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Abstract. The ergodic properties of two uncoupled oscillators, one horizontal and one
vertical, residing in a class of non-rectangular star-shaped polygons with only vertical
and horizontal boundaries and impacting elastically from its boundaries are studied. We
prove that the iso-energy level sets topology changes non-trivially; the flow on level sets
is always conjugated to a translation flow on a translation surface, yet, for some segments
of partial energies the genus of the surface is strictly greater than 1. When at least one
of the oscillators is unharmonic, or when both are harmonic and non-resonant, we prove
that for almost all partial energies, including the impacting ones, the flow on level sets
is uniquely ergodic. When both oscillators are harmonic and resonant, we prove that
there exist intervals of partial energies on which periodic ribbons and additional ergodic
components coexist. We prove that for almost all partial energies in such segments the
motion is uniquely ergodic on the part of the level set that is not occupied by the periodic
ribbons. This implies that ergodic averages project to piecewise smooth weighted averages
in the configuration space.

Key words: Hamiltonian impact systems, quasi-integrable systems, unique ergodicity,
translation surfaces, piecewise smooth dynamics
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1. Introduction
Mechanical Hamiltonian impact systems (HISs) describe the motion of a particle in a
given Hamiltonian field within a billiard table: the Hamiltonian flow determines the
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particle trajectory in the configuration space till it reaches the billiard boundary, where
it reflects elastically, and then it continues with the Hamiltonian flow [10]. For mechanical
Hamiltonian flows with bounded energy surfaces, for small energy, as long as the energy
surface projection to the configuration space (Hill region) does not touch the billiard
boundary, the HIS reduces to the study of smooth mechanical Hamiltonian systems. At the
other extreme, for compact billiard tables and smooth bounded potentials, mechanical HISs
limit, at high energy, to the corresponding billiard flow. The theory for intermediate energy
values includes local analysis near periodic orbits [5] and near smooth convex boundaries
[2, 25], and, for some specific classes of HIS, hyperbolic behavior [12, 20–22], Liouville
integrable [3, 6, 11, 16, 17] and near-integrable [15] dynamics were established. A class
of quasi-integrable HISs, related to the quasi-integrable dynamics in families of polygonal
right-angled corners, was introduced in [1].

The analysis of quasi-integrable dynamics in right-angled billiards is related to several
deep mathematical fields [26]. A new family of billiards with quasi-integrable dynamics,
consisting of confocal ellipses with confocal barriers, was introduced in [4] (and, if the
Birkhoff conjecture is correct, this family and polygonal billiards with rational angles
are the only billiards with quasi-integrable dynamics). For such a billiard table, the
quasi-integrable dynamics depends on a parameter—the constant of motion associated
with the caustic of the trajectories. By a change of coordinates, the dynamics for any given
caustic constant is conjugated to the directed motion in a right-angled billiard table [4].
Using tools of homogeneous dynamics, it was established that the flow in an ellipse with
a vertical barrier is uniquely ergodic for almost all the caustic parameters [9]. Developing
a different approach, a similar result was established for the more general case of nibbled
ellipses [8]. Our methodology relies on the methods developed in [8], where it was shown
that to prove unique ergodicity, the Minsky–Weiss criterion [14] may be applied to a class
of right-angled polygons consisting of staircase polygons.

Here, we examine the dynamics of a horizontal and a vertical oscillator with stable fixed
point at the origin that are restricted to lie within star-shaped polygons with only vertical
and horizontal boundaries with a kernel that includes the origin (this is a subclass of the
HIS introduced in [1], and such polygons consist of four staircase polygons considered
in [8]). These two-degrees-of-freedom systems have two conserved integrals, so their
motion is always restricted to level sets, yet, in contrast to the smooth case, the motion
on the level sets is conjugated, for some of the level sets, to the motion in polygonal
right-angled billiards with more than four corners. Thus, the motion on such level sets
is not conjugated to rotations [26], and, since the shape of the polygonal billiard and the
direction of motion on it vary, the dynamics may depend sensitively on the value of the
conserved integrals, even for iso-energy level sets [1]. In the first part of the paper we
analyze our class of HISs in non-resonant cases and prove that the motion is uniquely
ergodic for almost all iso-energy level sets (in this part we rely on the tools and analysis
developed in [8] for staircase polygons, verifying that the functional dependence of the
corners in the induced family of polygons satisfies the necessary conditions of smoothness,
independence and monotonicity as in [8]). In the second part of the paper we study the case
of HISs with quadratic resonant potentials in a staircase polygon. Here, ribbons of periodic
orbits coexist with quasi-periodic motion (similar to the motion presented in [13], but in
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the corresponding HISs). By our new construction, we establish the unique ergodicity of
the non-periodic component on a certain set. In §9 we show that these findings imply
non-uniform ergodic averages in the configuration space.

1.1. Set-up. Consider integrable Hamiltonian systems with two degrees of freedom
(d.o.f.) of the form

H(px , x, py , y) = p2
x

2
+ p2

y

2
+ V1(x)+ V2(y), (1.1)

where (x, y) are the space coordinates, (px , py) are the corresponding momenta and
the potentials V1, V2 : R → R≥0 are even unimodal C2-maps that tend monotonically to
infinity with their argument (without loss of generality we take V1(0) = V2(0) = 0: see
the precise ‘Deck’ assumption below). The Hamiltonian flow (ϕt )t∈R of (1.1) describes
a particle which oscillates in a potential well. The Hamiltonian flow on a given energy
surface E is foliated by the level sets with fixed partial energies (E1 = H1(I1), E2 =
H2(I2) = E − E1), where Ii(Ei) is the action of the one-d.o.f. system Hi . For a given
energy level E ≥ 0 and any 0 ≤ E1 ≤ E let

SE,E1 :=
{
(px , x, py , y)∈R

4 :
p2
x

2
+ V1(x)=E1,

p2
y

2
+ V2(y)=E − E1, (x, y)∈R

2
}

.

Then the phase space of the flow (ϕt )t∈R, is foliated by the invariant sets {SE,E1 : E ≥
0, 0 ≤ E1 ≤ E}, which are tori for 0 < E1 < E, and, for E > 0 and E1 ∈ {0, E}, are
circles. Denote the restriction of (ϕt )t∈R to SE,E1 by (ϕE,E1

t )t∈R. The smooth flow without
reflection is trivially integrable and oscillatory. The projection of SE,E1 to the configuration
space is the projected rectangle [16]

R(E,E1) = [−xmax(E1), xmax(E1)] × [−ymax(E − E1), ymax(E − E1)], (1.2)

where V1(x
max(E1)) = E1, V2(y

max(E2)) = E2, E2 = E − E1. The union of all iso-
energy rectangles is the Hill region: DHill(E) = ⋃

0≤E1≤E R
(E,E1) = {(x, y)|V1(x)+

V2(y) � E} (see [16] for more general formulation).
Denote by ωi(Ei) = 2π/Ti(Ei) the frequency in each degree of freedom, where Ti(Ei)

is the period of oscillation. The standard transformation to action angle coordinates (Ii , θi)
in each degree of freedom renders (1.1) into the form H(px , x, py , y) = H1(I1)+H2(I2)

and in these coordinates the flow is simply

(ϕ
E,E1
t ) = (

I1(E1), θ1(t) = ω1(E1)t + θ1(0),

I2(E − E1), θ2(t) = ω2(E − E1)t + θ2(0)
)
.

Recall that ωi(Ii) = H ′
i (Ii) = dEi/dIi and that the Hamiltonian is said to satisfy

the twist condition if det(∂2H/∂Ii∂Ij ) = ∏
ω′
i (Ii) �= 0 and to satisfy the iso-energy

non-degeneracy condition if∣∣∣∣∣∣∣∣
∂2H

∂Ii∂Ij

∂H

∂Ii
∂H

∂Ij
0

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
ω′

1(I1) 0 ω1(I1)

0 ω′
2(I2) ω2(I2)

ω1(I1) ω2(I2) 0

∣∣∣∣∣∣ = −ω′
1(I1)ω

2
2(I2)− ω2

1(I1)ω
′
2(I2) �= 0.
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FIGURE 1. The living space of the particle.

The character of the smooth flow (ϕ
E,E1
t ) on the level set SE,E1 depends on the frequency

ratio on this level set. If

� = �(E, E1) = ω1(E1)

ω2(E − E1)
= H ′

1(I1(E1))

H ′
2(I2(E − E1))

is rational then the flow is periodic (the resonant case), and if � is irrational then it is
quasi-periodic (the non-resonant case). Recall that (d/dE1)�(E, E1) �= 0 if and only if
the iso-energy non-degeneracy condition is satisfied.

Remark 1.1. Notice that if both potentials V1, V2 are quadratic then the frequencies ω1, ω2

are constant and V1(x) = 1
2ω

2
1x

2, V2(y) = 1
2ω

2
2y

2. Therefore� = ω1/ω2 does not depend
on E, E1 and V1 = �2V2.

Now, assume that the particle is confined to a bounded polygonal room P ⊂ R
2 whose

walls consist of vertical and horizontal segments. When the particle meets the wall it
reflects elastically. More precisely, if a trajectory meets a vertical segment at (px , x, py , y)
then it jumps to (−px , x, py , y) and continues its movement in accordance with the
Hamiltonian flow solving

dpx

dt
= −V ′

1(x),
dx

dt
= px ,

dpy

dt
= −V ′

2(y),
dy

dt
= py . (1.3)

Similarly, if a trajectory meets a horizontal segment at (px , x, py , y) then it jumps to
(px , x, −py , y) and continues its movement with (1.3); see [1] for the general construction,
a mechanical example and the description of the resulting dynamics on energy surfaces,
and [16] for the global structure of energy surfaces of such systems.

In particular, since all the walls are either horizontal or vertical, the partial energies are
preserved under these reflections, so the motion remains restricted to level sets:

SPE,E1
:= {(px , x, py , y) ∈ R

4 : H1(x, px) = E1, H2(y, py) = E − E1, (x, y) ∈ P }.
Denote the restriction of the impact Hamiltonian flow (ϕt )t∈R to SPE,E1

by (ϕP ,E,E1
t )t∈R,

see, for example, a trajectory segment projected to the configuration space in Figure 1.
Notice that if a particle hits any corner of P then it dies. Namely, the flow is fully defined
for regular trajectories and is only partially defined on the set which corresponds to all
forward and backward images of corner points.
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FIGURE 2. Staircase polygons P(x, y), P(−x, y), P(x, −y), P(−x, −y).

We are interested in studying the topology of the level set SPE,E1
and the invariant

measures of (ϕP ,E,E1
t )t∈R when the total and partial energies E, E1 vary. In particular,

we ask when the flow is uniquely ergodic. Recall that the flow (ϕ
P ,E,E1
t )t∈R is uniquely

ergodic if (i) each of its orbits is forward or backward infinite and (ii) if there exists a
probability measure μE,E1 on SPE,E1

such that, for every continuous map f : SPE,E1
→ R

and any (px , x, py , y) ∈ SPE,E1
for which the (ϕP ,E,E1

t )t∈R-orbit of (px , x, py , y) is either
forward or backward infinite,

lim
T→±∞

1
T

∫ T

0
f (ϕt (px , x, py , y))dt =

∫
SPE,E1

f dμE,E1 ,

where the + (respectively, −) sign is taken if the (ϕP ,E,E1
t )t∈R-orbit of (px , x, py , y) is

forward (respectively, backward) infinite. In our case the measure μE,E1 is equivalent to
the Lebesgue measure on SPE,E1

.
To formally determine the living space, P, of the particle, by following [8], denote by �

the set of sequences (x, y) = (xi , yi)ki=1 of points in R
2
>0 such that

0 < x1 < x2 < · · · < xk−1 < xk and 0 < yk < yk−1 < · · · < y2 < y1.

For every (x, y) ∈ � set k(x, y) := k and denote by P(x, y) the right-angled staircase
polygon on R

2 with consecutive vertices:

(0, 0), (0, y1), (x1, y1), (x1, y2), . . . , (xk−1, yk−1), (xk−1, yk), (xk , yk), (xk , 0);

see Figure 2.
Denote by 	 the four-element group generated by the vertical and the horizontal

reflections γv , γh : R2 → R
2. The polygons of the form

P(x, y), P(−x, y)=γvP (x, y), P(x, −y)=γhP (x, y), P(−x, −y)=γv ◦ γhP (x, y)
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are called staircase polygons; see Figure 2. The numbers x1, . . . , xk−1 are called staircase
lengths, and y2, . . . , yk are called staircase heights of the staircase polygon P(±x, ±y).
The number xk is called the width and y1 is called the height of P(±x, ±y).

We assume that the living space P of the particle is the union of four staircase polygons
determined by the four sequences (xς1ς2 , yς1ς2) ∈ �, ς1, ς2 ∈ {±}:

P(x++, y++), P(−x−+, y−+), P(x+−, −y+−), P(−x−−, −y−−),

such that

y++
1 = y−+

1 , y+−
1 = y−−

1 , x++
k(x++,y++) = x+−

k(x+−,y+−), x
−+
k(x−+,y−+) = x−−

k(x−−,y−−).

The space of all such polygons we denote by R. It is the set of star-shaped polygons with a
kernel that includes the origin and with only vertical and horizontal boundaries. When the
sequences (xς1ς2 , yς1ς2) are identical (independent of ς1, ς2), the polygon is symmetric
to reflections. Our analysis applies to both the general and the symmetric cases (Figure 5
shows symmetric polygons whereas all other figures are related to the general case).

The corners (xς1ς2
j , yς1ς2

j ) are 90◦ corners, henceforth called convex corners, and
(x
ς1ς2
j , yς1ς2

j+1 ) are 270◦ corner, henceforth called concave corners. The four-dimensional
vector {k(xς1ς2 , yς1ς2)}ς1,ς2∈{±} is called the topological data of the polygon P, whereas
the set of four vectors, {(xς1ς2 , yς1ς2), ς1, ς2 ∈ {±}}, is called the numerical data of the
polygon† P.

The level set topology of SPE,E1
is determined by the properties of R(E,E1) ∩ P (see

Figure 3) and can be found under mild conditions on the potential.

THEOREM 1.2. Assume V1, V2 : R → R≥0 are C2 unimodal potentials (satisfying condi-
tion (♦) below). Let P be any polygon in R. Then for anyE > 0, forE1 ∈ (0, E), the genus
of the level set (E1, E − E1), SPE,E1

, is given by 1 plus the number of concave corners in
R(E,E1) ∩ P :

g(E, E1) = 1 +
∑

ς1,ς2∈{±}
#{1 ≤ k < k(x̄ς1ς2 , ȳς1ς2) : V1(x

ς1ς2
k ) < E1 < E − V2(y

ς1ς2
k+1 )}.

Specifically, for E > 0 the interval E1 ∈ (0, E) is divided into a finite number of
segments on which the level sets have a constant genus. This partition is non-trivial for
E > minς1,ς2,kV1(x

ς1ς2
k )+ V2(y

ς1ς2
k+1 ). Close to the end points of (0, E) the genus is 1,

whereas for E sufficiently large there exists an interval of level sets, E1 ∈ Imax with genus
gmax = ∑

ς1,ς2∈{±} k(x̄ς1ς2 , ȳς1ς2)− 3 and on which for almost all E1 values the motion
is uniquely ergodic.

Figures 3 and 4 provide the geometrical interpretation of this theorem in the config-
uration space, where several iso-energy rectangles are plotted on top of an asymmetric
staircase polygon P. Figure 4 demonstrates that the number of concave corners that are
included in R(E,E1) ∩ P can vary at a fixed energy. Figures 5 and 6 demonstrate the
division of the intervals E1 ∈ [0, E] of iso-energy level sets into a finite number of

† We continue to call xς1ς2
k / yς1ς2

k the length /height of a step, but notice that this is measuring the lengths and
heights from the axes of the corresponding axes and not of the full polygon.
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FIGURE 3. A projected rectangle and the staircase polygon. Cyan—the projected rectangle. Yellow—the polygon
R(E,E1) ∩ P includes three concave corners, thus, by Theorem 1.2, g(E, E1) = 4.

(a) (b)

FIGURE 4. The intersection of a star-shaped polygon (gray) with four iso-energy projected rectangles (cyan) at
(a) E = 2.7 and (b) E = 5.7 energy values. By Theorem 1.2, the genera of the corresponding iso-energy level
sets for the four R(E,E1) rectangles shown are, for increasing E1 (a) g(E = 2.7, E1) = {1, 2, 4, 1} (b) g(E =

5.7, E1) = {1, 2, 5 = gmax, 1}. The potentials here are quadratic with ω1 = 1, ω2 = 0.8
√

2.

(a) (b)

FIGURE 5. Impact energy-momentum bifurcation diagram: (a) for a symmetric cross (one concave corner
with multiplicity4); (b) symmetric two-step cross (two concave corners each with multiplicity4). Here, due to
symmetry, each blue wedge corresponds to four overlapping wedges, soR(E,E1) ∩ P includes4k concave corners
if and only if(E, E1) is in a region covered by4k overlapping shaded blue regions. Only for these regions is the
level sets genus greater than1. The pink (respectively, light-green) regions correspond to level sets that impact the

extreme vertical (respectively, horizontal) sides.

intervals, each having level sets with a fixed genus. The figures show how this division
depends on the energy E. In these plots, called impact energy-momentum bifurcation
diagrams (IEMBDs; see [15, 16]) the regions in the (E, E1) plane at which level sets
include impacts with certain parts of the boundaries are shown. Figure 5 shows these plots
for symmetric polygons and Figure 6 shows it for the asymmetric polygon of Figure 4. The
gray wedge in each IEMBD corresponds to all allowed level sets (since E1 ∈ [0, E]). A
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FIGURE 6. Impact energy-momentum bifurcation diagram for the asymmetric cross shown in Figure 4 (four
distinct concave corners). The colored circles correspond to the energies of the corners of the corresponding
colored staircase polygons shown in the inset. All corners have distinct partial energies, so R(E,E1) ∩ P includes
k concave corners if and only if (E, E1) is in a region covered by k overlapping blue regions. Only for these
regions is the level sets genus greater than 1. The pink (respectively, light green) regions include extremal
vertical (respectively, horizontal) boundaries. The two vertical lines indicate the energies E = 2.7, 5.7 and the

cyan squares on these lines correspond to the E1 values of the rectangles shown in Figure 4.

family of iso-energy level sets corresponds to a vertical line in this plot. The projected
rectangles of the iso-energy level sets shown in Figure 4 at two energies correspond to the
cyan squares on the two vertical black lines of Figure 6. Each blue colored wedge in the
IEMBD corresponds to level sets that include impacts with a concave corner of one of the
polygons P(xς1,ς2 , yς1,ς2). If j polygons have the same concave corner we say that this
wedge has multiplicity j, so in Figure 5 each concave corner has multiplicity 4. The pink
(respectively, light-green) regions correspond to level sets that impact the extreme vertical
(respectively, horizontal) boundaries of a polygon. Regions that are in the complement to
the blue wedges correspond to level sets with genus 1 (so, in particular, small and large
(E1 ≈ E) values are included in this set). Regions that are in kg shaded blue wedges
(counting multiplicities) have genus kg + 1. Thus, the regions in the intersection of all
the blue wedges have the maximal genus gmax. The intersection of this region with the
two pink and two light green wedges corresponds to level sets that, for almost all E1,
have uniquely ergodic dynamics with the very mild assumption (condition (♦)) on the
potentials. As described next, with stronger assumptions on the potentials we prove unique
ergodicity for almost all level sets in the allowed region, whereas for quadratic resonant
potentials the IEMBD provides a more delicate division to segments as will be explained
in §1.4.

1.2. Deck potentials. To study the properties of the invariant measures of the flow
(ϕ
P ,E,E1
t )t∈R we need additional assumptions on the potentials. For all z0 ∈ C and r > 0

define the ball centered at z0 and the droplet emanating from z0 by

B(z0, r) = {z ∈ C : |z− z0| < r} and C(z0, r) =
⋃

s∈(0,1]

sB(z0, r) if r < |z0|.
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We define a special class of even potentials V1, V2 denoted by Deck. An even C2-map
V : R → R belongs to Deck if

V (0) = V ′(0) = 0, V ′(x) > 0 for all x > 0 and lim
x→+∞ V (x) = +∞; (♦)

V : (0, +∞) → (0, +∞) is an analytic map. (♥)

Then V : (0, +∞) → (0, +∞) has a holomorphic extension V : U → C on an open
neighborhood U ⊂ C of (0, +∞), and we have that:

for every E > 0 there exist 0 < r < E and a bounded open set UE ⊂ U

such that V : UE → V (UE) is biholomorphic with C(E, r) ⊂ V (UE); (♣)

there exists CE > 0 such that
∣∣∣∣V ′′(z)V (z)
(V ′(z))2

∣∣∣∣ ≤ CE for all z ∈ UE . (♠)

The class Deck contains all unimodal analytic maps (that is, satisfying (♦)); see
Proposition A.1. Further examples of Deck potentials which are not analytic at 0 (such
as V (x) = |x|m exp(−1/|x|)) are presented in Appendix A. The Deck assumption ensures
that the period depends analytically on the energy. Additionally, we will most often assume
that V ∈ Deck also satisfies

V (x)V ′′(x)
(V ′(x))2

≥ 1
2

for all x > 0, or (�)

V satisfies (�) and
VV ′′

(V ′)2
�= 1

2
. (☼)

Condition (�) is equivalent to V being the square of a convex function, and ensures that
the period is a decreasing function of the energy, while condition (☼) means additionally
not being a quadratic function, so the period is strictly decreasing with the energy; see
Lemmas 4.4 and 4.5. For example, all non-trivial non-quadratic even polynomials with
non-negative coefficients are Deck and satisfy (☼), whereas V (x) = x2 − √

2x4 + x6 =
(x + x3)2 − (2 + √

2)x4 is Deck but does not satisfy (�) (cf. Proposition A.4).

1.3. Main results for non-quadratic Deck potentials. The main result (Theorem 1.3) says
that for every energy levelE > 0 and typical (almost every, a.e.) partial energyE1 ∈ [0, E]
the local flow (ϕ

P ,E,E1
t )t∈R is uniquely ergodic whenever at least one potential is not a

quadratic function or both are quadratic functions and non-resonant (that is, in this latter
case �(E, E1), which by Remark 1.1 does not depend on E and E1, is irrational).

THEOREM 1.3. Assume V1, V2 : R → R≥0 are Deck potentials satisfying (�). Let P be
any polygon in R. Suppose that:
(α) at least one potential V1 or V2 satisfies (☼); or
(β) both V1, V2 are quadratic maps such that V1 = �2V2 with � irrational.
Then for every energy level E > 0 and a.e. E1 ∈ [0, E] the restricted Hamiltonian flow
(ϕ
P ,E,E1
t )t∈R is uniquely ergodic.

Notice that for small energy (that is, satisfying (1.4)), and, in fact, for all the gray areas
in the IEMBD figures (Figures 5 and 6), the motion does not impact the polygon walls

https://doi.org/10.1017/etds.2021.106 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.106


Hamiltonian flows with impacts 199

and the above theorem trivially holds as the motion on most of the tori is of irrational
rotation (in the non-quadratic case, (α), the iso-energy non-degeneracy condition holds
since ω′

i (Ii) � 0, i = 1, 2, and at least for one oscillator the inequality is strict). The
non-trivial statement is that even when impacts occur (the pink, light-green and blueish
regions in the IEMBD figures), the flow is usually uniquely ergodic. By the definition of
unique ergodicity, the theorem tells us that for most level sets time averages are equivalent
to phase-space averages for every initial condition on these level set. The complementary
set could have periodic and quasi-periodic motion coexisting on the same level set as in
[1, 13].

1.4. Linear oscillators case. We study separately the case when V1 and V2 are quadratic.
This boundary case (in the class of Deck potentials satisfying �) is significantly different
from the general case. In the quadratic case we have V1 = �2V2, and we consider rational
� so the harmonic motion is resonant.

If the energy level E is low enough then the impacting resonant quadratic flow,
(ϕ
P ,E,E1
t )t∈R, does not reach the boundary and the motion is trivially identical to the

resonant periodic linear oscillator motion (the gray area in the IEMBD figures, before
any of the blue wedges emerge).

PROPOSITION 1.4. For energies satisfying

E ≤ min{V1(x
ς1ς2
k )+ V2(y

ς1ς2
k+1 ) : ς1, ς2 ∈ {±}, 0 ≤ k ≤ k(x̄ς1ς2 , ȳς1ς2)}, (1.4)

where xς1ς2
0 = y

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )+1 = 0, the restricted Hamiltonian flow (ϕP ,E,E1

t )t∈R is iden-

tical to (ϕE,E1
t )t∈R for all E1 ∈ [0, E], and for the impacting resonant quadratic flow it

corresponds to periodic motion.

On the other hand, a non-trivial statement, with a proof which is similar to that of
Theorem 1.3, is that if the energy level E is high enough so that at least one of the extremal
horizontal or vertical boundaries is reached by orbits in SPE,E1

for all E1 ∈ [0, E] then

(ϕ
P ,E,E1
t )t∈R is uniquely ergodic for a.e. E1 (energies beyond which the segment [0, E] is

covered by the union of the pink and light green wedges in the IEMBD figures, such as
E ≈ 5.7 in Figure 6; see also the corresponding projected rectangles in Figure 4(b)).

THEOREM 1.5. If

E ≥ min
ς1,ς2∈{±}V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))+ min

ς1,ς2∈{±}V2(y
ς1ς2
1 ) (1.5)

then the impacting resonant quadratic flow (ϕP ,E,E1
t )t∈R is uniquely ergodic for a.e. E1 ∈

[0, E].

Studying the case of intermediate E is much more complex and requires new methods.
Then the E1 interval [0, E] splits into at most countably many intervals so that for every
interval I from this partition we have three possible scenarios:

(ue) the flow (ϕ
P ,E,E1
t )t∈R is uniquely ergodic for a.e. E1 ∈ I ;

(cp) the flow (ϕ
P ,E,E1
t )t∈R is completely periodic for all E1 ∈ I ;
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(coex) for a.e. E1 ∈ I the phase space of (ϕP ,E,E1
t )t∈R splits into two completely

periodic cylinders and two uniquely ergodic components.
For E > 0 let JE denote a partition (into open intervals) of the E1-interval [0, E]

determined by the numbers

V1(x
ς1ς2
k ), E − V2(y

ς1ς2
k ) for all ς1, ς2 ∈ {±}, 1 ≤ k ≤ k(x̄ς1ς2 , ȳς1ς2).

In the IEMBD figures, JE corresponds to the partition of the vertical interval [0, E] by the
colored wedges. Now we formulate two results relating to the cases (cp) and (ue). For low
energies, there are intervals of E1 values for which no impacts occur (these are the gray
regions in the IEMBD figures).

PROPOSITION 1.6. Suppose that I ∈ JE is an interval such that for every ς1, ς2 ∈ {±}
there exists 1 ≤ lς1ς2 ≤ k(x̄ς1ς2 , ȳς1ς2) such that

I ⊂
⋂

ς1,ς2∈{±}
[E − V2(y

ς1ς2
lς1ς2 ), V1(x

ς1ς2
lς1ς2 )]. (1.6)

Then the impacting resonant quadratic flow (ϕP ,E,E1
t )t∈R is completely periodic for every

E1 ∈ I .

Denote by Inonimp(E) the collection of E1 intervals on which no impacts occur:

Inonimp(E) =
⋃

1≤l++≤k(x̄++,ȳ++)
1≤l+−≤k(x̄+−,ȳ+−)
1≤l−+≤k(x̄−+,ȳ−+)
1≤l−−≤k(x̄−−,ȳ−−)

⋂
ς1,ς2∈{±}

[E − V2(y
ς1ς2
lς1ς2 ), V1(x

ς1ς2
lς1ς2 )]. (1.7)

For sufficiently large E this set is empty, whereas for sufficiently small E, Inonimp(E) =
[0, E]. For intermediate values Inonimp(E) may be composed of several disjoint intervals
(e.g. the gray segments for E = 3 in Figure 5).

When at least one of the extremal boundaries is reached (the union of the pink and light
green wedges in the IEMBD figures), similar to the general case of Theorem 1.3, we again
get unique ergodicity for a.e. E1.

THEOREM 1.7. For every energy level E > 0 and almost every

E1 ∈
[
0, E − min

ς1,ς2∈{±}V2(y
ς1ς2
1 )

]
∪
[

min
ς1,ς2∈{±}V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), E

]
the impacting resonant quadratic flow (ϕP ,E,E1

t )t∈R is uniquely ergodic.

Now assume that I ∈ JE is an interval such that impacts occur and not with the extremal
boundaries (pure blue regions in the IEMBD figures):

I ⊂ Iintimp =
(
E − min

ς1,ς2∈{±}V2(y
ς1ς2
1 ), min

ς1,ς2∈{±}V1(x
ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))

)
\Inonimp(E). (1.8)

This case presents non-uniform ergodic properties and requires new constructions. Assume
that � = n/m with m, n coprime natural numbers. Let {red, green} be a partition of the
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FIGURE 7. The billiard table P(E1), the translation surface M(E1) and the marked torus Tm,n.

(ς1, ς2) set {++, +−, −+, −−} into two-element set so that

green = (pair1, pair2) =
⎧⎨⎩

{++, +−} if m is odd and n is even,
{++, −+} if m is even and n is odd,
{++, −−} if m and n are odd.

(1.9)

Recall that a billiard in a rectangle can be reflected three times so that the billiard flow is
conjugated to the directed flow on the torus. By rescaling we can always consider the flow
to be in the direction 45◦. Denote the left lower corner of the original rectangle by (−−),
the upper left corner by (−+), the lower right corner (+−) and the upper right corner by
(++) (see Figure 7). In the rational situation, when the impacts from the boundary of the
polygon P are ignored, the torus is filled with periodic orbits. We will see that the partition
corresponds to having two periodic orbits of the scaled torus which connect the pair1 and
pair2 corners. These colored periodic orbits induce coloring of the staircase non-extremal
boundaries of P(xς1ς2 , yς1ς2), which we call colored sides (see Figure 1, with coloring
induced by taking m odd and n even as in the figures of §7).

Next for every colour ∈ {green, red} let

δcolour (E1) := max
ς1ς2∈colour

1≤k<k(x̄ς1ς2 ,ȳς1ς2 )

V1(x
ς1ς2
k )<E1<E−V2(y

ς1ς2
k+1 )

(
m arccos

√
V1(x

ς1ς2
k )

E1
+ n arccos

√
V2(y

ς1ς2
k+1 )

E − E1

)
.

We will see that δcolour (E1) is related to the measure of orbits that impact the colored sides
of the polygon (see details in §7). Since δgreen(E1)+ δred(E1) = π for at most countably
many E1 ∈ I (see Lemma 7.2), the interval I has a partition into open intervals of two
kinds U+

I and U−
I so that

δgreen(E1)+ δred(E1) > π for all E1 ∈ J if J ∈ U+
I ,

δgreen(E1)+ δred(E1) < π for all E1 ∈ J if J ∈ U−
I .

(1.10)

We will see that in the first case, there are no non-impacting orbits, whereas in the second
case there are also periodic orbits which do not impact any colored side. In this latter case,
the impacting orbits can be divided into two separate sets, the red/green set, consisting of
orbits impacting the red/green sides.
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The following theorem asserts that in the first case, for almost all E1, all orbits are
equidistributed, whereas in the second case, for almost all E1, all orbits that impact the
red/green sides are equidistributed among the red/green set.

THEOREM 1.8. Let I ⊂ Iintimp (see (1.8)) and divide I into the subintervals U±
I satisfying

(1.10). If J ∈ U+
I then the impacting resonant quadratic flow (ϕ

P ,E,E1
t )t∈R is uniquely

ergodic for a.e. E1 ∈ J . If J ∈ U−
I then the phase space of the flow (ϕ

P ,E,E1
t )t∈R splits

for all E1 ∈ J into four components, two of which are completely periodic and for a.e.
E1 ∈ J the two other components are uniquely ergodic.

This result completes the description of invariant measure of the restricted Hamiltonian
flow (ϕ

P ,E,E1
t )t∈R for every E > 0 and almost every E1 ∈ [0, E], when V1, V2 are

quadratic potentials with V1 = �2V2 and � is rational. We discuss the non-trivial implica-
tions of this theorem on ergodic averages of the impacting resonant quadratic flow in §9.

1.5. Strategy of the proof. In §3, using a standard change of coordinates (as observed in
[1]), we construct an isomorphism between the restricted Hamiltonian flow (ϕ

P ,E,E1
t )t∈R

and the directional billiard flow in direction ±π/4, ±3π/4 on a polygon PE,E1 ∈ R. For
every E > 0 this gives a piecewise analytic curve E1 ∈ [0, E] �→ PE,E1 ∈ R of billiard
flows on polygons in R. More precisely, this curve is analytic on every interval I ∈ JE .
The unique ergodicity problem for curves of this type was recently studied by the first
author in [8]. In fact, a slight modification of [8, Theorem 4.2] (see Theorem 5.1 below)
is applied to curves [0, E] � E1 �→ PE,E1 ∈ R to show unique ergodicity (ϕP ,E,E1

t )t∈R
for a.e. E1 ∈ [0, E] whenever at least one potential V1 or V2 is not a quadratic function
or both are quadratic functions with � irrational, see Theorem 1.3, and Theorem 5.3 in
§5. Theorem 5.1 relies on the analysis of functions indicating the length and height of
steps and the width and height of staircase polygons that make up the polygon PE,E1 ,
when the parameter E1 varies. The relevant results involving these functions necessary for
applications of Theorem 5.1 are presented and proved in §4.

The case when V1, V2 are quadratic with V1 = �2V2 and � is rational needs a more
subtle version of Theorem 5.1; this is Theorem 7.8. Recall that any directional billiard flow
on any right-angled polygon is isomorphic to the translation flow on a translation surface
obtained using a so-called unfolding procedure from the polygon. This leads to the study
of analytic curves of translation surfaces and their translation flows in a fixed direction.
Theorem 7.8 gives a criterion for unique ergodicity of the translation flow for almost every
translation surface lying on such a curve (this theorem is set in an abstract framework
to allow other applications). While the idea of the proof of Theorem 7.8 is similar to [8,
Theorem 4.2], it needs more subtle reasoning, as it involves a new type of partition of
the translation surface into polygons with sides that can be parallel to the direction of the
flow. This is the main innovation in relation to the approach used in Theorem 5.1 (and in
[8]). Another important novelty is the use of so-called distinguished sides of partitions.
The key assumption of Theorem 7.8 is that every orbit of the directional flow (finite
or half-infinite or double-infinite) hits a distinguished side, and the key construction in
proving Theorem 1.8 is of a glued surface for which this assumption holds.
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2. Oscillations in one dimension
Assume that V1(x) : R → R≥0 is an even C2-potential satisfying (♦). Then xmax(E1) :
[0, +∞) → [0, +∞), the inverse of the positive branch of V1, is continuous and C2 on
(0, +∞) with xmax(0) = 0 and (xmax)′(E1) > 0 for E1 > 0. Similar definitions apply to
ymax(E2) = ymax(E − E1).

Fix an energy levelE1>0. The particle oscillates in the interval [−xmax(E1), xmax(E1)],
wandering between the ends back and forth. We change the space coordinate to obtain a
new isomorphic model of the oscillation in which the mass point moves periodically with
speed ω1(E1) > 0 on the interval ψ1 ∈ [−π/2, π/2]:

dψ1

dt
= sgn(px)ω1(E1), ψ(0) = 0, ψ1(±xmax(E1)) = ±π

2
. (2.1)

We call these coordinates action-angle-like coordinates, as they are simply related to the
transformation to action angle coordinates; see [1]. Using the symmetry of V1 and the
notation px(E1, x) = ±√

2
√
E1 − V1(x) to denote the dependence of px on position and

energy, we have

ψ1(x, E1) = 2π
T1(E1)

∫ x

0

1
|px(E1, s)|ds = ω1(E1)

∫ x

0

1√
2
√
E1 − V1(s)

ds, (2.2)

where T1(E1) and ω1(E1) are respectively the period and frequency of the periodic flow
on the E1 level set, that is,

1
4
T1(E1) = π

2ω1(E1)
=

∫ xmax(E1)

0

1
|px(E1, s)|ds =

∫ xmax(E1)

0

1√
2
√
E1 − V1(s)

ds

(2.3)

satisfies equation (2.1). Now suppose additionally that our oscillator meets an elastic
barrier at a point xwall > 0. Then its trajectories are described by equations (1.3) if
x ≤ xwall according to the rule that if a trajectory meets a point (px , xwall) then it jumps
to (−px , xwall) and continues its movement in accordance with (1.3). Thus, if xwall <

xmax(E1) the particle oscillates in the interval [−xmax(E1), xwall] and after changing the
space coordinate to the action-angle-like coordinate ψ1 it oscillates with speed ω1(E1) on
the interval ψ1 ∈ [−π/2, ψ1(x

wall, E1)] with elastic reflections from the ends. The maps
ψ2(y, E2) and T2(E2) are similarly defined.

3. From oscillations in dimension two to billiards on polygons
Recall that the motion in configuration space on a given level set is restricted to the
polygon P ∩ R(E,E1). Using the transformation ψ = (ψ1, ψ2), we find the topological and
numerical data of the corresponding polygon in the ψ space.

We consider the Hamiltonian flow (1.3) restricted to the polygon P ∈ R:

P = P(x++, y++) ∪ P(−x−+, y−+) ∪ P(x+−, −y+−) ∪ P(−x−−, −y−−),

where (xς1ς2 , yς1ς2) ∈ � for ς1, ς2 ∈ {±} and we are interested in the properties of the
flow restricted to iso-energy level setsE1, E2 = E − E1 which we denote by (ϕP ,E,E1

t )t∈R.
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Fix E > 0 and 0 < E1 < E. By the definition of SPE,E1
the level set is contained in

R
2 × R(E,E1) = R

2 × [−xmax(E1), xmax(E1)] × [−ymax(E − E1), ymax(E − E1)].

Let us consider new coordinates on R(E,E1) given by

ψ(x, y) = (ψ1(x, E1), ψ2(y, E − E1))

and notice that dψ(x(t), y(t))/dt = (sgn(px(t))ω1(E1), sgn(py(t))ω2(E − E1)). It
follows that the flow (ϕ

P ,E,E1
t )t∈R in the new coordinates coincides with the directional

billiard flow on

PE,E1 := ψ(P ∩ R(E,E1))

so that the directions of its orbit are (±ω1(E1), ±ω2(E − E1)). As P ∩ R(E,E1) ∈ R and
ψ sends vertical/horizontal segments to vertical/horizontal segments, we have PE,E1 ∈ R,
namely,

PE,E1 = P++
E,E1

∪ P+−
E,E1

∪ P−+
E,E1

∪ P−−
E,E1

Notice that the numbers of corner points in each quadrant of P ∩ R(E,E1) and of PE,E1 are
identical, whereas their dimensions are related by the transformation ψ (which depends on
E1 and E). We need to find these dimensions to determine the properties of the flow.

It is convenient first to rescale PE,E1 so that the directional motion occurs in the standard
directions (±π/4, ±3π/4). Thus we scale

ψ̂1(x, E1) = ψ1(x, E1)

ω1(E1)
, ψ̂2(x, E − E1) = ψ2(y, E − E1)

ω2(E − E1)
;

then PE,E1 is scaled to P̂E,E1 and for notational convenience we henceforth omit the hats.
After the rescaling,

ψ1(x, E1) =
∫ x

0

1√
2
√
E1 − V1(s)

ds for E1 ≥ V1(x), (3.1)

so ψ1(x
max(E1), E1) = 1

4T1(E1) and, similarly, ψ1(x, V1(x)) = 1
4T1(V1(x)).

The topological and numerical data of the polygon PE,E1 ∈ R for any E > 0 and E1 ∈
(0, E), that is, the number of corners it has in each quadrant and their locations in the
scaled ψ plane, are found by computing the sequences �̄ς1ς2

i (E, E1) (i = 1, 2) of the
corner points of Pς1ς2

E,E1
.

By the definition of staircase polygons and condition (♦), the sequence
{V1(x

ς1ς2
j )}k(x̄ς1ς2 ,ȳς1ς2 )

j=1 is monotonically increasing and {V2(y
ς1ς2
j )}k(x̄ς1ς2 ,ȳς1ς2 )

j=1 is
monotone decreasing. Hence, the number of convex corners of Pς1ς2

E,E1
, that is, the length of

�̄
ς1ς2
i (E, E1), is max{1, k

ς1ς2
(E, E1)− kς1ς2(E, E1)+ 1}, where

k
ς1ς2

(E, E1) =
{

min{1 ≤ k ≤ k(x̄ς1ς2 , ȳς1ς2) : V1(x
ς1ς2
k ) ≥ E1}

k(x̄ς1ς2 , ȳς1ς2) if V1(x
ς1ς2
k ) < E1 for 1 ≤ k ≤ k(x̄ς1ς2 , ȳς1ς2),

(3.2)

kς1ς2(E, E1) =
{

max{1 ≤ k ≤ k(x̄ς1ς2 , ȳς1ς2) : V2(y
ς1ς2
k ) ≥ E − E1}

1 if V2(y
ς1ς2
k ) < E − E1 for 1 ≤ k ≤ k(x̄ς1ς2 , ȳς1ς2).
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The first line in the definition of k
ς1ς2

(E, E1) says that k
ς1ς2

(E, E1)− 1 counts the
number of widths (of xς1ς2

k ) in the interior of the projected rectangle R(E,E1), and similarly
the first line in the definition of kς1ς2(E, E1) says that kς1ς2(E, E1) counts the number of
heights strictly outside R(E,E1).

If kς1ς2(E, E1) ≥ k
ς1ς2

(E, E1) then Pς1ς2
E,E1

is a rectangle. The boundaries of this
rectangle do not correspond to impacts if and only if one of the convex corners has larger
partial energies than (E1, E − E1):

if V1(x
ς1ς2
l ) ≥ E1, V2(y

ς1ς2
l ) ≥ E − E1 for some 1 ≤ l ≤ k(x̄ς1ς2 , ȳς1ς2)

then kς1ς2 ≥ l ≥ k
ς1ς2 and Pς1ς2

E,E1
= P

( 1
4ς1T1(E1), 1

4ς2T2(E − E1)
)
. (3.3)

Otherwise, we have kς1ς2(E, E1) ≤ k
ς1ς2

(E, E1) and

Pς1ς2
E,E1

= P(ς1�̄
ς1ς2
1 (E, E1), ς2�̄

ς1ς2
2 (E, E1)),

where the vectors (�̄ς1ς2
1 (E, E1), �̄

ς1ς2
2 (E, E1)), given by

�̄
ς1ς2
1 (E, E1) = {�ς1ς2

1,k (E, E1)}k̄ς1ς2
k=kς1ς2 , �̄

ς1ς2
2 (E, E1) = {�ς1ς2

2,k (E, E1)}k̄ς1ς2
k=kς1ς2 ,

are found from the sequences (x̄ς1ς2 , ȳς1ς2) by the (E, E1)-dependent ψ transformation of
the corner points that are inside Pς1ς2

E,E1
. Since, for k < k̄ς1ς2 , the unconstrained horizontal

motion exceeds xς1ς2
k (as V1(x

ς1ς2
k ) < E1) we have

�
ς1ς2
1,k (E, E1) = ψ1(x

ς1ς2
k , E1), kς1ς2 � k < k̄ς1ς2 . (3.4)

The last value of �̄ς1ς2
1 (E, E1) depends on whetherR(E,E1) intersects the extremal vertical

side of Pς1ς2 (in the (x, y) plane):

�1,k̄ς1ς2 (E, E1) =
{
ψ1(x

ς1ς2
k̄ς1ς2

, E1) if V1(x
ς1ς2
k̄ς1ς2

) < E1,
1
4T1(E1) if V1(x

ς1ς2
k̄ς1ς2

) ≥ E1.
(3.5)

Similarly, since for k > kς1ς2 the unconstrained vertical motion exceeds yς1ς2
k (since E −

E1 > V2(y
ς1ς2
k )) we have

�
ς1ς2
2,k (E, E1) = ψ2(y

ς1ς2
k , E − E1), kς1ς2 < k � k̄ς1ς2 . (3.6)

The first value of �̄ς1ς2
2 (E, E1) depends on whether R(E,E1) intersects the extremal

horizontal side of Pς1ς2 (in the (x, y) plane):

�2,kς1ς2 (E, E1) =
{
ψ2(y

ς1ς2
kς1ς2 , E − E1) if V2(y

ς1ς2
kς1ς2 ) < E − E1,

1
4T2(E − E1) if V2(y

ς1ς2
kς1ς2 ) ≥ E − E1.

(3.7)

Summarizing, the above computations show that the topological data of the polygon PE,E1

are given by {max{1, k
ς1ς2

(E, E1)− kς1ς2(E, E1)+ 1}}ς1,ς2∈{±} and the numerical data
by {(�̄ς1ς2

1 (E, E1), �̄
ς1ς2
2 (E, E1))}ς1,ς2∈{±}.
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3.1. Regions of fixed topological data. Next, we show that the topological data of the
polygons corresponding to iso-energy level sets are fixed on a finite number of intervals of
E1 values, and this partition depends piecewise smoothly on E (so the topological data are
fixed in certain parallelograms of the IEMBD; see Figure 6).

Let X, Y denote the collection of widths and heights of the steps in all quadrants:

X := {xς1ς2
k : ς1, ς2 ∈ {±}, 1 ≤ k ≤ k(x̄ς1ς2 , ȳς1ς2)} ⊂ R>0,

Y := {yς1ς2
k : ς1, ς2 ∈ {±}, 1 ≤ k ≤ k(x̄ς1ς2 , ȳς1ς2)} ⊂ R>0.

For any E > 0 let us consider the partition JE (into open E1-intervals) of the interval
[0, E] determined by the numbers

V1(x), E − V2(y) for all x ∈ X and y ∈ Y .

Then for every I ∈ JE , by equation (3.2) the numbers k
ς1ς2
I = k

ς1ς2
(E, E1) and kς1ς2

I =
kς1ς2(E, E1) do not depend on E1 ∈ I . Therefore, the numerical data E1 ∈ I �→ PE,E1 ∈
R represent a smooth (as shown in §4, analytic if V1, V2 ∈ Deck) curve of polygons in R.

Remark 3.1. Fix I = (Emin, Emax) ∈ JE . Then the sets

XI := {x ∈ X : V1(x) < E1} and YI := {y ∈ Y : V2(y) < E − E1} (3.8)

do not depend on the choice of E1 ∈ I .
Summarizing, in view of (3.4)–(3.7), for any E1 ∈ I and ς1, ς2 ∈ {±}:

• each staircase length of Pς1ς2
E,E1

is of the form ψ1(x, E1) for some x ∈ XI ;
• each staircase height of Pς1ς2

E,E1
is of the form ψ2(y, E − E1) for some y ∈ YI ;

• if Emin > V1(x
ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )) then the width of Pς1ς2

E,E1
is of the form ψ1(x, E1) for some

x ∈ XI , otherwise the width of Pς1ς2
E,E1

is of the form 1
4T1(E1);

• if Emax < E − V2(y
ς1ς2
1 ) then the height of Pς1ς2

E,E1
is of the form ψ2(y, E − E1) for

some y ∈ YI , otherwise the height of Pς1ς2
E,E1

is of the form 1
4T2(E − E1).

The IEMBD figures (Figures 5 and 6) provide a graphical representation of the above
summary: the intersection of the wedge boundaries with a vertical line provides the
partition to the intervals JE , each blue wedge corresponds to a region in which another
step in the staircase (a concave corner) is included, and the pink (respectively, light
green) wedges correspond to regions in which the corresponding staircase polygon widths
(respectively heights) are of the form ψ1(x, E1) (respectively, ψ2(y, E − E1)). Notice
that the dependence of the above partition of JE is piecewise smooth in E: it changes
exactly at the singular E values Esin = {E : E = V1(x)+ V2(y), x ∈ X, y ∈ Y }, namely,
at the energy values where the wedges in the IEMBD figures emanate from and/or start to
intersect each other.

4. Properties of numerical data in a given topological region
In this section we present some basic properties of the functions ψ1(x, E1), T1(E1),
defined by equations (3.1), (2.3) as functions ofE1 (so T1 : (0, +∞) → R>0 andψ1(x, ·) :
[V1(x), +∞) → R>0). We show that when V1 : R → R≥0 is an even C2-potential
satisfying (♦) the function ψ1(x, E1) is analytic and that when V1 is a Deck potential
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the function T1(E1) is analytic (the same properties apply to ψ2(y, E2), T2(E2) with
corresponding assumptions on V2).

PROPOSITION 4.1. Suppose that V1 : R → R≥0 is a Deck potential. Then the map T1 :
(0, +∞) → R>0 given by (2.3) is analytic and

1
4
T ′

1(E1) = 1

E1
√

2

∫ xmax(E1)

0

1√
E1 − V1(x)

(
1
2

− V ′′
1 (x)V1(x)

(V ′
1(x))

2

)
dx. (4.1)

Proof. Using integration by substitution twice, we have
√

2
4
T1(E1) =

∫ xmax(E1)

0

1√
E1 − V1(x)

dx = |u=V1(x),x=xmax(u)

∫ E1

0

(xmax)′(u)√
E1 − u

du

= |s=u/E1

√
E1

∫ 1

0

(xmax)′(E1s)√
1 − s

ds. (4.2)

Let us consider an auxiliary map A : (0, +∞) → R>0 defined by

A(E1) =
√

1
8E1

T1(E1) =
∫ 1

0

(xmax)′(E1s)√
1 − s

ds (4.3)

for E1 > 0. We will show that A is analytic, which obviously implies the analyticity of
T1(E1) for E1 > 0. To this end, we first establish some properties of the function xmax and
its holomorphic extension.

Suppose that V1 : R → R≥0 is a Deck potential. In view of (♥), V1 : (0, +∞) →
(0, +∞) has a holomorphic extension V1 : U → C on an open neighborhood U ⊂ C of
(0, +∞) such that V ′

1(z) �= 0 for every z ∈ U . Then V1 is locally invertible and its inverse
functions are holomorphic (that is, V1 is locally biholomorphic). A more subtle assumption
on the domain of biholomorphicity is formulated in (♣). By (♣), for every E0 > 0
there exist 0 < r < E0 and a bounded open set UE0 ⊂ U such that V1 : UE0 → V1(UE0)

is biholomorphic with C(E0, r) ⊂ V1(UE0). Then zmax = V −1
1 : V1(UE0) → UE0 is a

holomorphic extension of xmax : (0, E0 + r) → R.
Fix any E0 > 0. By the above, there exists 0 < r < E0 such that the inverse map zmax

is analytic on C(E0, r). As

(zmax)′′(z)
(zmax)′(z)

= − V ′′
1 (z

max(z))

(V ′
1(z

max(z)))2
for every z ∈ V1(UE0), (4.4)

by the assumption (♠), it follows that∣∣∣∣ (zmax)′′(z)z
(zmax)′(z)

∣∣∣∣ ≤ CE0 for every z ∈ C(E0, r). (4.5)

Assume that z ∈ B(E0, r) and s ∈ (0, 1]. Then∣∣∣∣ log
|(zmax)′(zs)|

|(zmax)′(E0s)|
∣∣∣∣ =

∣∣∣∣ log |(zmax)′(zs)| − log |(zmax)′(E0s)|
∣∣∣∣

=
∣∣∣∣ ∫ 1

0

d

dt
log |(zmax)′((E0 + (z− E0)t)s)|dt

∣∣∣∣

https://doi.org/10.1017/etds.2021.106 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.106
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≤
∫ 1

0

∣∣∣∣d/dt |(zmax)′((E0 + (z− E0)t)s)|
|(zmax)′((E0 + (z− E0)t)s)|

∣∣∣∣dt
≤

∫ 1

0

|(zmax)′′((E0 + (z− E0)t)s)||z− E0||s|
|(zmax)′((E0 + (z− E0)t)s)| dt .

In view of (4.5), it follows that∣∣∣∣ log
|(zmax)′(zs)|

|(zmax)′(E0s)|
∣∣∣∣ ≤ CE0

∫ 1

0

|z− E0||s|
|(E0 + (z− E0)t)s|dt ≤ CE0

∫ 1

0

|z− E0|
E0 − |z− E0|t dt

= CE0 log
E0

E0 − |z− E0| ≤ CE0 log
E0

E0 − r
.

Hence

|(zmax)′(zs)| ≤
(

E0

E0 − r

)CE0
(zmax)′(E0s) = ĈE0(z

max)′(E0s) (4.6)

for all z ∈ B(E0, r) and s ∈ (0, 1].
We now show that the map A defined by (4.3) has a holomorphic extension A :

B(E0, r) → C around E0 which is given by

A(z) =
∫ 1

0

(zmax)′(zs)√
1 − s

ds for z ∈ B(E0, r).

By (4.6), ∣∣∣∣ (zmax)′(zs)√
1 − s

∣∣∣∣ ≤ ĈE0

(zmax)′(E0s)√
1 − s

for all z ∈ B(E0, r) and s ∈ (0, 1). Therefore, |A(z)| < ĈE0 |A(E0)|, so, since A(E0) is
finite for positive E0, A : B(E0, r) → C is well defined.

We now show that A : B(E0, r) → C is holomorphic. For every parameter s ∈ (0, 1)
let us consider the map �s : B(E0, r) → C given by

�s(z) := (zmax)′(zs)√
1 − s

,

so that A(z) = ∫ 1
0 �s(z)ds. The map �s is holomorphic with

�′
s(z) := (zmax)′′(zs)s√

1 − s
.

In view of (4.5) and (4.6), we obtain

|�′
s(z)| =

∣∣∣∣ (zmax)′′(zs)s√
1 − s

∣∣∣∣ ≤ CE0

|z|
∣∣∣∣ (zmax)′(zs)√

1 − s

∣∣∣∣
≤ CE0ĈE0

E0 − r

(zmax)′(E0s)√
1 − s

= CE0ĈE0

E0 − r
�s(E0) (4.7)
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for all z ∈ B(E0, r) and s ∈ (0, 1). Since A(E0) is finite, A(z) = ∫ 1
0 �s(z) ds is holomor-

phic and

A′(z) =
∫ 1

0
�′
s(z) ds =

∫ 1

0

(zmax)′′(zs)s√
1 − s

ds.

Using integration by substitution as in (4.2) (but in reverse order), we obtain, for real
E1 > 0,

A′(E1) =
∫ 1

0

(xmax)′′(E1s)s√
1 − s

ds = 1
E1

√
E1

∫ E1

0

(xmax)′′(u)u√
E1 − u

du

= 1
E1

√
E1

∫ xmax(E1)

0

(xmax)′′(V1(x))V1(x)V
′
1(x)√

E1 − V1(x)
dx.

Therefore, by (4.4), we have

A′(E1) = − 1
E1

√
E1

∫ xmax(E1)

0

1√
E1 − V1(x)

V ′′
1 (x)V1(x)

(V ′
1(x))

2 dx.

Finally, it follows that

1
4
T ′

1(E1) = d

dE1

(√
E1

2
A(E1)

)
= 1

2
√

2
√
E1
A(E1)+

√
E1

2
A′(E1)

= 1

E1
√

2

∫ xmax(E1)

0

1√
E1 − V1(x)

(
1
2

− V ′′
1 (x)V1(x)

(V ′
1(x))

2

)
dx.

PROPOSITION 4.2. Suppose that V1 : R → R≥0 is a continuous potential such that V1 :
R≥0 → R≥0 is strictly increasing and V1(0) = 0. Then for every x > 0 the map ψ1(x, ·) :
(V1(x), +∞) → R>0 given by (3.1) is analytic and, for every E1 > V1(x) and n ≥ 1,

dn

dEn1
ψ1(x, E1) = (−1)n(2n− 1)!!

2(2n+1)/2

∫ x

0

1
(E1 − V1(y))(2n+1)/2 dy. (4.8)

Additionally, if V1 ∈ Deck, for every E1 > V1(x),

d

dE1
ψ1(x, E1) = 1

E1
√

2

∫ x

0

1√
E1−V1(y)

(
1
2
−V

′′
1 (y)V1(y)

(V ′
1(y))

2

)
dy

− 1

E1
√
E1−V1(x)

√
2

V1(x)

V ′
1(x)

(4.9)

and

lim
E1↘V1(x)

d

dE1
ψ1(x, E1) = −∞. (4.10)

Proof. Take any E0 > V1(x) and let 0 < r < E0 − V1(x). Then for every y ∈ [0, x] the
map �y : B(E0, r) → C given by �y(z) = 1/

√
z− V1(y) is holomorphic with

�′
y(z) = −1

2
1

(z− V1(y))3/2
for every z ∈ B(E0, r).

https://doi.org/10.1017/etds.2021.106 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.106
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Since for all y ∈ [0, x] and z ∈ B(E0, r) we have

|�′
y(z)| = 1

2
1

|z− V1(y)|3/2 ≤ 1
2(E0 − V1(x)− r)3/2

,

it follows that ψ1(x, · ) : B(E0, r) → C given by ψ1(x, z) = ∫ x
0 (�y(z)/

√
2) dy is holo-

morphic and

d

dz
ψ1(x, z) =

∫ x

0

�′
y(z)√

2
dy = − 1

2
√

2

∫ x

0

1
(z− V1(y))3/2

dy

for every z ∈ B(E0, r). This gives the analyticity of ψ1(x, ·) : (V1(x), +∞) → R>0 given
by (3.1) and (4.8) for n = 1. Repeating the same reasoning for higher-order derivatives, we
obtain

dn

dEn1
ψ1(x, E1) =

∫ x

0

�
(n)
y (E1)√

2
dy = (−1)n(2n− 1)!!

2(2n+1)/2

∫ y0

0

1
(E1 − V1(y))(2n+1)/2 dy.

In order to show (4.9) we first notice that, using integration by substitution as in (4.2),
for every E1 > V1(x) we obtain

√
2ψ1(x, E1) =

∫ x

0

1√
E1 − V1(y)

dy =
∫ V1(x)

0

(xmax)′(u)√
E1 − u

du

= √
E1

∫ V1(x)/E1

0

(xmax)′(E1s)√
1 − s

ds.

In view of (4.7) and
∫ t

0 ((x
max)′(E1s)/

√
1 − s)ds <

∫ 1
0 ((x

max)′(E1s)/
√

1 − s)ds =
A(E1) < +∞ for every 0 ≤ t < 1 and E1 > 0, using arguments similar to those in the
proof of Proposition 4.1, for every E1 > V1(x) we obtain

√
2
d

dE1
ψ1(x, E1) = ψ1(x, E1)

E1
√

2
− √

E1
(xmax)′(V1(x))√

1 − V1(x)/E1

V1(x)

E2
1

+ √
E1

∫ V1(x)/E1

0

(xmax)′′(E1s)s√
1 − s

ds

= 1
E1

∫ x

0

1√
E1−V1(y)

(
1
2
−V

′′
1 (y)V1(y)

(V ′
1(y))

2

)
dy

− 1
E1

√
E1−V1(x)

V1(x)

V ′
1(x)

.

In view of (♠), for every x > 0 we have∣∣∣∣V ′′
1 (y)V1(y)

(V ′
1(y))

2

∣∣∣∣ ≤ Cx for every y ∈ (0, x].

Therefore for every E1 > V1(x) we have∣∣∣∣ ∫ x

0

1√
E1−V1(y)

(
1
2
−V

′′
1 (y)V1(y)

(V ′
1(y))

2

)
dy

∣∣∣∣ ≤
(

1
2

+ Cx

) ∫ x

0

1√
V1(x)−V1(y)

dy

=
√

2
4

(
1
2

+ Cx

)
T1(V1(x)) < +∞.
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As

lim
E1↘V1(x)

1
E1

√
E1 − V1(x)

V1(x)

V ′
1(x)

= +∞,

this gives (4.10).

Suppose that V1, V2 : R → R≥0 are even C2-potentials satisfying (♦). Let E, x0, y0 be
positive numbers such that V1(x0)+ V2(y0) < E. In view of Proposition 4.2, ψ1(x0, ·) :
(V1(x0), +∞) → R>0 and ψ2(y0, E − ·) : [0, E − V2(y0)) → R>0 are analytic. If addi-
tionally V1, V2 ∈ Deck then

lim
E1↘V1(x0)

d

dE1
ψ1(x0, E1) = −∞, lim

E1↗E−V2(y0)

d

dE1
ψ2(y0, E − E1) = +∞. (4.11)

Moreover, by Proposition 4.1, T1, T2(E − ·) : (0, E) → R>0 are also analytic.

PROPOSITION 4.3. Let V1, V2 : R → R≥0 be two Deck potentials. Fix an energy level
E > 0. Assume that 0 < x1 < · · · < xN and 0 < y1 < · · · < yK are such that V1(xN)+
V2(yK) < E. Then, for any sequence (γj )

N+K+1
j=0 with

∑N+K
j=1 |γj | �= 0, for all but

countably many E1 ∈ [V1(xN), E − V2(yK)], we have

γ0 T1(E1)+
N∑
j=1

γj ψ1(xj , E1)+
K∑
j=1

γN+j ψ2(yj , E − E1)+γN+K+1 T2(E−E1) �= 0.

(4.12)

Proof. Suppose, contrary to our claim, that (4.12) does not hold for uncountably
many E1 ∈ (V1(xN), E − V2(yK)). Since T1, T2(E − ·), ψ1(xj , ·) for 1 ≤ j ≤ N , and
ψ2(yj , E − ·), 1 ≤ j ≤ K , are analytic on (V1(xN), E − V2(yK)), we have

γ0 T1(E1)+
N∑
j=1

γj ψ1(xj , E1)+
K∑
j=1

γN+j ψ2(yj , E − E1)+ γN+K+1 T2(E−E1)=0

(4.13)

for all E1 ∈ (V1(xN), E − V2(yK)). Without loss of generality we can assume that γN or
γN+K is non-zero. To simplify the writing, since T1 and T2 are also analytic functions, we
denote ψ1(x0, ·) := T1(·) and ψ2(yK+1, ·) := T2(·).

Suppose that γN �= 0. In view of Propositions 4.1 and 4.2, the maps ψ1(xj , ·) for 0 ≤
j ≤ N − 1 and ψ2(yj , ·) for 1 ≤ j ≤ K + 1 are analytic on (V1(xN−1), E − V2(yK)), in
particular at V1(xN). As γN �= 0, if (4.13) holds, the limit

lim
E1↘V1(xN )

d

dE1
ψ1(xN , E1) = −

N−1∑
j=0

γj

γN

d

dE1
ψ1(xj , E1)|E1=V1(xN )

−
K+1∑
j=1

γN+j
γN

d

dE1
ψ2(yj , E − E1)|E1=V1(xN )

is finite. On the other hand, by (4.11), the limit of limE1↘V1(xN )(d/dE1)ψ1(xN , E1) is
−∞. This contradiction completes the proof when γN �= 0.
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If γN+K �= 0, then a contradiction follows from similar arguments based on studying
the left-hand-side limit of (d/dE1)ψ2(yK , E − E1) at E − V2(yK). This completes the
proof.

We note that the sequence (yk) in the above proposition is not the original numerical
data sequence of the staircase polygons (which have reverse ordering)—this proposition
is later on used for the elements of the set YI (see (3.8)) arranged in the required
ordering.

LEMMA 4.4. Suppose that V1, V2 : R → R≥0 are even C2-potentials satisfying (♦). Then
for any x0, y0 > 0 we have

d

dE1
ψ1(x0, E1) < 0 for all E1 > V1(x0), (4.14)

d

dE1
ψ2(x0, E − E1) > 0 for all E1 ∈ (0, E − V2(y0)). (4.15)

Assume additionally that V1, V2 ∈ Deck and satisfy (☼). Then for i = 1, 2 we have

Vi(x)V
′′
i (x)

(V ′
i (x))

2 >
1
2

for all but countably many x > 0 (4.16)

and

d

dE1
T1(E1) < 0 for every E1 > 0, (4.17)

d

dE1
T2(E − E1) > 0 for every E1 ∈ (0, E). (4.18)

Proof. Inequalities (4.14) and (4.15) follow immediately from (4.8). Inequality (4.16)
follows immediately from the analyticity of Vi and (☼). Finally, (4.17) and (4.18) follow
immediately from (4.1) and (4.16).

LEMMA 4.5. Let V1 : R → R≥0 be a Deck potential. Then V1 satisfies (�) if and only if
V

1/2
1 is convex. The following three conditions are equivalent:

(a) V1 satisfies (�) and does not meet (☼);
(b) V1(x)V

′′
1 (x)/(V

′
1(x))

2 = 1
2 for all x > 0;

(c) V1(x) = 1
2ω

2
1x

2 for some ω1 > 0.
Moreover, if V1(x) = 1

2ω
2
1x

2 then

T1(E1) = 2π
ω1

and ψ1(x0, E1) = 1
ω1

arcsin
ω1x0√

2E1
= 1
ω1

arcsin

√
V1(x0)

E1
.

Proof. The first part of the lemma follows directly from the formula (derived by taking
derivatives of (V 1/m

1 (x))m),

V1(x)V
′′
1 (x)

(V ′
1(x))

2 = m− 1
m

+ V
1/m
1 (x)(V

1/m
1 )′′(x)

m((V
1/m
1 )′(x))2

, (4.19)
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that holds for all m ∈ N and x > 0. Since V1(x), V ′
1(x), V

1/m
1 (x) and (V 1/m

1 )′(x) are
positive for all x > 0, we have

V1(x)V
′′
1 (x)

(V ′
1(x))

2 ≥ m− 1
m

for all x > 0

if and only if the map V 1/m
1 has non-negative second derivative on R \ {0}.

The implications (c)⇒(b)⇒(a)⇒(b) are obvious. To prove (b)⇒(c) suppose that
V1V

′′
1 = 1

2V
2
1 . Then

d

dx
log(V ′

1(x)) = V ′′
1 (x)

V ′
1(x)

= 1
2
V ′

1(x)

V1(x)
= d

dx
log

√
V1(x).

Hence, for some C > 0 we have V ′
1(x) = C

√
V1(x). Thus

d

dx

√
V1(x) = 1

2
V ′

1(x)√
V1(x)

= C

2
.

As V1(0) = 0, it follows that V1(x) = (C/2)2x2 = 1
2ω

2
1x

2. The form of the maps T1(E1)

and ψ1(x0, E1) when V1(x) = 1
2ω

2
1x

2 follows from direct computations.

The following lemma is the counterpart of Proposition 4.3 in the case where all γj for
1 ≤ j ≤ N +K are zero.

LEMMA 4.6. Assume V1, V2 : R → R≥0 are Deck potentials satisfying (�) and γ0,
γN+K+1 are real numbers with |γ0| + |γN+K+1| �= 0. If at least one potential V1 or V2

satisfies (☼) (that is, is not quadratic) then

γ0 T1(E1)+ γN+K+1 T2(E − E1) �= 0 for all but countably many E1 ∈ (0, E).
(4.20)

If both potentials V1 and V2 are quadratic and

γ0 T1(E1)+ γN+K+1 T2(E − E1) = 0 for some E1 ∈ (0, E), (4.21)

then γ0/γN+K+1 = −�.

Proof. Suppose that V1 is not quadratic and (4.20) does not hold. Since T1(·) and
T2(E − ·) are analytic and take only positive values, we have

γ0 T1(E1)+ γN+K+1 T2(E − E1) = 0 for all E1 ∈ (0, E),

both γ0 and γN+K+1 do not vanish, and γ := −γN+K+1/γ0 > 0. It follows that

d

dE1
T1(E1) = γ

d

dE1
T2(E − E1) for all E1 ∈ (0, E).

On the other hand, by Lemma 4.4, (d/dE1)T1(E1) > 0 and (d/dE1)T2(E − E1) ≤ 0 for
all E1 ∈ E. This gives a contradiction.
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Suppose that Vi(x) = 1
2ω

2
i x

2 for i = 1, 2 and (4.21) holds. Since Ti = 2π/ωi , equation
(4.21) implies γ0/ω1 + γN+K+1/ω2 = 0, so

γ0

γN+K+1
= −ω1

ω2
= �.

Recall that for n real-valued Cn−1-functions f1, . . . , fn on an interval I their Wron-
skian at x ∈ I is defined by

W(f1, . . . , fn)(x) = det[f (j−1)
i (x)]1≤i,j≤n.

We will also deal with the bracket

[f , g](x) = W(g, f ) = f ′(x)g(x)− f (x)g′(x)

for C1-maps f , g : I → R.

PROPOSITION 4.7. Let V1, V2 : R → R≥0 be even C2-potentials satisfying (♦). Assume
that 0 < x1 < · · · < xN and 0 < y1 < · · · < yK are such that V1(xN)+ V2(yK) < E.
Then for all E1 ∈ (V1(xN), E − V2(yK)) we have

W(ψ1(x1, E1), . . . , ψ1(xN , E1), ψ2(y1, E − E1), . . . , ψ2(yK , E − E1)) �= 0. (4.22)

Proof. Since W is an alternating linear form, for all E1 ∈ (V1(xN), E − V2(yK)) we have

W(ψ1(x1, E1), . . . , ψ1(xN , E1), ψ2(y1, E − E1), . . . , ψ2(yK , E − E1))

= W(ψ1(x1, E1), ψ1(x2, E1)− ψ1(x1, E1), . . . , ψ1(xN , E1)− ψ1(xN−1, E1),

ψ2(y1, E−E1), ψ2(y2, E−E1)− ψ2(y1, E − E1), . . . , ψ2(yK , E − E1)

− ψ2(yK−1, E − E1)).

Moreover, in view of (4.8) (in Proposition 4.2), we have

dk

dEk1
(ψ1(xj , E1)− ψ1(xj−1, E1)) = (−1)k(2k − 1)!!

2(2k+1)/2

∫ xj

xj−1

1
(E1 − V1(sj ))(2k+1)/2 dsj ,

dk

dEk1
(ψ2(yj , E − E1)− ψ2(yj−1, E − E1))

= (2k − 1)!!
2(2k+1)/2

∫ yj

yj−1

1
(E − E1 − V2(uj ))(2k+1)/2 duj .

Hence

W(ψ1(x1, E1), ψ1(x2, E1)− ψ1(x1, E1), . . . , ψ1(xN , E1)− ψ1(xN−1, E1),

ψ2(y1, E−E1), ψ2(y2, E−E1)− ψ2(y1, E−E1), . . . ,

ψ2(yK , E−E1)−ψ2(yK−1, E−E1))

=
∏N+K−1
n=1 (2n− 1)!!

2(N+K)2/2

∫ x1

0
. . .

∫ xN

xN−1

∫ y1

0
. . .

∫ yK

yK−1

det C ds1 · · · dsN du1 · · · duK ,
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where C = [cjk]1≤j ,k≤N+K is an (N +K)× (N +K)-matrix given by

cjk =

⎧⎪⎪⎨⎪⎪⎩
(−1)k−1

(E1 − V1(sj ))(2k−1)/2 if 1 ≤ j ≤ N ,

1
(E − E1 − V2(uj−N))(2k−1)/2 if N + 1 ≤ j ≤ N +K .

Fix

s1 ∈ (0, x1), s2 ∈ (x1, x2), . . . , sN ∈ (xN−1, xN),

u1 ∈ (0, y1), u2 ∈ (y1, y2), . . . , uK ∈ (yK−1, yK).

Then

V1(sj ) < V1(sj ′) if 1 ≤ j < j ′ ≤ N , V2(uj ) < V2(uj ′) if 1 ≤ j < j ′ ≤ K , and

V1(sj )+ V2(uj ′) ≤ V1(xN)+ V2(yK) < E if 1 ≤ j ≤ N and 1 ≤ j ′ ≤ K .

By the Vandermonde determinant formula, we have

det C =
N∏
j=1

−1√
E1 − V1(sj )

∏
1≤j<j ′≤N

( −1
E1 − V1(sj ′)

− −1
E1 − V1(sj )

)

·
K∏
j=1

1√
E − E1 − V2(uj )

∏
1≤j<j ′≤K

(
1

E − E1 − V2(uj ′)
− 1
E − E1 − V2(uj )

)

·
∏

1≤j≤N
1≤j ′≤K

(
1

E − E1 − V2(uj ′)
+ 1
E1 − V1(sj )

)

= (−1)N(N+1)/2
N∏
j=1

1

(E1 − V1(sj ))
N+K− 1

2

K∏
j=1

1

(E − E1 − V2(uj ))
N+K− 1

2

·
∏

1≤j<j ′≤N
(V1(sj ′)− V1(sj ))

∏
1≤j<j ′≤K

(V2(uj ′)− V2(uj ))

·
∏

1≤j≤N
1≤j ′≤K

(E − V1(sj )− V2(uj ′))

where, by the assigned intervals of sj , sj ′ , uj , uj ′ , all elements under the product signs are
well defined and positive. It follows that

(−1)N(N+1)/2W(ψ1(x1, E1), . . . , ψ1(xN , E1),

ψ2(y1, E − E1), . . . , ψ2(yK , E − E1)) > 0

for all E1 ∈ (V1(xN), E − V2(yK)).

Remark 4.8. Since all mapsψ1(x1, ·), . . . , ψ1(xN , ·), ψ2(y1, E − ·), . . . , ψ2(yK , E − ·)
are analytic on the interval (V1(xN), E − V2(yK)) (see Proposition 4.2), condition (4.22)
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implies that for any sequence (γj )N+K
j=1 of one or more non-zero real numbers we have

N∑
j=1

γjψ1(xj , E1)+
k∑
j=1

γj+Nψ2(yj , E − E1) �= 0 (4.23)

for all but countable many E1 ∈ [V1(xN), E − V2(yK)]. Notice that Proposition 4.3 also
implies equation (4.23), but under the stronger Deck conditions on the potentials.

5. General criterion for unique ergodicity and its application
Now consider an interval I of E1 values on which the topological data are fixed, so that
the numerical data on I, as proved above, depend smoothly on E1. More generally, let
I � E1 �→ P(E1) ∈ R be a C∞ curve of polygonal billiard tables in R, that is,

P(E1) =
⋃

ς1,ς2∈{±}
P(xς1ς2(E1), yς1ς2(E1)),

where xς1ς2
k , yς1ς2

k : I → R>0 are C∞ maps for all ς1, ς2 ∈ {±}, 1 ≤ k ≤ k(xς1ς2 , yς1ς2).
Let us consider two finite sets of real C∞ maps on I given by

XP : = {xς1ς2
k (·) : ς1, ς2 ∈ {±}, 1 ≤ k ≤ k(xς1ς2 , yς1ς2)},

YP : = {yς1ς2
k (·) : ς1, ς2 ∈ {±}, 1 ≤ k ≤ k(xς1ς2 , yς1ς2)}.

THEOREM 5.1. (Cf. [8, Theorem 4.2]) Suppose that:
(i) for any choice of integer numbers nx for x ∈ XP and my for y ∈ YP such that

not all of them are zero, we have∑
x∈XP

nxx(E1)+
∑

y∈YP

myy(E1) �= 0 for a.e. E1 ∈ I ; (5.1)

(ii+−) for all x ∈ XP and y ∈ YP we have x′(E1) ≥ 0 and y′(E1) ≤ 0 for all E1 ∈ I ,
and for at least one x ∈ XP or y ∈ YP the inequality is sharp for a.e. E1 ∈ I ; or

(ii−+) for all x ∈ XP and y ∈ YP we have x′(E1) ≤ 0 and y′(E1) ≥ 0 for all E1 ∈ I ,
and for at least one x ∈ XP or y ∈ YP the inequality is sharp for a.e. E1 ∈ I .

Then for a.e. E1 ∈ I the billiard flow on P(E1) in directions ±π/4, ±3π/4 is uniquely
ergodic.

Proof. We show that the above conditions imply some intermediate steps of [8, Theorem
4.2] which are used to show that the results of [8, Theorem 2.16] about unique ergodicity
on surfaces imply the unique ergodicity on the related polygons.

First, we take the reference function in [8, Theorem 4.2] to be a constant (� = 1).
Second, condition (i) in [8, Theorem 4.2] is used to prove the above condition (5.1) which
is then used to prove that condition (i) in [8, Theorem 2.16] holds. Hence, by the same
reasoning as in [8, Theorem 4.2] assumption (i) implies assumption (i) of [8, Theorem
2.16].

Third, similarly, conditions (ii) in [8, Theorem 4.2] are used to prove the above
conditions (ii) which are then used to prove that condition (ii) in [8, Theorem 2.16] holds.
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Hence, by the same reasoning as in [8, Theorem 4.2] assumption (ii) implies assumption
(ii) of [8, Theorem 2.16].

We conclude that by [8, Theorem 2.16] the billiard flow on P(E1) in directions
±π/4, ±3π/4 is uniquely ergodic for a.e. E1 ∈ I .

Remark 5.2. Notice that, by the proof of [8, Theorem 2.16], condition (i) in that theorem
implies the absence of vertical saddle connections for almost every parameter, hence
the minimality of the vertical flow. As our assumption (i) implies condition (i) of [8,
Theorem 2.16], condition (i) gives the minimality of the billiard flow on P(E1) in directions
±π/4, ±3π/4 for a.e. E1 ∈ I .

Assume V1, V2 : R → R≥0 are two Deck potentials satisfying (�). Recall that, by
Lemma 4.5, if Vi does not satisfy (☼), then Vi is quadratic. The following result is an
extended version of Theorem 1.3.

THEOREM 5.3. Assume V1, V2 : R → R≥0 are Deck potentials satisfying (�). Let P be
any polygon in R. Suppose that:
(α) at least one potential V1 or V2 satisfies (☼); or
(β) both V1, V2 are quadratic maps such that V1 = �2V2 and � is irrational.
Then for every energy level E > 0 and almost every E1 ∈ [0, E] the restricted Hamilto-
nian flow (ϕP ,E,E1

t )t∈R is uniquely ergodic.
Suppose that:

(γ ) both V1, V2 are quadratic maps such that V1 = �2V2 and � is rational.
Then for any E > min{maxς1,ς2∈{±} V2(y

ς1ς2
1 ), maxς1,ς2∈{±} V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))} and

almost every

E1 ∈
[
0, E − max

ς1,ς2∈{±} V2(y
ς1ς2
1 )

]
∪
[

max
ς1,ς2∈{±} V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), E

]
the restricted Hamiltonian flow (ϕP ,E,E1

t )t∈R is uniquely ergodic.

Proof. We fix an energy E > 0. First note that we can restrict our attention to any
subinterval I ∈ JE . As we already have observed, for every E1 ∈ I the flow (ϕ

P ,E,E1
t )t∈R

is topologically conjugated to the billiard flow in directions ±π/4, ±3π/4 on the polygon
P(E1) := PE1,E = ψ(P ∩ R(E1,E)) ∈ R. Moreover, by Remark 3.1 and Propositions 4.1
and 4.2, we have

XP ⊂ {ψ1(x, E1) : x ∈ XI } ∪ { 1
4T1(E1)

}
,

(5.2)
YP ⊂ {ψ2(y, E − E1) : y ∈ YI } ∪ { 1

4T2(E − E1)
}

and the curve I � E1 �→ P(E1) ∈ R is analytic.
Cases (α) and (β). Assume that the sets XP, YP do not satisfy condition (i) in Theorem

5.1. In view of Proposition 4.3, there exists a rational positive number γ > 0 such that
T2(E − ·) = γ T1(·) (since condition (i) involves integer coefficients). However, by Lemma
4.6 this is impossible if (α) is satisfied. If (β) is satisfied then, by Lemma 4.6, we have
γ = −� which contradicts the irrationality of �.
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In summary, it follows that either under assumption (α) or (β), condition (i) of
Theorem 5.1 holds.

Now we verify (in both cases (α) and (β)) that condition (ii−+) of Theorem 5.1 holds.
First suppose that (α) holds. Then, by Lemma 4.4, for all x ∈ XP and y ∈ YP and for every
E1 ∈ I we have:
• x′(E1) < 0 and y′(E1) ≥ 0, if V1 satisfies (☼);
• x′(E1) ≤ 0 and y′(E1) > 0, if V2 satisfies (☼),
so we have (ii−+) of Theorem 5.1.

Suppose that (β) holds. Then T ′
1(E1) = T ′

2(E − E1) = 0 for every E1 ∈ I . Assume
first that there is at least one impact for the level sets in I, so XP �= { 1

4T1} or YP �= { 1
4T2}.

Then, by Lemma 4.4, for all x ∈ XP \ { 1
4T1} and y ∈ YP \ { 1

4T2} we have x′(E1) < 0 and
y′(E1) > 0 for every E1 ∈ I , so we also have (ii−+) of Theorem 5.1, whenever the union
of these sets is non-empty.

In summary, in both these cases the unique ergodicity of (ϕP ,E,E1
t )t∈R for a.e. E1 ∈ I

follows directly from Theorem 5.1.
Finally, when (β) holds and XP = { 1

4T1} and YP = { 1
4T2} the motion on all level sets

in I occurs with no impacts at all, that is, the motion corresponds to the billiard flow on the
rectangle PI = P(E1) in directions ±π/4, ±3π/4 and since � is irrational, the motion is
also uniquely ergodic for all E1 ∈ I .

Case (γ ). We consider a subinterval I ∈ JE such that impacts occur with either all
the horizontal boundaries of P (the intersection of all light green wedges in the IEMBD
figures) or with all the vertical boundaries of P (the intersection of all pink regions in the
IEMBD figures):

I ⊂
[
0, E − max

ς1,ς2∈{±} V2(y
ς1ς2
1 )

]
or I ⊂

[
max

ς1,ς2∈{±} V1(x
ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), E

]
.

Then in the first case we have YI = Y , and in the second case XI = X and

YP ⊂ {ψ2(y, E − E1) : y ∈ Y } or XP ⊂ {ψ1(x, E1) : x ∈ X}, (5.3)

respectively (see Remark 3.1). Suppose that condition (i) in Theorem 5.1 does not hold.
Then in the first case we have

k
1
4
T1(E1)+

∑
x∈XI

nxψ1(x, E1)+
∑
y∈YI

myψ2(y, E − E1) = 0,

whereas in the second case we have∑
x∈XI

nxψ1(x, E1)+
∑
y∈YI

myψ2(y, E − E1)+ k
1
4
T2(E − E1) = 0

on a subset of positive measure, where |k| + ∑
x∈XI |nx | + ∑

y∈YI |my | �= 0. It follows
that in both cases at least one nx , x ∈ XI , or my , y ∈ YI , is non-zero. This contradicts the
conclusion of Proposition 4.3.

Finally, we check that condition (ii−+) in Theorem 5.1 is satisfied when (γ ) holds.
For every E1 ∈ I , by Lemma 4.4, for all x ∈ XP \ { 1

4T1} and y ∈ YP \ { 1
4T2} we have

x′(E1) < 0 and y′(E1) > 0. Moreover, by (5.3), when (γ ) holds, at least one of these sets is
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non-empty. Hence we also have (ii−+) in Theorem 5.1 holds. Finally, the unique ergodicity
of (ϕP ,E,E1

t )t∈R for a.e. E1 ∈ I follows directly from Theorem 5.1. This completes the
proof.

COROLLARY 5.4. Suppose that V1, V2 are quadratic so that V1 = �2V2 and� is rational.
If the energy is sufficiently large,

E ≥ max
ς1,ς2∈{±} V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))+ max

ς1,ς2∈{±} V2(y
ς1ς2
1 ), (5.4)

then the flow (ϕP ,E,E1
t )t∈R is uniquely ergodic for a.e. E1 ∈ [0, E].

This is a weaker version of Theorem 1.5 and it will be helpful in the proof of
Theorem 1.5.

To conclude this section we give the following partial result, which is met with very
slight assumptions on potentials V1 and V2.

PROPOSITION 5.5. Suppose that V1, V2 : R → R≥0 are even C2-potentials satisfying (♦).
Assume that

E > max
ς1,ς2∈{±} V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))+ max

ς1,ς2∈{±} V2(y
ς1ς2
1 ),

and let

E1 ∈ I :=
[

max
ς1,ς2∈{±} V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), E − max

ς1,ς2∈{±} V2(y
ς1ς2
1 )

]
.

Then the flow (ϕP ,E,E1
t )t∈R is uniquely ergodic for a.e. E1 ∈ I .

Proof. The argument used at the beginning of the proof of (γ ) in Theorem 5.3 shows that

XP ⊂ {ψ1(x, E1) : x ∈ X} and YP = {ψ2(y, E − E1) : y ∈ Y }.
Notice that Proposition 4.7 combined with Remark 4.8 shows that condition (i) in
Theorem 5.1 is satisfied. The negativity of the derivative for all maps from XP and the
positivity of the derivative for all maps from YP follow directly from Lemma 4.4. Thus the
application of Theorem 5.1 again completes the proof.

The interval I in Proposition 5.5 corresponds to the case of impacts with all boundaries
of P (the intersection of all the colored wedges in the IEMBD figures), and, as will be
shown in §6.2, this corresponds to motion on a surface of genus gmax.

6. Topological data revisited
6.1. Short introduction to translation surfaces. Since our main criterion for unique
ergodicity (Theorem 7.8) is formulated in the framework of translation surfaces, in this
section we give a short introduction to this subject. For further background material we
refer the reader to [19, 23, 26].

A translation surface (M , ω) is a compact connected orientable topological surface M,
together with a finite set of points� (called singular points) and an atlas of chartsω = {ζα :
Uα → C : α ∈ A} on M \� such that every transition map ζβ ◦ ζ−1

α : ζα(Uα ∩ Uβ) →
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ζβ(Uα ∩ Uβ) is a translation, that is, for every connected component C of Uα ∩ Uβ there
exists vCα,β ∈ C such that ζβ ◦ ζ−1

α (z) = z+ vCα,β for z ∈ ζ−1
α (C). All points in M \� are

called regular. For every point x ∈ M the translation structure ω allow us to define the
total angle around x. If x is regular then the total angle is 2π . If σ is singular then the total
angle is 2π(kσ + 1), where kσ ∈ N is the multiplicity of σ . Then∑

σ∈�
kσ = 2g − 2, (6.1)

where g is the genus of the surface M.
For every θ ∈ R/2πZ letXθ be a tangent vector field onM \� which is the pullback of

the unit constant vector field eiθ on C through the charts of the atlas. Since the derivative
of any transition map is the identity, the vector field Xθ is well defined on M \�. Denote
by (ψθt )t∈R the corresponding local flow, called the translation flow on (M , ω) in direction
θ . The flow preserves the measure λω which is the pullback of the Lebesgue measure on
C. We distinguish the vertical flow (ψvt )t∈R, that is, for θ = π/2.

For every θ ∈ R/2πZ and a translation surface (M , ω) denote by (M , eiθω) the rotated
translation surface, that is, the new charts in eiθω are defined by postcomposition of charts
from ω with the rotation by θ . Then the flow (ψθt )t∈R on (M , ω) coincides with the vertical
flow (ψvt )t∈R on (M , ei((π/2)−θ)ω).

A saddle connection in direction θ is an orbit segment of (ψθt )t∈R that goes from a
singularity to a singularity (possibly the same one) and has no interior singularities. A
semi-infinite orbit of (ψθt )t∈R that goes from or to a singularity is called a separatrix.
Recall that if (M , ω) has no saddle connection in direction θ , then the flow (ψθt )t∈R is
minimal, that is, every orbit (which can be semi-infinite or double-infinite) is dense in M;
see [23].

6.2. From billiards to translation surfaces. Formally the directional billiard flow on
P(E1) = PE,E1 in directions ±π/4, ±3π/4 acts on the union of four copies of P(E1),
denoted by P(E1)π/4, P(E1)−π/4, P(E1)3π/4, P(E1)−3π/4. Each copy P(E1)ϑ for ϑ ∈
{±π/4, ±3π/4} represents all unit vectors flowing in the same direction ϑ . After applying
the horizontal or vertical reflection (or both) to each copy separately, we can arrange all
unit vectors to flow in the same direction π/4. More precisely, after such transformations,
all unit vectors in P(E1)π/4, γhP(E1)−π/4, γvP(E1)3π/4 and γh ◦ γvP(E1)−3π/4 flow in
the same direction π/4. By gluing corresponding sides of these four polygons, we get a
compact connected orientable surface M(E1) with a translation structure inherited from
the Euclidean plan; see Figure 7. Moreover, the directional billiard flow on P(E1) in
directions ±π/4, ±3π/4 is conjugate to the translation flow (ψ

π/4
t )t∈R in direction π/4

on the translation surface M(E1). This is an example of the use of the so-called unfolding
procedure from [7, 24]. Additionally, the surface M(E1) has a natural partition into 16
staircase polygons {P(E1)

ς1ς2
σ1σ2 : ς1, ς2, σ1, σ2 ∈ {±}} so that

P(E1)
ς1ς2++ = P(E1)

ς1ς2
π/4 , P(E1)

ς1ς2+− = γhP(E1)
ς1ς2
−π/4,

P(E1)
ς1ς2−+ = γvP(E1)

ς1ς2
3π/4, P(E1)

ς1ς2−− = γh ◦ γvP(E1)
ς1ς2
−3π/4.

https://doi.org/10.1017/etds.2021.106 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.106


Hamiltonian flows with impacts 221

FIGURE 8. Singularities of M(E1).

Proof of Theorem 1.2. The translation surface M(E1) defined above is formed by cutting
out four polygons, denoted by R++, R+−, R−+, R−−, from the torus and gluing their
opposite sides (see the white polygons in the middle part of Figure 7).

Let us consider corners of a removed polygon Rς1ς2 . Notice that convex corners (of
P(E1)

ς1ς2 ) give rise to regular points whereas concave corners give rise to singular points
of multiplicity 2. Indeed, each convex corner is a point on M(E1) with total angle 2π (the
pink point in Figure 8), whereas each concave corner is a point on M(E1) with total angle
4(3π/2) = 6π (the blue point in Figure 8). In view of equation (6.1), it follows that the
genus g(E, E1) ofM(E1) (and equivalently the genus of the level set SPE,E1

) is the number
of concave corners in P ∩ R(E,E1) plus 1:

g(E, E1) = 1 +
∑

ς1,ς2∈{±}
max{0, (k

ς1ς2
(E1)− kς1ς2(E1))}

= 1 +
∑

ς1,ς2∈{±}
#{1 ≤ k < k(x̄ς1ς2 , ȳς1ς2) : V1(x

ς1ς2
k ) < E1 < E − V2(y

ς1ς2
k+1 )}.

Moreover,

g(E, E1) ≤ 1 +
∑

ς1,ς2∈{±}
(k(x̄ς1ς2 , ȳς1ς2)− 1)

=
∑

ς1,ς2∈{±}
k(x̄ς1ς2 , ȳς1ς2)− 3 =: gmax

and the equality holds if and only if k
ς1ς2

(E1) = k(x̄ς1ς2 , ȳς1ς2) and kς1ς2(E1) = 1 for
any ς1, ς2 ∈ {±}. If

E1 ∈
[
0, min
ς1,ς2∈{±}V1(x

ς1ς2
1 )

]
∪
[

max
ς1,ς2∈{±}(E − V2(y

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))), E

]
,

then the polygon PE,E1 is a rectangle, so, for all E, close to the end points of theE1-interval,
the genus of M(E1) is 1. Suppose that

E > max
ς1,ς2∈{±} V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))+ max

ς1,ς2∈{±} V2(y
ς1ς2
1 ).
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Then, for

E1 ∈ Imax :=
[

max
ς1,ς2∈{±} V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), E − max

ς1,ς2∈{±} V2(y
ς1ς2
1 )

]
we have

g(E, E1) = gmax.

In view of Proposition 5.5, the flow (ϕ
P ,E,E1
t )t∈R is uniquely ergodic for a.e. E1 ∈ Imax.

Notice that in general, the interval of E1 values for which g(E, E1) = gmax is larger than
Imax as the maximal genus interval includes cases at which all concave corners of the
polygon P are inside R(E,E1) yet not all of its extremal boundaries are inside R(E,E1).

7. The case when V1 and V2 are quadratic and � is rational
In this section we deal with the remaining case when both potentials V1 and V2 are
quadratic with V1 = �2V2, � rational and the energy E is not too high, that is, condition
(5.4) does not hold. The rationality of � enables the appearance of periodic orbits and
some coexistence of periodic orbits with uniquely ergodic components.

First we focus on the case when the energy is low.

Proof of Proposition 1.6. As I satisfies (1.6), in view of (3.3), R(E,E1) ∩ P is a rectangle
for every E1 ∈ I so that its width and height are 1

2T1(E1) and 1
2T2(E − E1). Since T1

and T2 are constants with T2/T1 = � rational, the flow (ϕ
P ,E,E1
t )t∈R is isomorphic to the

translation flow in a rational direction on the standard torus R
2/Z2, so it is completely

periodic for all E1 ∈ I .

Proof of Proposition 1.4. Equation (1.4) implies that for every ς1, ς2 ∈ {±} we have

E ≤ V1(x
ς1ς2
k )+ V2(y

ς1ς2
k+1 ) for every 0 ≤ k ≤ k(x̄ς1ς2 , ȳς1ς2).

Hence, for all E1 ∈ [0, E], R(E,E1) ∩ P is a rectangle (with no intersections of P
boundaries), so as above the motion is periodic.

Propositions 1.4 and 1.6 describe completely all intervals I ∈ JE for which the (cp)
scenario can appear (the pure gray regions in the IEMBD figures). We now focus on the
description of all intervals for which the (ue) or (coex) scenario occurs. They are presented
in Theorems 1.7 and 1.8. Unfortunately, Theorem 5.1 is not effective enough to prove these
theorems. Their proofs (presented in §8) need a more subtle version of Theorem 5.1, which
we give in Theorem 7.8 in §7.4. Theorem 7.8 helps to prove the coexistence of periodic
orbits with uniquely ergodic components for intermediate energies. To implement this plan
we must now go deeper into the proof of [8, Theorem 2.16] and into the framework of
translation surfaces.

In the rational case there is no problem with verifying condition (ii−+) in Theorem 5.1.
Verifying condition (i) in Theorem 5.1 is impossible. Indeed, by Remark 5.2, condition (i)
implies the minimality of the billiard flow (every orbit is dense) for almost every parameter
E1. Because of the existence of a periodic orbit, condition (i) cannot be met.
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Suppose that � = n/m for some coprime natural numbers m and n. Then V1(x) =
n2c2x2/2 and V2(y) = m2c2y2/2 for some c > 0. In view of Lemma 4.5, we have
T1(E1) = 2π/nc and T2(E − E1) = 2π/mc, so

1
4
T1(E1) = mC

π

2
and

1
4
T2(E − E1) = nC

π

2
for C = 1

mnc
.

Moreover,

ψ1(x, E1) = mC arcsin

√
V1(x)

E1
for E1 ≥ V1(x),

ψ2(y, E − E1) = nC arcsin

√
V2(y)

E − E1
for E1 ≤ E − V2(y).

Suppose that

E < min
ς1,ς2∈{±}V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))+ min

ς1,ς2∈{±}V2(y
ς1ς2
1 ). (7.1)

For higher energies, Theorem 1.5 yields the (ue) scenario for the interval [0, E]. In fact,
by Theorem 1.7, for E > min{minς1,ς2∈{±}V2(y

ς1ς2
1 ), minς1,ς2∈{±}V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))}, the

same conclusion occurs in the intervals[
0, E − min

ς1,ς2∈{±}V2(y
ς1ς2
1 )

]
and

[
min

ς1,ς2∈{±}V1(x
ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), E

]
,

where at least one of the extremal sides of P intersects R(E,E1). Therefore, we focus our
attention on I ∈ JE such that

I ⊂ Iintimp =
(
E − min

ς1,ς2∈{±}V2(y
ς1ς2
1 ), min

ς1,ς2∈{±}V1(x
ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))

)
\ Inonimp. (7.2)

So now we consider level sets that do impact some parts of the polygon’s sides but none
of its extremal sides, namely, the width of the polygon PE,E1 is 1

2T1(E1), its height is
1
2T2(E − E1) and PE,E1 is not a rectangle. Then the width of M(E1) is T1(E1) = 2πmC
and its height is T2(E − E1) = 2πnC. Let us consider the translation torus

Tm,n = R
2/(2πmCZ × 2πnCZ)

with four marked Weierstrass points (0, 0), (πmC, 0), (0, πnC), (πmC, πnC) labeled by
−−, +−, −+, ++ respectively; see Figure 7. Then M(E1) can be treated as Tm,n with
four polygons cut out. In this E1 interval at least one removed polygon is non-empty.
Removed polygons (even trivial) are denoted by R−−, R+−, R−+, R++ as in Figure 7,
that is, Rς1ς2 is associated with the polygon P(E1)

ς1ς2 . Each removed polygon Rς1ς2 has
only vertical and horizontal sides, is vertically and horizontally symmetric and its center
of symmetry coincide with the marked point ς1ς2; see Figure 7. Moreover, the opposite
sides of each removed polygon are identified in M(E1).

We equip the translation torus Tm,n with the quotient taxicab metric d (the sum
of horizontal and vertical distances). Denote by eiπ : Tm,n → Tm,n the hyperelliptic
involution that fixes each marked point, that is, eiπ is the rotation by π .
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FIGURE 9. Two periodic orbits (red and green) on Tm,n and the corresponding cylinders on M(E1).

Let us consider periodic orbits in direction π/4 on Tm,n passing thorough all four
marked points. There are exactly two such periodic orbits, red and green, each of them
containing two marked points (their pairing depends on the parity of m and n); see Figure 9.
As all marked points are labeled by ++, +−, −+, −−, this gives a partition {red, green}
of {++, +−, −+, −−} into two two-element subsets, according to this correspondence.
This is exactly the partition defined by (1.9).

For every kς1ς2(E1) ≤ k < k
ς1ς2

(E1) let

DE,E1(x
ς1ς2
k , yς1ς2

k+1 ) := 1
4T1(E1)− ψ1(x

ς1ς2
k , E1)+ 1

4T2(E − E1)− ψ2(y
ς1ς2
k+1 , E − E1).

Then DE,E1(x
ς1ς2
k , yς1ς2

k+1 ) is the maximal distance of the four corners of Rς1ς2 associated
with (x

ς1ς2
k , yς1ς2

k+1 ) ∈ Pς1ς2 ∩ R(E,E1) from the segment of the orbit in direction π/4
passing through the marked point ς1ς2 (the center of Rς1ς2 ) in the time interval
(−min{m, n}Cπ , min{m, n}Cπ). Indeed, for this segment, we can consider the taxicab
metric on R

2; then the distance of a point (x1, y1) from the line {(x0 + t , y0 + t) : t ∈ R}
is equal to

min
t

|x1 − x0 − t | + |y1 − y0 − t | = |x1 − x0 − (y1 − y0)|.

Shifting the center of Rς1ς2 to ((σ1/4)T1(E1), (σ2/4)T2(E − E1)) with σ1, σ2 ∈ {±}, one
of the corners considered is (σ1ψ1(x

ς1ς2
k , E1), σ2ψ2(y

ς1ς2
k+1 , E − E1)) and then its distance

from the corresponding orbit segment is∣∣∣∣(σ1

4
T1(E1)− σ1ψ1(x

ς1ς2
k , E1)

)
−

(
σ2

4
T2(E − E1)− σ2ψ2(y

ς1ς2
k+1 , E − E1)

)∣∣∣∣
≤ DE,E1(x

ς1ς2
k , yς1ς2

k+1 )

and equality is realized when σ1 = −σ2.
By the definition of δcolour , for every colour ∈ {red, green} and E1 ∈ I we have

Cδcolour (E1) := max
ς1ς2∈colour

kς1ς2 (E1)≤k<kς1ς2 (E1)

C

(
m arccos

√
V1(x

ς1ς2
k )

E1
+ n arccos

√
V2(y

ς1ς2
k+1 )

E − E1

)
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= max
ς1ς2∈colour

kς1ς2 (E1)≤k<kς1ς2 (E1)

C

(
m

(
π

2
− arcsin

√
V1(x

ς1ς2
k )

E1

)
+ n

(
π

2
− arcsin

√
V2(y

ς1ς2
k+1 )

E − E1

))

= max
ς1ς2∈colour

kς1ς2 (E1)≤k<kς1ς2 (E1)

( 1
4T1(E1)− ψ1(x

ς1ς2
k , E1)+ 1

4T2(E − E1)− ψ2(y
ς1ς2
k+1 , E − E1)

)
= max

ς1ς2∈colour
kς1ς2 (E1)≤k<kς1ς2 (E1)

DE,E1(x
ς1ς2
k , yς1ς2

k+1 ).

Therefore Cδcolour (E1) measures the maximal distance of points in removed polygons
Rcolour := ⋃

ς1ς2
Rς1ς2 from the corresponding segments of the colour periodic orbit.

Let us consider two closed cylinders R and G in Tm,n that consist of points distant from the
red or green periodic orbit by no more than Cδred(E1) or Cδgreen(E1), respectively. Then
R and G are two closed cylinders in direction π/4 consisting of periodic orbits passing
through removed polygons whose centers lie on the red or green periodic orbit, respectively.
Denote by ∂R and ∂G the boundary of R and G, respectively. Since all removed polygons
are eiπ -invariant, so the cylinders R and G are also eiπ invariant.

Remark 7.1. Note that the distance between red and green periodic orbits is πC. Recall
that M(E1) = Tm,n \ (Rgreen ∪ Rred), where the opposite sides of removed polygons are
identified. We consider two cases.

Case 1. If Cδred(E1)+ Cδgreen(E1) < πC, that is, E1 ∈ J ∈ U−
I , then Tm,n \ (R ∪G)

is non-empty and consists of two open cylinders in direction π/4, yellow and white on
Figure 9. Since yellow and white cylinders do not meet the removed polygons, they
correspond to periodic cylinders Y and W on the translation surface M(E1). Moreover,
the flow (ψ

π/4
t )t∈R on M(E1) has two more invariant sets, R\Rred and G\Rgreen,

which are traces of the corresponding cylinders from Tm,n. The sets R\Rred, G\Rgreen ⊂
M(E1) are translation surfaces with boundary and we will analyze them later. Notice
that all (ψπ/4t )t∈R-orbits on R\Rred and G\Rgreen meet the boundary of Rred and
Rgreen, and both ∂(R\Rred), ∂(G\Rgreen) consist of saddle connections for (ψπ/4t )t∈R
on M(E1).

Case 2. If Cδred(E1)+ Cδgreen(E1) ≥ πC, that is, E1 ∈ J ∈ U+
I , then R ∪G fills the

whole torus Tm,n. Therefore all (ψπ/4t )t∈R-orbits on M(E1) meet the boundary of either
Rred or Rgreen or both.

7.1. Periodic cylinders (case 1). We first note some non-degeneracy properties. Recall
that each removed set, Rcolour , is composed of two removed polygons Rς1ς2 , ς1ς2 ∈
colour , which are associated with the Pς1ς2(E1), ς1ς2 ∈ colour . We first note that saddle
connections between different corners of one removed polygon Rς1ς2 rarely occur. We
then note that only when there is a degeneracy between the polygons Pς1ς2 can it happen
that saddle connections between the two different removed polygons persist for all E1 ∈ I .
Finally, we note that only rarely do the periodic cylinders degenerate to a line.
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LEMMA 7.2. Let colour ∈ {red,green}.
(1) For every ς1ς2 ∈ colour and for all but countably many E1 ∈ I we have

Cδcolour (E1) = DE,E1(x
ς1ς2
k , yς1ς2

k+1 )

for at most one 1 ≤ k < k(x̄ς1ς2 , ȳς1ς2).
(2) If ς1ς2, ς ′

1ς
′
2 are different elements of a colour and

Cδcolour (E1) = DE,E1(x
ς1ς2
k , yς1ς2

k+1 ) = DE,E1(x
ς ′

1ς
′
2

l , y
ς ′

1ς
′
2

l+1 )
(7.3)

for uncountably many E1 ∈ I , then (xς1ς2
k , yς1ς2

k+1 ) = (x
ς ′

1ς
′
2

l , y
ς ′

1ς
′
2

l+1 ).
(3) Moreover,

δred(E1)+ δgreen(E1) �= π

for all but countably many E1 ∈ (0, E).
In addition, all three properties are met on an open set.

Proof. (1) Suppose, contrary to our claim, that there exist k �= l such that

DE,E1(x
ς1ς2
k , yς1ς2

k+1 ) = DE,E1(x
ς1ς2
l , yς1ς2

l+1 )

holds for uncountably many E1. Then

ψ1(x
ς1ς2
k , E1)+ ψ2(y

ς1ς2
k+1 , E − E1) = ψ1(x

ς1ς2
l , E1)+ ψ2(y

ς1ς2
l+1 , E − E1)

for uncountably many E1, which contradicts Proposition 4.3.
(2) Suppose that (7.3) holds for uncountably many E1. Then, similarly,

ψ1(x
ς1ς2
k , E1)+ ψ2(y

ς1ς2
k+1 , E − E1) = ψ1(x

ς ′
1ς

′
2

l , E1)+ ψ2(, y
ς ′

1ς
′
2

l+1 , E − E1)

for uncountably many E1. By Proposition 4.3, it follows that xς1ς2
k = x

ς ′
1ς

′
2

l and yς1ς2
k+1 =

y
ς ′

1ς
′
2

l+1 .
(3) Now suppose, contrary to our claim, that for uncountably many E1,

Cδred(E1)+ Cδgreen(E1) = DE,E1(x
ς1ς2
k , yς1ς2

k+1 )+DE,E1(x
ς ′

1ς
′
2

l , y
ς ′

1ς
′
2

l+1 ) = Cπ

for some ς1ς2 ∈ red, ς ′
1ς

′
2 ∈ green, 1 ≤ k < k(x̄ς1ς2 , ȳς1ς2) and 1 ≤ l < k(x̄ς

′
1ς

′
2 , ȳς

′
1ς

′
2).

Then, since 1
4T1 = mC(π/2), 1

4T2 = nC(π/2), we have

ψ1(x
ς1ς2
k , E1)+ ψ2(y

ς1ς2
k+1 , E − E1)+ ψ1(x

ς ′
1ς

′
2

l , E1)+ ψ2(y
ς ′

1ς
′
2

l+1 , E − E1)

= Cπ(m+ n− 1) = m+ n− 1
2m

T1(E1)

holds on an uncountable subset. This again contradicts Proposition 4.3.
Finally, the complement of the set of E1s for which all three properties hold is a closed

set—the set of zeros for finitely many continuous maps.

By Lemma 7.2, for every E > 0 satisfying (7.1) and for every I ∈ JE satisfying (7.2),
there are two families U+

I and U−
I of open subintervals of I such that:

• for every E1 ∈ ⋃
J∈U+

I
J ∪ ⋃

J∈U−
I
J ⊂ I all conclusions of Lemma 7.2 hold;
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• δred(E1)+ δgreen(E1) > π for all E1 ∈ J if J ∈ U+
I ;

• δred(E1)+ δgreen(E1) < π for all E1 ∈ J if J ∈ U−
I .

Notice that by Lemma 7.2,
⋃
J∈U+

I
J ∪ ⋃

J∈U−
I
J ⊂ I has at most countable complement

in I. The following result fully describes the dynamics of the flow (ψ
π/4
t )t∈R on M(E1)

for a.e. E1 ∈ I . This gives full information about the dynamics of the flow (ϕ
P ,E,E1
t )t∈R

on SPE,E1
for a.e. E1 ∈ I .

THEOREM 7.3. If J ∈ U+
I then the flow (ψ

π/4
t )t∈R on M(E1) is uniquely ergodic for a.e.

E1 ∈ J . If J ∈ U−
I then the flows (ψπ/4t )t∈R on (R \ Rred) \ ∂(R \ Rred) ⊂ M(E1) and on

(G \ Rgreen) \ ∂(G \ Rgreen) are uniquely ergodic for a.e. E1 ∈ J and are periodic on the
complement of these sets with motion that does not impact the polygon P.

Since the flow (ψ
π/4
t )t∈R on M(E1) is isomorphic to the flow (ϕ

P ,E,E1
t )t∈R on SPE,E1

,
Theorem 1.8 is a direct consequence of Theorem 7.3. To prove this result we need a
more subtle version of [8, Theorem 2.16] applied to (ψπ/4t )t∈R on some completions
R(E1) of (R \ Rred) \ ∂(R \ Rred) ⊂ M(E1) and G(E1) of (G \ Rgreen) \ ∂(G \ Rgreen)

as described below. We formulate a slightly more general construction in §§7.2–7.4 and
then return to the proof of Theorem 7.3 in §8.

7.2. Construction of completion for J ∈ U−
I . Suppose that E1 ∈ J for some J ∈ U−

I , so
δred(E1)+ δgreen(E1) < π . From now on we proceed only with the set (R \ Rred) \ ∂(R \
Rred), but the following construction of completion obviously works with (G \ Rgreen) \
∂(G \ Rgreen). Property (1) of Lemma 7.2 implies that for E1 ∈ J ∈ U−

I , the boundary of
the two removed polygons has one or two intersection points with ∂(R \ Rred) in M(E1).

We assume first that there is only one intersection, then we show that for two
intersections the construction of completion is almost the same. Denote by r ∈ M(E1)

the single intersection point (the green point in the left-hand part of Figure 10). The total
angle around r in R \ Rred is 4π . Recall that R \ Rred is a translation surface with the
boundary and its boundary consists of two saddle connection starting and ending at the
point r. Both saddle connections have the same direction π/4 and the same length. In
the completion R(E1) we separate the beginning from the end of the saddle connections,
their beginning we denote by rb (the blue point in the right-hand part of Figure 10) and
their end by re (the green point in the right-hand part of Figure 10), and then we glue the
intervals thus obtained (the dashed lines in the right-hand part of Figure 10), creating a
kind of cylinder where its lower boundary is connected to the upper boundary through the
inner green and inner blue corners. The resulting object R(E1) is a compact translation
surface such that the total angle around rb and re is 2π , so they became regular points; see
Figure 11.

If ∂(R \ Rred) has two intersection points, r1, r2 ∈ M(E1) with the removed polygons
(the green and the yellow point in the left-hand part of Figure 12), by property (1) of
Lemma 7.2, each one of them must belong to a distinct removed polygon. By property
(2) of Lemma 7.2, the two points are symmetric (they have the same critical energies
(V1(xk), V2(yk+1))). Thus, on the surface, they correspond to corners of the two removed
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FIGURE 10. The subset R \ ∂R of M(E1) and its completion R(E1).
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FIGURE 11. This figure shows the construction of R(E1) around removed polygons. In particular, it indicates the
rules for gluing segments with the same labeling. The rightmost part of the figure shows the resulting surface

after gluing the segments labeled with capital letters.

polygons that are at identical horizontal and vertical distances from the removed polygon
center. Hence, r2 is exactly at the middle point of the line connecting r1 to itself (r2 =
ψ
π/4
mnCπr1, and similarly r1 = ψ

π/4
mnCπr2). We carry out the separation procedure for both

intersection points r1 and r2. Since all four saddle connection creating ∂(R \ Rred) have
the same length (dotted and dashed lines in Figure 12), we can finalize gluing the pairs of
relevant intervals on the boundary. In this way we get rid of two singular points by creating
four regular points (the green, blue, yellow and magenta points in the right-hand part of
Figure 12).

Remark 7.4. Every (ψπ/4t )t∈R orbit on R(E1) hits the boundary of a removed polygon.

7.3. Partitions of translation surfaces into polygons. In this section we recall some basic
concepts introduced in [8] and modify them so that the completion surface, which has
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FIGURE 12. The subset R \ ∂R of M(E1) and its completion R(E1) in the case of two intersection points.

natural partition into polygons with vertical and distinguished sides, can be treated with
these tools. We begin with the definition of a proper partition. An example of such a
partition, after rotation by π/4, is shown in the right-hand part of Figure 9. The sets
R \ Rred and G \ Rgreen are naturally partitioned by vertical and horizontal separating
segments. They yield proper partitions of the rotated (by π/4) surfaces R(E1) and G(E1).
More details are presented at the beginning of §7.4.

Definition 7.1. Let (M , ω) be a compact translation surface with singular points at �.
A finite partition P = {Pα : α ∈ A} of M is called a proper partition if the following
assertions hold.
(i) Every Pα , α ∈ A is closed connected subset of M and

⋃
α∈A Pα = M .

(ii) For every α ∈ A there exists a chart ζα : Uα → C in ω such that:
(a) the interior of Pα is a subset of Uα;
(b) ζα(Int Pα) is the interior of a compact connected polygon P̃α ⊂ C;
(c) ζ−1

α : Int P̃α → Int Pα has a continuous extension ζ−1
α : P̃α → Pα .

Then Pα is called a polygon and the ζ−1
α -image of any side/corner in P̃α is called

a side/corner of Pα; in particular, a side s of Pα is called vertical if (ζ−1
α )−1(s) is

vertical.
(iii) ζ−1

α : P̃α \ {vertical sides} → Pα \ {vertical sides} is a homeomorphism, its inverse
we denote by ζ̄α : Pα \ {vertical sides} → P̃α \ {vertical sides}.

(iv) If Pα ∩ Pβ �= ∅ then it is the union of common sides and corners of the polygons
Pα , Pβ .

(v) If σ ∈ Pα ∩� then σ is a corner of Pα .
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(vi) If a common side of the polygons Pα , Pβ is vertical then its ends are regular points
in (M , ω).

Notice that we modify the corresponding definition in [8] to allow polygons with vertical
boundaries. Non-vertical sides always connect different tiles, whereas vertical sides can
glue within a single tile or with other tiles having vertical boundaries. When vertical
sides of a single polygon are glued, this polygon becomes cylindrical under the completion
procedure, so the function ζ−1

α is not one to one on this polygon vertical boundary, thus
in condition (iii) the vertical boundaries are excluded. This condition is needed since in
some cases vertical boundaries of the same polygon are glued together (see Figure 11).
Conditions (v) and (vi) are imposed for convenience so that the singularities in Pα do not
belong to glued vertical boundaries.

Definition 7.2. (Cf. [8]) Given a proper partition P = {Pα : α ∈ A} of the translation
surface (M , ω), let:
• D = D(ω, P) be the set of all non-vertical sides in P;
• B = B(ω, P) be the set of pairs (σ , β) ∈ � × A for which σ ∈ Pβ and there exists a

vertical (upward) orbit segment in Pβ which begins in σ ;
• E = E(ω, P) be the set of pairs (σ , α) ∈ � × A for which σ ∈ Pα and there exists a

vertical (upward) orbit segment in Pα which ends in σ .
The sets D, B, E code some topological properties of the partition.
• Let sαβ ∈ D be a common side of Pα and Pβ and suppose that every vertical (upward)

orbit through the side sαβ passes from Pα to Pβ . Then the displacement Dω(sαβ) :=
ζ̄α(x)− ζ̄β(x) does not depend on the choice of x ∈ sαβ .

• For every (σ , β) ∈ B let Bω(σ , β) = −ζ̄β(σ ).
• For every (σ , α) ∈ E let Eω(σ , α) = ζ̄α(σ ).

Notice that the corners arising from the regularized points of the completion surface are
not in B or E.

Definition 7.3. Let {(M , ωE1)}E1∈J be a family of translation surfaces. We call J � E1 �→
((M , ωE1), P(E1)) a C∞-curve of translation surfaces equipped with proper partition if
there is a finite open cover (Uα)α∈A of M \� such that:
• P(E1) = {Pα(E1) : α ∈ A} is a proper partition of (M , ωE1) into polygons for every

E1 ∈ J ;
• Int Pα(E1) ⊂ Uα for every α ∈ A and E1 ∈ J ;
• for every α ∈ A the polygons P̃α(E1), E1 ∈ J are diffeomorphic and the coordinates

of their sides/corners vary C∞-smoothly with E1 ∈ J ;
• if J � E1 �→ sαβ(E1) ⊂ Pα(E1) ∩ Pβ(E1) is a C∞-curve of common sides and

sαβ(E10) is vertical for some E10 ∈ J , then sαβ(E1) is vertical for all E1 ∈ J .

For every C∞-curve J : E1 ∈ J �→ ((M , ωE1), P(E1)) the topological data of the
partitions, in particular the sets D(ωE1 , P(E1)), B(ωE1 , P(E1)), E(ωE1 , P(E1)), do not
depend on E1 ∈ J . Therefore, we write D, B and E for short, for all E1 ∈ J .
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Let us distinguish a non-empty subset of sides D∗ ⊂ D. They correspond to sides with
impacts. We will deal with four finite families in C∞(J , C):

D := {DωE1
(sαβ) : sαβ ∈ D}, D∗ := {DωE1

(sαβ) : sαβ ∈ D∗},
B := {BωE1

(σ , α) : (σ , α) ∈ B}, E := {EωE1
(σ , α) : (σ , α) ∈ E}.

Recall that for any pair f , g ∈ C1(J ) their bracket is defined by [f , g] = f ′g − fg′.

THEOREM 7.5. Suppose that J : J � E1 �→ ((M , ωE1), P(E1)) is a C∞-curve of trans-
lation surfaces equipped with proper partition and that there exists a distinguished set D∗
such that:
(∗) for every E1 ∈ J every vertical orbit in (M , ωE1) hits at least one side in D∗.
Let � : J → R>0 be a C∞-map. Suppose that (J, D∗, �) satisfy the following assumptions.

(i) Consider any sequence (nh)h∈D in Z≥0 such that nh > 0 for some h ∈ D∗. Assume
that for any f ∈ B, g ∈ E such that the map f + g + ∑

h∈D nhh is non-zero, we
have

Re f (E1)+ Re g(E1)+
∑
h∈D

nh Re h(E1) �= 0 for a.e. E1 ∈ J .

(ii+) [Re h, �](E1) ≥ 0 for all h ∈ D and E1 ∈ J with∑
h∈D

[Re h, �](E1) > 0 for a.e. E1 ∈ J , or

(ii−) [Re h, �](E1) ≤ 0 for all h ∈ D and E1 ∈ J with∑
h∈D

[Re h, �](E1) < 0 for a.e. E1 ∈ J .

Then the vertical flow (ψvt )t∈R on (M , ωE1) is uniquely ergodic for a.e. E1 ∈ J .

Proof. Note that Theorem 7.5 is a more general version of [8, Theorem 2.16] and their
proofs are similar, as explained next. The difference between them is that [8, Theorem
2.16] prohibits the existence of vertical sides in P(E1) and assumes that D∗ = D, that is,
all sides are distinguished. Then the assumption (∗) about hitting the sides is obviously
fulfilled.

The proof of [8, Theorem 2.16] consists of two parts:
(I) showing that condition (i) (together with the two restrictions listed above) implies

the absence of vertical saddle connections in (M , ωE1) for a.e. E1 ∈ J ;
(II) showing that assumption (ii±) implies that the corresponding piecewise constant

function defined by Minsky and Weiss [14], LE1 : I → R, for the return map to
any horizontal section, takes non-negative/non-positive values with at least one
positive/negative value (cf. [8, Theorem 2.4], a copy of [14, Theorem 6.2]) for a.e.
E1 ∈ J .

In view of [8, Corollary 2.8] (a direct consequence of [14, Theorem 6.2]), both properties
(the absence of saddle connections and some positivity/negativity of LE1 ) give the unique
ergodicity of (ψvt )t∈R on (M , ωE1) for a.e. E1 ∈ J .
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We follow the same lines. As the current part (II) of the proof does not differ from the
corresponding part in the proof of [8, Theorem 2.16], we focus only on showing that the
current assumption (i) implies the absence of vertical saddle connections.

If γ is a vertical saddle connection in (M , ωE1) then

〈ωE1 , γ 〉 =
∫
γ

ωE1 = iτγ ,

where τγ > 0 is the length of γ . Indeed, ωE1 is the holomorphic 1-form (Abelian
differential) on (M , ωE1) which is given by dz in the local coordinates on M \�. By
[8, Theorem 2.12], if γ is a piecewise linear curve with ends at�, avoids vertical sides and
corners of P(E1), and passes upward through the non-vertical sides of P(E1), then

〈ωE1 , γ 〉 = fγ (E1)+ gγ (E1)+
∑
sαβ∈D

nsαβ ,γ hsαβ (E1),

with:
• fγ (E1) = BωE1

(σ+, α), where σ+ ∈ � ∩ Pα(E1) is the beginning of γ , so fγ ∈ B;
• gγ (E1) = EωE1

(σ−, β), where σ− ∈ � ∩ Pβ(E1) is the end of γ , so gγ ∈ E;
• for every hsαβ ∈ D of the form hsαβ (E1) = DωE1

(sαβ) for some sαβ ∈ D, nsαβ ,γ is the
crossing number, that is, the number of hits of the side sαβ by the curve γ .

Clearly, if γ ′, γ ′′ are homologous in H1(M , �, Z), then 〈ωE1 , γ ′〉 = 〈ωE1 , γ ′′〉.
For any vertical saddle connection that avoids vertical sides and corners of P(E1), we

obtain immediately that

iτγ = 〈ωE1 , γ 〉 = fγ (E1)+ gγ (E1)+
∑
sαβ∈D

nsαβ ,γ hsαβ (E1). (7.4)

Moreover, by assumption (∗), such a connection always crosses one distinguished side,
sαβ ∈ D∗, at least once, so the crossing number is positive, nsαβ ,γ > 0.

We show that a similar formula holds even when the saddle connection γ runs along
vertical sides or meets some corner points of P(E1). For such connections, the crossing
numbers through vertical sides and corners are ill defined, yet, as we show next, small
deformations of γ provide the same value for the saddle connection length. Indeed, by
assumption (vi) of Definition 1, we can find a piecewise linear curve γ ′ homologous with
γ (in H1(M , �, Z)) such that γ ′ does not meet any vertical side or corner of P(E1), γ ′
passes upward though the non-vertical sides of P(E1), and γ ′ is very close to γ . Then, for
any such γ ′ we have

iτγ = 〈ωE1 , γ 〉 = 〈ωE1 , γ ′〉 = fγ ′(E1)+ gγ ′(E1)+
∑
sαβ∈D

nsαβ ,γ ′hsαβ (E1). (7.5)

Again, by assumption (∗), there exists at least one side sαβ ∈ D∗ such that γ crosses this
side. Hence, since γ ′ is close enough to γ , nsαβ ,γ ′ > 0.

Summarizing, in view of (7.4) and (7.5), for any vertical saddle connection in (M , ωE1)

there exist f ∈ B, g ∈ E and a sequence (nh)h∈D in Z≥0 such that nh > 0 for some h ∈ D∗
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and

iτγ = f (E1)+ g(E1)+
∑
h∈D

nhh(E1). (7.6)

Hence, if a vertical saddle connection exists at E1, by assumption (i), we have

Re f (E′
1)+ Re g(E′

1)+
∑
h∈D

nh Re h(E′
1) �= 0 for a.e. E′

1 ∈ J .

On the other hand, by (7.6), we have

0 = Re f (E1)+ Re g(E1)+
∑
h∈D

nh Re h(E1).

This gives the absence of vertical saddle connections for a.e. E1 ∈ J , which completes the
proof.

The above theorem proves unique ergodicity for almost allE1 once the triplet (J, D∗, �)
satisfying assumptions (∗), (i), (ii) is found.

7.4. Construction of the (J, D∗, �) triplet for resonant staircase dynamics. We construct
a proper partition to the (ψπ/4t )t∈R flow on M̂(E1), where M̂(E1) is either M(E1) for
J ∈ U+

I or on the completions R(E1) and G(E1) for J ∈ U−
I .

The set of distinguished sides, D∗, is naturally defined by the sides of the removed
polygons Rcolour . Assumption (∗) follows from the division of the E1 interval into the
segments J ∈ U±

I and the completion construction. The function � is taken to be constant
as in previous sections. The main challenge is to compute the functional form of J. We
first construct a tiling and show that it induces specific computable rules that satisfy
assumptions (i) and (ii).

Recall that M(E1) is composed of 16 tiles, each of which corresponds to a staircase
polygon P(E1)

ς1ς2
σ1σ2 = P(σ1x

ς1ς2(E1), σ2y
ς1ς2(E1)); see Figure 7. For J ∈ U+

I these tiles
will be used as the proper partition of M(E1). The translation surfaces R(E1) and G(E1)

have natural partition which arises as the intersection of tiles of M(E1) with the strip
R \ Rred (or G \ Rgreen) (see Figure 9). To calculate J, we divide these tiles into those
having distinguished sides, called distinguished, and those not having distinguished sides,
called non-distinguished. To ease notation, we omit the dependence on ς1, ς2 and on E1

when they are inessential.
More precisely, we define these tiles so that they satisfy the following properties of basic

polygons.

Definition 7.4. The class of basic polygons, denoted by BP , consists of polygons of the
form P(σ1x, σ2y) ∩ B, where B ⊂ R

2 is a strip or a half-strip in direction π/4. For any
staircase polygon P(σ1x, σ2y) its distinguished sides are all sides of concave corners
(having one end of the form (σ1xl , σ2yl+1) for 1 ≤ l < k(x, y); see the green dashed sides
in Figure 13). We deal with three types of basic polygons:
• basic polygons containing distinguished sides called distinguished (we denote the set

of such polygons by BP ∗);
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FIGURE 13. New basic polygons.

FIGURE 14. Breaking procedure.

• the set BP \ BP ∗ containing only basic polygons, for which B is a strip disjoint from
all distinguished sides (see the lower part of Figure 13);

• the set SBP ∗ ⊂ BP ∗ containing distinguished basic polygons for which B is a
half-strip.

Additionally, basic polygons satisfy the following properties.
(1) The sides in direction π/4 of basic polygons in BP ∗ \ SBP ∗ are disjoint from the

distinguished chain; see the upper right part of Figure 13.
(2) To describe the elements of SBP ∗, let us consider a distinguished basic polygons

with a side in direction π/4 that touches the distinguished chain in a single concave
corner (without crossing the chain); see the upper left part of Figure 13. Then
the distinguished basic polygon is split into two smaller polygons so that each of
them is connected when the touch point is removed. Namely, if P(σx, −σy) ∩ B ∈
BP ∗ and the boundary of B intersect P(σx, −σy) at a corner (σxl , −σyl+1) (see
Figure 14), this corner point breaks the basic polygon P(σx, −σy) ∩ B into two
smaller distinguished basic polygons in SBP ∗ ⊂ BP ∗ as in Figure 14. Each of these
smaller polygons is of the form P(σx, −σy) ∩ B±, where B± is a half-strip.
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(3) The sides in direction π/4 may have additional artificial corners (black dots in Figure
13) that split such sides into smaller sides.

On every basic polygon P(σ1x, σ2y) ∩ B (B is a strip or half-strip) we deal always
with local coordinates inherited from local coordinates on P(σ1x, σ2y). We call xk(x,y) the
formal width of the basic polygon P(σ1x, σ2y) ∩ B and y1 its formal height.

Notice that by properties (1) and (2) the sides in direction π/4 do not cross the
distinguished chain. By item (1) of Lemma 7.2 the above constructed tiles of the surfaces
R(E1) andG(E1) satisfy this property and the above definition so they are basic polygons.

We will deal with a family S of compact translation surfaces equipped with partitions
into basic polygons described above.

Definition 7.5. We say that ((M , ω), P) belongs to S if the following statements hold:
(i) (M , ω) is a compact translation surface.

(ii) P = (Pα)α∈A is partition of M such that the rotated partition eiπ/4P is a proper
partition of the rotated translation surface (M , eiπ/4ω) in the sense of Definition 1
(with eiπ/4P̃α tiles);

(iii) For every α ∈ A the corresponding polygon P̃α ∈ BP . Denote by A∗ ⊂ A the
set of α ∈ A such that P̃α ∈ BP ∗. The polygons Pα ∈ P for α ∈ A∗ are called
distinguished.

(iv) The set A∗ (or equivalently, the subset of distinguished polygons in the partition
P) is divided into 4-tuples or 6-tuples as follows:
• if Pα++ , Pα+− , Pα−+ , Pα−− form a 4-tuple, then there exists (x̄, ȳ) ∈ �

such that P̃ασ1σ2
= P(σ1x, σ2y) ∩ Bσ1,σ2 ∈ BP ∗, where Bσ1,σ2 is a strip for

σ1, σ2 ∈ {±};
• if Pα++ , Pα++− , Pα−+− , Pα+−+ , Pα−−+ , Pα−− form a 6-tuple, then there exists

(x̄, ȳ) ∈ � such that P̃ασσ = P(σx, σy) ∩ Bσ ,σ ∈ BP ∗, where Bσ ,σ is a strip
for σ ∈ {±}, and P̃αςσ ,−σ = P(σx, −σy) ∩ Bςσ ,−σ ∈ SBP ∗, where Bςσ ,−σ is a

half-strip for ς , σ ∈ {±}, and the SBP ∗ polygons P̃α+
σ ,−σ , P̃α−

σ ,−σ arise from a
polygon P(σx, −σy) ∩ Bσ ,−σ ∈ BP ∗ in the breaking procedure described in
item (2) of Definition 4, that is, the stripBσ ,−σ splits into two half-stripsB+

σ ,−σ
and B−

σ ,−σ . For convenience (see (v)) we denote Pασ ,−σ := Pα+
σ ,−σ ∪ Pα−

σ ,−σ for
σ ∈ {±}, yet, note that this is a slight abuse of notation as in this case α+− and
α−+ do not belong to A.

(v) The distinguished vertical sides of Pα++ (respectively, Pα+−) are glued with the
corresponding sides of Pα−+ (respectively, Pα−− ) and the distinguished horizontal
sides of Pα++ (respectively, Pα−+ ) are glued with the corresponding sides of Pα+−
(respectively, Pα−−).

(vi) All singular points in (M , ω) come only from the concave corners of polygons in
the partition P (by definition, such polygons have to belong to BP ∗).

(vii) The formal widths of all basic polygons in P are identical, henceforth denoted by
w > 0. Similarly, their formal heights are identical and denoted by h > 0.

(viii) Note that for every vertical/horizontal common side sαβ of Pα and Pβ such
that every orbit through the side sαβ in direction π/4 passes from Pα to Pβ ,
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the displacement (of local coordinates) for sαβ is given by the difference of the
local charts Dω(sαβ) = ζ̄α(x)− ζ̄β(x) for any x ∈ sαβ (by the flat translation
structure it does not depend on the choice of x ∈ sαβ ). We assume that if sαβ is
a non-distinguished vertical side in P then Dω(sαβ) is 0 or 2w, and if sαβ is a
non-distinguished horizontal side in P then Dω(sαβ) is 0 or 2hi.

Remark 7.6. Notice that, in view of condition (v), if sαβ is a distinguished vertical side in P
(so sαβ comes from a distinguished side of P(σ1x, σ2y) ∩ B ∈ BP ∗) then Dω(sαβ) = 2xl
for some 1 ≤ l < k(x̄, ȳ). Similarly, if sαβ is a distinguished horizontal side in P then
Dω(sαβ) = 2yli for some 1 < l ≤ k(x̄, ȳ).

With the above remark, we see that the form of Dω for all vertical and horizontal sides
in P is fully defined by items (v) and (viii). Next we examine the form of Bω and Eω.

Suppose that σ ∈ Pβ is a singularity in (M , ω) and σ is the beginning of an orbit
segment in direction π/4 contained in Pβ . By (vi), P̃β = P(σ1x, σ2y) ∩ Bσ1σ2 ∈ BP ∗
and ζ̄β(σ ) = σ1xl + iσ2yl+1 for some 1 ≤ l < k(x, y). However, the point xl + iyl+1 ∈
P(x, y) ∩ B++ cannot be the starting point of any orbit segment in direction π/4 in the
polygon P(x, y) ∩ B++. It follow that at least one σ1 or σ2 is −, so Bω, which consists of
the values −ζ̄β(σ ), is of the form xl + iyl+1, xl − iyl+1, −xl + iyl+1.

A similar argument shows that if σ ∈ Pα is a singularity in (M , ω) and σ is the end of an
orbit segment in direction π/4 contained in Pα , then P̃α = P(σ1x, σ2y) ∩ Bσ1σ2 ∈ BP ∗,
ζ̄α(σ ) = σ1xl + iσ2yl+1 for some 1 ≤ l < k(x, y) and at least one σ1 or σ2 is +, so Eω,
which consists of the values ζ̄α(σ ), is of the form xl + iyl+1, xl − iyl+1, −xl + iyl+1.

Next we examine how the numerical data appear in the rotated partition. Suppose that
((M , ω), P) ∈ S and let us consider the rotated surface (M , eπi/4ω). The flow (ψ

π/4
t )t∈R

on (M , ω) is equivalent to the vertical flow on (M , eπi/4ω) and the rotated partition
eπi/4P = (eπi/4Pα)α∈A (that is, all local coordinated are rotated by π/4) is a proper
partition of (M , eπi/4ω) into polygons in the sense of Definition 1. Denote by D∗ =
D∗(eπi/4ω, eπi/4P) the set of sides coming from distinguished sides in the partition P
of (M , ω).

Remark 7.7. In view Definition 7.5 and Remark 7.6, we have:
• if sαβ is a vertical/horizontal non-distinguished side in eπi/4P then

Deπi/4ω(sαβ) =
⎧⎨⎩

0 or
eπi/42w = √

2(w + iw) or
eπi/42hi = √

2(−h+ ih);

• if sαβ is a distinguished side in eπi/4P then

Deπi/4ω(sαβ) =
{
eπi/42xk = √

2(xk + ixk) or
eπi/42yli = √

2(−yl + iyl)

for some 1 ≤ k < k(x̄, ȳ) or 1 < l ≤ k(x̄, ȳ);
• if (σ , eπi/4Pβ) ∈ B(eπi/4ω, eπi/4P) then

Beπi/4ω(σ , eπi/4Pβ) = −eπi/4ζ̄β(σ )
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=

⎧⎪⎨⎪⎩
eπi/4(xl + iyl+1) =

√
2

2 ((xl − yl+1)+ i(xl + yl+1)) or
eπi/4(xl − iyl+1) =

√
2

2 ((xl + yl+1)+ i(xl − yl+1)) or
eπi/4(−xl + iyl+1) =

√
2

2 ((−xl − yl+1)+ i(−xl + yl+1))

for some 1 ≤ l < k(x̄, ȳ);
• if (σ , eπi/4Pα) ∈ E(eπi/4ω, eπi/4P) then

Eeπi/4ω(σ , eπi/4Pα) = eπi/4ζ̄α(σ )

=

⎧⎪⎨⎪⎩
eπi/4(xl + iyl+1) =

√
2

2 ((xl − yl+1)+ i(xl + yl+1)) or
eπi/4(xl − iyl+1) =

√
2

2 ((xl + yl+1)+ i(xl − yl+1)) or
eπi/4(−xl + iyl+1) =

√
2

2 ((−xl − yl+1)+ i(−xl + yl+1))

for some 1 ≤ l < k(x̄, ȳ).

Definition 7.6. A curve J : E1 ∈ J �→ ((M , ωE1), P(E1)) ∈ S, where S is defined by
Definition 5, is called a C∞-curve in S if the rotated curve E1 �→ (M , eπi/4ωE1 ,
eπi/4P(E1)) is a C∞-curve of translation surfaces equipped with proper partitions in the
sense of Definition 3.

We next show that each such curve J determines two sets of functions X and Y

which help to verify the assumptions of Theorem 7.5. By assumption, the topological
data of J(E1) do not change for E1 ∈ J , so, for every α ∈ A we have Pα(E1) =
P(σα1 x̄

α(E1), σα2 ȳ
α(E1)) ∩ Bα(E1), where kα := k(x̄α(E1), ȳα(E1)) does not depend on

E1 ∈ J and the map

J � E1 �→ (x̄α(E1), ȳα(E1)) ∈ R
kα

>0 × R
kα

>0

is of class C∞. Moreover, there are two C∞-maps w, h : J → R>0 such that

yα1 (E1) = h(E1) and xαkα (E1) = w(E1) for all E1 ∈ J and α ∈ A.

Let us consider two finite families of real C∞ maps on J:

X = {xαl : α ∈ A, 1 ≤ l < kα}, Y = {yαl : α ∈ A, 1 < l ≤ kα}.
THEOREM 7.8. Let J � E1 �→ ((M , ωE1), P(E1)) ∈ S be a C∞-curve in S so that:

(∗) for every E1 ∈ J every (ψπ/4t )t∈R-orbit on (M , ωE1) hits some distinguished side of
the partition P(E1).

Suppose that:
(i) for any choice of integer numbers nx for x ∈ X and my for y ∈ Y such that not

all of them are zero and any nw, mh ∈ Z, we have∑
x∈X∪{w}

nxx(E1)+
∑

y∈Y∪{h}
myy(E1) �= 0 for a.e. E1 ∈ J ;

(ii+−) for every E1 ∈ J we have x′(E1) > 0 for all x ∈ X, y′(E1) < 0 for all y ∈ Y,
w′(E1) ≥ 0 and h′(E1) ≤ 0; or

(ii−+) for every E1 ∈ J we have x′(E1) < 0 for all x ∈ X, y′(E1) > 0 for all y ∈ Y,
w′(E1) ≤ 0 and h′(E1) ≥ 0.

Then for a.e. E1 ∈ J the flow (ψπ/4t )t∈R on (M , ωE1) is uniquely ergodic.
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238 K. Frączek and V. Rom-Kedar

Proof. We apply Theorem 7.5 to the curve E1 �→ ((M , eπi/4ωE1), e
πi/4P(E1)) of trans-

lation surfaces equipped with partitions into polygons and to the reference function
� = 1. Denote by D∗ the set of rotated distinguished sides coming from distinguished
basic polygons in P(E1). By assumption (∗), for every E1 ∈ J every vertical orbit in
(M , eπi/4ωE1) hits at least one side in D∗, and condition (∗) in Theorem 7.5 is verified.

In view of Remark 7.7 we have:
• every map in B and E is of the form

√
2

2 (x − y + i(x + y)) or
√

2
2 (x + y + i(x − y)) or

√
2

2 (−x − y + i(−x + y))
(7.7)

for some x ∈ X and y ∈ Y;
• every map in D∗ is of the form

√
2(x + ix) or

√
2(−y + iy) (7.8)

for some x ∈ X or y ∈ Y ;
• every map in D \ D∗ is of the form

0 or
√

2(w + iw) or
√

2(−h+ ih). (7.9)

We now verify condition (i) in Theorem 7.5 for the curve E1 �→ ((M , eπi/4ωE1),
eπi/4P(E1)). Suppose, contrary to our claim, that there are f ∈ B, g ∈ E and a sequence
(nh)h∈D in Z≥0 such that nh > 0 for some h ∈ D∗ and

Re f + Re g +
∑
h∈D

nh Re h = 0 on a subset of J of positive measure.

In view of (7.7)– (7.9), we have

σB1 xB − σB2 yB + σE1 xE − σE2 yE +
∑
x∈X

2nxx −
∑
y∈Y

2myy + 2nww − 2mhh = 0

on a subset of positive measure with:
• nx ∈ Z≥0 for x ∈ X ∪ {w} and my ∈ Z≥0 for y ∈ Y ∪ {h} such that at least one nx,

x ∈ X or my, y ∈ Y is positive;
• xB , xE ∈ X and yB , yE ∈ Y;
• (σB1 , σB2 ), (σ

E
1 , σE2 ) ∈ {(1, 1), (1, −1), (−1, 1)}.

If follows that∑
x∈X

nx +
∑
y∈Y

my > 0, σB1 + σB2 ≥ 0 and σE1 + σE2 ≥ 0. (7.10)

Moreover, ∑
x∈X

ñxx −
∑
y∈Y

m̃yy + 2nww − 2mhh = 0 (7.11)

on a subset of positive measure, where

ñx = 2nx + σB1 δx,xB + σE1 δx,xE , m̃y = 2my + σB2 δy,yB + σE2 δy,yE .
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Notice that at least one ñx for x ∈ X or m̃y for y ∈ Y is non-zero. Indeed, by the definition
of ñx and m̃y and using (7.10), we have∑

x∈X

ñx +
∑
y∈Y

m̃y =
∑
x∈X

2nx +
∑
y∈Y

2my + σB1 + σB2 + σE1 + σE2 > 0.

Hence, we have (7.11) on a subset of positive measure with at least one ñx, x ∈ X or m̃y,
y ∈ Y is positive. This contradicts assumption (i) of the theorem. It follows that condition
(i) in Theorem 7.5 holds for the curve E1 �→ ((M , eπi/4ωE1), e

πi/4P(E1)).
We now show that the assumption (ii+−) of the theorem implies that condition (ii+) in

Theorem 7.5 holds for the curve E1 �→ ((M , eπi/4ωE1), e
πi/4P(E1)). In view of (7.8) and

(7.9), every h ∈ D is of the form

0 or
√

2(x + ix) or
√

2(−y + iy) or
√

2(w + iw) or
√

2(−h+ ih)

for some x ∈ X or y ∈ Y. It follows that

[Re h, �](E1) = d
dE1

Re h(E1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 or√
2x′(E1) or

−√
2y′(E1) or√

2w′(E1) or
−√

2h′(E1).

(7.12)

In view of assumption (ii+−), we have [Re h, �](E1) ≥ 0 for all h ∈ D and E1 ∈ J and
[Re h, �](E1) > 0 for all h ∈ D∗ and E1 ∈ J , which gives condition (ii+) in Theorem 7.5.

The proof that the assumption (ii−+) of the theorem implies condition (ii−) in
Theorem 7.5 also follows directly from (7.12).

We finish the proof by applying Theorem 7.5 to E1 �→ ((M , eπi/4ωE1), e
πi/4P(E1)).

This yields the unique ergodicity for the flow (ψvt )t∈R on (M , eπi/4ωE1) for a.e. E1 ∈ J .
Thus, the flow (ψ

π/4
t )t∈R on (M , ωE1) is uniquely ergodic for a.e. E1 ∈ J .

8. The proof of Theorems 7.3, 1.8, 1.7 and 1.5
Proof of Theorem 7.3. Assume that J ∈ U+

I . Then we use the natural partition P(E1)

of the translation surface M(E1) into 16 staircase polygons {P(E1)
ς1ς2
σ1σ2 : ς1, ς2, σ1, σ2 ∈

{±}}, shown in Figure 7, for every E1 ∈ J . It follows that the corresponding curve J has
the following properties:
• P(E1) is a partition into basic polygons, see Figure 7;
• every element of P(E1) is a staircase polygon, that is, has no sides in direction π/4;
• the width of every polygon in P(E1) is 1

4T1(E1) and its height is 1
4T2(E − E1);

• at least one removed polygon in M(E1) is non-trivial (J ⊂ I ⊂ Iintimp);
• every (ψπ/4t )t∈R-orbit on M(E1) hits the boundary of some removed polygon (see

Remark 7.1).
Denote by D∗ all sides in P(E1) which are part of the boundary of removed polygons. By
Remark 3.1, J is a C∞-curve in S, J � E1 �→ (M(E1), P(E1)) ∈ S, where

X = {ψ1(x, E1) : x ∈ XI }, Y = {ψ2(y, E − E1) : y ∈ YI },
w(E1) = 1

4T1(E1) and h(E1) = 1
4T2(E − E1).
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As for every E1 ∈ J every (ψπ/4t )t∈R-orbit on M(E1) hits some side in D∗, condition
(∗) of Theorem 7.8 is satisfied. Condition (i) in Theorem 7.8 follows directly from
Proposition 4.3 and condition (i−+) in Theorem 7.8 follows directly from Lemma 4.4 and
the fact that both T1 and T2 are constant. This gives the unique ergodicity of the flow
(ψ

π/4
t )t∈R on M(E1) for a.e. E1 ∈ J .
Assume next that J ∈ U−

I . Without loss of generality we deal only with (ψπ/4t )t∈R
restricted to (R \ Rred) \ ∂(R \ Rred). The same arguments apply to the set (G \ Rgreen) \
∂(G \ Rgreen). We will prove the unique ergodicity of (ψπ/4t )t∈R on R(E1) for a.e. E1 ∈
J , which implies the unique ergodicity on (R \ Rred) \ ∂(R \ Rred). For every E1 ∈ J
let PR(E1) be a partition of R(E1) such that each polygon in PR(E1) is a connected
component of the intersection of a polygon from P(E1) (the partition of M(E1) used in
the first part of the proof) and R(E1) (see Figures 9–11). Then
• every polygon in PR(E1) is a basic polygon (see Figures 9 and 11);
• the ends of every side in direction π/4 are regular points inR(E1) (see the construction

of R(E1) in §7.2);
• the formal width of every basic polygon in PR(E1) is 1

4T1(E1) and its formal height
is 1

4T2(E − E1);
• the set D∗ of distinguished sides is non-empty;
• every (ψπ/4t )t∈R-orbit on R(E1) hits D∗ (see Remark 7.4).
Therefore, J � E1 �→ (R(E1), PR(E1)) ∈ S is a C∞-curve in S such that

X ⊂ {ψ1(x, E1) : x ∈ XI }, Y ⊂ {ψ2(y, E − E1) : y ∈ YI },
w(E1) = 1

4T1(E1) and h(E1) = 1
4T2(E − E1).

and at least one set X or Y is non-empty. As for every E1 ∈ J every (ψπ/4t )t∈R-orbit
on R(E1) hits D∗, condition (∗) of Theorem 7.8 is satisfied by the curve E1 �→
(R(E1), PR(E1)). Condition (i) in Theorem 7.8 follows directly from Proposition 4.3 and
condition (i−+) in Theorem 7.8 follows directly from Lemma 4.4 and the fact that both T1

and T2 are constant. This gives the unique ergodicity of the flow (ψ
π/4
t )t∈R on R(E1) for

a.e. E1 ∈ J , which completes the proof.

Proof of Theorem 1.8. In §3 we showed that the flow (ϕP ,E,E1
t ) is topologically conjugated

to the directional billiard flow in the billiard table PE,E1 in the standard directions
(±π/4, ±3π/4). This flow is conjugated to the flow (ψπ/4t )t∈R on the translationalM(E1)

(see §6.2). Thus, Theorem 1.8 is a direct consequence of Theorem 7.3.

Proof of Theorem 1.7. As in the proof of the first part of Theorem 7.3 (when there was
no need for the completion procedure), we construct a surface and partition on which
Theorem 7.8 can be applied. Some subtle adjustments are necessary since a straightforward
application of the procedure leads to basic polygons with different heights or widths.
Suppose that I ∈ JE such that

I ⊂
[
0, E − min

ς1,ς2∈{±}V2(y
ς1ς2
1 )

]
∪
[

min
ς1,ς2∈{±}V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), E

]
.
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In view of part (γ ) of Theorem 5.3 we can assume that I is not contained in[
0, E − max

ς1,ς2∈{±} V2(y
ς1ς2
1 )

]
∪
[

max
ς1,ς2∈{±} V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), E

]
.

So we need to consider three cases:

I ⊂ I1 =
[
E − max

ς1,ς2∈{±} V2(y
ς1ς2
1 ), E − min

ς1,ς2∈{±}V2(y
ς1ς2
1 )

]
∩
[
0, min
ς1,ς2∈{±}V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))

)
,

I ⊂ I2 =
[

min
ς1,ς2∈{±}V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), E − min

ς1,ς2∈{±}V2(y
ς1ς2
1 )

]
, (8.1)

I ⊂ I3 =
[

min
ς1,ς2∈{±}V1(x

ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), max

ς1,ς2∈{±} V1(x
ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 ))

]
∩
(
E − min

ς1,ς2∈{±}V2(y
ς1ς2
1 ), E

]
.

First we consider I ⊂ I1, where impacts occur with one extremal horizontal boundary but
not with the other. Without loss of generality, we assume that the upper staircase polygons
are taller than the lower ones, so the impact occurs with the lower extremal horizontal
boundary:

max
ς1,ς2∈{±} V2(y

ς1ς2
1 ) = V2(y

++
1 ) = V2(y

−+
1 ) > min

ς1,ς2∈{±}V2(y
ς1ς2
1 ) = V2(y

+−
1 ) = V2(y

−−
1 ).

(8.2)

In view of Remark 3.1, and equations (8.1) and (8.2), for every E1 ∈ I1 the height of P++
E,E1

and P−+
E,E1

is h = 1
4T2(E − E1) and the height of P+−

E,E1
and P−−

E,E1
is ψ2(y

+−
1 , E − E1) =

ψ2(y
−−
1 , E − E1) < h, and the width of any Pς1ς2

E,E1
is w = 1

4T1(E1). It follows that the
natural partition P(E1) ofM(E1) into staircase polygons formally does not give an element
in the class S since not all polygons have the same heights (part (vii) of Definition 5). To
to get rid of this problem we artificially increase the polygons P+−

E,E1
and P−−

E,E1
to P̂+−

E,E1

and P̂−−
E,E1

by adding a vertical segment as the first step in these polygons as in Figure 15,
so, formally:

P̂+−
E,E1

= P((0, �̄+−
1 (E, E1)), −(h, �̄+−

2 (E, E1))),

P̂−−
E,E1

= P(−(0, �̄−−
1 (E, E1)), −(h, �̄−−

2 (E, E1))) if

P+−
E,E1

= P(�̄+−
1 (E, E1), −�̄+−

2 (E, E1)), P−−
E,E1

= P(−�̄−−
1 (E, E1), −�̄−−

2 (E, E1)).

Now, collecting these extended polygons, we denote by P̂E,E1 the extension of the polygon
PE,E1 by one vertical interval so that P̂E,E1 is the union of P++

E,E1
, P−+

E,E1
, P̂+−

E,E1
and

P̂−−
E,E1

; see Figure 15. Let M̂(E1) be the object arising after applying the unfolding
procedure to the degenerated polygon P̂E,E1 ; again see Figure 15. Formally, M̂(E1) is
the translation surface M(E1) with two vertical loops attached. The directional flow on
M̂(E1) in direction π/4 coincides with the flow (ψ

π/4
t )t∈R on M(E1). Moreover, M̂(E1)

has a natural partition P̂(E1) into basic polygons, eight of which are degenerated having
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FIGURE 15. The extended billiard table P̂E,E1 and M̂(E1).

additional vertical segments. Let us consider the C∞-curve I � E1 �→ (M̂(E1), P̂(E1)).
Since for every E1 ∈ I ⊂ I1 all sides of P̂(E1) are vertical or horizontal and every
(ψ

π/4
t )t∈R-orbit in M̂(E1) hits D∗ (the red dashed sides in Figure 15) and does not hit the

additional vertical loops, we can apply the same arguments as those presented in Theorem
7.8 to this curve with

X = {ψ1(x, E1) : x ∈ XI }, Y = {ψ2(y, E − E1) : y ∈ YI },
w(E1) = 1

4T1(E1) and h(E1) = 1
4T2(E − E1).

The final argument is the same as in the proof of the first part of Theorem 7.3.
Similar arguments apply to the case of I ⊂ I3, where one adds horizontal segments to

the staircase polygons to achieve a fixed width for all of them.
Finally, for the case of I ⊂ I2, adding both horizontal and vertical segments completes

the proof.

Proof of Theorem 1.5. Note that Theorem 1.5 is a simple consequence of Theorem 1.7 and
part (γ ) of Theorem 5.3 as

[0, E] =
[
0, E − max

ς1,ς2∈{±} V2(y
ς1ς2
1 )

]
∪ I1 ∪ I2 ∪ I3 ∪

[
max

ς1,ς2∈{±} V1(x
ς1ς2
k(x̄ς1ς2 ,ȳς1ς2 )), E

]
.

This finishes the proof of the chain of results announced in the Introduction.

9. Non-uniform ergodic averages in the configuration space
We show first that in the common case, when unique ergodicity of the motion on level sets
is established, it induces a smooth measure for ergodic averages in the configuration space.
On the other hand, we show that when unique ergodicity holds only on the red/green sets
(as established in Theorem 1.8 for resonant quadratic potentials), it induces a non-smooth
measure in the configuration space. Notably, here we do not assume that the potentials are
quadratic, yet we do assume that the level set is resonant and is partitioned into periodic
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ribbons and green and red invariant sets, with unique ergodicity established on the green
and red sets.

Fix the energies 0 < E1 < E and let us consider the invariant set SPE,E1
. Denote by

π : SPE,E1
→ R(E,E1) ∩ P the projection on the configuration space. For every (x, y) ∈

R(E,E1) ∩ P and σ1, σ2 ∈ {±} let

pσ1σ2(x, y) = (σ1
√

2
√
E1 − V1(x), σ2

√
2
√
E − E1 − V2(y)). (9.1)

For every σ1, σ2 ∈ {±} let

S
σ1σ2
E,E1

= {(x, y, pσ1σ2(x, y)) : (x, y) ∈ R(E,E1) ∩ P }.
Then S

σ1σ2
E,E1

is naturally identified (via π ) with the configuration space R(E,E1) ∩ P
and SPE,E1

is the union of S
σ1σ2
E,E1

for σ1, σ2 ∈ {±} so that (x, y, pσ1+(x, y)) and
(x, y, pσ1−(x, y)) are identified when (x, y) lies on a horizontal side of R(E,E1) ∩ P
and (x, y, p+σ2(x, y)) and (x, y, p−σ2(x, y)) are identified when (x, y) lies on a vertical
side of R(E,E1) ∩ P . On SPE,E1

we have unique probability Liouville measure μE,E1 such
that μE,E1 restricted to Sσ1σ2

E,E1
is identified with the measure 1

4g(x, y)dxdy = 1
4dψ1dψ2

on R(E,E1) ∩ P , where, by equation (3.1),

g(x, y)

= 1√
(E1 − V1(x))(E − E1 − V2(y))

1∫
R(E,E1)∩P (dsdu/

√
(E1 − V1(s))(E − E1 − V2(u)))

.

For every (x, y) ∈ R(E,E1) ∩ P , σ1, σ2 ∈ {±} and t ∈ R let

(x
σ1σ2
t , yσ1σ2

t ) := π(ϕ
P ,E,E1
t (x, y, pσ1σ2(x, y))).

Suppose that the flow (ϕ
P ,E,E1
t )t∈R is uniquely ergodic. Then for an observable in the

configuration space, namely every continuous map f : R(E,E1) ∩ P → R and all (x, y) ∈
R(E,E1) ∩ P and σ1, σ2 ∈ {±}, we have

lim
T→±∞

1
T

∫ T

0
f (x

σ1σ2
t , yσ1σ2

t ) dt = lim
T→±∞

1
T

∫ T

0
f ◦ π(ϕP ,E,E1

t (x, y, pσ1σ2(x, y))) dt

=
∫
SPE,E1

f ◦ π dμE,E1 =
∑

σ1,σ2∈{±}

∫
S
σ1σ2
E,E1

f ◦ π dμE,E1

=
∑

σ1,σ2∈{±}

∫
R(E,E1)∩P

f (x, y)
g(x, y)

4
dx dy =

∫
R(E,E1)∩P

f (x, y)g(x, y) dx dy.

It follows that every infinite semi-orbit in the configuration space R(E,E1) ∩ P is equidis-
tributed with respect to the measure g(x, y)dxdy. This measure has smooth density
exploding to +∞ on the boundary of R(E,E1).

Now consider the case of level sets with coexistence of periodic and uniquely ergodic
behavior for (ϕP ,E,E1

t )t∈R (for example, E1 ∈ J ∈ U−
I of Theorem 1.8). Namely, assume

that the phase space SPE,E1
splits into two completely periodic (connected) components

and two uniquely ergodic components, and assume each of these components has a positive
width as in Theorem 1.8. In this case there are three types of averages one needs to consider:
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averages on periodic orbits, and averages over the green/red sets. We show next that the
colored averages induce non-smooth measures in the configuration space.

Denote the uniquely ergodic component corresponding to the subset (R \ Rred) \ ∂(R \
Rred) of the surface M(E1) by Sred

E,E1
(and similarly, for (G \ Rgreen) \ ∂(G \ Rgreen), by

S
green
E,E1

). Recall that the surface M(E1) has a partition into four star-shaped polygons
P(E1)σ1σ2 :

P(E1)++ = P(E1)π/4, P(E1)+− = γhP(E1)−π/4,

P(E1)−+ = γvP(E1)3π/4, P(E1)−− = γh ◦ γvP(E1)−3π/4

(see Figure 7). Since the surface M(E1) and the invariant set R \ Rred are eiπ = γh ◦ γv
invariant, we have

γh ◦ γv(P(E1)−− ∩ (R \ Rred)) = P(E1)++ ∩ (R \ Rred),

γv(P(E1)−+ ∩ (R \ Rred)) = γh(P(E1)+− ∩ (R \ Rred))
(9.2)

(see Figure 9). Moreover, all four sets have the same Lebesgue measure since the removed
parts have identical measures in each set. Since the boundary of P(E1)++ ∩ (R \ Rred)

consists of linear segment in direction π/4 and the boundary of γh(P(E1)+− ∩ (R \ Rred))

consists of linear segment in direction −π/4, the sets differ.
In fact, by the same argument, we notice that P(E1)++ ∩ (R \ Rred) intersects the

horizontal folding of all the other invariant sets: γh(P(E1)+− ∩ (G \ Rgreen)) as well as
the periodic ribbons γh(P(E1)+− ∩W) and γh(P(E1)+− ∩ Y ). The periodic ribbons map
one to the other under γh ◦ γv (rotation by π ), as these correspond to the same periodic
orbits in configuration space with opposite directions of motion along the orbit.

By the construction of the isomorphism between SPE,E1
and M(E1), we have

Sred
E,E1

∩ S++
E,E1

= ψ−1(P(E1)++ ∩ ((R \ Rred) \ ∂(R \ Rred))),

Sred
E,E1

∩ S+−
E,E1

= ψ−1 ◦ γh(P(E1)+− ∩ ((R \ Rred) \ ∂(R \ Rred))),

Sred
E,E1

∩ S−+
E,E1

= ψ−1 ◦ γv(P(E1)−+ ∩ ((R \ Rred) \ ∂(R \ Rred))),

Sred
E,E1

∩ S−−
E,E1

= ψ−1 ◦ γh ◦ γv(P(E1)−− ∩ ((R \ Rred) \ ∂(R \ Rred))).

(9.3)

Every set Sred
E,E1

∩ Sσ1σ2
E,E1

is identified via the projection π with a subset P red,σ1,σ2
E,E1

⊂
R(E,E1) ∩ P . In view of (9.2) and (9.3), we have

P
red,−−
E,E1

= P
red,++
E,E1

, P
red,−+
E,E1

= P
red,+−
E,E1

, P
red,+−
E,E1

�= P
red,++
E,E1

and all four sets have the same μE,E1 -measure, denoted by 1
4μ

red (μred := μE,E1(S
red
E,E1

)).

As (ϕ
P ,E,E1
t )t∈R is uniquely ergodic on Sred

E,E1
, for every (x

σ1σ2
0 , yσ1σ2

0 ) = (x0, y0,
pσ1σ2(x0, y0)) ∈ Sred

E,E1
and any continuous function f : R(E,E1) ∩ P we have

lim
T→±∞

1
T

∫ T

0
f (x

σ1σ2
t , yσ1σ2

t ) dt = lim
T→±∞

1
T

∫ T

0
f ◦ π(ϕP ,E,E1

t (x, y, pσ1σ2(x, y))) dt

=
∫
Sred
E,E1

f ◦ π dμE,E1

μred =
∑

σ ′
1,σ ′

2∈{±}

∫
Sred
E,E1

∩Sσ
′
1σ

′
2

E,E1

f ◦ π dμE,E1

μred
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=
∑

σ ′
1,σ ′

2∈{±}

∫
P

red,σ ′
1,σ ′

2
E,E1

f (x, y)
g(x, y)
4μred dx dy

=
∫
R(E,E1)∩P

f (x, y)g(x, y)
χ
P

red,++
E,E1

(x, y)+ χ
P

red,+−
E,E1

(x, y)

2μred dx dy.

It follows that if (x, y) ∈ P red,σ1,σ2
E,E1

, then each of its infinite σ1σ2-semi-orbits in the

configuration space R(E,E1) ∩ P is equidistributed on P red,++
E,E1

∪ P red,+−
E,E1

⊂ R(E,E1) ∩ P
with respect to the measure g(x, y)(χ

P
red,++
E,E1

(x, y)+ χ
P

red,+−
E,E1

(x, y))/2μreddxdy. The

same phenomenon is observed also on the green component. Since P red,++
E,E1

�= P
red,+−
E,E1

,
the resulting measure is only piecewise smooth. Thus, we have three types of measures, the
green and red measures which are piecewise smooth and the continuum of singular mea-
sures supported on the periodic orbits. The denominator χ

P
red,++
E,E1

(x, y)+ χ
P

red,+−
E,E1

(x, y) is

equal to 1 on the configuration points at which the red measure has common support with
one of the other measures, and equal to 2 at points where only the red measure is supported.
We have established that the area of both of these sets is positive.

10. Some open problems
10.1. Non-uniform ergodic properties along nonlinear resonant curves. We considered
curves parameterized by E1 on a given energy surface and proved either unique ergodicity
for almost all E1 on each such surface or, for resonant linear oscillators, a more exciting
division to subintervals, where in some cases periodic and uniquely ergodic flows coexist.
More generally, we can consider any curve in the energy space, (E(E1), E1), E1 ∈
J , such that the topological data on this curve are fixed and the numerical data are
properly non-degenerate and monotone, and apply the same tools to the resulting curve.
In particular, inspired by Theorem 1.8, one would like to study the dynamics along
resonant curves. For example, consider curves of the form nT1(E1) = mT2(E

n/m

2 =
En/m(E1)− E1) for somem, n ∈ N, and for which at least one oscillator is non-harmonic.
Such curves are of interest, as simulations show that similar to the smooth case, under
perturbations, they produce resonant islands of the impact flow. Along the corresponding
curves, splitting similar to the resonant linear oscillators case (Theorem 1.8) is expected to
emerge. Indeed, the construction of such curves and its division to segments U±

I is similar
to the construction in the proof of Theorem 1.8. Yet, we are unable to verify the conditions
of Theorem 7.8 for the general case and leave this to future work.

10.2. Quasi-integrable dynamics with other types of potentials and other types of
right-angled polygons. The framework introduced in [1, 16] allows us to study a larger
class of quasi-integrable HISs for which the ergodic properties are yet to be established.
Major differences are expected to arise when one or both of the potentials have local
maxima (that is, are not unimodal). Then the period dependence on energy is singular and
non-monotone and the scaled translation surfaces can be non-compact. Thus, the ergodic
properties for this case are unknown.
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When the right-angled polygon is either non-star-shaped, or even when it is star-shaped
but its kernel does not include the origin, our current methodologies are insufficient
to prove unique ergodicity. Indeed, the main example presented in [1], of impacts of
oscillators from a single step, is included here, for symmetric potentials, if and only if the
step belongs to a single quadrant [1]. Then for any fixed E we can consider the star-shaped
polygon which is composed of three sufficiently large rectangles (with respect to E)
and a one-step staircase polygon. Then the right-angled polygons, P ∩ R(E,E1), always
belong to R. When the step crosses any of the axes [1], the kernel of the corresponding
star-shaped polygon does not include the origin, so, presently, it cannot be analyzed with
our tools. Similarly, when additional finite barriers and beams are introduced (see in [1]),
the right-angled polygons P ∩ R(E,E1) do not always belong to the class R, and the current
results hold only for segments of level sets of this type.

Acknowledgements. The authors would like to thank the University of Sydney for their
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June 2019. This meeting was the beginning of the authors’ collaboration on the project
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for help in fixing some analytical issues. Research partially supported by the Narodowe
Centrum Nauki Grant 2017/27/B/ST1/00078 and by ISF Grant 1208/16.

A. Appendix. Examples of Deck potentials
PROPOSITION A.1. If V : R → R≥0 is an even analytic map satisfying (♦), then V ∈
Deck.

Proof. Conditions (♦) and (♥) result directly from the assumptions. Thus for every
E0 > 0 we need to find a complex neighborhood UE0 on which V is biholomorphic and
with image under V including a droplet of E0 (condition (♣)), and on which condition (♠)
is satisfied.

Let U ⊂ C be an open neighborhood of [0, +∞) and V : U → C be a holomorphic
extension of V : [0, +∞) → [0, +∞). As V (0) = V ′(0) = 0, we have m > 1 such that

V (0) = V ′(0) = · · · = V (m−1)(0) = 0 and V (m)(0) �= 0.

As V is even, m is also even. In view of [18, §3.12.5], there exists biholomorphic V∗ :
B(0, ε) → V∗(B(0, ε)) such that

Vm∗ (z) = V (z) for every z ∈ B(0, ε) and V∗(x) = V (x)1/m for every x ∈ [0, ε).

Therefore, there exist Ũ ⊂ U an open neighborhood of [0, +∞) and V∗ : Ũ → C a
holomorphic extension of V 1/m : [0, +∞) → [0, +∞) so that V ′∗(z) �= 0 for every z ∈ Ũ .

Take any E0 > 0. Then there exists R = RE0 > 0 such that [−R, xmax(E0)+ R] ×
[−R, R] ⊂ Ũ and V∗ on [−R, xmax(E0)+ R] × [−R, R] is injective. Indeed, suppose,
contrary to our claim, that for all R > 0 the rectangle [−R, xmax(E0)+ R] × [−R, R]
is not a subset of Ũ . Then there exists a sequence (zn)n≥1 in C such that zn ∈
[−1/n, xmax(E0)+ 1/n] × [−1/n, 1/n] and zn /∈ Ũ . Passing to a subsequence, if nec-
essary, we have zn → x ∈ [0, xmax(E0)] and x /∈ Ũ , contrary to [0, +∞) ⊂ Ũ .
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Next, suppose, contrary to our claim, that for every R > 0 the map V∗ on the rectangle
[−R, xmax(E0)+ R] × [−R, R] is not injective. Then there are two sequences (zn)n≥1

and (z′n)n≥1 in C such that zn, z′n ∈ [−1/n, xmax(E0)+ 1/n] × [−1/n, 1/n], zn �= z′n and
V∗(zn) = V∗(z′n). Passing to subsequences, if necessary, we have zn → x ∈ [0, xmax(E0)],
z′n → x′ ∈ [0, xmax(E0)] and V (x)1/m = V (x′)1/m. Since V : [0, +∞) → [0, +∞) is
strictly increasing, we have x = x′. This contradicts local invertibility of V∗ around x ∈ Ũ .

Summarizing,

V∗ : [−R, xmax(E0)+ R] × [−R, R] → V∗([−R, xmax(E0)+ R] × [−R, R])

is biholomorphic. Since, by definition V (xmax(E0)) = E0, so

V∗([0, xmax(E0)]) = V 1/m([0, xmax(E0)]) = [0, V 1/m(xmax(E0))] = [0, E1/m
0 ],

the set V∗((−R, xmax(E0)+ R)× (−R, R)) is an open neighborhood of [0, E1/m
0 ]. Let

C+ = {z ∈ C : Re z > 0}. Denote by C+ � z �→ z1/m ∈ C+ the power complex map so
that on C+ it is a holomorphic extension of the real power map. Then there exists 0 <
r < E0 such that C(E0, r)

1/m ⊂ V∗((−R, xmax(E0)+ R)× (−R, R)), where C(E0, r)
is the droplet emanating from E0. This follows from

⋂
r>0 C(E0, r)

1/m = [0, E1/m
0 ]. Let

us consider zmax, the complex extension of xmax(E) on

zmax : V ((−R, xmax(E0)+ R)× (−R, R)) ∩ C+ → C

defined by

zmax(E) := V −1∗ (E1/m)

(E is a complex variable in the proof). Then V∗(zmax(E)) = E1/m; in particular,
V∗(xmax(E)) = E1/m for real positive E. Define

UE0 := zmax(V ((−R, xmax(E0)+ R)× (−R, R)) ∩ C+)
⊂ (−R, xmax(E0)+ R)× (−R, R) ⊂ Ũ ⊂ U .

(A.1)

Since we showed that for every E0 > 0 and R = RE0 > 0 there exists 0 < r < E0 such

that C(E0, r)
1/m ⊂ V∗((−R, xmax(E0)+ R)× (−R, R)), we obtain that

C(E0, r) ⊂ V ((−R, xmax(E0)+ R)× (−R, R)) ∩ C+.

Moreover, for every E ∈ V ((−R, xmax(E0)+ R)× (−R, R)) ∩ C+ we have

V (zmax(E)) = Vm∗ (V −1∗ (E1/m)) = E.

It follows that V : UE0 → V (UE0) is biholomorphic and C(E0, r) ⊂ V (UE0), so condi-
tion (♣) holds.

As V∗ : [−R, xmax(E0)+ R] × [−R, R] → V∗([−R, xmax(E0)+ R] × [−R, R]) is
biholomorphic, there exists cE0 > 0 such that∣∣∣∣V ′′∗ (z)V∗(z)

(V ′∗(z))2

∣∣∣∣ ≤ cE0 for all z ∈ [−R, xmax(E0)+ R] × [−R, R].
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Since Vm∗ = V , we have

V ′(z) = mV∗(z)m−1V ′∗(z), V ′′(z) = m(m− 1)V∗(z)m−2(V ′∗(z))2 +mV∗(z)m−1V ′′∗ (z).

Hence, by (A.1), for every z ∈ UE0 we have∣∣∣∣V ′′(z)V (z)
(V ′(z))2

∣∣∣∣ =
∣∣∣∣m− 1
m

+ V ′′∗ (z)V∗(z)
m(V ′∗(z))2

∣∣∣∣ ≤ CE0 := cE0

m
+ 1,

so condition (♠) also holds.

LEMMA A.2. The function V : R → R≥0 given by V (x) = |x|e−1/|x| for x �= 0 and
V (0) = 0 is a convex Deck potential.

Proof. First note that the conditions (♦) and (♥) are obviously satisfied. We focus only on
(♣) and (♠).

Let us consider its holomorphic extension V : C \ {0} → C given by V (z) =
z exp(−1/z). Let I : C \ {0} → C \ {0}, I (z) = 1/z. Then V = I ◦ Ṽ ◦ I−1 on C \ {0},
where Ṽ : C → C is the holomorphic map Ṽ (z) = z exp(z). Since the map [0, π/2) �
y �→ y tan(y) ∈ [0, +∞) is strictly increasing with limy→π/2 y tan(y) = +∞, there
exists y0 ∈ (0, π/2) such that y0 tan(y0) = 1. Then y tan(y) < 1 for all y ∈ (−y0, y0).
Therefore

Re Ṽ ′(z) > 0 for all z ∈ A = {z ∈ C; Re z > 0, | Im z| < y0}.
Indeed, if z = x + iy with x > 0 and |y| < y0, then

Re Ṽ ′(z) = Re[(z+ 1) exp(z)] = ex((x + 1) cos y − y sin y) > 0.

It follows that Ṽ on the half strip A is injective. Indeed, suppose, contrary to our claim,
that Ṽ (z1) = Ṽ (z2) for distinct z1, z2 in A. Then

0 = Re
Ṽ (z2)− Ṽ (z1)

z2 − z1
=

∫ 1

0
Re Ṽ ′(z1 + t (z2 − z1)) dt > 0.

As Ṽ ′(z) �= 0 for every z ∈ A, the restriction Ṽ : A → Ṽ (A) is biholomorphic. More-
over, Ṽ (A) is an open domain located between the three curves {iyeiy : y ∈ (−y0, y0)},
{(x + iy0)e

x+iy0 : x > 0} and {(x − iy0)e
x−iy0 : x > 0}. Next, we show that

Sy0 := {z ∈ C \ {0} : Arg(z) ∈ (−y0, y0)} ⊂ Ṽ (A). (A.2)

Indeed, suppose that z ∈ Sy0 , that is, Re z > 0 and |Im z/Re z| < tan(y0) (recall that y0 ∈
(0, π/2)). Take x ≥ 0 such that

Re[(x + iy0)e
x+iy0 ] = Re z = Re[(x − iy0)e

x−iy0 ].

Then it is enough to show that

Im[(x + iy0)e
x+iy0 ] > Im z > Im[(x − iy0)e

x−iy0 ] = − Im[(x + iy0)e
x+iy0 ],

or equivalently ∣∣∣∣ Im z

Re z

∣∣∣∣ < Im[(x + iy0)e
x+iy0 ]

Re[(x + iy0)ex+iy0 ]
.
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By assumption, we need to show that

tan(y0) = Im eiy0

Re eiy0
<

Im[(x + iy0)e
x+iy0 ]

Re[(x + iy0)ex+iy0 ]
.

It follows from

Im((x + iy0)e
x+iy0) Re eiy0 − Re((x + iy0)e

x+iy0) Im eiy0

= Im[(x + iy0)e
x+iy0eiy0 ] = y0e

x > 0

and Re eiy0 > 0, Re((x + iy0)e
x+iy0) = Re z > 0. This gives z ∈ Ṽ (A), and hence (A.2)

holds.
Let U := I−1(Ṽ −1(Sy0)). By (A.2), U is an open subset of I−1(A) ⊂ C+ which

contains the half-line (0, +∞). Since I (Sy0) = Sy0 and Ṽ : A → Ṽ (A) is biholomorphic,
the map V : U → Sy0 is biholomorphic. Since Sy0 is a symmetric angular sector, for
every E > 0 there exists 0 < r < E such that C(E, r) ⊂ Sy0 . Hence V satisfies (♣) with
UE = U . Moreover, for every z ∈ C \ {0} we have

V ′(z) =
(

1 + 1
z

)
exp(−1/z) and V ′′(z) = 1

z3 exp(−1/z), (A.3)

and hence
V (z)V ′′(z)
(V ′(z))2

= 1
(1 + z)2

.

As U ⊂ I−1(A) ⊂ C+, it follows that |V (z)V ′′(z)/(V ′(z))2| ≤ 1 for z ∈ U , so (♠) holds
with UE = U and CE = 1.

The convexity of V follows from (A.3).

LEMMA A.3. If V : R → R≥0 is a Deck potential, then Vm : R → R≥0 is a Deck
potential for every m ∈ N.

Proof. As usual, the only challenge in the proof is to show (♣) and (♠). Assume that
V : U → C is a holomorphic extension of V : (0, +∞) → (0, +∞) such that (0, +∞) ⊂
U is open. Let Um := V −1(Sπ/m). Then Vm : Um → C is a holomorphic extension of
Vm : (0, +∞) → (0, +∞) such that Um is open.

Take any E0 > 0. As V satisfies (♣) and (♠), there exist 0 < r < E
1/m
0 , an open

U
E

1/m
0

⊂ U and C
E

1/m
0

> 0 such that V : U
E

1/m
0

→ V (U
E

1/m
0
) is biholomorphic,

C(E
1/m
0 , r) ⊂ V (U

E
1/m
0
), C(E

1/m
0 , r) ⊂ Sπ/m (A.4)

and ∣∣∣∣V ′′(z)V (z)
(V ′(z))2

∣∣∣∣ ≤ C
E

1/m
0

for all z ∈ U
E

1/m
0

. (A.5)

Taking UmE0
:= U

E
1/m
0

∩ Um, we have Vm : UmE0
→ Vm(UmE0

) biholomorphic and

C(E
1/m
0 , r)m ⊂ Vm(U

E
1/m
0
). Then there exists 0 < rm < E0 such that

C(E0, rm) ⊂ C(E
1/m
0 , r)m.
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In view of (A.4), it follows that

C(E0, rm) ⊂ (V (U
E

1/m
0
) ∩ Sπ/m)m ⊂ Vm(U

E
1/m
0

∩ Um) = Vm(UmE0
),

which gives (♣) for Vm. Moreover, by (A.5), for every z ∈ UmE0
⊂ U

E
1/m
0

we have

∣∣∣∣ (V m)′′(z)V m(z)((V m)′(z))2

∣∣∣∣ =
∣∣∣∣m− 1
m

+ V ′′(z)V (z)
m(V ′(z))2

∣∣∣∣ ≤
C
E

1/m
0

m
+ 1,

which gives (♠) for Vm.

Example A1. In view of Lemmas A.2 and A.3, for every m ≥ 2 the function Vm : R →
R≥0 given by Vm(x) = |x|me−1/|x| for x �= 0 and Vm(0) = 0 is also a Deck potential.
Indeed, it immediately follows from Vm(x) = 1

mm
V m1 (mx). Moreover, Vm satisfies the key

condition (☼). Indeed, by (A.3), for every x > 0 we have

(Vm)
′′(x)Vm(x)

((Vm)′(x))2
= m− 1

m
+ V ′′

1 (x)V1(x)

m(V ′
1(x))

2 >
m− 1
m

≥ 1
2

.

PROPOSITION A.4. Let V : R → R≥0 be an analytic even unimodal potential. If V
satisfies (�) then V ′′(0) ≥ 0 and V (4)(0) ≥ 0. Conversely, if V (2m)(0) ≥ 0 for all m ≥ 1
then V satisfies (�).

Proof. By the proof of Proposition A.1, there exists an analytic map V∗ : R → R such that
V (x) = (V∗(x))2 for all x ∈ R. Moreover, V∗(R≥0) = R≥0 and V∗ is even or odd. Suppose
that V satisfies (�), that is, V∗ : R≥0 → R≥0 is convex. Recall that

V ′′ = 2V∗V ′′∗ + 2(V ′∗)2, V (4) = 2V∗V (4)∗ + 8V ′∗V ′′′∗ + 6(V ′′∗ )2.

Assume that V∗ is even. Then V∗(0) = V ′∗(0) = V ′′′∗ (0) = 0, and hence

V ′′(0) = 0, V (4)(0) = 6(V ′′∗ (0))2 ≥ 0.

Assume that V∗ is odd. Then V∗(0) = V ′′∗ (0) = 0 and

V∗(x) = V ′∗(0)x +O(x2), V ′′∗ (x) = 6V ′′′∗ (0)x +O(x2).

By assumption, V∗(x) ≥ 0 and V ′′∗ (x) ≥ 0 for all x ≥ 0, so V ′∗(0) ≥ 0 and V ′′′∗ (0) ≥ 0. It
follows that

V ′′(0) = 2(V ′∗(0))2 ≥ 0, V (4)(0) = 8V ′∗(0)V ′′′∗ (0) ≥ 0,

which completes the proof of the first part.
Now suppose that V : R → R≥0 is analytic and even such that V (2m)(0) ≥ 0 for all

m ≥ 1. As V is even, we also have V (2m−1)(0) = 0 for all m ≥ 1. By definition, we need
to show that the analytic map

W(x) = V (x)V ′′(x)− 1
2
(V ′(x))2

takes only non-negative values. As W is analytic and even, it is enough to prove
that W(2m)(0) ≥ 0 for all m ≥ 0. By the general Leibniz rule, since V (0) = 0 and
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V (2k+1)(0) = 0 for k ≥ 0, we have W(0) = V (0)V ′′(0)− 1
2 (V

′(0))2 = 0 and for m ≥ 1,

W(2m)(0) =
2m∑
k=0

(
2m
k

)
V (k)(0)V (2m−k+2)(0)− 1

2

2m∑
k=0

(
2m
k

)
V (k+1)(0)V (2m−k+1)(0)

=
m∑
k=1

(
2m
2k

)
V (2k)(0)V (2m−2k+2)(0)

− 1
2

m∑
k=1

(
2m

2k − 1

)
V (2k)(0)V (2m−2k+2)(0)

= 1
2

m∑
k=1

((
2m
2k

)
+

(
2m

2k − 2

)
−

(
2m

2k − 1

))
V (2k)(0)V (2m−2k+2)(0).

Moreover, we have(
2m
2k

)
+

(
2m

2k − 2

)
−

(
2m

2k − 1

)
=

(
2m− 1

2k

)
+

(
2m− 1
2k − 1

)
+

(
2m− 1
2k − 2

)
+

(
2m− 1
2k − 3

)
−

(
2m− 1
2k − 1

)
−

(
2m− 1
2k − 2

)
=

(
2m− 1

2k

)
+

(
2m− 1
2k − 3

)
≥ 0.

Since V (2k)(0) ≥ 0 for all k ≥ 0, it follows that W(2m)(0) ≥ 0 for all m ≥ 0, which
completes the proof.
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[8] K. Frączek. Recurrence for smooth curves in the moduli space and an application to the billiard flow on

nibbled ellipses. Anal. PDE 14(3) (2021), 793–821.
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