptom, beverage consumption. Detailed information can be 

found in the Supplementary Methods. See Supplementary Table 2 for missing information 

on covariates. 
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Statistical analysis 

We described the baseline characteristics across various categories of dietary pattern scores in 

the study populations. Continuous variables were presented as median (25th, 75th percentile), 

while categorical variables were indicated as numbers (percentages). T-tests and chi-square 

tests were conducted to assess the differences between the current complete-cases data and 

the corresponding entire-population with missing covariates. 

We employed the follow-up adjusted for baseline analysis by applying multiple linear 

regression model to assess the association between baseline dietary pattern scores (quintiles) 

and the follow-up KDM-AA (continuous). We further adjusted for potential confounding 

factors as identified in the DAG and the baseline KDM-AA to reduce reverse causation and 

minimize potential residual confounding
(38)

 (Supplementary Methods). Additionally, to 

further elucidate the significant beneficial and detrimental food groups, we employed the 

quantile G-computation (QGC) method
(39)

 (Supplementary Methods) to evaluate the 

relative contribution of each food group in the association of each dietary pattern with 

KDM-AA, as well as the relative weights of all food groups associated with KDM-AA. The 

QGC method evaluates the positive or negative relative contributions of each food group, and 

has been widely used in epidemiological studies
(40, 41)

. 

In the microbiota-related analysis, the original OTU data were rarefied to 38,000 reads
(42)

 (the 

rarefaction curve is provided in Supplementary Figure 3). Shannon, Simpson, Chao1, ACE, 

and Obs indices were computed using the rarified counts to assess α-diversity of the gut 

microbiota. We excluded taxa with low relative abundance and retained those with a relative 

abundance exceeding 10
-5

 in at least 5% of the samples
(43)

. Ultimately, we incorporated 5 

α-diversity indices, 16 phylum-level taxa, and 304 genus-level taxa. Additionally, we 

conducted the regression-based causal mediation model
(44)

 to explore the mediating role of 

gut microbiota in the associations between dietary patterns and KDM-AA. It primarily 

consisted of two steps. First, regressing gut microbiota on dietary patterns. Then, regressing 

KDM-AA on dietary patterns and gut microbiota. Considering the potential correlations 

among taxa, we did not consider each test for taxa as independent test. Therefore, for taxa 

with | r | > 0.3 and P <0.05 in Spearman correlation analysis, we did not correct for multiple 

testing
(45, 46)

(Supplementary Methods, Supplementary Figure 4). Furthermore, we utilized 

Spearman correlation analysis to assess the correlations between dietary patterns and gut 

microbiota, as well as between KDM-AA and gut microbiota. 

To explore potential effect modification on the associations between dietary patterns and 

KDM-AA, we included dietary indicators as continuous variables and conducted stratified 

analysis based on sex, age, ethnicity, physical activity, BMI, education level, and smoking 

status. 

To test the robustness of our findings, the following sensitivity analyses were performed in 

association analysis: 1) conducting the association analysis with entire-population dataset 

imputed missing covariates rather than the current complete-case data. 2) repeating the 
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analysis after excluding individuals with KDM-AA values greater than 4 standard deviations. 

3) inclusion of dietary indicators as binary, ternary, and quaternary variables in the model. 4) 

performing a cross-sectional analysis of the association between dietary patterns and 

KDM-AA based on baseline diet-related data and baseline KDM-AA. 5) we excluded 

self-reported chronic diseases at baseline (diabetes, hypertension, hyperlipidemia, coronary 

heart disease and stroke) to reduce reverse causation. 

Two-sided P value < 0.05 were considered statistically significant. In microbiota-related 

analysis, we utilized the False Discovery Rate (FDR) method for multiple test correction. All 

statistical analyses were conducted using R version 4.2.1. 

Result 

General characteristics 

According to the percentile classification of dietary indicators, we described the baseline 

characteristics of 8,288 participants in the association analysis (see Table 1). The median age 

of the study population was 51 years (44, 59), with the majority being female (61.6%), Han 

ethnicity (60.6%), and residing in rural areas (64.3%). The PDI, uPDI, and hPDI dietary 

patterns exhibited similar baseline characteristics. Participants with higher compliance with 

these dietary patterns tended to prefer living in rural areas, be of non-Han ethnicity, and have 

relatively lower levels of education. Among these individuals, those with higher compliance 

with uPDI also showed a tendency to work in primary industry-related occupations and have 

lower economic status. Similarly, the HDS, DASH, and aMED dietary patterns shared 

comparable baseline characteristics. Participants with higher compliance to these dietary 

patterns tended to be Han ethnicity, reside in urban areas, work in tertiary industry-related 

occupations, and have higher levels of education and economic status. A comparison of the 

characteristics of the association analysis samples and the corresponding entire-population 

dataset can be found in Supplementary Table 3. The results showed that there were no 

significant differences in the above two samples. 

Associations between dietary patterns with KDM-AA 

Table 2 presents the estimated associations between various dietary patterns and KDM-AA 

after adjusting for potential confounding variables. Overall, all dietary patterns were found to 

be associated with KDM-AA. The healthy dietary patterns (PDI, hPDI, HDS, DASH, aMED) 

exhibited negative association with KDM-AA, with DASH demonstrating the strongest 

negative association. Conversely, uPDI showed positive association with KDM-AA. When 

comparing the highest and lowest quantiles of the dietary indicator, the strongest negative 

association was observed between DASH and KDM-AA [β = -0.91 (-1.19, -0.63)], while the 

weakest was observed for hPDI [β = -0.41 (-0.67, -0.15)]. Additionally, uPDI demonstrated a 

positive association with KDM-AA [β= 0.68(0.39,0.97)] as participants transitioned from 

non-compliance to compliance. Consistent results were obtained when dietary indicators 

were included as continuous variables in the model. A 1-point increase in the DASH score 
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was associated with a 0.33-year decrease in KDM-AA, whereas a 1-point increase in the 

hPDI score was associated with a mere 0.15-year decrease in KDM-AA. Conversely, each 

1-point increase in the uPDI score was associated with a 0.25-year increase in KDM-AA. 

Notably, all trend P values were less than 0.001. 

For the varying associations between different dietary patterns and KDM-AA, component 

analysis may provide corresponding explanations (Figure 1). Overall, the results of 

component analysis showed that tea and soybean products may be the significant beneficial 

food groups, while salt, preserved vegetables, red and processed meats were identified as the 

major harmful food groups. In DASH, HDS, and aMED, which showed relatively stronger 

beneficial associations with KDM-AA, soybean products were identified as the most 

beneficial food group, accounting for 36%, 36.4%, and 40.3%, respectively, while salt and 

red and processed meats were found to be the most detrimental food groups in DASH (60.1%) 

and aMED (42.6%), respectively. Results from the component analysis of plant-based dietary 

patterns indicate that tea (34.3%) may be the significant food group contributing to the 

beneficial association between PDI and hPDI with KDM-AA. Additionally, a higher intake of 

preserved vegetables (52.3%) predominantly contributes to the detrimental association 

between uPDI and KDM-AA. Detailed results can be found in Supplementary Table 4. In 

the stratified analysis, the magnitude and direction of the associations between various 

dietary patterns and KDM-AA in different subgroups largely align with the main analysis. 

Further details can be found in Supplementary Table 5. 

Mediation analysis 

Supplementary Table 6 presents the baseline characteristics of the mediation analysis 

sample comprising 764 participants. Figure 2.a illustrates the joint distribution of Spearman 

correlation coefficients between microbial measurements and dietary patterns as well as 

KDM-AA. From the overall distribution trend, there were relatively stronger associations 

between microbial measurements and dietary patterns, while the correlation with KDM-AA 

were comparatively weaker. The strongest correlations between microbial measurements and 

dietary patterns (except DASH) were approximately 0.25, whereas the strongest correlations 

with KDM-AA were approximately 0.1. 

In the mediation analysis sample, we found that the direction and magnitude of associations 

between various dietary patterns and KDM-AA remained consistent with the previous 

association analysis. However, we did not find significant statistical association between 

several dietary patterns and KDM-AA. Furthermore, we did not observe statistically 

significant mediation effects of α-diversity indices (Supplementary Table 7). The results 

above may be attributed to the relatively small sample size of our mediation analysis and the 

collection of fecal samples from specific populations in CMEC, leading to limited variation 

in dietary indicators and gut microbiota within the mediation sample. This makes it 

challenging to observe statistically significant results. Nevertheless, we identified several taxa 

with statistically significant mediation effects (Figure 2.b, Supplementary Table 8). At the 

phylum-level, we found that hPDI may be negatively associated with KDM-AA by reducing 
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the abundance of the Synergistetes phylum [RDIndirect = -0.017 (95% CI: -0.040, -0.001), P = 

0.03, PFDR = 0.21], with a mediating proportion of 5.61%. Within the genus constituting the 

Synergistetes phylum, the decreased abundance of the Pyramidobacter genus may 

respectively mediate 7.27% of the negative association between PDI and KDM-AA [RDIndirect 

= -0.021(95% CI: -0.051,0.000), P =0.042, PFDR = 0.084], and 9.19% of the negative 

association between hPDI and KDM-AA [ RDIndirect = -0.027 (95% CI: -0.069, 0.000), P 

=0.048, PFDR =0.096].The results indicate that the decreased abundance of the Synergistetes 

phylum and its component genus Pyramidobacter may mediate the negative associations 

between plant-based diets and KDM-AA. 

Sensitivity analyses 

The association between various dietary patterns and KDM-AA exhibited largely robust 

results when excluding outliers of KDM-AA that were greater than 4 times the standard 

deviation, imputing the corresponding entire-population dataset, performing different 

classification processing (binary, ternary, quaternary) on the dietary indicators, performing a 

cross-sectional analysis and excluding baseline chronic disease. (Supplementary Tables 

9-15) 

Discussion 

Summary of main results 

Based on the 8,288 participants from the CMEC baseline and follow-up survey, we found 

that six dietary patterns were statistically significant associated with KDM-AA. uPDI was 

positively associated with KDM-AA, while the other five dietary patterns (PDI, hPDI, HDS, 

DASH, aMED) were negatively associated with KDM-AA, with DASH showing the 

strongest beneficial association. Among the food groups assessed, tea and soybean products 

may be significant beneficial food groups, while salt, preserved vegetables, red and processed 

meats were identified as the major harmful food groups. In addition, based on 764 individuals 

at baseline, we found that the decreased abundance of the Synergistetes phylum and its 

member, the Pyramidobacter genus, may mediate the negative association between 

plant-based diets and KDM-AA. 

Dietary patterns are associated with biological age and DASH shows the strongest 

beneficial association 

Based on our longitudinal data, healthy dietary patterns were negatively associated with 

biological aging measured by composite biomarkers. Our findings are consistent with 

previous research, although most previous studies focused on the associations of dietary 

patterns with telomeres
(19)

, frailty 
(47)

, epigenetic age
(8, 48, 49)

, composite biomarker BA based 

on Deep Neural Network
(50)

, other aging metrics or aging-related outcomes 
(16, 18, 32, 51)

. 

Various measures of aging may capture distinct aspects of the aging process
(7)

. Our study, in 

conjunction with previous research, comprehensively demonstrates that healthy dietary 
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patterns may be negatively associated with multiple dimensions of biological aging. 

Furthermore, we found that DASH demonstrated the strongest beneficial association with 

KDM-AA among various dietary patterns. However, there is still controversy regarding the 

most recommended dietary pattern for coping with biological aging
(8, 19, 50)

. A longitudinal 

study based on the Melbourne Collaborative Cohort Study (MCCS) and a cross-sectional 

study based on the American Sister Study both preferred the Alternative Healthy Eating 

Index 2010 (aHEI-2010), while a cross-sectional study based on the Italian Moli-sani Study 

recommended MED. The different results may be attributed to the focus on various biological 

aging measures and variations in the food groups used to construct the dietary indices. It is 

evident that these studies were conducted primarily on Western populations, where dietary 

habits differ significantly from those in China. In particular, the DASH diet emerged as the 

most recommended dietary pattern in our study, likely due to the high salt intake prevalent in 

China, which the DASH diet specifically aims to control. The salt intake among the Chinese 

exceeds the World Health Organization's recommended intake by more than twice
(52)

, and 

high salt intake ranks as the third leading risk factor for death and disability-adjusted life 

years in China
(53)

. Consistent with our previous research, the DASH diet was also highly 

recommended for attenuating cardiometabolic risks among various dietary patterns, 

particularly in lowering the risk of hypertension, which is closely associated with salt 

intake
(30)

. 

Tea and soybean products may be the significant beneficial food groups, while salt, preserved 

vegetables, red and processed meats were identified as the major harmful food groups. 

The component analyses indicate that salt, preserved vegetables, red and processed meats 

may be significant beneficial food groups. It is acknowledged that salt and high-salt 

preserved vegetables 
(54)

 are the major detrimental food groups, corresponding to the 

significant adverse effects of high salt intake in our population. Our research indicates that 

salt reduction may be a crucial intervention strategy to promote healthy aging in the 

southwestern region of China. Salt reduction has been adopted as one of the most 

cost-effective public policies worldwide
(55)

. Additionally, China's "Healthy China 2030" plan 

sets a target to reduce adult daily salt intake by 20% by the year 2030. Considering the 

extensive geographical coverage, substantial altitude variations, and dietary habits of ethnic 

minorities that are challenging to modify within our study population, our research 

emphasizes the necessity for enhanced policy support and resource allocation in 

implementing salt reduction interventions, especially in the southwestern region of China. 

The component analyses indicate that tea and soybean products may be primarily beneficial 

food groups. Tea is known to be rich in polyphenols, purine alkaloids, theanine, tea 

polysaccharides and caffeine bioactive compounds
(29)

, while soybean products are abundant 

in polyphenols, carotenoids, phytosterols, phytic acids, alkaloids, and other 

phytochemicals
(56)

. Polyphenols, in particular, have been extensively studied and are 

recognized as being negatively associated with biological aging. Research has indicated that 

the underlying mechanism may involve polyphenols exerting anti-inflammatory effects and 
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modulating gut microbiota, thereby promoting healthy aging
(20, 57-60)

. 

Overall, our findings align with the fundamental principles recommended by the current 

Chinese dietary guidelines and may serve as a reference for their further improvement. The 

DASH diet, as advocated by our study, emphasizes the consumption of fresh fruits, 

vegetables, soybean products, dairy, and whole grains, while recommending a reduction in 

red and processed meats, as well as salt intake. This approach largely corresponds with the 

general principles outlined in the Chinese Food Guide Pagoda (2022), which serves as a 

crucial foundation for conducting dietary evaluations in China. Furthermore, in addition to 

the current recommendations of the Chinese Food Guide Pagoda, our study identifies tea as a 

beneficial food group and highlights preserved vegetables, red, and processed meats as 

harmful food groups, which may inform future enhancements to the Chinese Food Guide 

Pagoda. 

Gut microbiota may partially mediate the association between certain dietary patterns 

and biological age 

Our study suggested that the Synergistetes phylum and its member, the Pyramidobacter 

genus, may partially mediate the negative association between plant-based diets and 

biological aging. Previous research indicated that these two taxa may be associated with 

inflammation and age-related phenotypes. Synergistetes phylum is linked to systemic 

anti-inflammatory responses, infection, diabetes, cancer, and its abundance is significantly 

increased in patients with Parkinson's disease and heart failure
(61-66)

. The Pyramidobacter 

genus is associated with inflammatory factors and may contribute to pathogenic infections
(67)

. 

Furthermore, it has been recognized as a biomarker for colorectal cancer and oral squamous 

cell carcinoma 
(68, 69)

. Our research is consistent with previous studies. A dietary intervention 

study found significantly lower abundance of Pyramidobacter among participants who 

consumed a plant-based diet rich in polyphenolic compounds
(70)

. Overall, this indicates that 

plant-based diets may modulate the abundance of gut microbiota through polyphenolic 

compounds, thereby potentially promoting healthy aging. However, considering that our 

microbiota-related study relies on a relatively small and specific sample, the corresponding 

conclusions need to be interpreted cautiously. Further research with larger and more diverse 

samples is essential to thoroughly explore the role of microbiota in the association between 

dietary patterns and biological aging. 

Strength and limitations 

To the best of our knowledge, this is the first study comparing the association between 

various dietary patterns, corresponding food groups, and biological age in LEMRs. 

Additionally, our study utilized longitudinal data, while most epidemiological studies 

focusing on the association between dietary patterns and biological aging have employed 

cross-sectional designs. Furthermore, by integrating metagenomic data, our study 

represents the first investigation into the mediating role of gut microbiota in the association 

between dietary patterns and biological age in LEMRs. 
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However, several limitations should be acknowledged. Firstly, measurement error may 

impact dietary measurements and distort dietary patterns. Nonetheless, our previous study 

showed that measurement error generally mitigated the observed association between dietary 

patterns and disease
(71)

. Therefore, we believe that this limitation is less likely to significantly 

influence our main conclusions. Secondly, we lacked rigorous quantification for 

sugar-sweetened beverages (SSBs) and lacked information on consumption of nuts. 

Therefore, we excluded SSBs from the DASH score, and excluded nuts from the aMED and 

HDS scores. This may result in the constructed dietary indices not fully reflecting true dietary 

patterns. However, given that consumption of SSBs and nuts is very low in the LEMRs, we 

believe that the impact of this deficiency on our results is limited. Thirdly, due to data 

availability, the biomarkers used to construct KDM-BA don’t include fully biomarkers 

related to aging. Thus, the KDM-BA may reflect certain aspect of aging. Fourthly, although 

we have carefully controlled the confounding factors identified in the DAG, the impact of 

unmeasured confounding cannot be entirely ruled out. Finally, our study was limited to 

less-developed ethnic minority regions in southwestern China. The findings should be 

generalized to other LEMRs populations for caution. 

Conclusion 

Based on longitudinal data from the CMEC study, our study indicated that adherence to 

healthy dietary patterns (PDI, hPDI, HDS, DASH, aMED), especially DASH, was negatively 

associated with KDM-AA, while uPDI was positively associated with KDM-AA. 

Furthermore, this study identified potential beneficial food groups (tea and soybean products), 

as well as harmful groups (salt, red and processed meats, preserved vegetables) for coping 

with biological aging. It appears that gut microbiota, specifically Synergistetes phylum and 

Pyramidobacter genus, may mediate the negative association between plant-based diets and 

KDM-AA. The research provides a comprehensive exploration of the associations between 

various dietary patterns and biological aging, as well as potential mechanisms. 
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Tables 

Table1. Baseline characteristics of the association analysis sample according to quintiles of 

dietary patterns scores (N = 8288). 
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In order to simplify the presentation of results, only the descriptive results of each dietary 

indicator Q1(the lowest percentile) and Q5(the highest percentile) are shown in the table. 

Data are presented as median (25th, 75th percentile) or numbers (percentages).  
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Table2. The associations of dietary patterns with KDM-AA (N = 8288). 
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P 
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- - <0.
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*** 

- - <0.

001

*** 

- - <0.

001

*** 

- - <0.

001

*** 

- - <0.

001

*** 

- - <0.

001

*** 

1. Continuous dietary indicators were standardized. 

2. Two-sided P trends were obtained by assigning median values to each quintile, and then 

incorporating it into the model as a continuous variable. 

*** presented P value < 0.001. ** presented P value >=0.001 & <0.01. * presented P 

value >=0.01 & <0.05. 

Results were adjusted for covariates: the baseline KDM-AA, age, sex, ethnicity, marital 

status, education, annual household income, occupation, family history, urbanicity, smoking 

status, physical activity, total energy intake, BMI, dietary supplement, insomnia symptom, 

depressive symptom, anxiety symptom, beverage consumption. 
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Figure legends 

 

Figure1. Relative weight of each food group in the dietary patterns associated with 

KDM-AA (N = 8288). All models were adjusted for the baseline KDM-AA, age, sex, 

ethnicity, marital status, education, annual household income, occupation, family history, 

urbanicity, smoking status, physical activity, total energy intake, BMI, dietary supplement, 

insomnia symptom, depressive symptom, anxiety symptom, beverage consumption. The 

x-axis represents the relative weight size (positive and negative weights) of each food group 

in association with KDM-AA, and the y-axis represents food groups. The red bars represent 

food groups with a positive coefficient in the model and statistically significant associations, 

while the green bars represent food groups with a negative coefficient in the model and 

statistically significant associations. The gray bars represent food groups with no statistically 

significant association with KDM-AA in the model.
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Figure2. Interrelation of various dietary patterns, gut microbiome measurements and 

KDM-AA (N = 764). Figure2a. Spearman correlations of microbiota measurements with 

dietary indicators and with KDM-AA. The X-axis indicates the correlation coefficients 

between dietary patterns and microbiota measurements, while the Y-axis represents the 

correlation coefficients between KDM-AA and microbiota measurements (both absolute 

values). Triangles on the axes represent 325 microbiota measurements: blue for α-diversity 

indices, orange for phylum-level taxa, and green for genus-level taxa. The blue, orange, and 

green ellipses on the axes encompass the distribution range of α-diversity indices, 

phylum-level taxa, and genus-level taxa, respectively. Some ellipses have incomplete shapes 

because parts that extend beyond the axis range are not displayed. Figure2b. The indirect 

effect of mediation analysis of dietary patterns and KDM-AA mediated by microbiota 

measurements. The X-axis represents six dietary pattern indicators, and the Y-axis represents 

the -log10 transformed P values of the indirect effect of mediation analysis. A higher 

-log10(P) value indicates a smaller P value. Each dietary pattern corresponds to points in the 

upper area of the coordinate axis, representing 325 microbiota measurements. Blue points 

represent α-diversity indices, green points represent phylum-level taxa, and orange points 

represent genus-level taxa. The orange horizontal line represents the reference line for P = 

0.05. All models were adjusted for age, sex, ethnicity, marital status, urbanicity, physical 

activity, total energy intake, BMI, insomnia symptoms, and alcohol intake. 
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