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The spatio-temporal scales, as well as a comprehensive self-sustained mechanism of
the reattachment unsteadiness in shock wave/boundary layer interaction, are investigated
in this study. Direct numerical simulations reveal that the reattachment unsteadiness
of a Mach 7.7 laminar inflow causes over 26 % variation in wall friction and up to
20 % fluctuation in heat flux at the reattachment of the separation bubble. A statistical
approach, based on the local reattachment upstream movement, is proposed to identify
the spanwise and temporal scales of reattachment unsteadiness. It is found that two
different types, i.e. self-induced and random processes, dominate different regions of
reattachment. A self-sustained mechanism is proposed to comprehend the reattachment
unsteadiness in the self-induced region. The intrinsic instability of the separation
bubble transports vorticity downstream, resulting in an inhomogeneous reattachment line,
which gives rise to baroclinic production of quasi-streamwise vortices. The pairing of
these vortices initiates high-speed streaks and shifts the reattachment line upstream.
Ultimately, viscosity dissipates the vortices, triggering instability and a new cycle of
reattachment unsteadiness. The temporal scale and maximum vorticity are estimated
with the self-sustained mechanism via order-of-magnitude analysis of the enstrophy. The
advection speed of friction, derived from the assumption of coherent structures advecting
with a Blasius-type boundary layer, aligns with the numerical findings.
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1. Introduction

Shock wave/boundary layer interaction (SBLI) is ubiquitous in high-speed flight
(Babinsky & Harvey 2011). It is typically observed at body flaps, forebodies and
control surfaces where canonical flows are characterized by compression ramp flows
(Ganapathisubramani, Clemens & Dolling 2009; Dwivedi et al. 2019; Cao et al. 2021a;
Lugrin et al. 2021) and shock impingement on boundary layers (Pasquariello, Hickel
& Adams 2017; Chang et al. 2022; Ceci et al. 2023). The complexities of the flow
environment in high-speed flight lead to intricate phenomena, such as boundary layer
separation, high wall heat flux, and unsteadiness of shocks due to intense SBLI, posing
significant challenges for thermal protection and flight control (Zhang 2020). To address
these challenges, extensive experiments and numerical simulations have been conducted
to investigate the transient and statistical behaviours of SBLI. Comprehensive reviews of
these studies have been provided by Dolling (2001), Knight et al. (2003) and Clemens &
Narayanaswamy (2014), and more recently by Gaitonde & Adler (2023).

The unsteadiness evolution of high friction and heat flux streaks downstream of laminar
separation SBLI, which excludes the modulation of turbulence, provides a relatively
simple yet practical engineering research subject. Experimentally, the high heat flux
streaks were discovered tracing back to 1971 in the von Karman Institute by Ginoux (1971)
in Mach 5.3 flow, resulting in substantial spanwise variation of heat transfer, with peak
values several times higher than the average. More recently, Roghelia et al. (2017) and
Chuvakhov et al. (2017) conducted Mach 7.7 laminar inflow experiments in the Aachen
Shock Tunnel TH2 and Central Aerohydrodynamic Institute UT-1M tunnel independently,
under similar conditions of unit length Reynolds number and wall temperature, reporting
similar heat flux streaks downstream of the reattachment. This pattern has also been
observed by Simeonides & Haase (1995) and de la Chevalerie et al. (1997).

To quantify the observed structures, experiments and numerical simulations are
employed to measure both spatial and temporal scales. The wavelengths of streaks
measured via infrared imaging are found to be approximately 5.9 mm (Roghelia et al.
2017) and 5.1 mm through the application of thermal sensitive paint (Chuvakhov et al.
2017), specifically in Mach 7.7 laminar compression ramp flow conditions. For the
same inflow conditions, based on input/output analysis, Dwivedi et al. (2019) found
the spanwise length of steady streaks to be 3–4.5 times the displacement thickness at
separation, while Cao et al. (2021a) reported a wavelength 3.3 mm through global stability
analysis. For a lower Mach number case, Navarro-Martinez & Tutty (2005) found that the
reattachment streaks’ wavelength varies in the spanwise direction, ranging from 6 mm
at the centreline to 3.1 mm at the sides. The above results suggest that the spanwise
length can be approximately scaled with the boundary layer thickness (Ginoux 1971;
Roghelia et al. 2017). Nevertheless, experimental measurements demand setting truncation
values, whereas both global stability and input/output methods presume the spanwise
periodicity. Compared to spatial investigations, temporal scale studies are relatively limited
due to experimental techniques such as thermal sensitive paint and oil flow visualization
providing time-averaged results. Kavun, Lipatov & Zapryagaev (2019) measured pressure
fluctuations of the frequencies in a Mach 6 laminar separated flow, revealing two peaks in
the spectrum, with Strouhal numbers 0.65 and 3.5. Direct numerical simulations (DNS)
conducted by Cao et al. (2021a) and Cao, Olivier & Schröder (2021b) show low-frequency
wall Stanton number fluctuations at post-reattachment with Strouhal number 0.15.

The dynamics and formation mechanisms of the streamwise streaks at post-reattachment
are primarily attributed to two major factors: one is the global (intrinsic) instability
nature of the separation bubble, the other is the localized dynamics after reattachment.
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The global instability has been studied extensively through linear stability tools (Sansica,
Sandham & Hu 2016; Dwivedi et al. 2019; Cao et al. 2021b; Hao et al. 2021; Bugeat et al.
2022). By masking the separation bubble with the virtual boundary and using input/output
analysis, Dwivedi et al. (2019) found that the largest amplification of streamwise vorticity
reduces 5 times, and the normalized spanwise wavelength associated with the largest gain
decreases from 3.0 to 2.25, indicating that both upstream disturbances and separation
bubble contribute to the structures. By biglobal analysis, Cao et al. (2021a) found
four unstable modes in a Mach 7.7 flow with a 15◦ ramp. The smallest wavelength
within these modes is close to the streak scale in DNS, while the largest wavelength
structures (λz/L ≈ 0.33) were observed within the separation bubble, emphasizing the
importance of bubble instabilities for downstream streaks. Sawant, Theofilis & Levin
(2022) studied Mach 7 laminar double wedge flow with rarefaction effects. They found
that the laminar separation bubble sustains self-excited perturbations and leads to spanwise
periodic wall striations downstream of the reattachment line. Similar unstable modes
are found in various high Mach number flow configurations, including oblique SBLI
(Hildebrand et al. 2018), and specific geometries like double wedge (Gs et al. 2018; Sawant
et al. 2022), double cone (Hao et al. 2022) and backward step (Yu et al. 2024), when
the geometry or boundary parameters exceed critical values. At lower Mach numbers,
bifurcation to three-dimensional separation structures (Robinet 2007) and shear layer
instability (Guiho, Alizard & Robinet 2016) also induce low-frequency bubble dynamics
and resultant downstream structural formations. For an incompressible laminar separation
bubble, Theofilis (2011) and Rodriguez, Gennaro & Souza (2021) found that a self-excited
secondary instability of the separation bubble can induce streamwise vortices, explaining
the origin of unsteadiness without external disturbances. However, linear instability
theories assume periodic streak distribution in spanwise and exponential growth, which
may not hold in the nonlinear saturation regime.

After a long time development of flow with large span width, the formation of
streamwise streaks at post-reattachment is influenced by local physical interactions.
Centrifugal force can generate streamwise Görtler-like vortices after reattachment if the
normalized reattaching streamline curvature (Görtler number) exceeds a critical value
(Navarro-Martinez & Tutty 2005; Cao, Klioutchnikov & Olivier 2019). However, the
reliance on empirical parameters in its definition makes it challenging to confirm the
dominance. Recently, Gs et al. (2018) utilized wave-maker analysis in double wedge
flow, revealing that the centrifugal effect may not be the sole cause of streaks even with
strong mean flow curvature. Dwivedi et al. (2019) analysed the inviscid vorticity transport
equation, and found that the baroclinic effect, denoted by pressure spanwise gradient times
density normal gradient, is stronger than the centrifugal effect in the reattachment region.
The strong influence of pressure spanwise gradient is also studied by Kavun et al. (2019)
and Zapryagaev, Kavun & Lipatov (2013) in Mach 6 laminar separated flow.

The evolution and dissipation process of reattachment structures after the linear
growth stage in supersonic flows remain comparatively underexplored. For incompressible
wall-bounded flows, a self-sustained mechanism has been proposed. This process involves
streamwise vortices generating streaks that then become unstable and yield waves that
regenerate vortices and ultimately form the self-sustained process (Hamilton, Kim &
Waleffe 1995; Waleffe 1997,1998; Jiménez & Pinelli 1999; Wedin & Kerswell 2004). The
self-sustained process was originally formulated mathematically for the plane Couette flow
(Waleffe 1997) and extended to pipe flow (Wedin & Kerswell 2004), which is confirmed
through the exact coherent structures (Waleffe 2001, 2003; Graham & Floryan 2021)
observed in experiment (Hof et al. 2004). However, the potential application of this process
to SBLI reattaching streaks has not been investigated thoroughly.
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To investigate the evolution and mechanisms of the SBLI’s spatio-temporal
dramatic-varying reattachment structures, high-resolution numerical techniques and
modal analysis methods provide high quality and profound insights. Priebe & Martín
(2012) studied a 24◦ compression ramp at a Ma∞ = 2.9 via DNS, and observed strong
pulsations of the reattachment point, with oscillations exceeding three times the boundary
layer thickness. By analysing the coherence of wall pressure spectra, they revealed an
inherent instability to the low-frequency unsteadiness. The characteristic temporal scales
of unsteadiness in various SBLI configurations, including oblique SBLI (Touber &
Sandham 2009; Nichols et al. 2017; Pasquariello et al. 2017) and backward step flows
(Deshpande & Poggie 2020; Hu, Hickel & van Oudheusden 2021), have been investigated
rigorously through DNS and large eddy simulation. To extract the dynamics of the
unsteady flow, dynamic mode decomposition (DMD) has been employed widely (Schmid
2010, 2022; Tu et al. 2014; Kutz et al. 2016; Taira et al. 2017), including in SBLI systems
(Priebe et al. 2016; Nichols et al. 2017; Pasquariello et al. 2017; Hu et al. 2021; Cao
et al. 2021a). Cao et al. (2021a) analysed the spanwise velocity of separated SBLI flow
through DMD, and obtained the interaction characteristics of the shear layer and separation
bubble. Pasquariello et al. (2017) and Hu et al. (2021) obtained the modal characteristics of
the shear layer and the relationship between the Görtler-like structures and the upstream
pulsation through DMD in oblique SBLI and backward step flow, respectively. In this
study, we apply DMD as a global analysis tool to extract the temporal scale of reattachment
unsteadiness (RU) and compare it with our local statistical approach.

This study offers three contributions. First, we propose a local statistical approach to
extract the spanwise and temporal scales of RU. Second, a self-sustained mechanism is
proposed to understand the dynamics of RU. Third, the temporal scale, the maximum
vorticity of RU and the friction advection speed are derived within the scenario of the
self-sustained mechanism. The paper is organized as follows. In § 2, numerical methods,
configurations, computational settings and validations of the DNS are introduced. In § 3,
spatial and temporal scales of RU are detected by a local approach associating with the
local reattachment upstream movement and validated with DMD. In § 4, a self-sustained
mechanism is discussed in detail to understand RU. In § 5, we derive the temporal scale,
the maximum vorticity and the friction advection speed. In § 6, we end with a conclusion.

2. Numerical simulations

2.1. Governing equations and numerical methods
DNS are utilized to investigate the unsteadiness of SBLI ramp flows. The
non-dimensionalized conservative forms of the continuity, momentum and energy
equations in curvilinear coordinates are considered:

∂Q
∂t

+ ∂(F − Fν)

∂ξ
+ ∂(G − Gν)

∂η
+ ∂(H − Hν)

∂ζ
= 0, (2.1)

where Q = J{ρ, ρu, ρv, ρw, ρe} denotes the conservative vector flux, with ρ the density, e
the energy per volume, (u, v, w) velocity components of horizontal, vertical and spanwise
directions, respectively. Here, J is the Jacobian matrix transforming Cartesian coordinates
(x, y, z) into computational coordinates (ξ, η, ζ ). The inviscid flux F and the viscous flux
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Fv are defined as

F = J

⎡
⎢⎢⎢⎣

ρU∗
ρuU∗ + pξx
ρvU∗ + pξy
ρwU∗ + pξz
(ρe + p)U∗

⎤
⎥⎥⎥⎦ , Fv = J

⎡
⎢⎢⎢⎣

0
σ11ξx + σ21ξy + σ31ξz
σ12ξx + σ22ξy + σ32ξz
σ13ξx + σ23ξy + σ33ξz

S1ξx + S2ξy + S3ξz

⎤
⎥⎥⎥⎦ , (2.2a,b)

where

U∗ = (uξx + vξy + wξz)/

√
ξ2

x + ξ2
y + ξ2

z ,

σij = 2μ

[
1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 1

3
∂uk

∂xk
δij

]
,

Si = σijuj − μ

Pr (γ − 1)M2∞

∂T
∂xi

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

The flux terms G, Gv, H, Hv in the η and ζ directions have forms similar to those of
F and Fv . The pressure p and temperature T fulfil p = ρT/(γ Ma2∞), where the ratio of
specific heat γ is set to 1.4, and Ma∞ denotes the inflow Mach number. The subscript
∞ denotes the free-stream conditions. Quantities such as ρ, u, v, p, T are normalized
using their respective free-stream values. The Reynolds number per metre (m−1) Re∞
and the Prandtl number Pr are also employed. Viscosity μ follows the Sutherland law
μ = (1/Re∞)(T3/2(1 + Ts/T∞)/(T + Ts/T∞)), with Ts = 110.4 K and T∞ = 125 K.

The simulations are conducted using the in-house code OPENCFD-SC (Li, Fu & Ma
2008; Li et al. 2010). Inviscid flux terms are treated with Steger–Warming splitting
and solved via the WENO-SYMBO method (Martín et al. 2006; Wu & Martin 2007),
employing a nine-point central stencil and fourth-order accuracy. Viscous flux terms
are calculated with an eighth-order central difference scheme. A third-order TVD-type
Runge–Kutta method is used for time advance (Gottlieb & Shu 1998). More information
about the numerical methodology can be found in Li et al. (2008, 2010) and Martín et al.
(2006). The code has been validated extensively and applied successfully in various cases,
especially for compression ramp flows (Li et al. 2008, 2010; Hu et al. 2017, 2020a; Tong
et al. 2017; Zhou et al. 2021).

2.2. Configurations, computational set-up, mesh resolution and run time
In this study, two DNS cases with different ramp curvatures are conducted. The
compression ramp configuration of the first case (denoted as DCR) pertains to the Aachen
shock tube TH2 experimental set-up (Roghelia et al. 2017), which consists of a flat plate
with a sharp leading edge, and a tilted plate with angle ϕ = 15◦. Both the flat plate and
the tilted plate are 100 mm in length (L). The configuration of the second case (denoted
as CCR28) is akin to the first, but with a key difference: the sharp corner is replaced by
a rounded one. The arc is tangent to both the flat plate and the tilted plate, starting at
x/L = 0.72, indicating that the radius of curvature is rc/L = (L − x)/ tan(ϕ/2) = 2.13.
We can observe great reduction of the RU for the CCR28 case in § 2.4.

The Reynolds number based on the flat plate is ReL = 4.2 × 105, and Ma∞ and Pr are
7.7 and 0.7, respectively. The no-slip isothermal wall temperature Tw = 293 K leads to
Tw/T∞ = 2.344. The inflow is uniform and parallel to the plate, with non-dimensional
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Cases Flat plat length (1L) Radius of ramp curvature (rc/L) Ma∞ ReL Tw/T∞

DCR 100 mm 0 7.7 4.2 × 105 2.344
CCR28 100 mm 2.13 7.7 4.2 × 105 2.344

Table 1. Flow parameters of DNS.

0

0.5
1.0

1.5
2.0

z/L
x/L

Y

X
Zy/L

0.2

0.2

0.4

0

Figure 1. Computational grid for the DCR case (each 10th point in all dimensions is shown).

velocity U∞ = 1 and density ρ∞ = 1, initiating at x/L = −0.04. The upper boundary is
non-reflective, and the spanwise boundaries are periodic.

Both cases employ a computational mesh of 1021 × 251 × 200 nodes in the horizontal
(x), vertical (y) and spanwise (z) directions. The physical domain measures 2.04L
in length, 0.25L in height, and Lz = 0.3L in width. The grid for the DCR case
is shown in figure 1. The choice of spanwise width has been considered about
the flow’s intrinsic instability (Gs et al. 2018; Cao et al. 2021a, 2022), as the
largest wavelength of the unstable mode is approximately 0.3L (Cao et al. 2021a).
A sufficiently wide spanwise region, which is common in real flow, can stimulate all
unstable modes. This is important in order to investigate the characteristics of the
reattachment structures’ long-term unsteady evolution (after nonlinear saturation). The
grid distribution consists of a uniform streamwise spacing with �x = 2 × 10−3L, a
uniform spanwise spacing �z = 1.5 × 10−3L, and a clustered wall-normal grid near the
wall with the first grid height set to �y = 8 × 10−5L. This configuration leads to DCR
separation occurring at x/L = 0.50. Prior to separation, the flow remains steady laminar,
with boundary layer thickness δ99 = 0.01485L at x/L = 0.4985, containing 95 nodes. The
mesh resolution is adequate to resolve the boundary layer in the normal direction.

The dimensionless time step is set to dt U∞/L = 1.5 × 10−4. The initial flow fields are
generated by replicating the convergent two-dimensional flow of the corresponding X–Y
configuration in the spanwise direction. Statistics for the subsequent analysis are collected
after the flows have fully developed. Some key parameters are summarized in table 1.

2.3. Cases validation
We validate the grid arrangements in both horizontal and vertical directions through
the shock wave configuration, velocity, temperature profiles and pressure distributions.
Figure 2 shows the density distributions for DCR and CCR28. The separation angle θs,
angles of separation shock βs and reattachment shock βr show good agreement with
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y/L

ρ

0.2

0 0.4 0.8 1.2 1.6

βr = 16.37°
βs = 10.85°

θs = 4.68°

0.4
0 2 4 6

x/L

y/L

ρ

0.2

0 0.4 0.8 1.2 1.6

βr = 16.37°
βs = 10.85°

θs = 4.68°

0.4
0 2 4 6

(b)

(a)

Figure 2. Density distributions of (a) DCR, (b) CCR28. The separation angle θs, angle of separation shock
βs, and reattachment shock βr predicted by the minimum viscous dissipation principle (Hu et al. 2020b) are
labelled.

0

1

2

3

4

5

1

0
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4

Inviscid
Spanwise average lower bound
Spanwise average upper bound
Time spanwise average
DNS data by Cao et al. (2021a)
Experiment data by Roghelia et al. (2017)5

1 2 3

η
4 5 0.5

10–2

10–1

100

1.0

x/L

T/
T ∞

u/
U

∞

u/U∞—theory

T/T∞—theory

T/T∞—DNS

u/U∞—DNS

Cp

1.5 2.0

(b)(a)

Figure 3. (a) Velocity and temperature normal profiles of DCR at x/L = 0.36. The lines are DNS results, and
the symbols are theory. (b) The Cp distributions of DNS are compared with numerical (Cao et al. 2021a) and
experiment (Roghelia et al. 2017) data, and inviscid Cp values.

the minimum viscous dissipation principle’s prediction (Hu et al. 2020b). Figure 3(a)
shows the velocity and temperature profiles at x/L = 0.36 before interaction in the DCR
case, which closely align with the similarity solution of compressible laminar boundary
layer obtained through the Lees–Dorodnitsyn transformation (Anderson 2019) with the
Chapman–Rubesin parameter set to 1. A slight deviation in temperature in η = 1.5–2 may
be attributed to the upstream viscous interaction and downstream separation disturbances.

Pressure coefficient Cp, skin friction coefficient Cf , and Stanton number St are defined
as

Cp = pw − p∞
0.5ρ∞U2∞

, Cf = τw

0.5ρU2∞
, St = qw

ρ∞U∞(Taw − Tw)
, (2.4a–c)

where subscript w denotes the wall quantity, τw = μ(∂us/∂yn)|yn=0 is the wall friction,
us is the velocity streamwise projection, yn is the wall normal height, qw is the wall heat
flux, Taw = T∞(1 + r Ma2∞ (γ − 1)/2) is the adiabatic wall temperature, and r = √

Pr is
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0.008

0.006

0.004
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0
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St
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(b)(a)

Figure 4. Spanwise-averaged Cf and St distributions: (a) DCR, (b) CCR28. Black lines represent
time-averaged results, red lines represent upper bound, and blue lines represent lower bound.

the recover factor (White 2006). Here, Cp of the inviscid pressure rise is calculated by
Cp_inv = (4/(γ + 1))(sin2(βr + θs) − 1/Ma2∞). Figure 3(b) shows the distribution of Cp.
The Cp of DCR case is in good agreement with both numerical (Cao et al. 2021a) and
experimental (Roghelia et al. 2017) data, accurately capturing features such as the length
of the separation bubble and pressure rise at separation and reattachment. The deviation
observed at the leading edge may be caused by the limited experimental resolution for
small pressure differences, as reported by Cao et al. (2021a).

2.4. Unsteadiness and inhomogeneity of friction and heat flux
Figure 4(a) presents the spanwise-averaged distributions of Cf and St for the DCR case.
The black lines represent the time-averages over the entire post-development period,
whereas the red and blue lines represent the upper and lower bounds of the instantaneous
distributions, respectively. The distributions collapse before separation, revealing a steady
inflow laminar boundary layer. However, as the flow progresses along the tilted plate,
discrepancies begin to manifest, with the maximum Cf deviation post-reattachment
exceeding 26 %, and St exceeding 20 %. In contrast, for the CCR28 case shown in
figure 4(b), all distributions collapse once the flow is fully developed, suggesting that the
unsteadiness is weak.

The unsteadiness of reattachment is accompanied by notable spanwise inhomogeneity.
Figure 5 illustrates the streamwise velocity distributions near the X–Z bottom plane (at a
height yn/L = 8 × 10−5) along with the reattachment lines. Figure 5(a) reveals that the
reattachment line for DCR is non-uniform across the span, with variations exceeding
0.24L, and the emergence of high-speed streaks downstream of the reattachment. To
assess whether this inhomogeneity could be influenced by the spanwise boundary
conditions, we further investigate a modified case with width 0.6L, detailed in Appendix A.
As a comparison, the CCR28 reattachment line, as shown in figure 5(b), exhibits a
consistent uniformity across the span at x = 1.29L, with no discernible structures near
the reattachment.

3. Spatial and temporal scales of RU

3.1. Overview of the typical process of RU
The RU process is closely related to high friction events. A representative RU event
occurs in the region Σ(x,z) = [1.1L, 1.7L] × [0.2L, 0.25L] at a height yn/L = 8 × 10−5
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Figure 5. Instantaneous streamwise velocity distributions after being fully developed on the X–Z plane at
yn/L = 8 × 10−5: (a) DCR, (b) CCR28. The white dashed line represents the reattachment line.

(close to the bottom plate). To closely examine its evolution, we zoom in on this area.
Figure 6(a) depicts the initial state at tU∞/L = 2.25, where tU∞/L = 0 is the start
of the statistical time. The hot-colour regions represent high streamwise velocity Us,
and the white dashed line denotes the local reattachment. As the RU event initiates,
the reattachment near (x, z) = (1.32L, 0.21L) moves upstream, giving rise to a new
pair of node and saddle, shown in figure 6(b). The local reattachment then accelerates
upstream (figure 6c), persisting briefly through the period tU∞/L = 3.51–4.95, shown
as figures 6(d,e). During this period, Us increases, indicating the formation of high-speed
streaks. Once these structures dissipate, the reattachment cannot resist the adverse pressure
gradient and retreats downstream (figure 6f ). Simultaneously, the node and saddle merge
(figure 6g). This RU event thus comes to an end as the local reattachment reaches the
average reattachment position. Nonetheless, the surrounding unsteadiness triggers a new
unsteady process, as illustrated in figure 6(h). This typical process was also observed by
Kavun et al. (2019) in laminar compression ramp flow as reattachment line pulsation,
which underscores a strong connection between RU and high friction events. Recognizing
this relationship motivates a detailed quantification of their length and temporal scales,
potentially illuminating the characteristics of high friction (heat flux) structures.

3.2. Spatio-temporal statistics based on reattaching movement
A statistical approach based on the local reattachment pulsation (LRP) (Kavun et al. 2019)
is proposed without incorporating artificial threshold settings. The central idea of this
approach involves identifying the spanwise location and time when local reattachment
attains its most upstream position. To define the length and temporal scales, the deviation
of the reattachment streamwise coordinate xr(z, t) from the spanwise-time-averaged
reattachment x̂r is considered. This deviation is directly related to the spatio-temporal
distribution of xr(z, t) (Huang & Estruch-Samper 2018; Wu, Meneveau & Mittal 2020;
Balantrapu, Alexander & Devenport 2023), as illustrated by the nephogram in figure 7(a).
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Figure 6. A typical process of RU. (a) Initial state (tU∞/L = 2.25). (b) Emergence of streamwise vortex
generates saddle and node (tU∞/L = 2.40). (c) Quasi-streamwise vortex induces high-speed streak with
local reattachment forward movement (tU∞/L = 3.09). (d) Local reattachment reaches the most upstream
(tU∞/L = 3.51). (e) Local reattachment maintains (tU∞/L = 4.95). ( f ) Dissipation of quasi-streamwise
vortex with local reattachment downward movement (tU∞/L = 5.31). (g) Merger of saddle and node
(tU∞/L = 5.88). (h) New unsteadiness structures born beside the location of dissipated old structure
(tU∞/L = 6.03).

The hot-colour regions represent the time intervals and spanwise locations where xr occurs
upstream of x̂r, i.e. xr < x̂r, whereas the cold-colour regions represent xr > x̂r, where

x̂r = 1
TILz

∫ TI

0

∫ Lz

0
xr(z, t) dz dt = 1.31L, (3.1)

where TI = 30L/U∞. Highly inhomogeneous reattachment dynamics are observed, with
zones zint = {[0, 0.075L] ∪ [0.225L, 0.3L]} clustering active reattachment movements,
while znint = Lz/zint = [0.075L, 0.225L] is associated with inactive reattachment
movement. Spatially, i.e. for a given instance t, reattachment upstream movements in
zint are often accompanied by local reattachment downstream movements on either side,
with comparable scales. Temporally, i.e. for a given position z ∈ zint, this position tends
to experience local reattachment upstream and then downstream movement. This may be
driven by the disturbances from quasi-streamwise vortices and high-speed streaks, which
generate new structures nearby. Conversely, the structures in znint appear less organized,
and xr tends to remain quasi-steady.

To quantify local reattachment’s spatio-temporal distribution, we propose a statistical
approach based on the neighbourhood properties of LRP (Kavun et al. 2019). Figure 7(b)
highlights two specified contours from figure 7(a). The orange contours, set at xr = x̂r −
0.03L, outline the spatio-temporal structures with notable local reattachment upstream
movement. The instance and location when that reattachment reaches its most upstream
(MU) position xr_MU locally, corresponding to a spatio-temporal coordinate (zMU, tMU), is
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Figure 7. (a) Spatio-temporal distribution of the local reattachment xr(z, t). (b) Contours of significant
reattachment motion (blue lines denote the reattachment xr/L = 1.34 contour, orange lines denote the
reattachment xr/L = 1.28 contour). The spanwise position and time at which reattachment reaches its most
upstream (local reattachment most upstream, LRMU) (zMU, tMU) is marked with red symbols. The bars
represent the neighbourhood of (zMU, tMU) where xr = x̂r = 1.31L.

labelled by a red symbol. Although a ‘0.03L’ threshold is used to outline these structures,
the determination of (zMU, tMU) relies primarily on the local dynamics of RU rather than
the threshold itself. The blue contours represent xr = x̂r + 0.03L, outlining downstream
movement structures similarly. These occur with higher frequency in zint, with multiple
xr(zMU, tMU) being observed within a single upstream movement structure, indicating
a coherent pattern of emergence. In contrast, znint experiences fewer isolated upstream
and downstream movement structures, suggesting a more stochastic and less organized
generation process.

The spanwise neighbourhood δz of (zMU, tMU) is denoted by the bar in figure 7(b) and
z ∈ δz satisfying

xr(zMU, tMU) ≤ xr(z, tMU) ≤ x̂r. (3.2)

The physical significance of δz lies in its representation of the local spanwise scale
of RU. Specifically, δz delineates a scenario where, at any given instance when local
reattachment reaches its most upstream, the reattachment at the edges of δz remains
aligned with the average reattachment location. The distances from the left and right
neighbourhood of δz to (zMU, tMU) are defined as r− and r+, respectively, such that
δz = r− + r+. The mean values of r− and r+ in zint and znint are illustrated in figure 8(a),
revealing no substantial difference between these two zones. We define the overall
spanwise scale λLRP by computing the average of r− and r+ across the entire sample
NMU:

r−
m = 1

NMU

∑
r− = 0.0153L, r+

m = 1
NMU

∑
r+ = 0.0163L,

λLRP = r−
m + r+

m = 0.0317L.

⎫⎪⎬
⎪⎭ (3.3)

As a comparison, the wavelength of heat flux streaks measured by experiments
(corresponding to twice the length scale defined here) ranges from 0.04L to 0.06L
(Chuvakhov et al. 2017; Roghelia et al. 2017). From global stability analysis and DNS
observations (Cao et al. 2021a, 2022), the wavelengths observed are 0.033L (in the early
stage) to 0.04L (in the later stage). The spanwise scale obtained by the LRP statistic λLRP
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Figure 8. (a) The distributions of r+
m and r−

m . (b) The δz scaling to different penetration lengths Lr for
ensembles E1 and E2.

is consistent with the experimental and numerical measurements, and this approach is
advantageous as it does not rely on any predefined threshold.

We further explore the relationship between δz and the penetration length of LRP
Lr = x̂r − xr(zMU, tMU). As discussed previously, the induced features in zint and znint
are different (see figure 7). To analyse these differences quantitatively, we categorize the
samples into two ensembles: structures within zint as ensemble E1, and those in znint as
ensemble E2. We find that for E1, δz increases with Lr, approximately following a power
law

δz_E1/L = 0.106(Lr/L)0.476, (3.4)

where the exponent 0.476 is fitted from data. However, for E2, the relationship between δz
and Lr is not evident (figure 8).The positive correlation between spanwise and longitudinal
scales of the LRP in E1 indicates that a determinate mechanism should exist for the
formation of structures in E1. Conversely, the absence of a clear correlation in E2 hints
that the observed ‘structures’ could predominantly be attributable to random fluctuations
in local reattachment, potentially caused by weak inflow disturbances.

The local temporal scale of RU can be quantified by measuring the intervals between
events within the span defined by λLRP. A local temporal scale τMU(z) in a certain
spatio-temporal region ΩTZ = [0, T] × [z − λLRP/2, z + λLRP/2] is the average duration
of the lag between two events for which reattachment reaches its most upstream �tMU(i|z):

τMU(z) = 1
nMU(z) − 1

nMU(z)−1∑
i

�tMU(i|z), (3.5)

where i is the index of the lag, and nMU(z) is the total count of reattachment at the most
upstream in ΩTZ . The intermittence of the unsteadiness τMU_rms(z) is defined as

τMU_rms(z) =
√√√√ 1

nMU(z) − 2

nMU(z)−1∑
i

(�tMU(i|z) − τMU(z))2. (3.6)

Figure 9 shows the distributions of τMU(z) and τMU_rms(z) at different z/L. The local
temporal scales within zint generally range from 3L/U∞ to 7L/U∞. This shorter temporal
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Figure 9. (a) The RU characteristic temporal scale τMU(z). (b) The the intermittence τMU_rms(z) distribution.
Colours represent the sample count, with lighter shades indicating a higher number of samples. The dashed
lines represent the spanwise average values.

scale signifies a more active RU process, suggesting frequent reattachment movements. On
the other hand, in znint, the observed temporal scales typically exceed 10L/U∞, pointing to
less frequent and more sparse RU movements. For instance, in the middle section of znint,
specifically for z ∈ [0.1L, 0.15L], few reattachment movement events occur, resulting in
scattered distributions and large τMU . This dynamic is underscored by the intermittence
measure τMU_rms(z), which shows smaller intermittence in zint compared to the larger
values observed in znint. To capture the overall temporal scale characteristics, we exclude
outliers with nMu(z) ≤ 1, and define the RU characteristic temporal scale as the mean of
τMU(z):

τLRP = U∞
L

1
NMU1Lz1

∫
Ωz0

nMU(z)−1∑
i

�tMU(i|z) dz = 5.22, (3.7)

where Ωz0 = Lz/Ωz(nMU(z) = 0) is the region excluding outliers, Lz1 = ∫
Ωz0

1 dz and
NMU1 = (1/Lz1)

∫
Ωz0

(nMU(z) − 1) dz. The RU characteristic intermittence temporal scale
τMU_rms is defined as the root mean square (r.m.s.) of τMU(z):

τLRP_rms = U∞
L

√√√√ 1
(NMU1 − 1)Lz1

∫
Ωz0

nMU(z)−1∑
i

(
�tMU(i|z) − L

U∞
τLRP

)2

dz = 3.96.

(3.8)

Equations (3.7) and (3.8) can be understood as conditional average and r.m.s.
values for the region where nMU(z) > 1. Cao et al. (2021a) observed broad-band
low-frequency features of the Stanton number far beyond reattachment in a similar case,
revealing a dominant temporal scale at approximately 6.66L/U∞ at the centreline of
their configuration, with notable spanwise variations. The temporal scale and spanwise
dependency obtained through the LRP in this study align with the observations by Cao
et al. (2021a). We note that a smaller temporal scale 1.54L/U∞ (i.e. higher frequency)
was detected by Kavun et al. (2019) in Mach 6 laminar ramp flow, from the pressure
fluctuation power spectrum density observed after reattachment. The higher Reynolds
number in their cases may be the primary reason for the emergence of higher-frequency
structures. Employing the statistical approach of LRP, the characteristic length and
temporal scales λLRP and τLRP, respectively, are determined directly from the motion of
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Figure 10. (a) The DMD eigenvalues distribution of Us at the height yn/L = 8 × 10−5. (b) The DMD
eigenvectors’ amplitudes at different frequencies and different growth/decay rates (inset). The selected modes
by spDMD are labelled by red plus markers.

coherent structures, without the imposition of any arbitrary thresholds. This approach is
robust if the statistical period under consideration is sufficiently extended, ensuring that
the derived scales are reflective of the inherent dynamics of the flow.

3.3. Temporal scale detection of RU based on DMD
We employed a global and problem-universal method, sparse promoted DMD (spDMD)
(Jovanović, Schmid & Nichols 2014), to examine the temporal scale obtained through
the statistics of LRP. The fundamental principle of DMD involves constructing a linear
dynamical evolution Xi+1 = AXi, which effectively models the dynamical system with
multiple observable snapshots Xi (i = 1, . . . , n). Here, A denotes the evolution coefficient
matrix. Despite its inherent assumption of linearity, DMD demonstrates significant
versatility. This adaptability makes it apt for handling nonlinear growth stages, and it is
suitable to analyse the long-term development of structures in our study. To extract the
most significant modes, spDMD (Jovanović et al. 2014) is employed, which introduces a
penalty factor to balance the reconstruction accuracy and the number of modes. In this
study, we sample 1000 sequential slices with a sampling frequency fsL/U∞ = 100/3,
resulting in Strouhal numbers of the lowest and highest frequencies SrL,min = 1/30 and
SrL,max = 50/3, respectively.

Figure 10(a) shows the eigenvalue distribution of Us at the height yn/L = 8 × 10−5 near
the wall for the DCR case, where most of the eigenvalues distribute around the unit circle,
indicating statistical stationarity. The sparse picking modes, labelled with red pluses, prefer
low frequency and low decay rate, shown in figure 10(b).

Figure 11 shows the real part of the modes selected by spDMD. The streaky structures
appear at x/L ∈ [1.25, 1.96] for each non-zero Sr, indicating that spDMD captures
broadband reattachment unsteady structures. Strong structures cluster in zint, which
is consistent with the structures captured by LRP results in figure 7. Low-frequency
modes (e.g. figures 11b–d) exhibit mirror symmetry with the axis z/L = 0.15, while
high-frequency modes (figures 11e–h) do not exhibit such symmetry. The absence of
strong structures near the separation bubble’s wall indicates that the near-wall structures of
the separation bubble do not directly trigger the reattachment structures. We may infer that
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Figure 11. The DMD mode eigenfunctions of Us.

generation of the reattachment high friction streak should be due to local self-induction at
the reattachment or the perturbation transport through the reattaching shear layer. We will
delve into this further in § 4.

The temporal scale of RU is determined by comparing dominant spDMD modes
with two different penalty factors. The primary oscillation mode is characterized by
the lowest growth/decay rate, large amplitude and a non-zero frequency. With a small
penalty, 17 modes (including 8 conjugate modes) are selected, with mode 13 (figure 11h)
exhibiting the lowest growth/decay rate with SrL = 0.3737, corresponding to a temporal
scale tDMD_lowU∞/L = 1/SrL = 2.676. A larger penalty selects 5 modes (two conjugate
modes), retaining modes 0, 1 and 7 (figures 11a,b,h). Among these, mode 7 has the lowest
growth/decay rate, and its temporal scale aligns with the dominant frequency obtained
by Cao et al. (2021a) using power spectrum density, tDMD_upU∞/L = 1/SrL = 5.935.
Despite a tendency for spDMD to favour low frequencies, it consistently retains mode 7
but not modes 3 and 5, indicating the robustness of mode 7’s unsteady characteristic. We
thus consider the temporal scale of RU to be within the interval [tDMD_low, tDMD_up], i.e.
tDMDU∞/L ∈ [2.676, 5.935]. The consistency between τLRP and this interval highlights
the agreement between these two methods in capturing the dynamics of RU.

It is important to note that while both power spectrum density and DMD are systematic
methods for extracting dominant frequencies from time series data, they require adequate
data and sampling frequency to avoid aliasing. The frequencies identified through these
methods require further physical interpretation. In contrast, our approach, derived from
statistical analysis of the spatio-temporal distributions, is problem-specific, and reveals
directly the physical processes associated with its characteristic scale.
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Figure 12. Instantaneous w structures within the separation bubble at x/L = 1.0: (a) DCR, (b) CCR28. The
dashed line is the 0.85U∞ contour to separate outer flow and the separation bubble. The green lines represent
the streamlines in the Y–Z plane.

4. Self-sustained mechanism of RU

By observing the typical process of RU (figure 6) and the spatio-temporal distribution of
the reattachment location (figure 7), it becomes evident that the RU process is intricately
linked to the evolution of high friction structures. We propose a self-sustained mechanism
to explain this process, and decompose it into four stages: (i) the instability of the
separation bubble triggers primitive inhomogeneity in reattachment and the advection
of vorticity; (ii) the baroclinic effect generates unsteady quasi-streamwise vortices;
(iii) quasi-streamwise vortices induce high-speed streaks and reattachment upstream
movement; (iv) quasi-streamwise vortices dissipation induces reattachment downstream
movement and disturbances.

4.1. Stage 0: instability induced by the sharp corner
We focus on the primitive disturbance responsible for inhomogeneity in reattachment by
comparing the structures in separation regions of DCR and CCR28. Figure 12 shows
structures inside the separation bubble of the Y–Z plane at x/L = 1, coloured by spanwise
velocity w. The black dashed line Us = 0.85 is utilized to characterize the shear layer
separating the separation bubble from the outflow. Configuration DCR exhibits a pair of
vortices within the separation bubble (Cao et al. 2021a), contrasted with CCR28, which
exhibits no large structures but only weak disturbance near the shear layer. We note that
the upstream conditions for DCR and CCR28 are identical before separation (shown in
figure 2). These observations suggest that a weak upstream disturbance is insufficient to
generate the strong RU shown in figure 5(a), whereas the coherent structures within the
separation bubble play an important role.

Further detailed observations of the structures within the separation bubbles of DCR
and CCR28 are illustrated by three-dimensional instantaneous visualizations, shown in
figure 13. The side view displays a nephogram of p/p∞ to illustrate the shock and
separation, while the bottom view presents a Us nephogram highlighting the separation
and reattachment lines. Structures are extracted via a threshold w = ±0.02 and are
coloured by binary values depending on whether Us > 0 or Us < 0. Configuration DCR
exhibits abundant structures within the separation bubble, contrasting with the absence of
coherent structures within the CCR28 case. The instability prompted by the large curvature
of the sharp corner (Ren & Fu 2015; Chen, Huang & Lee 2019; Hao 2023) is thus closely
connected to the structures inside the separation, which have been investigated by Gs et al.
(2018) and Hildebrand et al. (2018). These structures disturb the reattachment line, leading

998 A54-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

82
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.825


Scales and self-sustained mechanism of RU in separated SBLI

Y

X
Z

w structure

Us:

Y

X
Z

–0.05 0.025 0.100 Us: –0.05 0.025 0.100

0.5 1.5 2.5 3.5 4.5ρ: 0.5 1.5 2.5 3.5 4.5ρ:

(a) (b)

Y

XX
Z

w structure

UsUU : –0.05 0.025 0.100

0.5 1.5 2.5 3.5 4.5ρ:

(a)

Us
0

Figure 13. Three-dimensional visualizations of w structures within the separation bubble: (a) DCR,
(b) CCR28. The side view is the pressure nephogram. The bottom view is the Us nephogram with the separation
and reattachment lines labelled by black lines. The structures are extracted by the threshold value w = ±0.015,
and coloured using binary values for positive (red) and negative (blue) Us.

to spatial inhomogeneity and wrinkling, which is a key factor in the development of the
downstream baroclinic mechanism (Zapryagaev et al. 2013; Dwivedi et al. 2019).

4.2. Stage I: a generation mechanism of quasi-streamwise vortices – baroclinic effect
The generation of quasi-streamwise vortices initiates the RU process. We investigate the
generation mechanism of quasi-streamwise vortices by analysing the leading-order terms
of the inviscid streamwise vorticity perturbation equation (Dwivedi et al. 2019):

∂ωs

∂t
= ∂ω′

s

∂t
≈ −ūs

∂ω′
s

∂s︸ ︷︷ ︸
advection

− ∂w′

∂s
∂ ūs

∂n︸ ︷︷ ︸
vortex tilting

+ 1
ρ̄2

(
∂ρ̄

∂n
∂p′

∂z

)
︸ ︷︷ ︸

baroclinic

− 2
ūs

R
∂u′

s

∂z︸ ︷︷ ︸
centrifugal

, (4.1)

where s, n are the streamwise and normal components, quantity φ(s, n, z, t) is decomposed
into a time-averaged part φ̄(s, n, z) = ∫

φ(x, y, z, t) dt and a perturbed part φ′ =
φ − φ̄, and R is the local radius of curvature. According to (4.1), ω′

s can arise
through three mechanisms: vortex tilt PVT = −(∂w′/∂s)(∂ ūs/∂n), baroclinic PBC =
(1/ρ̄2)((∂ρ̄/∂n)(∂p′/∂z)) and centrifugal Pcen = −2(ūs/R)(∂u′

s/∂z), whereas the latter
two have been frequently discussed in literature for the dominance (Zapryagaev et al.
2013; Gs et al. 2018; Cao et al. 2019, 2021a; Dwivedi et al. 2019; Kavun et al. 2019).
We ascertain their dominance using DNS data.

For Pcen, we extract the separation-reattachment streamline � : y = ysr(x), where the
local radius of curvature rsr = (1 + y′2

sr)
3/2/|y′′

sr| reaches its local minimum in the
neighbourhood of separation and reattachment, and rsr ∼ O(2L). The corresponding
Görtler number is Go = √

L/(rsrUn/Us) ∼ 4, in agreement with Dwivedi et al. (2019).
In the vicinity of the bottom plate, Ūs/U∞ ∼ U′

s/U∞ ∼ O(10−1) (see figure 5a) and
z ∼ Lz = 0.3L, we get

Pcen ∼ O(10−1–10−2) U2
∞/L2. (4.2)

For PBC, ∂p′/∂z is closely related to w′, as shown in Appendix B. We observe that the
temporal scale of the initial stage of RU is approximately L/U∞ (figures 6a–d), and the
variation of w′ is approximately 10−1U∞ (see figure 24 below). Combining the perturbed
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w′ equation (Gs et al. 2018) with DNS data for magnitude analysis, we can get

∂w′

∂t
∼ − 1

ρ̄

∂p′

∂z
, (4.3)

thus
1
ρ̄

∂p′

∂z
≈ �w′

�t
∼ 10−1U∞

L/U∞
∼ O(10−1U2

∞/L). (4.4)

The balance is consistent with the analysis by Gs et al. (2018), indicating that during the
initial stage of RU, w′ drives ∂p′/∂z, thereby contributing to the baroclinic. In the near-wall
region of reattachment, the scale of vortices correlates with the boundary layer thickness
O(L/102), thus (1/ρ̄)(∂ρ̄/∂n) ∼ O(1/(L/102)) ∼ O(102/L). We obtain

PBC =
(

1
ρ̄

∂ρ̄

∂n

)(
1
ρ̄

∂p′

∂z

)
∼ (102/L)(10−1U2

∞/L) ∼ O
(

10
U2∞
L2

)
. (4.5)

Comparing (4.2) and (4.5) indicates that baroclinic provides a stronger influence
than centrifugal to generate quasi-streamwise vortices near the reattachment. Another
observation is that both DCR and CCR28 exhibit nearly identical reattachment positions
and reattachment/separation angles (shown in figure 2). Consequently, their reattachment
streamline curvatures are virtually identical. However, DCR displays intense RU, in
contrast to CCR28. This implies that the local baroclinic resulting from DCR’s distinctive
spanwise inhomogeneity plays a more pivotal role in triggering local vortices formation,
as opposed to the similar centrifugal effect present in both cases. This result is consistent
with the input/output analysis conducted by Dwivedi et al. (2019), which is in similar flow
conditions with higher Tw/T∞. We note that it is essential to distinguish between two types
of ‘Görtler mechanism’ in the current flow study. One involves the instability associated
with the large curvature of a sharp corner, as discussed in § 4.1, which is found within
the separation bubble. The other arises near the reattachment point, potentially leading to
Görtler instability due to the curvature of the reattachment streamline. As outlined in § 4.1,
the former instability is significant in initiating the unsteady process. As for the latter type,
combining with an order-of-magnitude analysis suggests that its role is less critical than
that of the baroclinic (Dwivedi et al. 2019) in contributing to the RU, at least in the present
cases.

For the unsteady term in (4.1), ω′
s ∼ O(10U∞/L) (figure 14 and figure 15) when

unsteadiness occurs, thus ∂ω′
s/∂t ∼ O(10(U∞/L)/(L/U∞)) ∼ O(10U2∞/L2), matching

the magnitude of PBC. This suggests that at the early stage of quasi-streamwise vortices
generation, a dominant balance can be reduced as

∂ω′
s

∂t
∼ 1

ρ̄2
∂ρ̄

∂n
∂p′

∂z
. (4.6)

The formation of quasi-streamwise vortices is characterized by the dynamics of
saddle–node pairs forming near the wall. In the initial stage of the local reattachment
upstream movement, no saddles or nodes are observable (figures 6(a) and 14(a)). Once
the reattachment progresses to a critical position, a saddle–node pair emerges at the
root of the reattachment bulge due to the baroclinic effect (figure 14b). This formation
adhering to the topological constraint that the numbers of saddles ΣS and nodes ΣN must
satisfy ΣN − ΣS = 2 (Lighthill 1953; Tobak & Peake 1982) for the limiting streamlines
of three-dimensional flows. Following their formation, the node then moves towards
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Figure 14. Instantaneous near-wall ωs distribution: (a) before the formation of the saddle and node at
tU∞/L = 2.25; (b) soon after the saddle and node formation at tU∞/L = 2.4; (c) long after the saddle and
node generation at tU∞/L = 3.09.

the reattachment bulge, while the saddle remains relatively stationary (figure 14c). The
behaviour of saddle–node pairs marks the dynamics of the quasi-streamwise vortices, i.e.
the ejection of quasi-streamwise vortices contributes to the formation of saddles, and the
sweep actions of these vortices result in the creation of nodes (Kavun et al. 2019).

4.3. Stage II: generation of high-speed streaks
The formation of high-speed streaks (high friction regions) is supposed to be closely
related to the emergence of quasi-streamwise vortices (Waleffe 1997; Wedin & Kerswell
2004). To investigate this correlation, we analyse the time series of local vorticity and
velocity. As the coherent structures have spanwise drift, a narrow region average of
negative vorticity structures ω− situated downstream of the reattachment bulge is defined
as

ω− =
∫∫

Ω− ωs dx dz∫∫
Ω− 1 dx dz

, (4.7)

where Ω− = Ωx × Ωz− is the integration region dominated by negative vorticity.
We specify Ωx = [1.4L, 1.6L], positioned downstream of the reattachment bugle, to
characterize the development of vorticity or velocity, while minimizing contamination
from other effects. The width of Ωz− is set at 0.01L. The high-speed streaks velocity
UHSS, positive vorticity ω+ and low-speed streaks velocity ULSS are defined similarly.

Time series of ω−, ω+, UHSS, ULSS in two characteristic regions are shown in figure 15.
Figure 15(b) shows the data from tU∞/L = 2.4–4.95 with span z/L ∈ [0.2, 0.24], and

998 A54-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

82
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.825


W.-F. Zhou, Y.-C. Hu, M.-Z. Tang, G. Wang, Y.-G. Yang and Z.-G. Tang

0.04

0.02

0.01L

0.2L

z/L

x/L

0

0.04

0.02

0

1 2 3 4 5 6 7 8 9 21 22 23 24 25 26 27

30

–30

0

30

–30

0

tU∞/L tU∞/L

ω
L/

U
∞ω+L/U∞

ω–L/U∞

U
H

SS
, 
U

LS
S

UHSS 

U
H

SS
, 
U

LS
S

UHSS
RU

start
RU
end

RU
most

upstream
RU

start
RU
end

RU
most
upstream

ULSS

ω
L/

U
∞

(a) (b) (c)

ω– ULSS ω+

Figure 15. Time series of UHSS, ω−, ULSS and ω+. (a) The arrangement of UHSS, ω−, ULSS and ω+. The
width of spanwise integral region Ωz is 0.01L. (b) In span z/L ∈ [0.2, 0.24]. (c) In span z/L ∈ [0.19, 0.23].
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Figure 16. Time series of ωΩ and reattachment streamwise locations xr/L: (a) ωΩ at Ωx × Ωz =
[1.4L, 1.6L] × [0.2L, 0.21L] and reattachment probed at z = 0.2L; (b) ωΩ at Ωx × Ωz = [1.4L, 1.6L] ×
[0.21L, 0.22L] and reattachment probed at z = 0.22L.

figure 15(c) shows the data from tU∞/L = 21.9–24.99 with span z/L ∈ [0.19, 0.23]. Key
moments such as the onset, reaching most upstream and the end of the RU are labelled.
The signs of ω+ (ω−) remain positive (negative) throughout the process, indicating their
temporal stability. At the early stage of RU, the concurrent growth of UHSS and ω+
suggests a synchronous evolution. Specifically, when ω+ reaches its peak, UHSS is also at
its maximum and the local reattachment is positioned at its most upstream. The correlation
between quasi-streamwise vortices and high-speed streaks aligns with the scenario of
wall-normal sweeps by quasi-streamwise vortices to generate streaks (Hamilton et al.
1995; Waleffe 1997; Jiménez & Pinelli 1999; Graham & Floryan 2021).

The induction mechanism of high-speed streaks by quasi-streamwise vortices prompts
further exploration into how vorticity correlates with the unsteady movement of
reattachment. Figure 16 shows the time series of xr at z/L = 0.2 and 0.22 alongside ωΩ

at Ω = Ωx × Ωzi(i = 1, 2), where Ωx = [1.4L, 1.6L], Ωz1 = [0.2L, 0.21L] and Ωz2 =
[0.21L, 0.22L], respectively. A negative correlation is apparent between ωΩ and the
deviation of the reattachment distance, xr − x̂r, indicating an increase in ωΩ correlates
with a more marked deviation of xr from its mean position x̂r. Furthermore, stronger
quasi-streamwise vortices entrain more high-speed outer flow into the near-wall region,
thereby intensifying the activity of high-speed streaks and increasing wall friction, which
in turn helps to resist stronger adverse pressure gradient.
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Figure 17. Spanwise distribution of vorticity–reattachment correlation coefficient Cωxr (z) and the
time-averaged reattachment x̄r.

The relation between ωΩ and xr is quantified by the correlation coefficient Cωxr(z),
defined as

Cωxr(z) = 1
N − 1

∑
t

(|ωΩ(z, t)| − |ωΩ(z)|)(xr(z, t) − xr(z))
σ (|ωΩ(z, t)|) σ (xr(z, t))

, (4.8)

where Ω = Ωx × Ωz = [0.14L, 0.16L] × [z − 0.00075L, z + 0.00075L], σ is standard
deviation, and N = 1000 is the number of statistics moments. Figure 17 illustrates
spanwise distributions of Cωxr(z) and the time-averaged reattachment x̄r = (1/T)∫ T

0 xr(z, t) dt, T = N/fs = 30L/U∞. Within zint as defined in § 3.2, xr deviates
significantly from x̄r, along with a distinct negative correlation with ωΩ . On the contrary,
in the region znint, xr exhibits minimal variation, and the correlation between ωΩ and xr
is relatively weak. This observation is consistent with the spatio-temporal distribution of
xr analysed in § 3.2, which highlighted that the presence of quasi-streamwise vortices is
more abundant in zint compared to znint.

4.4. Stage III: dissipation of quasi-streamwise vortices and high-speed streaks
After reattachment reaches the most upstream, the viscous effect become dominant,
causing the dissipation of quasi-streamwise vortices. This marks the late stage of RU,
as shown in figures 6( f,g). A notable feature is the substantial reduction in ωs (see
figure 15), which occurs concurrently with the merging of saddle–node pairs. However,
the dissipation of quasi-streamwise vortices does not conclude the RU; rather, it triggers
new unsteadiness in the vicinity. Figure 18(a) shows the time series of the reattachment in
zint at z1/L = 0.06 and z1 ± 0.024. We observe moments when the motion at z1 is out of
phase with the nearby motion, i.e. their directions of motion are opposite, as highlighted by
grey frames. After a complete cycle of RU, which includes the generation and dissipation
of quasi-streamwise vortices and high-speed streaks, reattachment continues to stimulate
recurrent unsteady patterns. This pattern of behaviour is also noted at other locations, e.g.
z2/L = 0.215, at the middle of Ωz2, as shown in figure 18(b). The strong correlation and
quasi-periodic behaviour indicate that when the local reattachment moves downstream, it
imparts momentum to both sides, generating new instability and unsteadiness.

This observation underscores the significance of the self-sustained process of
quasi-streamwise vortices. If the reattaching flow lacked the self-sustained process,
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Figure 18. Time evolution of xr at different locations: (a) at z/L = 0.06L and z/L = 0.06L ± 0.024L; (b) at
z/L = 0.215L and z/L = 0.215L ± 0.024L. The grey frames capture the time interval when the midline’s xr
and the values on both sides are out of phase.
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Figure 19. The RU mechanism.

then the reattachment line would stabilize uniformly spanwise and remain steady following
the initial dissipation of quasi-streamwise vortices, with no further RU observable after
a sufficiently long simulation period. However, the current flow exhibits a different
behaviour.

4.5. Summary of the self-sustained scenario of RU
The self-sustained scenario of RU can be summarized in figure 19. Initially, the main
flow passes the corner, separating from the flat plate and reattaching on the tilted plate
uniformly and steadily, thereby forming a separation bubble. As the separated flow
encounters the sharp corner, instability ensues due to the large curvature, giving rise
to large-scale Görtler-like vortices within the bubble. Some of this vorticity is advected
downstream of the separation, while variations in w and ωs perturb the pressure and
density gradient near the reattachment. It leads to the baroclinic and inhomogeneity of the
reattachment line, resulting in the formation of reattachment quasi-streamwise vortices.
Pairs of quasi-streamwise vortices further sweep and generate high-speed streaks, which
provide stronger adverse pressure gradient resistance and propel the reattachment line
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upstream. After the dissipation of quasi-streamwise vortices and high-speed streaks due to
viscous effect, the reattachment moves downstream and the resultant disturbance triggers
new unsteadiness nearby. This completes one cycle of the RU phenomenon.

5. Estimation of the RU temporal scale and advection speed with self-sustained
mechanism

5.1. Temporal scale analysis based on enstrophy production–dissipation
The temporal scale and vorticity magnitude scale of RU can be estimated through order
of magnitude analysis of enstrophy production and dissipation within a self-sustained
scenario, as follows. The full fluctuation streamwise enstrophy equation is

∂ω′2
s

∂t
= −ūs

∂ω′2
s

∂s
− 2 ω′

s
∂w′

∂s
∂ ūs

∂n
+ 2

ρ̄2

(
∂ρ̄

∂n
∂p′

∂z

)
ω′

s

− 4
ūs

R
∂u′

s

∂z
ω′

s + ν

(
∂2ω′2

s

∂n2 − 2
(

∂ω′
s

∂n

)2
)

. (5.1)

At stage I of RU, the baroclinic effect dominates the production of enstrophy, as analysed
in § 4:

∂ω
′2
s

∂t
∼ 2

ρ̄2

(
∂ρ̄

∂n
∂p′

∂z

)
ω

′
s. (5.2)

At stage III of RU, reattachment starts to move downstream with ∂ω′
s
2
/∂t < 0, shown

in figure 16. The viscous effect dominates the dissipation of enstrophy:

∂ω′
s
2

∂t
∼ −ν

(
∂ω′

s

∂n

)2

, (5.3)

where we assume ∂2ω′2
s /∂n2 ≈ (∂ω′

s/∂n)2. When the reattachment maintains at the most
upstream, baroclinic balances with viscous:

− 2
ρ̄2

(
∂ρ̄

∂n
∂p′

∂z

)
ω′

s ∼ ν

(
∂ω′

s

∂n

)2

. (5.4)

From (5.3), we estimate the temporal scale of reattachment downstream movement
τRDM:

τRDM ∼ δ2
vis/νw, (5.5)

where νw = μw/ρw ∼ O(10−6U∞L), and δvis is the length scale dominated by the viscous
effect. At the edge of δvis, the viscous term of the momentum equation balances with the
advection term: νw(Uvis/δ

2
vis) ∼ (U2

vis/�x). As shown in figure 5(a), Uvis ∼ O(10−1U∞)

and �x is the distance toward the reattachment line, estimated by the penetration length
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Figure 20. The Cf distribution of the DCR case for different tU∞/L and x/L at fixed z/L:
(a) z/L = 0.075, (b) z/L = 0.15. The theoretical estimations of advection speed are given by the green line
(Ucf = 0.64) and blue line (Ucf = 0.75).

defined in § 3.2 as �x ∼ Lr ∼ O(10−1L). We further obtain

δvis =
√

νwUvis

U2
vis/�x

∼ O(10−3L). (5.6)

We finally get

τRDM ∼ δ2
vis/νw ∼ O(L/U∞). (5.7)

From (5.2)–(5.4), the temporal scale of reattachment upstream movement τRUM is the
same as τRDM , i.e. τRUM ≈ τRDM . The temporal scale of RU is estimated as

τtheory = 2(τRUM + τRDM) ∼ 4L
U∞

. (5.8)

The theoretical analysis is consistent with the measurement of (3.7) in § 3.2 and
figure 15. Small deviation may be caused by the enstrophy transportation from the
separation bubble by the advection of vorticity, as discussed in § 4.1. We also estimate
the maximum |ω′

s| from (5.4) as

∣∣ω′
s
∣∣ ∼

∣∣∣∣∣ 2
ρ̄2

(
∂ρ̄

∂n
∂p′

∂z

)/
νw

δ2
vis

∣∣∣∣∣ . (5.9)

With (4.5) and (5.7), we get

∣∣ω′
s
∣∣ ∼ 2 × 101U2∞

L2

/
U∞
L

∼ 20
U∞
L

. (5.10)

The magnitude of maximum |ω′
s| is consistent with the measurements shown in

figures 15 and 16.

5.2. Advection speed of wall friction
In addition to identifying the temporal and vorticity scales, we have also observed the
advection of structures, manifesting as oblique stripes on the spatio-temporal map Cf (x, t).
Figure 20 shows these maps at the locations z/L = 0.075 (in zint) and z/L = 0.15 (in
znint), with the black dash-dotted lines enclosing the separated regions. Distinct oblique
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lines separate high and low Cf zones downstream of the reattachment, indicating a nearly
constant advection speed of quasi-streamwise vortices.

The advection speed Ucf is estimated by a model that combines laminar boundary layer
theory with coherent structures based on three hypotheses.

First, Ucf is determined by the advection velocity of quasi-streamwise vortices
embedded in the reattached boundary layer. This assumption is supported by the
observation that these vortices induce high Cf by generating high-speed streaks. As
the vortices advect downstream, the enhanced Cf disappears. Consequently, Ucf can be
interpreted as the streamwise velocity at the centre of quasi-streamwise vortices USV( y =
0.5hSV), i.e.

Ucf = USV( y = 0.5hSV), (5.11)
where hSV is the height of the quasi-streamwise vortices.

Second, quasi-streamwise vortices extend throughout the entire height δBL(x) of the
reattached boundary layer, i.e. hSV(x) ∼ δBL(x), which differs from the coherent structures
in the turbulent boundary layer (Kline et al. 1967; Robinson 1991; Adrian 2007; Jiménez
2018).

Third, in the absence of quasi-streamwise vortices, the reattached boundary layer can
be treated as a compressible laminar boundary layer, with the reattachment point acting
as the leading edge, i.e. UBL/U∞ = f ( y/δ). It is assumed that the emergence of a pair
of quasi-streamwise vortices primarily affects the spanwise and normal velocities, with
negligible modulation of the streamwise velocity, i.e. USV ∼ UBL. Based on the above
hypotheses, we can obtain

Ucf ∼ USV( y = 0.5hSV)

∼ UBL( y = 0.5δBL)

∼ U∞ f (η = 0.5ηedge), (5.12)

where f can be approximated to be a compressible Blasius type. For Ma∞ = 7.7, we take
the heights of Ue1 = 0.95U∞ and Ue2 = 0.99U∞ as the edge of the boundary layer, and
the corresponding normalized heights are ηedge1 = 2.70 and ηedge2 = 3.33, respectively.
The advection velocities are

Ucf 1 = U∞ f (0.5ηedge1) = 0.64,

Ucf 2 = U∞ f (0.5ηedge2) = 0.75.

}
(5.13)

The predictions Ucf 1 (green line) and Ucf 2 (blue line) are compared with the DNS
results, shown in figure 20, for both z/L = 0.075 and z/L = 0.15. These predictions exhibit
good agreement with the observed DNS data. A slight overestimation may be attributed
to the actual lower outer flow velocity, as the inflow passes through the reattachment
shock. For comparison, Cao et al. (2021a, 2022) conducted a two-point spatio-temporal
correlation of fluctuation of the wall Stanton number to quantify the advection speed.
Their findings indicated an advection speed range from 0.5U∞ to 0.7U∞. Our predictions
align with their measurement. We also note that the above analysis is specific to Ma∞ and
Tw/T∞ (to determine the compressible Blasius boundary layer). The independence of Rex
and the geometry suggests that Ucf remains constant for the compression ramp flows with
different curvatures. This is further supported by the CCR28 case, shown in figure 21.

6. Conclusion

This study investigates the scales and mechanism of reattachment unsteadiness (RU)
in compression ramp flow with Mach 7.7 laminar inflow and different curvatures after
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Figure 21. The Cf distribution of the CCR28 case for different tU∞/L and x/L at fixed z/L: (a) z/L = 0.075,
(b) z/L = 0.15. The theoretical estimations of advection speed are given by the green line (Ucf = 0.64) and
blue line (Ucf = 0.75).

being fully developed. DNS results for the the sharp ramp (DCR) case reveals that
the reattachment line exhibits inhomogeneity, and wall friction and heat flux exhibit
persistent, intense fluctuations, consistent with the experimental (Zapryagaev et al. 2013;
Chuvakhov et al. 2017; Roghelia et al. 2017) and numerical (Kavun et al. 2019; Cao
et al. 2021a) observations. This contrasts with the conventional understanding of a steady,
homogeneous reattachment in pure laminar compression ramp flow (Hu et al. 2020a; Tang
et al. 2021; Zhou et al. 2021; Hu et al. 2024), for example, the CCR28 case in this study.

In order to illuminate the reattachment unsteady motion, a local structure-based
approach is proposed to identify its spatio-temporal distribution. It is based on the local
reattachment pulsation (LRP) (Kavun et al. 2019), and detects low-frequency, structural
related events without reliance on artificial thresholds. It is found that the spanwise scale of
RU is λLRP/L = 3.17, with a temporal scale τLRPU∞/L = 5.22 in the current case, which
falls within the interval obtained from sparse promoted dynamic mode decomposition. The
spatio-temporal distribution of LRP enables the differentiation between regions of strong
unsteadiness zint, and weak unsteadiness znint (Cao et al. 2021a), with different spanwise
scaling characteristics.

A four-stage self-sustained mechanism is proposed to explain RU. First, the intrinsic
instability of the separation bubble (Gs et al. 2018; Cao et al. 2021a) of the DCR case
gives rise to large-scale structures inside the separation, triggering vorticity advection and
inhomogeneous reattachment, while no discernible structure is observed in the CCR28
case. Second, the inhomogeneity leads to the pressure spanwise gradient and density
normal gradient being non-orthogonal, resulting in a baroclinic effect that generates
quasi-streamwise vortices more efficiently than a centrifugal effect (Dwivedi et al. 2019).
Third, the sweep of pairs of these vortices induces high-speed streaks, advancing the
reattachment line upstream with stronger adverse pressure gradient resistance. Finally,
viscous dissipation of quasi-streamwise vortices shifts the reattachment line downstream,
triggering instability for the next RU cycle. This process involves the intrinsic instability
of the separation bubble and the baroclinic generation and viscous dissipation of
quasi-streamwise vortices.

The self-sustained scenario further supports the estimation of temporal scale and
maximum vorticity magnitude with enstrophy. Upstream reattachment movement is
dominated by the baroclinic generation of enstrophy, while downstream movement is
due to viscous dissipation. The friction advection velocity can be estimated via the
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transport of quasi-streamwise vortices in the reattachment boundary layer. The estimation
0.64 ∼ 0.75U∞ is consistent with DNS data and previously reported correlations (Cao
et al. 2021a, 2022).

The above mechanism and scale analysis offer potential approaches to control the
high-amplitude reattachment fluctuations, such as breakdown of the large-scale structures
within the separation bubble, and manipulating reattaching inhomogeneity. Two significant
issues warrant further exploration in the future. Given that multiple length scales exist in
RU, such as the flat plate length L, penetration scale Lr, and spanwise scale λLRP, it is
necessary to conduct experiments and simulations with varying inflow Mach numbers and
corner angles to more accurately determine the intrinsic normalizing scale. Additionally,
further investigation into the separability of the baroclinic effect and the instability of
the separation bubble should be pursued to deepen our understanding of this complex
phenomenon.
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Appendix A. Validation of RU by doubling the spanwise width

The spanwise width set in § 2.2 is designed to be slightly wider than the width
corresponding to the unstable wavelength under the current geometry and boundary
conditions Cao et al. (2021a), and a periodic boundary condition is employed. In this
appendix, we double the spanwise width to exclude the possibility that the unsteady
phenomena under investigation are influenced by inappropriate spanwise boundary
conditions.

For this validation, we expand the width to Lz = 0.6L and simultaneously double the
number of spanwise grids, thereby maintaining the original spanwise resolution. We refer
to this configuration as ‘DCR-0.6L’ to distinguish it from the previously analysed DCR
case, which has width 0.3L. We first examine the instantaneous spanwise inhomogeneity.
As depicted in figure 22, the streamwise velocity distributions near the X–Z bottom plane
(at height yn/L = 8 × 10−5) and the instantaneous reattachment for width 0.6L are similar
to the observations at 0.3L (figure 5). However, the DCR-0.6L case exhibits twice as many
high-speed structural regions across the span, including a set located in the middle of the
flow field’s span, confirming that the emergence of these structures is not dependent on the
spanwise boundary conditions (once the spanwise width exceeds the unstable wavelength)
but is an intrinsic characteristic of the flow.

In figure 23, we validate the impact of the spanwise width on the LRP. The
spanwise-time-averaged reattachment x̂r for both DCR-0.6L and DCR is positioned at
at x = 1.31L. Similar to figure 7, the spatio-temporal distribution of local reattachment
xr(z, t) for DCR-0.6L is shown in figure 23(a). It shows two regions of active reattachment
movement (two subregions connected by the spanwise periodic boundary are considered as
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Figure 22. Instantaneous streamwise velocity distributions after being fully developed on the X–Z plane at
yn/L = 8 × 10−5 with spanwise width 0.6L. The white dashed line is the reattachment line.
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Figure 23. (a) Spatio-temporal distribution of the local reattachment xr(z, t) with spanwise width 0.6L.
(b) Contours of significant reattachment motion. The meanings of the blue lines, orange lines and red symbols
are the same as in figure 7.

one region) and two regions of inactive movement, doubling what was observed in the 0.3L
DCR case. In figure 23(b), we extract instances and spanwise positions where reattachment
reaches its most upstream position. Similar to figure 7(b), multiple LRPs are observed
within a single structure. The upstream and downstream movements of reattachment
are staggered in both spanwise and temporal dimensions, indicating the self-sustained
nature of RU. Utilizing the same statistical approach provided in § 3.2, the spanwise scale
λLRP−0.6L/L = 0.290 and temporal scale τLRP−0.6LU∞/L = 4.74 for DCR-0.6L differ by
less than 10 % from the 0.3L cases. Considering that DCR-0.6L is a new realization of the
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Figure 24. (a i) Nephogram of ∂p′/∂z; (a ii) nephogram of w′ at tU∞/L = 2.64. (b) Time series of ∂p′/∂z
and w′ at (x, y, z) = (0.13L, 8 × 10−5L, 0.21L).

flow, this consistency underscores the robustness of the statistical approach to quantify the
length and temporal scales of the RU accurately.

Appendix B. Correlation of ∂p′/∂z and w′

The evolution of w′ can be approximated as (Gs et al. 2018)

∂w
∂t

= ∂w′

∂t
= −ūj

∂w′

∂xj
− (ρuj)

′

ρ̄

∂w̄
∂xj

− 1
ρ̄

∂p′

∂z
+ μ

ρ̄

∂2w′

∂xj ∂xj
. (B1)

Figure 24(a) shows the instantaneous spatial distributions of ∂p′/∂z and w′, indicating
their correlation, i.e. the smaller ∂p′/∂z, the larger w′, in the near-wall region. This relation
is also evident in the time series of ∂p′/∂z and w′ at (x, y, z) = (0.13L, 8 × 10−5L, 0.21L)

as presented in figure 24(b).
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