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Abstract

We investigate the joint distribution of L-functions on the line σ = 1/2 + 1/G(T) and
t ∈ [T , 2T], where log log T ≤ G(T) ≤ log T/( log log T)2. We obtain an upper bound on the
discrepancy between the joint distribution of L-functions and that of their random mod-
els. As an application we prove an asymptotic expansion of a multi-dimensional version of
Selberg’s central limit theorem for L-functions on σ = 1/2 + 1/G(T) and t ∈ [T , 2T], where
( log T)ε ≤ G(T) ≤ log T/( log log T)2+ε for ε > 0.

2010 Mathematics Subject Classification: 11M41 (Primary); 11M06, 11M26 (Secondary)

1. Introduction

We investigate the distribution of the Riemann zeta function ζ (s) for Re(s)> 1/2 using
its probabilistic model defined by the random Euler product

ζ (σ , X) =
∏

p

(
1 − X(p)

pσ

)−1

,

where the X(p) for primes p are the uniform, independent and identically distributed ran-
dom variables on the unit circle in C. The product converges almost surely for σ > 1/2
by Kolmogorov’s three series theorem. Our main question is how well the distribution of
ζ (σ , X) approximate that of the Riemann zeta function for 1/2<σ < 1.

Consider two measures

�ζ ,T (σ , B) := 1

T
meas{t ∈ [T , 2T]: log ζ (σ + it) ∈B}

and

�rand
ζ (σ , B) := P( log ζ (σ , X) ∈B)

for a Borel set B in C. Define the discrepancy between the above two measures by

Dζ (σ ) := sup
R

|�ζ ,T (σ , R) −�rand
ζ (σ , R)|,
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2 YOONBOK LEE

where R runs over all rectangular boxes in C with sides parallel to the coordinate axes
and possibly unbounded. This quantity measures the amount to which the distribution of
log ζ (σ , X) approximates that of log ζ (σ + it).

Harman and Matsumoto [2] showed that

Dζ (σ ) � ( log T)−
4σ−2

21+8σ +ε

for fixed 1/2<σ < 1 and any ε > 0. See also Matsumoto’s earlier results in [10–12].
Lamzouri, Lester and Radziwiłł [5] improved it to

Dζ (σ ) � ( log T)−σ

for fixed 1/2<σ < 1. Define

σT := 1

2
+ 1

G(T)
(1·1)

with 4 ≤ G(T) ≤ ( log T)θ and fixed 0< θ < 1/2, then Ha and Lee [1] extended above results
such that

Dζ (σT ) � ( log T)−η

holds for some 0<η< (1 − θ)/4. Here, we extend it to hold for σT closer to 1/2.

THEOREM 1·1. Assume that log log T ≤ G(T) ≤ log T/( log log T)2, then we have

Dζ (σT ) �
√

G(T) log log T√
log T

.

Next we consider a multivariate extension. Let L1, . . . , LJ be L-functions satisfying the
following assumptions:

A1: (Euler product) For j = 1, . . . , J and Re(s)> 1 we have

Lj(s) =
∏

p

d∏
i=1

(
1 − αj,i(p)

ps

)−1

,

where |αj,i(p)| ≤ pη for some fixed 0 ≤ η < 1/2 and for every i = 1, . . . , d.

A2: (Analytic continuation) Each (s − 1)mLj(s) is an entire function of finite order for
some integer m ≥ 0.

A3: (Functional equation) The functions L1, L2, . . . , LJ satisfy the same functional equa-
tion

	j(s) =ω	j(1 − s̄),

where

	j(s) := Lj(s)Qs
k∏
�=1

�(λ�s +μ�),

|ω| = 1, Q> 0, λ� > 0 and μ� ∈C with Re(μ�) ≥ 0.
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Discrepancy bounds 3

A4: (Ramanujan hypothesis on average)

∑
p≤x

d∑
i=1

|αj,i(p)|2 = O(x1+ε)

holds for every ε > 0 and for every j = 1, . . . , J as x → ∞.

A5: (Zero density hypothesis) Let Nf (σ , T) be the number of zeros of f (s) in Re(s) ≥ σ
and 0 ≤ Im(s) ≤ T . Then there exists a constant κ > 0 such that for every j = 1, . . . , J
and all σ ≥ 1/2 we have

NLj(σ , T) � T1−κ(σ− 1
2 ) log T .

A6: (Selberg orthogonality conjecture) By assumption A1 we can write

log Lj(s) =
∑

p

∞∑
r=1

βLj(p
r)

prs
.

Then for all 1 ≤ j, k ≤ J, there exist constants ξj > 0 and cj,k such that

∑
p≤x

βLj(p)βLk (p)

p
= δj,kξj log log x + cj,k + O

(
1

log x

)
,

where δj,k = 0 if j 
= k and δj,k = 1 if j = k.

The assumptions A1–A6 are standard and expected to hold for all L-functions arising
from inequivalent automorphic representations of GL(n). In particular, they are verified by
GL(1) and GL(2) L-functions, which are the Riemann zeta function, Dirichlet L-functions,
L-functions attached to Hecke holomorphic or Maass cusp forms.

Define

L(s) :=
(

log |L1(s)|, . . . , log |LJ(s)|, arg L1(s), . . . , arg LJ(s)
)

and

L(σ , X) :=
(

log |L1(σ , X)|, . . . , log |LJ(σ , X)|, arg L1(σ , X), . . . , arg LJ(σ , X)
)

for σ > 1/2, where

Lj(σ , X) :=
∏

p

d∏
i=1

(
1 − αj,i(p)X(p)

pσ

)−1

(1·2)

converges almost surely for σ > 1/2 again by Kolmogorov’s three series theorem. Then
L(σ , X) is the random model of L(s). Define two measures

�T (B) := 1

T
meas{t ∈ [T , 2T]:L(σT + it) ∈B} (1·3)

and

�rand
T (B) := P(L(σT , X) ∈B) (1·4)
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4 YOONBOK LEE

for a Borel set B in R
2J and σT defined in (1·1). The discrepancy between the above two

measures is defined by

D(σT ) := sup
R

|�T (R) −�rand
T (R)|,

where R runs over all rectangular boxes of R2J with sides parallel to the coordinate axes
and possibly unbounded. Then Theorem 1·1 is a special case of the following theorem.

THEOREM 1·2. Assume that log log T ≤ G(T) ≤ log T/( log log T)2, then we have

D(σT ) �
√

G(T) log log T√
log T

.

The above theorem is an extension of [4, theorem 2·3], which shows the same estimate,
but only for log log T ≤ G(T) ≤ √

log T/log log T . In the proof of [4, theorem 2·3] we have
used an approximation of each log Lj(σT + it) by a Dirichlet polynomial

Rj,Y (σT + it) :=
∑
pr≤Y

βLj(p
r)

pr(σT+it)
(1·5)

for t ∈ [T , 2T] with some exception. The exception essentially comes from possible nontriv-
ial zeros of each Lj(s) off the critical line and the set of exceptional t in [T ,2T] has a small
measure by assumption A5. See [4, lemma 4·2] for details. However, this approximation is
not useful if σT is closer to 1/2. We overcome such difficulty by means of the 2nd moment
estimation of log Lj(σT + it) in Theorem 2·1.

As an application of Theorem 1·2 we consider Selberg’s central limit theorem. Letψj,T :=
ξj log G(T) for j ≤ J and

RT :=
J∏

j=1

[aj
√
πψj,T , bj

√
πψj,T ] ×

J∏
j=1

[cj
√
πψj,T , dj

√
πψj,T ]

for fixed real numbers aj, bj, cj, dj. Then an asymptotic formula for

�T (RT ) = 1

T
meas{t ∈ [T , 2T]:

log Lj(σT + it)√
πψj,T

∈ [aj, bj] × [cj, dj] for j = 1, . . . , J}

is called Selberg’s central limit theorem. See [15, theorem 2] for Selberg’s original idea. Let
0< θ < 1. To find an asymptotic of �T (RT ) for

( log T)θ ≤ G(T) ≤ log T

( log log T)2
, (1·6)

it is now enough to estimate �rand
T (RT ) due to Theorem 1·2. One can easily check that the

asymptotic formula of �rand
T (RT ) in [9, theorem 2·1] holds also for G(T) satisfying (1·6).

Hence, we obtain the following corollary.

COROLLARY 1·3. Assume (1·6) for some 0< θ < 1 and assumptions A1–A6 for
L1, . . . , LJ. Then there exist constants ε1, ε2 > 0 and a sequence {bk,l} of real numbers
such that
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Discrepancy bounds 5

�T (RT ) =
∑

K(k+l)≤ε1 log log T

bk,l

J∏
j=1

1√
ψj,T

kj+�j

×
J∏

j=1

( ∫ bj

aj

e−πu2Hkj(
√
πu)du

∫ dj

cj

e−πv2H�j(
√
πv)dv

)

+ O

(
1

( log T)ε2
+

√
G(T) log log T√

log T

)
, (1·7)

where k = (k1, . . . , kJ) and l = (�1, . . . , �J) are vectors in (Z≥0)J, K(k) := k1 + · · · + kJ

and

Hn(x) := (−1)nex2 dn

dxn
e−x2

is the nth Hermite polynomial. Moreover, b0,0 = 1, bk,l = 0 if K(k + l) = 1 and bk,l =
O(δ−K(k+l)

0 ) for some δ0 > 0 and all k, l ∈ (Z≥0)J.

Note that Corollary 1·3 extends the asymptotic expansion for ζ (s) in [8, theorem 1·2]
and the asymptotic expansion for L(s) in [9, theorem 1·2]. If G(T) is very close to
log T/( log log T)2, the error term in (1·7) is large so that we have an approximation by a
shorter sum as follows.

COROLLARY 1·4. Under the same assumptions as in Corollary 1·3 except for

G(T) = log T

( log log T)2+g

with a constant g> 0, we have

�T (RT ) =
∑

K(k+l)<g

bk,l

J∏
j=1

1√
ψj,T

kj+�j

×
J∏

j=1

( ∫ bj

aj

e−πu2Hkj(
√
πu)du

∫ dj

cj

e−πv2H�j(
√
πv)dv

)
+ O

(
1

( log log T)
g
2

)
.

Note that an asymptotic expansion similar to (1·7) was expected to hold in [3] without a
proof.

2. High moments of log L

Let L be an L-function satisfying assumptions A1–A6 in this section. Here, we use αi(p)
instead of αj,i(p) in assumptions A1 and A4, and assumption A6 is simply∑

p≤x

|βL(p)|2
p

= ξL log log x + cL + O

(
1

log x

)
for some constants ξL > 0 and cL ∈R. Let σT be defined in (1·1) and assume that

( log T)
1
3 ≤ G(T) ≤ log T

( log log T)2
(2·1)

in this section. Then we need the following theorem to prove Theorem 1·2.
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6 YOONBOK LEE

THEOREM 2·1. Let κ be as in assumption A5 and 0< ε <min{1/48, κ/3}. Assume (2·1)

and e
G(T)

2 ≤ Y ≤ Tε, then there exists κ0 > 0 such that

1

T

∫ 2T

T
| log L(σT + it) − RY (σT + it)|2dt � e−κ0

log T
G(T) + e−2 log Y

G(T)
G(T)

log Y
,

where

RY (s) :=
∑
pr≤Y

βL(pr)

prs
.

To prove above theorem, we modify high moments estimations of log ζ in Tsang’s thesis
[16] and compute high moments of log L. All these computations are based on Selberg [13,
14]. Since the Dirichlet coefficients of L(s) are allowed to be larger than 1, Theorem 2·1 is
not an immediate consequence of Tsang [16]. We need to bound various sums involving the
Dirichlet coefficients of log L carefully using assumptions A4 and A6. As a result we obtain
the following theorem.

THEOREM 2·2. Let κ be as in assumption A5 and 0< ε <min{1/48, κ/3}. Let k be a posi-
tive integer such that k ≤ (ε/4)( log log T)2 Assume (2·1), then there exist κ0, c> 0 such that

1

T

∫ 2T

T
| log L(σT + it)|2kdt � ckk4ke−κ0

log T
G(T) + ckkk( log G(T))k (2·2)

and

E[| log L(σT , X)|2k] � ckkk( log G(T))k. (2·3)

By Theorem 2·2 with k = log log T one can easily derive the following corollary, which
is necessary in Section 3.

COROLLARY 2·3 Assume (2·1). Given constant A1 > 0, there exists a constant A2 > 0 such
that

1

T
meas{t ∈ [T , 2T]:| log L(σT + it)| ≥ A2 log log T} � ( log T)−A1

and

P(| log L(σT , X)| ≥ A2 log log T) � ( log T)−A1 .

We provide lemmas in Section 2·1 and then prove Theorems 2·1 and 2·2 in Section 2·2
2·1. Lemmas.

We adapt estimations in [16, chapter 5] for log L. We begin with [16, lemma 5·1].

LEMMA 2·4. Let κ be as in assumption A5, 0< κ ′ < κ and ν ≥ 0. Then there is a constant
c> 0 such that ∑

β>σ
T≤γ≤2T

(β − σ )νXβ−σ = O
(
T1−κ(σ− 1

2 )( log T)1−ν(cν)ν
)

for 1/2 ≤ σ ≤ 1 and 3 ≤ X ≤ Tκ−κ
′
, where β + iγ denotes a zero of L(s).
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Discrepancy bounds 7

Proof. We only prove the case ν > 0, since the case ν = 0 is similar. First we see that∑
β>σ

T≤γ≤2T

(β − σ )νXβ−σ =
∑
β>σ

T≤γ≤2T

∫ β−σ

0
d(uνXu) =

∫ 1−σ

0

∑
β>σ+u

T≤γ≤2T

d(uνXu)

≤
∫ 1−σ

0
NL(σ + u, 2T)d(uνXu).

By assumption A5, the above is

�T1−κ(σ− 1
2 ) log T

∫ 1−σ

0
T−κu(νuν−1Xu + uνXu log X)du

≤T1−κ(σ− 1
2 ) log T

∫ ∞

0
(νuν−1 + uν log X)T−κ′udu

�T1−κ(σ− 1
2 )( log T)1−νcν�(ν + 1)

for some c> 0. Hence, the lemma follows.

Define

σx,t := 1

2
+ 2 max

{
β − 1

2
,

2

log x

}
for t ∈ [T , 2T], where the maximum is taken over all zeros β + iγ of L(s) satisfying |t − γ | ≤
x3(β−1/2)/log x and β ≥ 1/2. Then the following lemma corresponds to [16, lemma 5·2].

LEMMA 2·5. Let ν ≥ 0, 0< κ ′ < κ and x = Tε/k for ε, k> 0. Suppose that 3 ≤ x3X2 ≤
Tκ−κ

′
. Then there is a constant c> 0 depending on κ , ε such that∫

σx,t>σ
T≤t≤2T

(σx,t − σ )νXσx,t−σdt �ε

(cν)νk

( log T)ν
T1− κ

2 (σ− 1
2 )x

3
2 (σ− 1

2 )

for 1/2 + 4/log x ≤ σ ≤ 1 and∫
σx,t>σ

T≤t≤2T

(σx,t − σ )νXσx,t−σdt �ε

(cν)νk

( log T)ν
T1− κ

2 (σ− 1
2 ) + T

ck+νkν

( log T)ν

for 1/2 ≤ σ ≤ 1/2 + 4/log x.

Proof. Define two sets

S1 =
{

t ∈ [T , 2T]:σx,t >max

(
σ ,

1

2
+ 4

log x

)}
,

S2 =
{

t ∈ [T , 2T]:σx,t = 1

2
+ 4

log x
>σ

}
.

Since σx,t ≥ 1/2 + 4
log x , we see that∫

σx,t>σ
T≤t≤2T

(σx,t − σ )νXσx,t−σdt =
∫

S1

(σx,t − σ )νXσx,t−σdt +
∫

S2

(σx,t − σ )νXσx,t−σdt.
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8 YOONBOK LEE

For t ∈ S1, by the definition of σx,t and σx,t > 1/2 + 4/log x, there exists a zero β + iγ
such that σx,t = 2β − 1/2, β − 1/2> 2/log x and |t − γ | ≤ x3(β−1/2)/log x. Thus, we have

∫
S1

(σx,t − σ )νXσx,t−σdt ≤
∑

β> 1
2 (σ+ 1

2 )
T
2 ≤γ≤3T

∫ γ+ x
3(β− 1

2 )

log x

γ− x
3(β− 1

2 )

log x

(
2β − 1

2
− σ

)ν
X2β− 1

2 −σdt

≤ 21+νx
3
2 (σ− 1

2 )

log x

∑
β> 1

2 (σ+ 1
2 )

T
2 ≤γ≤3T

(
β − 1

2

(
σ + 1

2

))ν
(x3X2)β− 1

2 (σ+ 1
2 ).

By Lemma 2·4 the above is

� k

ε

(cν)ν

( log T)ν
T1− κ

2 (σ− 1
2 )x

3
2 (σ− 1

2 ) (2·4)

for some c> 0.
We see that S2 = ∅ for σ ≥ 1/2 + 4/log x. If 1/2 ≤ σ ≤ 1/2 + 4/log x, then∫

S2

(σx,t − σ )νXσx,t−σdt ≤ T

(
4

log x

)ν
X

4
log x ≤ T

ck+νkν

( log T)ν

for some c> 0.
Next we consider [16, lemma 5·3] and observe that the condition (ii) therein does not hold

in our setting. To adapt its proof to our setting, it requires several inequalities regarding βL.
By assumptions A1 and A6 we have

βL(pr) = 1

r

d∑
i=1

αi(p)r. (2·5)

From (2·5) and assumption A1 it is easy to derive that

|βL(pr)| ≤ d

r
prη for r ≥ 1, (2·6)

|βL(pr)| ≤ 1

r

d∑
i=1

|αi(p)|r ≤ p(r−2)η

r

d∑
i=1

|αi(p)|2 for r ≥ 2 (2·7)

and

|βL(p)|2 ≤
( d∑

i=1

|αi(p)|
)2

≤ d
d∑

i=1

|αi(p)|2. (2·8)

For convenience we extend βL by letting βL(n) = 0 if n is not a power of a prime. Then we
see that

log L(s) =
∑

n

βL(n)

ns
.
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Define

λt := λ(σ , x, t) := max{σx,t, σ }
for σ ∈ [1/2, 1] and

gx(n) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 1 ≤ n ≤ x,
log2 (x3/n)−2 log2 (x2/n)

2 log2 x
for x ≤ n ≤ x2,

log2 (x3/n)
2 log2 x

for x2 ≤ n ≤ x3,

0 for x3 ≤ n,

then we have the following lemma.

LEMMA 2·6. Let k and m be positive integers such that k ≤ m ≤ 16k, κ as in assumption
A5 and x = T

ε
k . Assume that ε/k< κ/3 and 0< ε≤ 1/48. Then there exists a constant c> 0

such that ∫ 2T

T

∣∣∣∣ ∑
n

βL(n)gx(n)

nλt+it

∣∣∣∣2m

dt � Tckkm
(

min

{
log log x, log

1

σ − 1
2

})m

and ∫ 2T

T

∣∣∣∣ ∑
n

βL(n)gx(n) log n

nλt+it

∣∣∣∣2m

dt � Tckkm
(

min

{
log x,

1

σ − 1
2

})2m

for 1/2 ≤ σ ≤ 1.

Proof. Let � be a nonnegative integer, then we see that

∑
n

βL(n)gx(n)( log n)�

nλt+it
=

∑
n

βL(n)gx(n)( log n)�

nσ+it
+

∑
n

βL(n)gx(n)( log n)�

nit
(n−λt − n−σ ).

We split the first sum on the right-hand side as

∑
n

βL(n)gx(n)( log n)�

nσ+it
=

∑
p

βL(p)gx(p)( log p)�

pσ+it
+

∑
p

βL(p2)gx(p2)(2 log p)�

p2σ+2it

+
∑

p

∑
r≥3

βL(pr)gx(pr)(r log p)�

prσ+irt
.

By (2·7) and assumption A4 we have∣∣∣∣ ∑
p

∑
r≥3

βL(pr)gx(pr)(r log p)�

prσ+irt

∣∣∣∣ ≤
∑

p

∑
3≤r≤ 3 log x

log p

p(r−2)η ∑d
i=1 |αi(p)|2(r log p)�

rprσ

�
∑

p

∑d
i=1 |αi(p)|2( log p)�

p
3
2 −η � 1.
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10 YOONBOK LEE

By [16, lemma 3·3] we have∫ 2T

T

∣∣∣∣ ∑
p

βL(p)gx(p)( log p)�

pσ+it

∣∣∣∣2m

dt � Tm!
( ∑

p

|βL(p)gx(p)|2( log p)2�

p2σ

)m

∫ 2T

T

∣∣∣∣ ∑
p

βL(p2)gx(p2)( log p)�

p2σ+2it

∣∣∣∣2m

dt � Tm!
( ∑

p

|βL(p2)gx(p2)|2( log p)2�

p4σ

)m

provided that x3m � T , which holds for 0< ε≤ 1/48. By assumption A6 we have

∑
p

|βL(p)gx(p)|2( log p)2�

p2σ
≤

∑
p≤x3

|βL(p)|2( log p)2�

p
�

{
log log x if �= 0,

( log x)2� if �≥ 1

for 1/2 ≤ σ ≤ 1/2 + 4/log x,∑
p

|βL(p)gx(p)|2( log p)2�

p2σ
≤

∑
p

|βL(p)|2( log p)2�

p2σ
�

∫ ∞

2
u−2σ ( log u)2�−1du

�
⎧⎨⎩log 1

σ− 1
2

if �= 0,

1
(σ− 1

2 )2� if �≥ 1

for 1/2 + 4/log x ≤ σ ≤ 1. By (2·7) and assumption A4 we have∑
p

|βL(p2)gx(p2)|2( log p)2�

p4σ
�

∑
p

∑d
i=1 |αi(p)|2( log p)2�

p2−2η
� 1

for σ ≥ 1/2. Since∣∣∣∣ ∑
n

βL(n)gx(n)( log n)�

nσ+it

∣∣∣∣2m

≤ 3m
(∣∣∣∣ ∑

p

βL(p)gx(p)( log p)�

pσ+it

∣∣∣∣2m

+
∣∣∣∣ ∑

p

βL(p2)gx(p2)(2 log p)�

p2σ+2it

∣∣∣∣2m

+ cm
)

for some c> 0, by collecting above equations we find that∫ 2T

T

∣∣∣∣ ∑
n

βL(n)gx(n)( log n)�

nσ+it

∣∣∣∣2m

dt

�

⎧⎪⎪⎨⎪⎪⎩
Tckkm

(
min

{
log log x, log 1

σ− 1
2

})m

if �= 0,

Tckkm
(

min

{
log x, 1

σ− 1
2

})2�m

if �≥ 1
(2·9)

for some constant c> 0 and for 1/2 ≤ σ ≤ 1.

We next estimate ∫ 2T

T

∣∣∣∣ ∑
n

βL(n)gx(n)( log n)�

nit
(n−λt − n−σ )

∣∣∣∣2m

dt.
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By equations in [16, p. 67] the above integral is bounded by

�
( ∫ 2T

T
(λt − σ )4mX4m(λt−σ )

1 dt

) 1
2
( ∫ ∞

σ

Xσ−v
1 dv

)2m− 1
2

×
( ∫ ∞

σ

Xσ−v
1

∫ 2T

T

∣∣∣∣ ∑
n

βL(n)gx(n)( log n)�+1 log (X1n)

nv+it

∣∣∣∣4m

dtdv

) 1
2

with X1 = T
ε1
m for some ε1 > 0. Let ν = 4m and X = X4m

1 = T4ε1 in Lemma 2·5. One can
easily check that the assumptions in Lemma 2·5 follow from the assumptions in Lemma
2·6. Thus, by Lemma 2·5 there exists c> 0 such that∫ 2T

T
(λt − σ )4mX4m(λt−σ )

1 dt � ckk4mT1− 1
2 (κ− 3ε

k )(σ− 1
2 )( log T)−4m

for 1/2 ≤ σ ≤ 1. By (2·9) we have∫ ∞

σ

Xσ−v
1

∫ 2T

T

∣∣∣∣ ∑
n

βL(n)gx(n)( log n)�+1 log (X1n)

nv+it

∣∣∣∣4m

dtdv

� Tckk2m
(

log T

k

)2m(2�+3)−1(
min

{
log x,

1

σ − 1
2

})2m

.

Therefore, by combining above results we obtain

∫ 2T

T

∣∣∣∣ ∑
n

βL(n)gx(n)( log n)�

nit
(n−λt − n−σ )

∣∣∣∣2m

dt

� ckk2m−2m�T1− 1
4 (κ− 3ε

k )(σ− 1
2 )( log T)2m�−m

(
min

{
log x,

1

σ − 1
2

})m

(2·10)

for 1/2 ≤ σ ≤ 1. The lemma follows from (2·9) and (2·10).
The following lemma is an analogy of [16, lemma 5·4]. The proof of [7, lemma 8] is for

Hecke L-functions of number fields, but it works also for our L-functions. So we state the
lemma without a proof.

LEMMA 2·7 Let t ∈ [T , 2T], 1/2 ≤ σ ≤ 1 and t 
= Im(ρ) for any zeros ρ of L(s). Then we
have:

log L(s) =
∑

n

βL(n)gx(n)

nλt+it
+ L̃(s)

+ O

((
x

1
4 − 1

2λt

log x
+ (λt − σ )

)(∣∣∣∣ ∑
n

βL(n)gx(n) log n

nσx,t+it

∣∣∣∣ + log T

))
,

where

L̃(s) =
∑
ρ

∫ λt

σ

u − λt

(u + it − ρ)(λt + it − ρ)
du. (2·11)
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12 YOONBOK LEE

The following lemma is proved for the Riemann zeta function in the proof of [16, lemma
5·5]. We rewrite its proof for convenience.

LEMMA 2·8 Let L̃(s) be as in (2·11) and x = T
ε
k . Assume that ε/k< κ/3 and 0< ε≤ 1/48.

Then we have

|Im(L̃(s))| � (λt − σ )

(∣∣∣∣ ∑
n

βL(n)gx(n) log n

nλt+it

∣∣∣∣ + log T

)
,

|Re(L̃(s))| � (λt − σ )
(
1 + (λt − σ ) log x + log+ 1

ηt log x

)
×

(∣∣∣∣ ∑
n

βL(n)gx(n) log n

nλt+it

∣∣∣∣ + log T

)
,

where log+ w := max{log w, 0} and ηt = min |t − γ | with the minimum taken over all zeros
β + iγ of L(s) with β ≥ 1/2. Moreover, we have∫ 2T

T

(
log+ 1

ηt log x

)2k

dt � T(ck)2k

for some c> 0.

Proof. If σ ≥ σx,t, then λt = σ , L̃(s) = 0 and the lemma holds trivially. Thus, we assume
that σ < σx,t, then λt = σx,t. By (2·11) we find that

Im(L̃(s)) =
∑
ρ

∫ σx,t

σ

(σx,t − u)(t − γ )(u − β + σx,t − β)

|u + it − ρ|2|σx,t + it − ρ|2 du (2·12)

and

Re(L̃(s)) =
∑
ρ

∫ σx,t

σ

(u − σx,t)
(
(u − β)(σx,t − β) − (t − γ )2

)
|u + it − ρ|2|σx,t + it − ρ|2 du. (2·13)

First we find an upper bound of Im(L̃(s)). By (2·12) and |σx,t − u| ≤ |σx,t − σ |, we have

|Im(L̃(s))| ≤
∑
ρ

∫ σx,t

σ

|σx,t − u||t − γ |(|σx,t − u| + 2|u − β|)
|u + it − ρ|2|σx,t + it − ρ|2 du

≤
∑
ρ

|σx,t − σ |2
|σx,t + it − ρ|2

∫ σx,t

σ

|t − γ |
(u − β)2 + (t − γ )2

du

+ 2
∑
ρ

|σx,t − σ |
|σx,t + it − ρ|2

∫ σx,t

σ

|t − γ ||u − β|
(u − β)2 + (t − γ )2

du.

The integrals on the right-hand side are∫ σx,t

σ

|t − γ |
(u − β)2 + (t − γ )2

du ≤
∫ ∞

−∞
|t − γ |

(u − β)2 + (t − γ )2
du =

∫ ∞

−∞
du

u2 + 1
= π ,∫ σx,t

σ

|t − γ ||u − β|
(u − β)2 + (t − γ )2

du ≤ (σx,t − σ ),
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Discrepancy bounds 13

so that

|Im(L̃(s))| ≤ (π + 2)
∑
ρ

|σx,t − σ |2
|σx,t + it − ρ|2 . (2·14)

Selberg in (4·8) of [13] proved that∑
ρ

1

|σx,t + it − ρ|2 � 1

σx,t − 1
2

(∣∣∣∣ ∑
n

βL(n)gx(n) log n

nσx,t+it

∣∣∣∣ + log T

)
(2·15)

for the Riemann zeta function, and it also holds for our L-functions. We may prove (2·15) by
(4·4) and (4·6) of [7] in the proof of [7, lemma 8]. By (2·14) and (2·15) the first inequality
in Lemma 2·8 holds.

Next we find an upper bound of Re(L̃(s)). By (2·13), we have

|Re(L̃(s))| ≤
∑
ρ

∫ σx,t

σ

|σx,t − u|(|u − β|(|σx,t − u| + |u − β|) + |t − γ |2)
|u + it − ρ|2|σx,t + it − ρ|2 du

≤
∑
ρ

|σx,t − σ |2
|σx,t + it − ρ|2

∫ σx,t

σ

|u − β|
(u − β)2 + (t − γ )2

du +
∑
ρ

|σx,t − σ |
|σx,t + it − ρ|2 .

The integral on the right-hand side is∫ σx,t

σ

|u − β|
(u − β)2 + (t − γ )2

du ≤ 2
∫ σx,t

σ

1

|u − β| + |t − γ |du ≤ 4 log

(
1 + σx,t − σ

|t − γ |
)

.

Define log+ w = max{log w, 0} for w> 0, then for any v, w> 0, it is easy to verify log (1 +
w) ≤ 1 + log+ w, log+ (w/v) ≤ log+ w + log+ (1/v) and log+ w ≤ w. Then we have

log

(
1 + σx,t − σ

|t − γ |
)

≤ log

(
1 + (σx,t − σ ) log x

ηt log x

)
≤1 + log+ (

(σx,t − σ ) log x
) + log+ 1

ηt log x

≤1 + (σx,t − σ ) log x + log+ 1

ηt log x
.

Thus, we find that

|Re(L̃(s))| ≤
(

1 + 4(σx,t − σ )

(
1 + (σx,t − σ ) log x + log+ 1

ηt log x

)) ∑
ρ

|σx,t − σ |
|σx,t + it − ρ|2 .

Now, the second inequality of Lemma 2·8 follows from the above inequality and (2·15).
By the definition of log+ and ηt we find that∫ 2T

T

(
log+ 1

ηt log x

)2k

dt ≤
∑
β≥ 1

2
T− 1

log x ≤γ≤2T+ 1
log x

∫ 1
log x

0

(
log+ 1

w log x

)2k

dw.

The number of zeros in the above sum is O(T log T). By substituting w log x = e−v, the last
integral equals to �(2k + 1)/log x = (2k)!/log x. Hence, the last inequality of Lemma 2·8
follows.
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2·2. Proof of Theorems 2·1 and 2·2
To prove Theorems 2·1 and 2·2, we need to find an upper bound of the 2kth moment∫ 2T

T

∣∣∣∣ log L(σT + it) −
∑

n

βL(n)gx(n)

nσT+it

∣∣∣∣2k

dt,

where x = T (ε/k), k ≤ ε/4( log log T)2 and 0< ε <min{1/48, κ/3}. Let σ = 1/2 and k = m
in Lemma 2·6, then we get∫ 2T

T

∣∣∣∣ ∑
n

βL(n)gx(n) log n

nσx,t+it

∣∣∣∣2k

dt � ckkkT( log x)2k. (2·16)

By Lemmas 2·7 and 2·8 and (2·16), we have∫ 2T

T

∣∣∣∣ log L(σT + it) −
∑

n

βL(n)gx(n)

nσT+it

∣∣∣∣2k

dt

� ck
∫ 2T

T

∣∣∣∣ ∑
n

βL(n)gx(n)

nλt+it
−

∑
n

βL(n)gx(n)

nσT+it

∣∣∣∣2k

dt

+ ck
∫ 2T

T
(λt − σT )2k

(
1 + (λt − σT ) log x + log+ 1

ηt log x

)2k

×
∣∣∣∣ ∑

n

βL(n)gx(n) log n

nλt+it

∣∣∣∣2k

dt

+ ck( log T)2k
∫ 2T

T
(λt − σT )2k

(
1 + (λt − σT ) log x + log+ 1

ηt log x

)2k

dt

+ ckk2kTe−ε log T
G(T) (2·17)

for some c> 0. It remains to bound the integrals on the right-hand side.
Since k ≤ ε/4( log log T)2, we see that

σT − 1

2
= 1

G(T)
≥ ( log log T)2

log T
≥ 4

log x
.

By (2·10) we have∫ 2T

T

∣∣∣∣ ∑
n

βL(n)gx(n)

nλt+it
−

∑
n

βL(n)gx(n)

nσT+it

∣∣∣∣2k

dt � ckk2kTe− 1
4 (κ− 3ε

k ) log T
G(T)

G(T)k

( log T)k
(2·18)

for some c> 0. By Lemmas 2·5 and 2·8 we have∫ 2T

T
(λt − σT )2mdt � ckm2m

( log T)2m
Te− 1

2 (κ− 3ε
k ) log T

G(T)

and ∫ 2T

T
(λt − σT )2m

(
log+ 1

ηt log x

)2m

dt

≤
( ∫ 2T

T
(λt − σT )4mdt

) 1
2
( ∫ 2T

T

(
log+ 1

ηt log x

)4m

dt

) 1
2
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� ckm4m

( log T)2m
Te− 1

4 (κ− 3ε
k ) log T

G(T)

for k ≤ m ≤ 4k. Thus, we obtain∫ 2T

T
(λt − σT )2m

(
1 + (λt − σT ) log x + log+ 1

ηt log x

)2m

dt

� ckm4m

( log T)2m
Te− 1

4 (κ− 3ε
k ) log T

G(T) (2·19)

for k ≤ m ≤ 2k. By Lemma 2·6, the Cauchy–Schwarz inequality and the above inequality we
have∫ 2T

T
(λt − σT )2k

(
1 + (λt − σT ) log x + log+ 1

ηt log x

)2k∣∣∣∣ ∑
n

βL(n)gx(n) log n

nλt+it

∣∣∣∣2k

dt

� ckk5kG(T)2k

( log T)2k
Te− 1

8 (κ− 3ε
k ) log T

G(T) . (2·20)

Therefore, by (2·17) – (2·20) there exist κ0 > 0 such that∫ 2T

T

∣∣∣∣ log L(σT + it) −
∑

n

βL(n)gx(n)

nσT+it

∣∣∣∣2k

dt � ckk4kTe−κ0
log T
G(T) . (2·21)

Let k = 1 in (2·21), then we see that∫ 2T

T

∣∣∣∣ log L(σT + it) −
∑

n

βL(n)gx(n)

nσT+it

∣∣∣∣2

dt � Te−κ0
log T
G(T) , (2·22)

where x = Tε and 0< ε <min{1/48, κ/3}. Let e
G(T)

2 ≤ Y ≤ x, then we have∫ 2T

T

∣∣∣∣ ∑
n>Y

βL(n)gx(n)

nσT+it

∣∣∣∣2

dt � T
∑
n>Y

|βL(n)|2
n2σT

� T
Y1−2σT

(2σT − 1) log Y
(2·23)

by [4, lemma 4·1]. Thus, Theorem 2·1 follows from (2·22) and (2·23).
Next we prove Theorem 2·2. We see that (2·2) holds by (2·9) and (2·21). The proof of

(2·3) is similar, but simpler than the proof of Lemma 2·6. Since

log L(σT , X) =
∑

p

βL(p)X(p)

pσT
+

∑
p

βL(p2)X(p2)

p2σT
+ O(1),

by [16, lemma 3·3] we have

E[| log L(σT , X)|2k] ≤ck
(

k!
( ∑

p

|βL(p)|2
p2σT

)k

+ k!
( ∑

p

|βL(p2)|2
p4σT

)k

+ 1

)
for some c> 0. By (2·7) and assumption A4 we have

∑
p

|βL(p2)|2
p4σT

�
∑

p

∑d
i=1 |αi(p)|2

p2−2η
� 1.
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By assumption A6 we have

∑
p

|βL(p)|2
p2σT

�
∫ ∞

2

du

u1+ 2
G(T) log u

� log G(T).

Thus, we have

E[| log L(σT , X)|2k] � ckk!( log G(T))k

for some c> 0.

3. Discrepancy

In this section we will prove Theorem 1·2 for G(T) satisfying (2·1). First we need to
extend [4, proposition 5·1]. Define the Fourier transforms of �T and �rand

T by

�̂T (x, y) :=
∫
R2J

e2π i(x·u+y·v)d�T (u, v)

and

�̂rand
T (x, y) :=

∫
R2J

e2π i(x·u+y·v)d�rand
T (u, v),

where x = (x1, . . . , xJ) and similarly y, u, v are vectors in R
J and x · u := ∑

j≤J xjuj is the
dot product. Then we obtain the following proposition.

PROPOSITION 3·1. Assume (2·1). Given constant A4 > 0, there exists a constant A5 > 0
such that

�̂T (x, y) = �̂rand
T (x, y) + O

(
1

( log T)A4

)
for maxj≤J{|xj|, |yj|} ≤ √

log T/A5
√

G(T) log log T.

Proof. By definition we get

�̂T (x, y) = 1

T

∫ 2T

T
exp

[
2π i

∑
j≤J

(
xj log |Lj(σT + it)| + yj arg Lj(σT + it)

)]
dt,

�̂rand
T (x, y) =E

[
exp

[
2π i

∑
j≤J

(
xj log |Lj(σT , X)| + yj arg Lj(σT , X)

)]]
.

Since the inequality

|eix − eiy|2 = 4 sin2
(

x − y

2

)
≤ |x − y|2

holds for any x, y ∈R, by the Cauchy–Schwarz inequality and Theorem 2·1 with

log Y = A6G(T) log log T
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Discrepancy bounds 17

we have

�̂T (x, y) − 1

T

∫ 2T

T
exp

[
2π i

∑
j≤J

(
xjRe(Rj,Y (σT + it)) + yjIm(Rj,Y (σT + it))

)]
dt

= O

(
1

T

∫ 2T

T

∑
j≤J

(|xj| + |yj|)| log Lj(σT + it) − Rj,Y (σT + it)|dt

)

= O

( ∑
j≤J

(|xj| + |yj|)
(

1

T

∫ 2T

T
| log Lj(σT + it) − Rj,Y (σT + it)|2dt

) 1
2
)

= O

(
M

( log T)A6

)
for all |xj|, |yj| ≤ M. Let

N =
[

log T

10A6G(T) log log T

]
,

then by the Taylor theorem and [4, lemma 4·5] we have

�̂T (x, y)−
2N−1∑
n=0

(2π i)n

n!T
∫ 2T

T

( ∑
j≤J

(
xjRe(Rj,Y (σT + it)) + yjIm(Rj,Y (σT + it))

))n

dt

= O

(
cNM2N

(2N)!
1

T

∫ 2T

T

∑
j≤J

∣∣Rj,Y (σT + it)
∣∣2N

dt + M

( log T)A6

)

= O

((
cM2 log log T

N

)N

+ M

( log T)A6

)
for some c> 0. Let

M =
√

log T

A5
√

G(T) log log T

with a constant A5 ≥ √
10cA6e5A2

6 , then we have

�̂T (x, y) =
2N−1∑
n=0

(2π i)n

n!T
∫ 2T

T

( ∑
j≤J

(
xjRe(Rj,Y (σT + it)) + yjIm(Rj,Y (σT + it))

))n

dt

+ O

(
1

( log T)A6− 1
2

)
.

By following the second half of the proof of [4, proposition 5·1] one can conclude that the
proposition holds.

We next need to introduce Beurling–Selberg functions. Define

F[a,b],�(z) = 1

2
(H(�(z − a)) − K(�(z − a)) + H(�(b − z)) − K(�(b − z)))
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18 YOONBOK LEE

for z ∈C and �> 0, where

H(z) = sin2 (πz)

π2

( ∞∑
n=−∞

sgn(n)

(z − n)2
+ 2

z

)
and K(z) = sin2 (πz)

(πz)2
.

Then we summarise some results in [6, section 7] as a lemma.

LEMMA 3·2. For all x ∈R we have |F[a,b],�(x)| ≤ 1 and

0 ≤ 1[a,b](x) − F[a,b],�(x) ≤ K(�(x − a)) + K(�(b − x)).

Moreover, the Fourier transform F̂[a,b],� satisfies

F̂[a,b],� =
{̂

1[a,b](y) + O(�−1) if |y| ≤�,

0 if |y| ≥�.

We are ready to prove Theorem 1·2 for G(T) satisfying (2·1). By Corollary 2·3 there exists
a constant A3 > 0 such that

1

T
meas{t ∈ [T , 2T]:L(σT + it) /∈ IT} � 1

( log T)10
,

P{L(σT , X) /∈ IT} � 1

( log T)10
,

where

IT := [−A3 log log T , A3 log log T]2J .

Then we see that

�T (R) =�T (R∩ IT ) + O

(
1

( log T)10

)
,

�rand
T (R) =�rand

T (R∩ IT ) + O

(
1

( log T)10

)
for any R ∈R

2J . Thus, we have

D(σT ) = sup
R⊂IT

|�T (R) −�rand
T (R)| + O

(
1

( log T)10

)
, (3·1)

where R⊂ IT runs over all rectangular boxes of R2J with sides parallel to the coordinate
axes. By (3·1) it is enough to show that

�T (R) −�rand
T (R) = O(M−1) (3·2)

for

R=
J∏

j=1

I1,j ×
J∏

j=1

I2,j ⊂ IT ,

where I1,j = [aj, bj] and I2,j = [cj, dj] for j = 1, . . . , J.
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By definition we see that

�T (R) = 1

T

∫ 2T

T

J∏
j=1

1I1,j( log |Lj(σT + it)|)1I2,j( arg Lj(σT + it))dt,

�rand
T (R) =E

[ J∏
j=1

1I1,j( log |Lj(σT , X)|)1I2,j( arg Lj(σT , X))

]
.

By Lemma 3·2 with �= M we have

�T (R) = 1

T

∫ 2T

T

J∏
j=1

FI1,j,M( log |Lj(σT + it)|)FI2,j,M( arg Lj(σT + it))dt + O(M−1),

�rand
T (R) =E

[ J∏
j=1

FI1,j,M( log |Lj(σT , X)|)FI2,j,M( arg Lj(σT , X))

]
+ O(M−1). (3·3)

To confirm the above O-terms, it requires inequalities similar to

1

T

∫ 2T

T
K(M( log |L1(σT + it)| − α))dt

= 1

M

∫ M

−M

(
1 − |u|

M

)
e−2π iαu�̂T (u, 0, . . . , 0)du � 1

M
,

which holds by Fourier inversion, Proposition 3·1, [4, lemma 7·1] and

K̂(x) = max (0, 1 − |x|).

By Fourier inversion, Lemma 3·2 and Proposition 3·1 we obtain

1

T

∫ 2T

T

J∏
j=1

FI1,j,M( log |Lj(σT + it)|)FI2,j,M( arg Lj(σT + it))dt

=
∫
R2J

( J∏
j=1

F̂I1,j,M(xj)F̂I2,j,M(yj)

)
�̂T (−x, −y)dxdy

=
∫

|xj|,|yj|≤M
j=1,...,J

( J∏
j=1

F̂I1,j,M(xj)F̂I2,j,M(yj)

)
�̂rand

T (−x, −y)dxdy + O

(
(M log log T)2J

( log T)A4

)

=E

[ J∏
j=1

FI1,j,M( log |Lj(σT , X)|)FI2,j,M( arg Lj(σT , X))

]
+ O

(
(M log log T)2J

( log T)A4

)
. (3·4)

Here, we also have used that

|F̂[a,b],M(y)| ≤ |1̂[a,b](y)| + O(M−1) � log log T
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20 YOONBOK LEE

for |y| ≤ M and |b − a| � log log T . We choose A4 sufficiently large so that

(M log log T)2J

( log T)A4
≤ 1

M
,

then (3·2) holds by (3·3) and (3·4). This completes the proof of Theorem 1·2.
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