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Abstract
The radio interferometric closure phases can be a valuable tool for studying cosmological HI from the early Universe. Closure phases
have the advantage of being immune to element-based gains and associated calibration errors. Thus, calibration and errors therein, which
are often sources of systematics limiting standard visibility-based approaches, can be avoided altogether in closure phase analysis. In this
work, we present the first results of the closure phase power spectrum of HI 21-cm fluctuations using the Murchison Widefield Array
(MWA), with ∼ 12 h of MWA phase II observations centred around redshift, z ≈ 6.79, during the Epoch of Reionisation. On analysing
three redundant classes of baselines – 14, 24, and 28 m equilateral triads, our estimates of the 2σ (95% confidence interval) 21-cm power
spectra are � (184)2pseudomK2 at k|| = 0.36pseudo hMpc−1 in the EoR1 field for the 14 m baseline triads, and � (188)2pseudomK2 at
k|| = 0.18 pseudo hMpc−1 in the EoR0 field for the 24 m baseline triads. The ‘pseudo’ units denote that the length scale and brightness
temperature should be interpreted as close approximations. Our best estimates are still 3-4 orders high compared to the fiducial 21-cm
power spectrum; however, our approach provides promising estimates of the power spectra even with a small amount of data. These data-
limited estimates can be further improved if more datasets are included into the analysis. The evidence for excess noise has a possible
origin in baseline-dependent systematics in the MWA data that will require careful baseline-based strategies to mitigate, even in standard
visibility-based approaches.
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1. Introduction

Epoch of Reionisation (EoR) is the period when the first stars and
galaxies were formed in the early Universe between 15< z< 5.3
and contributed to reionising the predominantly neutral inter-
galactic medium on cosmic scales (Bosman et al. 2022; Zhu et al.
2022, 2024). It is also one of the least understood periods in the
history of the Universe, mainly due to the lack of radiation influx
from the first stars and galaxies, which are locally absorbed by the
intervening medium. The hyperfine ground state of the atomic
Hydrogen (HI) produces a weak transition of ∼ 1 420 MHz, pop-
ularly known as the 21-cm line. It is considered a very promising
probe of the EoR due to the abundance of Hydrogen in the early
Universe. The intervening medium is largely transparent to the
redshifted 21-cm line; therefore, it provides one of the best avenues
to infer the astrophysical properties of the IGM and the cos-
mology of the early Universe. As the neutral IGM gets ionised,
it weakens the strength of the 21-cm signal. One can interpret
the stages of cosmic reionisation by estimating the depletion in
the redshifted 21-cm signal through cosmic time (see Furlanetto,
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Sokasian, & Hernquist 2004; Pritchard & Loeb 2012; Mesinger
2016, for review).

To detect this forbidden transition from the early Universe,
several radio instruments such as Murchison Widefield Array
(MWA) (Tingay et al. 2013), Hydrogen Epoch of Reionization
Array (HERA) (DeBoer et al. 2017), LOw-Frequency ARray
(LoFAR) (van Haarlem et al. 2013), Giant metrewave Radio
Telescope (GMRT) (Paciga et al. 2013), Precision Array for
Probing the Epoch of Reionization (PAPER) (Pober et al.
2011), Long Wavelength Array (LWA) (Eastwood et al. 2019),
Experiment to Detect the Global EoR Signature (EDGES)
(Bowman, Rogers, & Hewitt 2008; Bowman & Rogers 2010;
Bowman et al. 2018), Shaped Antenna measurement of the
background RAdio Spectrum (SARAS) (Patra et al. 2012; Singh
et al. 2018, 2022), Broad-band Instrument for Global HydrOgen
ReioNization Signal (BIGHORNS) (Sokolowski et al. 2015), Large
Aperture Experiment to Detect the Dark Age (LEDA) (Bernardi
et al. 2016), Dark Ages Radio Explorer (DARE) (Sigel et al. 2013),
Sonda Cosmológica de las Islas para la Detección de Hidrógeno
Neutro (SCI-HI) (Voytek et al. 2014), Probing Radio Intensity
at High-Z from Marion (PRIZM) (Philip et al. 2019) were built
or are under construction. These instruments can either aim to
detect the sky-averaged 21-cm signal spectrum (Global signal) or
measure its spatial fluctuations. The former category of instru-
ments can detect the overall IGM properties, whereas the latter
can provide a detailed study of the three-dimensional topology of
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the EoR regime. The spatial signatures are quantified through sta-
tistical measures such as the power spectrum, which can probe
the 21-cm signal strength as a function of cosmological length
scales (k-modes). Alongside, the three-dimensional topology of
the EoR can be studied via a two-dimensional 21-cm power spec-
trum (Barry et al. 2019; Trott et al. 2020; Mertens et al. 2020; The
HERA Collaboration et al. 2021; Munshi et al. 2023), which shows
the variation of the 21-cm power spectrum along the line of sight
and transverse axis.

The significant challenges of detecting the 21-cm signal come
from the foregrounds, ionospheric abnormalities, instrumental
systematics, and radio frequency interference (RFI), emitting in
the same frequency range as the redshifted 21-cm signal from the
EoR. In an ideal situation avoiding or minimising all the above
factors, we still require to calibrate the instrument against the
bright foregrounds that require calibration accuracy of� 105 : 1 by
the radio instruments to reach the required HI levels. Calibration
accuracy is especially important for EoR observations using the
MWA because of the presence of sharp periodic features in the
bandpass produced by the polyphase filter bank used. The inability
to accurately correct for these element-based bandpass struc-
tures significantly affects the power spectrum estimates (Beardsley
et al. 2016; Barry et al. 2019; Trott et al. 2020; Patwa, Sethi, &
Dwarakanath 2021; Yoshiura et al. 2021).

The radio interferometric closure phase has emerged as an
alternative and independent approach to studying the EoR while
addressing the calibration challenges. The main advantage of this
approach is the immunity of closure phases to the errors associ-
ated with the direction-independent, antenna-based gains. Thus,
calibration is not essential in this approach (Carilli et al. 2018;
Thyagarajan & Carilli 2020). The closure phase in the context of
the EoR was first investigated by Thyagarajan, Carilli, & Nikolic
(2018), Carilli et al. (2018) and further employed on the HERA
data by Thyagarajan et al. (2020), Keller et al. (2023). The method
has shown significant promise in avoiding serious calibration
challenges, and with detailed forward modelling, one can ideally
quantify the 21-cm power spectrum. This paper is the first attempt
to utilise a closure phase approach on MWA phase II observa-
tions. We followed the methods investigated by Thyagarajan et al.
(2020), Keller et al. (2023) and applied them to our datasets. This
paper is organised as follows. In Section 2, we discuss the back-
ground of the closure phase. Sections 3 and 4 of this paper explain
the observations and forward modelling with simulations of the
foregrounds, HI, and noise. In Section 5, we discuss the data pro-
cessing and rectification, and finally, we present our results in
Section 6 and discuss them in Section 7.

2. Background

In this section, we review the background of the interferomet-
ric closure phase in brief (refer to Thyagarajan, Carilli, & Nikolic
2018; Thyagarajan & Carilli 2020, for a complete mathematical
understanding of this approach). The measured visibility between
two antenna factors at a given baseline (Vm

ij ) can be defined as the
sum of true sky visibility and noise:

Vm
ij (ν)= gi(ν)VT

ij (ν)g∗
j (ν)+VN

ij (ν); (1)

where gi(ν), gj(ν) denote the element-based gain terms, {∗} rep-
resents the complex conjugate, VT

ij (ν) is the true sky visibility,
and VN

ij (ν) is the noise in the measurement. The indices {ij} cor-
respond to the antennae {a, b} forming a baseline. The true sky

visibility can be further decomposed into the foregrounds and
faint cosmological HI visibilities:

VT
ij (ν)=VFG

ij (ν)+VHI
ij (ν) (2)

In general, the foreground ≥ 104K orders of higher magnitude
than the HI, and to reach the sensitivity limit of HI, the gains
(g′

is) are required to be precisely calibrated up to the HI levels. It
presents challenges to the direct visibility-based HI power spec-
trum analysis as it requires accurate modelling of the foreground
and mastering the calibration techniques. In radio interferom-
etry, the term ‘closure phase’ is assigned to the phase derived
from the product of N ≥ 3 closed loops of antenna visibilities
[Jennison (1958)]. When N = 3, it is also sometimes referred to as
the bispectrum phase in the literature, which can be defined as,

φm
∇ (ν)= arg

3∏
ij=1

Vm
ij (ν)

= arg
3∏

ij=1

[
gi(ν)VT

ij (ν)g∗
j (ν)+VN

ij (ν)
]

= arg
3∏

ij=1

VT
ij (ν)+ noise-like terms (3)

where {ij} runs through antenna-pairs {ab, bc, ca}, and the gains
of individual antenna elements (g′

is) gets eliminated in the closure
phase, leaving only the true sky phase as the sole contributing
factor in the closure phase.

The closure phase delay spectrum technique also exploits the
fact that the foregrounds predominantly obey a smooth spectral
behaviour, whereas the cosmological HI creates spectral fluctua-
tions. Thus, in the Fourier delay domain, the foreground signal
strength (power) gets restricted within the lower delay modes.
In contrast, the HI power can be observed at the higher delay
modes, creating the distinction between these two components
in the Fourier domain, from which the faint HI can be detected.
Because of its advantages in avoiding element-based calibration
errors and processing simplicity, it promises to be an independent
alternative to estimating the 21-cm power spectrum (Thyagarajan,
Carilli, & Nikolic 2018; Carilli et al. 2018; Thyagarajan & Carilli
2020; Thyagarajan et al. 2020; Keller et al. 2023).

The delay spectrum of the closure phase can be estimated
by taking the Fourier transform of the complex exponent of the
closure phase with a window function along frequency,

�̃∇(τ )=Veff

∫
eiφ∇ (ν)W(ν)e2π iντdν , (4)

where τ represents delay, the Fourier dual of the sampling fre-
quencies, and Veff is the effective visibility, which can be obtained
through the model foreground visibilities or a calibrated visibility.
In our work, we used the former estimated through foreground
simulations, which are discussed in the next section. Note that we
only take the amplitude of the Veff, which acts as a scaling factor
in the delay spectrum. W(ν) is the spectral window function; we
used a Blackman–Harris window (Harris 1978) modified to obtain
a dynamic range required to sufficiently suppress foreground
contamination in the EoR window (Thyagarajan et al. 2016):

W(ν)=WBH(ν) ∗WBH(ν) ,

where WBH(ν) is the Blackman–Harris window function and {∗}
represents the convolution operation. For a given triad, Veff is
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estimated from the sum of inverse variance visibilities weighted
over the window,

V−2
eff =

3∑
ij=1

∫
Vij(ν)−2W(ν)dν∫

W(ν)dν
. (5)

The inverse squaring ensures the appropriate normalisation
of visibilities, Vij, taking noise into account. From the delay
spectrum, we estimate the delay cross power spectrum by taking
the product of the two delay spectra and converting it into
[pseudomK2h−3Mpc3] units by assimilating the cosmological and
antenna-related factors as:

P∇(k||)= 2R{�̃∇(τ ) ∗ �̃ ′
∇(τ )}×(

1
�Beff

) (
D2	D
Beff

) (
λ2

2kB

)2

[pseudomK2h−3Mpc3] , (6)

where � is the antenna beam squared solid angle (Parsons et al.
2014), Beff is the effective bandwidth of the observation, and D
and 	D are the cosmological comoving distance and comoving
depth corresponding to the central frequency and the band-
width, respectively. k|| is the wavenumber along the line of sight
(Morales & Hewitt 2004):

k|| = 2πτBeff

	D
≈ 2πτνrH0E(z)

c(1+ z)2
, (7)

where νr is the redshifted 21-cm frequency and H0 and E(z) are
standard terms in cosmology.
�Beff is related to the cosmological volume probed by the

instrument and is defined as (Thyagarajan et al. 2016):

�Beff =
∫∫

|A(ŝ, ν)|2 |W(ν)|2 d2ŝ dν , (8)

where A(ŝ, ν) is the frequency-dependent, directional power pat-
tern of the antenna pair towards the direction, ŝ, and W(ν)
is the spectral window function. However, we approximated by
separating the integrals to obtain� as (Parsons et al. 2014)

�=
∫

|A(ŝ, νr)|2 d2ŝ (9)

and effective bandwidth, Beff, as (Thyagarajan et al. 2016)

Beff = εB=
∫ +B/2

−B/2
|W(ν)|2dν , (10)

where ε is the spectral window function’s efficiency and B= 30.72
MHz is MWA’s instantaneous bandwidth. For the MWA obser-
vations at the chosen band in this study, �≈ 0.076 Sr. For the
modified Blackman–Harris window function adopted here, ε ≈
0.42 and hence, Beff ≈ 12.90 MHz.

The ‘pseudo’ in Equation (6) is used to note that the power
spectrum estimated via the closure phase method is an approx-
imate representation of the visibility-based power spectrum
(Thyagarajan & Carilli 2020). Further, we used the power spec-
trum as defined in Thyagarajan et al. (2020) with the scaling factor
2 instead of 2/3a to correct for the effective visibility estimates.

3. Observations

In this work, we used 493 zenith-pointed MWA phase II com-
pact observations from September 2016 under the MWA project

aThe definition of V2
eff already accounts for the factor of 3.
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Figure 1. observations used in this analysis: blue circles and orange stars represent the
individual observations made in the respective EoR fields.

EoR-HighSeason. Each observation lasts 112 s in theMWAhigh-
band frequency range of 167–197 MHz. Amongst these observa-
tions, 198 and 295 target the EoR0 (RA, Dec= 0h, -27deg) and
EoR1 (RA, Dec= 4h, -30deg) fields, respectively. Fig. 1 shows the
Local Sidereal Time (LST) and Julian Date (JD) of the observa-
tions. It amount to≈6 and 9 h of total observing time on the EoR0
and EoR1 fields, respectively. The MWA raw visibilities are stored
in the gpu-fits format. To convert them into measurement sets
(MS) or uvfits, we used Birlib (an MWA-specific software that
can perform data conversion, averaging in frequency and time,
flagging, and other preprocessing steps). Using Birli, we aver-
aged the raw visibilities for 8 s at a frequency resolution of 40 kHz.
Finally, we output the raw (uncalibrated) visibilities as standard
uvfits.

Note that we are required to keep all frequency channels for the
closure phase analysis; thus, we avoided flagging channel-based
RFI (e.g. DTV) and coarse band edge channels (around every
1.28 MHz), which are usually affected by the bandpassc.

4. Simulations

The closure phases are not linear in the visibilities; thus, forward
modelling is key to understanding the data. We incorporated sim-
ulations of the foregrounds (FG), HI, and antenna noise to provide
cross-validation and comparison with the data. Forward mod-
elling can help identify the excess noise and systematic biases in
the data and provide an idealistic estimate for comparison.

4.1 foregrounds

The simulated FG are generated with the same parameters (i.e.
matching LST, frequency, and time resolution) as the observing
data. In the first step, we generated the sky maps corresponding
to each individual observation. We used the top 20 000 bright-
est radio sources from the PUMA catalogue (Line et al. 2017) in
the observing fields (EoR0, EoR1). The catalogue includes point
sources, Gaussians and shapelets. Note that our sky model does

bhttps://github.com/MWATelescope/Birli.
cThe MWA’s signal processing chain contains filterbanks that yield 24 coarse channels

of 1.28 MHz over the full 30.72 MHz band. The fine polyphase filterbank shape results in
poor bandpass characteristics at the coarse channel edges (Trott et al. 2020).
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Figure 2. Beam attenuated sky-map of 20 000 sources in the EoR1 field used in the
foreground simulation. The corresponding Stokes-I flux density at 170 MHz is shown
with the colour scale. The sources are only shown as point sources (single component)
in the above figure.

not account for the diffuse sky emission. Then, we generated
the foreground sky visibilities and converted them to MWA-style
uvfits. Initially, we experimented with various source counts
(e.g. 15 000, 25 000, and 45 000) and their effect on the clo-
sure phase. We found the variation in closure phases saturates
beyond 20 000. Therefore, we settled for 20 000 source counts
in favour of faster computation. However, it should be noted that
pinpointing the exact number of source counts where the closure
phase saturates is challenging to find. The entire task of sky-map
generation and foreground visibility estimation was accomplished
using Hyperdrive.d The sky visibilities are generated using fully
embedded antenna element (FEE) beam with real-MWA observ-
ing scenario where the information of dead dipoles (if present
during the observation) and antenna gains are incorporated in the
simulation. Fig. 2 shows 20 000 sources around the EoR1 field
for a given observation. For simplicity, only the single compo-
nent of the sources (or point sources flux density) is shown in
the figure.

4.2 Neutral hydrogen

Next, we estimate the HI visibilities as observed by MWA. In the
limits of the cosmic and sample variance, the characteristic fluc-
tuations in the HI-signal can be assumed to be the same across
the sky; therefore, we can avoid simulating HI box multiple times;
instead, we can use a single HI simulation box. The HI simu-
lation was generated using 21cmFAST (Mesinger, Furlanetto, &
Cen 2010) with a simulation box size of 1.5 cGpc correspond-
ing to 50◦ × 50◦ in the sky at a redshift of 6. Then, we passed
the simulated voxel data cube to WODENe (Line 2022) to gener-
ate the MWA-style visibilities of the HI and output it as uvfits.
The HI visibilities were first generated for each 1.28 MHz coarse
band separately with the matching frequency and time resolu-
tion of 40 kHz and 8 s of the foreground simulations and then
manually stitched together to get the total 30.72 MHz bandwidth.
The final HI visibilities were passed to the processing pipeline

dhttps://github.com/MWATelescope/mwa_hyperdrive.
ehttps://github.com/JLBLine/WODEN.
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Figure 3. Top: closure phase of the sum of the visibilities of the foreground and HI
simulation {FG+HI} for a single triad of 14 m baseline length. Bottom: the differ-
ence between the closure phases of {FG+HI} and FG-only simulation, showing the
sub-milliradian-level fluctuation of the embedded HI-signal in the closure phase.

for further analysis. The foreground and HI visibilities are added
together. We computed the closure phase spectra of the fore-
grounds as well as of the HI imprinted on the foregrounds. Fig. 3
shows the smooth foreground spectra in the closure phase and
the fluctuations (∼ 0.01 milliradian) introduced by the presence
of HI.

4.3 Noise

The total noise consists of sky noise and receiver noise compo-
nents. The receiver temperature for the MWA was assumed to
be Trx = 50 K (Ung et al. 2020), while sky temperature follows a
power law in our observing frequency range (Contents of Volume
2006),

Tsky = T0

(
ν

ν0

)α
;T0 = 180 K, ν0 = 180MHz, α = −2.5 ,

Tsys = Tsky + Trx .
From the system temperature, we estimated the system-equivalent
flux density (SEFD) using Thompson, Moran, & Swenson (2017),

SEFD= 2kBTsys

Aeff

and the RMS,

σ (ν)= SEFD√
	ν	t

, (11)

where kB is Boltzmann’s constant, Aeff is the effective collecting
area of the telescope, and 	ν,	t are the frequency resolution
and integration time, respectively. The σ (ν) is used to generate
the Gaussian random noise and converted into the complex noise
visibilities with a normalisation factor of 1/

√
2 in the real and

imaginary parts. Finally, the noise visibilities were added to the
corresponding foreground and HI visibilities to get the Model of
the sky signal.

4.4 Baseline-dependent gains

The Equation (1) modifies to Vmod
ij (ν)=Vm

ij (ν)gij(ν); in scenar-
ios incorporating baseline-dependent gains, where gij(ν) rep-
resents the baseline-dependent gain factor. We introduced the
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Figure 4. Comparing closure phase spectrum Data (blue) and Model with baseline-
dependent gains (orange line) for EoR1, 28 m baseline length.

baseline-dependent gains using a simple uniform distribution in
the gij(ν) phase with unity amplitude. The scaling factor intro-
duced in the gij(ν) sampling is set to approximately match the
RMS phase of the binned averaged closure phase of the DATA.
We chose brute force method to find the optimal scaling factor for
a given EoR field, with a the single scaling factor for given EoR
field. Fig. 4 shows the binned averaged closure phase of DATA and
Model with gij. The contribution due to the baseline dependent
gains on the binned averaged closure phase about 0.05 rad in both
EoR0 and EoR1 fields, which is the RMS of the ratio between the
Model with gij and Model closure phases. From here onwards, we
use two variants of models in the analysis, the first is a forward
Model without baseline dependent gains and the second is aModel
with gij.

5. Data processing

The following section provides the basic data processing steps we
incorporated into this analysis. The complete schematic flowchart
of the data structure is shown in Fig. A6.

5.1 DATA binning

In the first step, the repeated night-to-night observations are
sorted based on the Local Sidereal Time (LST) and Julian Date
(JD); see Fig. 1. We determined the 14, 24, and 28 m redundant
baseline triads from both Hexagonal configurations of MWA (see
an example in Fig. 5 (right panel) for which the visibilities are esti-
mated). A given triad {a, b, c} includes Nvis = 3 visibilities which
correspond to {Vab,Vbc,Vca}. The number of triads (Ntriads) varies
depending on the baseline length. In our case, the Ntriads are 47,
32, 29 for 14, 24, and 28 m baselines, respectively. Please note that,
when accurately measured, the 24m baseline is 14

√
(3)≈ 24.25m;

however, we chose the former for the simple denomination. On the
other hand, the 14 and 28 m baselines are nearly accurate for the
antenna positional tolerance ofMWA tiles. Each dual-polarisation
observation was made for 112 s, which included Ntimestamps = 14
each with 8 s of averaged data and a frequency resolution of
40 kHz, which provides a total of Nchannels = 768 frequency chan-
nels with a bandwidth of 30.72 MHz. The entire observations can
be restructured into;

Nobs ≡ {NLST,NJD,Ntimestamps,
Npol,Ntriads,Nvis,Nchannels} (12)

5.2 RFI flagging

The MWA high band (167–197 MHz) lies in the digital television
(DTV) broadcasting band; thus, we expect RFI to be present in our
dataset (Offringa et al. 2015), which in some cases can completely
dominate the useful data from the observations. As mentioned in
the previous sections, since our analysis required keeping all the
frequency channels from our datasets, we did not perform any fre-
quency channel-based RFI flagging in the data preprocessing step.
Instead, we incorporated SSINS (Wilensky et al. 2019), which is
designed to detect faint RFI in the MWA data, to either discard
the entire frequency band or keep it based on the RFI occupancy
of the dataset. Instead of assuming a persistent RFI along a fre-
quency channel, we check for the RFI along the observation time
(i.e. along the Ntimestamps axis).

The flagging was performed based on the RFI z-score of an
observation. Note that the z-score was estimated at successive
adjacent timestamps to measure if any faint or persistent RFI was
present in the data across all timestamps (see Fig. 6). We took a z-
score threshold of 2.5, below which the data was considered good,
and the channels where the z-score exceeded the threshold were
considered RFI-affected. Then, we independently estimated the
level of such RFI-affected channels along the frequencies at each
timestamp and checked if the RFI occupancy at a given timestamp
was more than 5%. As a first step in selecting good timestamps,
we chose an RFI occupancy level of 5% as a threshold. We dis-
carded the entire timestamp if the RFI occupancy exceeded this
threshold. Fig. 7 presents RFI occupancy for the entire dataset.
Since SSINS z-scores are estimated relative to the successive adja-
cent timestamps, it might be difficult to quantify whether the RFI
leakage between the adjacent timestamps (where one is good and
another is bad) is there or not. Therefore, in the second step, we
again flagged all the timestamps based on whether they had a bad
neighbouring timestamp. The flagging provides a masked array,
further propagated through other data processing steps.

5.3 Triad filtering

The presence of faulty tiles or dipoles/antennae corrupts the volt-
ages recorded by the correlator; therefore, we are required to
cross-check the visibilities at each antenna triad. The easiest way
was to perform a geometric median-based rectification on the clo-
sure phase. We performed a two-step median rectification on the
closure phase. For a given observation, the data structure of the
triad filtering can be shown as follows:

φ∇ ≡ {Npol,Ntriads,Ntimestamps,Nchannels}
First, we estimated the median absolute deviation (MAD =
Median(|Xi − X̄|)) of the closure phases against the mean along
the Ntriads,

φMAD
∇ ≡ {Npol,Ntriads,Ntimestamps,Nchannels}

and then we estimated the mean of theMAD (i.e. MADmean) along
the Nchannels axis. Finally, we estimated the MAD of the MADmean.

μ{φMAD
∇ } ≡ {Npol,Ntriads,Ntimestamps, 1}

This step provides a single value of the MADmean for a given triad
at every timestamp.

MAD{ μ{φMAD
∇ }} ≡ {Npol,Ntriads,Ntimestamps, 1}
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Finally, we masked the triads if the mean of the MAD is greater
than 1σ ≈ 1.4826 of MAD and considered the triad performing
poorly at that given timestamp.

5.4 Coherent time averaging

The coherent averaging gives us an estimate of a timescale up to
which the sky signal can be assumed identical and averaged coher-
ently to improve sensitivity. It can be estimated by measuring the
variation in the sky signal with time for a fixed pointing. Indeed,
these vary with instrument and frequency of observation since the
beam sizes are different. To check this with MWA, we used a con-
tinuous drifted sky simulation (FG and HI) under ideal observing
settings (i.e. unity antenna gains, equal antenna element elevation
from the ground) for ≈ 0.5 h while keeping a fixed zenith point-
ing. The sky moves about ≈ 7.5◦ in 0.5 h, which is less than the
MWA beam size of ≈ 9◦ − 7.5◦ at the shortest (14 m) triad, thus
justifying the simulation time range of 0.5 h.

We simply added the ideally simulated visibilities (FG and HI)
and estimated the closure phase power spectrum as a function of
time for higher delay (|τ |> 2μs). We used a fractional signal loss
of 2% tomeasure the coherence threshold, a similar approach used
by [Keller et al.(2023)]. The fractional loss in power is defined as,

1− η= 〈|ψ∇(t, τ )2|〉 − |〈ψ∇(t, τ )〉|2
〈|ψ∇(t, τ )2|〉 (13)

The choice of |τ |> 2μs is to choose the timescale based on the
loss of HI signal, which is where it would be significant, namely,
the higher delay modes. Fig. 8 shows the fractional loss of coher-
ent HI signal power as a function of averaging timescale for three
triad configurations. We found the coherence averaging time for
{∇ :14, 24, 28} triads to be approximately 408, 130, and 120 s,
respectively.

6 Results

The bandpass structure of the MWA leaves significant systematics
in the edge channels. Usually, these edge channels get flagged in
the early data preprocessing step. However, we did not apply the
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Figure 9. The real part of the complex exponent of the closure phase for XX polar-
isation 28 m baseline. The data matches with the foreground simulations. For the
sanity check, the foreground simulation of the same is plotted over the data. Despite
eliminating element-based bandpass gains, the data contains periodic spikes corre-
sponding to the 1.28 MHz coarse channel edges of the MWA bandpass, indicating
possible systematics of baseline-dependent origin.

flags since we require the full observing band for the delay spec-
trum analysis. The closure phase must be free of phase errors asso-
ciated with the individual antenna elements. Thus, we expected
the element-based bandpass structure to be removed in the clo-
sure phase. However, we still observed some residual bandpass
structures in the closure phases; see Fig. 9. It can happen if there
are some baseline-dependent gains present in the data in addi-
tion to antenna-dependent gains. We validated our hypothesis by
developing a simple bandpass simulator, where we introduced an
additional bandpass structure to MWA data that consisted of both
element-based and baseline-dependent terms. The bandpass per-
sists if baseline-dependent gains are present in the data, which
otherwise gets completely removed if only antenna-based gains are
present in the data (see Appendix Fig. A4). In total, about 128 fre-
quency channels are affected by the bandpass, which accounts for
about 16% of the total bandwidth.

6.1 Mitigation of baseline-dependent bandpass effects

We investigated two approaches to overcome the presence of
baseline-dependent edge channel effects, the first being the Non-
uniform Fast Fourier transform (NFFT), where we tried to avoid
the bandpass-affected channels in the Fourier transform. The sec-
ond Gaussian Process Regression (GPR) based data inpainting to
estimate the missing channel information at the location of the
spikes in the bandpass spectrum.

6.1.1 Gaussian Process Regression (GPR)

GPR (Wiener 1949; Rybicki & Press 1992; Robertson et al. 2015)
is a popular supervised machine learning method. GPR has pre-
viously been used in foreground subtraction (Mertens, Ghosh, &
Koopmans 2018; Ghosh et al. 2020), and data inpainting (Trott
et al. 2020; Kern & Liu 2021) and characterisation (Pagano et al.
2023) for 21-cm cosmology studies. We follow a similar formal-
ism to Kern & Liu (2021). In the first step, we identified all
the bad edge channels in the bandpass and flagged them in the
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Figure 10. Top: bin-averaged closure phase of the data shown by blue and GPR
reconstruction orange line. Bottom: RMS of the difference of closure phase. The edge
channels were removed while calculating the RMS in the data, whereas only the edge
channels were retained for the GPR.

closure phase. As mentioned before, edge channel contamination
is present in the MWA data. The data at 40 kHz resolution has
768 frequency channels and 128 contaminated edge channels. We
implemented GPR on the complex exponent of the closure phase
exp(iφ∇(ν)), with the real and imaginary components separately.
The GPR implementation was rather simplistic since the complex
phase varies between [0, 1]. We used the Matérn kernel as model
covariance in our analysis. To optimise the kernel hyperparame-
ters, we used the scipy-based L-BFGS (Liu & Nocedal 1989) to
find the minima of the objective function. The optimisation was
reiterated over ten times to ensure the kernel hyperparameters’
convergence. Note that for a given frequency range, we applied
GPR to the entire Nobs (see Equation 12) separately; therefore, the
kernel Hyperparameters are also different for each closure phase
frequency spectrum.

Fig. 10 shows the closure phase of the data and GPR recon-
struction. In the top panel, the data can be seen with spikes at
regularly spaced edge channels of≈ 1.28MHz intervals. The inter-
polated values of the closure phase are plotted over the data. The
bottom panel shows the difference in the RMS in the closure phase
along the frequency axis. Note that, while estimating the relative
difference in the data closure phase, we avoided the noisy edge
channels, whereas, for the GPR case, we only included the rela-
tive difference near the edge channels. This will enable us to query
whether the GPR closure phase has a similar variation across the
frequency compared to the data. It can be seen that the RMS of the
data is higher than the GPR values, which means that the GPR has
performed quite well. We used the Python-based module GPyf for
the GPR implementation.

6.1.2 Non-uniform Fast Fourier transform (NFFT)

NFFT is a well-known method to get the Fourier transform of the
data with missing samples (Dutt & Rokhlin 1993; Beylkin 1995).
To estimate the FFT of bandpass-affected data, first, we removed
the 128 edge channels from the data and estimated the �∇(ν)

fhttps://github.com/SheffieldML/GPy.
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the regularly spaced spikes, which correspond to ≈ 1.28 MHz). NFFT significantly
dampens the bandpass, but the spikes persist in the spectrum. GPR reconstruction
shown by the blue line provides the cleanest spectra.

(a Fourier conjugate of Equation 4), which is then supplied to
the NFFT function to get �∇(τ ). We used a Python-based NFFTg

package to develop the NFFT functions.
The absolute values of the closure phase delay cross-power

spectrum are shown in Fig. 11. It can be seen that the data is highly
affected by the excess systematics in the power, evident by the
periodic spikes. NFFT significantly reduces the bandpass system-
atics but does not eliminate it entirely. Since the GPR performed
best between the two methods, we adopted only the GPR for the
later analysis. From now on, we will be using ‘GPR-reconstructed
DATA’ as ‘DATA’ for the entirety of the paper.

6.2 Cross-power spectrum estimation

We proceeded to the power spectrum estimation after eliminating
a significant part of the baseline-dependent bandpass contamina-
tion using GPR inpainting. Based on the LST-JD of the observa-
tions (see Fig. 1, we split the dataset equally along the JD axis (i.e.
NJD = 2). We binned the data along LST according to the coher-
ent averaging time of MWA, which we already estimated for the
redundant 14 m, 24 m, and 28 m baselines, resulting in 5, 14,
and 17 LST bins, respectively. The first level of weighted averaging
(i.e. coherently averaging) was done to the bispectrum (visibility
triple product) and effective foreground visibilities, (Veff), that lie
within the same LST bin. The weights are the number of good
observations left after being rectified by the RFI flagging and
triad filtering within the given LST bin for a given polarisation
and triad.

In the next step, we estimated the delay spectra, �∇(τ ), from
the phase of the LST binned averaged closure spectra at each LST
bin. It resulted in delayed spectra data structure,

{NLST,NJD,Npol,Ntriads,Ndelays}; Ndelays =Nchannels

Finally, we estimated the cross-power between the unique triad
pairs of the delay spectra across the two JD bins according to

ghttps://github.com/jakevdp/nfft.
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Figure 12. Cross power spectrum of the closure phase delay spectrum for EoR0 observing field. The left panel represents the DATA, middle panel Model {FG+HI+ noise} and the
right Model with gij . The top, middle, and bottom panels show the power spectra for 14, 24, and 28m baseline lengths, respectively. The real part (filled circles) denotes the power,
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Equation (6) where

�̃∇(τ ).�̃ ′
∇(τ )=

1
NtriadsC2

Ntriads∑
i,j

�̃∇(i, τ ).�̃∇(j, τ ), i> j, (14)

where i, j runs over Ntriads (upper triangle of the {i, j} pairs) from
the first and second JD bins. The normalising factor of 2 arises
since phases only capture half the power in the fluctuations. After
this operation, the data structure of the binned averaged cross
P∇(k||) becomes

{NLST, NJDC2,Npol, NtriadsC2,Ndelays}; NJDC2 = 1.

We took the weighted mean (i.e. incoherently averaged) along
the triad pairs, where the weights were propagated from the pre-
vious step (refer to data flowchart Fig. A6 for details). As the sky
varies with LST, we applied the inverse variance weights along the
LST axis and averaged them to get the final estimates of the power
spectrum. The same operation was done for the imaginary part of

the data to get an estimate of the level of systematics in the power
spectrum.

Ultimately, we incoherently averaged the two polarisations and
downsampled the original delays to the effective bandwidth of the
applied window function (i.e.≈ 12.9MHz).We used Scipy-based
BSpline to interpolate at the new downsampled delays. The final
estimates of the closure phase power spectra are shown in Figs. 12
and 13 for the EoR0 and EoR1 fields, respectively.

6.3 Error estimation

The uncertainties on the power spectrum can be estimated in mul-
tiple ways.We primarily focused on estimating the uncertainties in
two ways, the first being ‘noise+systematics’ and the second only
noise, where we tried to mitigate the systematics.

6.3.1 Noise+systematics
To estimate uncertainties in power, we increased the number of
samples that go into the uncertainty estimation by splitting the
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Figure 13. Same as Fig. 12 but for EoR1 observing field.

JD axis into four parts (i.e. NJD = 4). This led to the data (�∇(τ ))
structure being {NLST,NJD = 4,Npol,Ntriads,Ndelays}. We similarly
estimated the cross-power of the Ntriads along the unique pairs
of NJD axis. This operation provided us with {Npol,NLST, NJDC2 =
6, NtriadsC2,Ndelays} unique power spectra. The weighted mean
power was estimated by along NtriadsC2 where the weights are com-
ing from the number of good observations that went into the �∇
for a given triad.

Next, We estimated the weighted variance on the power using
the standard error of the weighted mean provided in Cochran
(1977),

(SEMwtd)2 = n
(n− 1)(

∑
wi)2

[
∑

(wiXi − w̄X̄wtd)2

− 2X̄wtd
∑

(wi − w̄)(wiXi − w̄X̄wtd)+ X̄2
wtd

∑
(wi − w̄)2] ,

(15)

where wi are the weights, and n represents the weight count. Note
that since the NJD = 4, we are required to normalise the variance.

Fig. A6 illustrates the detailed data structure flow for the noise
estimation.

6.3.2 Noise

The uncertainties for the only noise case follow a similar pro-
cedure as the previous one, with the same JD split (i.e. NJD =
4), the cross-power is estimated, which led to the data struc-
ture {Npol,NLST, NJDC2 = 6, NtriadsC2,Ndelays}. After this operation,
we took the difference in the power spectra between the unique
pairs of JD (i.e. the same sky signal). The only noise scenario can be
understood assuming the cross-power between the two indepen-
dent JD bins correlates with the common signal and systematics
across the triads. Assuming the power is coherent within the LST
bin, the successive unique difference in the power within the LST
bin eliminates the correlated power and systematics, leaving only
the noise-like residuals. Also, since the differences eliminate the
sky signal, the LST variation in the difference power is minimal;
thus, we collapsed our datasets into a single axis and estimated the
weighted standard deviation of the differenced power to get the
final noise-like uncertainties. Finally, again, we took the weighted
variance using Equation (15).
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Table 1. 2-sided KS test comparison between the Data andModel, Data
and Model with gij at k|| > 0.15 (pseudo hMpc−1).

2-sided KS-test

field ∇ Model Model with gij
p-value statistic p-value statistic

14 m 6× 10−6 0.51 0.24 0.21

EoR0 24 m 8× 10−4 0.40 0.50 0.17

28 m 2× 10−6 0.53 0.09 0.25

14 m 2× 10−3 0.38 0.84 0.13

EoR1 24 m 3× 10−2 0.29 0.68 0.15

28 m 8× 10−3 0.34 0.24 0.21

6.4 Validation

We performed a two-sided KS test on the closure phase power
spectra of the data and two model variants for the statistical com-
parison. The null hypothesis was rejected in all scenarios with the
Model (without baseline dependent gains); however, it failed to
reject the null hypothesis in all scenarios when using the Model
with gij. The former implies that the data and themodel uncertain-
ties were unlikely to be drawn from the same distribution, whereas
the latter concludes the contrary. The test results are provided in
Table 1. The test results for the Model are not unexpected since
we can see that the RMS floor levels of the data and Model are
sufficiently different, which match the data and Model with gij.
We modelled the excess RMS in the data as arising from baseline-
dependent gain factors, although it is believed to have originated
from the systematics and residual RFI. Note that we do not claim
that the excess noise in the data is solely due to the baseline depen-
dent systematics; however, if the argument is true, the baseline
dependent gains introduced in our analysis suffice for the excess
power in the data.

6.5 21-cm power spectrum

We estimated the final dimensionless 21-cm power spectrum from
the closure phase power spectrum. The closure phase delay power
spectrum can be written into a 21-cm power spectrum (‘pseudo’)
as follows:

	2
∇(k)=

k3P∇(k||)
2π 2 [pseudomK2] (16)

where k2 = k2⊥ + k2||, with k⊥ = 2π |b∇ |
λD , where b∇ is the baseline

length of the triad, and D is the cosmological comoving distance.
Note that the 21-cm power spectrum estimates from the closure
phase power spectrum should not be interpreted as true but rather
the approximate representation of the actual 21-cm power spec-
trum (Thyagarajan et al. 2020; Keller et al. 2023). The power
spectra converted to cosmological units for EoR0 and EoR1 fields
are shown in Figs. 14 and 15, respectively.

Assuming the convergence to normal distribution due to
the central limit theorem, we estimated 2σ (95% confidence
intervals (CI)) using the uncertainties since our sample size
was sufficient (>30). The upper limits on the 21-cm power
spectrum (pseudomK2) were then estimated {	2

∇UL = (μ	2
∇ ±

CI) [pseudomK2]} for both the EoR0 and EoR1 fields are provided
in the Table 2, and the full table in the (Appendix 1.5).

7. Discussion

We used the closure phase delay spectrum technique to obtain
an independent estimate of the 21-cm power spectrum for the
MWA phase II observations. These observations were centred on
the EoR0 and EoR1 fields and were zenith-pointed, similar to the
observing strategy of HERA. Our analysis revealed that MWA
observations are possibly suffer from a baseline-dependent band-
pass structure, which is especially noticeable in the edge channels.
This bandpass structure results in structured bumps in the delay
power spectrum (see Fig. 11), significantly contaminating the
power spectrum. To address this issue, we explored two meth-
ods: Gaussian Process Regression (GPR) and Non-uniform Fast
Fourier Transform (NFFT), to inpaint and mitigate the impact of
the bandpass-affected edge channels on our power spectrum esti-
mation. However, we decided against adopting the NFFT method
because, although it reduced the magnitude of the bandpass, the
bandpass remained evident in the NFFT delay spectra (see Fig. 11).
Finally, we estimated the 21-cm power spectra using closure phase
delay spectra. Additionally, we performed forward modelling in
parallel with the observations to gain insights into the nature of
the power spectrum under ideal observing conditions. The main
findings of our analysis are summarised below.

When we averaged closure phases across multiple timestamps
within the same Local Sidereal Time (LST) bin, we noticed a sig-
nificant residual bandpass structure, particularly noticeable in the
edge channels (see Fig. 9). Since closure phases are unaffected by
element-based bandpass variations, we concluded that these band-
pass issues cannot be simplified into element-based terms and
could instead be dependent on the baseline. To test this hypoth-
esis, we simulated the same effect on foreground visibilities (see
Fig. A4). We explored data inpainting techniques to address these
systematic errors to estimate closure phases in channels contam-
inated by baseline-dependent bandpass systematics (see Fig. 11).
It is important to note that while these baseline-dependent issues
are most noticeable in the edge channels, they could potentially
affect all frequency channels since closure phases do not eliminate
them. These issues also impact standard visibility-based power
spectrum analysis methods. Understanding how the antenna lay-
out contributes to such systematic errors is crucial for execut-
ing baseline-based mitigation strategies. Further investigation is
needed to fully understand the extent to which these systematic
errors affect MWA EoR power spectrum estimates. With a sim-
ple baseline dependent gains in the forward modelling, we aim to
address the anomalies present in the DATA.

On comparing the final closure phase power spectrum of the
DATA and Model for the EoR0 field (see Fig. 12), we found
that the peak power (at τ = 0μs) (i.e. ≈ 1014pseudomK2h−3Mpc3)
of the DATA and Model only roughly matches for the 14 m
triads, however the same for 24 and 28 m triads differ signifi-
cantly. During the initial closure phase estimation stage, we found
EoR0 data having multiple phase wraps, which could be due
to the presence of some systematics or residual RFI. It caused
an overall shift in the peak power away from zero delays in
the coherent averaging. This effect can be seen in the 28 m
triad, which shows greater power next to the zeroth delay (see
Fig. 12). The RMS floor level is between 1-2 orders of magni-
tude higher in the DATA (≈ 108 pseudomK2h−3Mpc3) compared
to the Model (≈ 107pseudomK2h−3Mpc3) and Model with gij (≈
108 pseudomK2h−3Mpc3). This excess power in the data com-
pared to the Model may arise from a smaller DATA sample size in
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Table 2. 2σ upper limits on 21-cm power spectrum (pseudomK2). The two estimates correspond to only-noise and noise+Systematics case.
	2∇UL(pseudomK2)

Field EoR0 EoR1

Baseline ∇:14m ∇:24m ∇:28m ∇:14m ∇:24m ∇:28m
k [pseudo hMpc−1] N. N.+Sys. N. N.+Sys. N. N.+Sys. N. N.+Sys. N. N.+Sys. N. N.+Sys.
0.18 – (392∗)2 (188∗)2 (207∗)2 – – – (526)2 – (361)2 – –

0.24 (347∗)2 (420)2 – – – – – (427)2 – (458)2 (236)2 (314)2

0.30 – (534)2 – – – – (218)2 (263)2 – (503)2 – (512)2

0.36 (490)2 (608)2 – – – – (184)2 (330)2 – (849)2 – (572)2

0.42 – (1 562)2 – (1 065)2 (732∗)2 (708∗)2 (474)2 (434)2 – (1 037)2 – (762)2

1.50 (5 275)2 (7 175)2 (2 466)2 (3 263)2 (2 525)2 (3 751)2 (2 926)2 (2 748)2 (739)2 (3 695)2 (3 758)2 (4 835)2

ak-modes where the uncertainty brackets do not include zero power are masked and shown with dashes (−).
bbest limits for a given baseline triad are shown with filled Gray box and unfilled boxes.
climits quoted with an asterisk (∗) might be affected by systematics or persistent residual RFI.
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Figure 14. 21-cm power spectrum from 14m (left), 24 m (middle), and 28 m equilateral triads for the EoR0 field.
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Figure 15. Same as Fig. 14 but for the EoR1 field.
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the EoR0 field or systematics and residual RFI. Using a baseline-
dependent gain factor in the simulation, we aimed to incorporate
such systematics. We performed a 2-sided KS test on the DATA
and Model at k|| > 0.15 pseudo hMpc−1, which shows rejection
of the null hypothesis for the likelihood of DATA and Model
drawn from the same distribution at all baseline cases, which is
expected since both differ significantly. In contrast, the KS-test
setifies the null hypothesis when comparing DATA and Model
with gij.

In the closure phase power spectrum of the EoR1 field, the
peak power of the DATA andModel (≈ 1015pseudomK2h−3Mpc3)
match for all triads. The RMS floor level between the Model
and DATA gets significantly better compared to the EoR0 field.
They nearly match in all cases, except for the 14 m triads where
the difference is approximately an order of magnitude higher in
the DATA compared to the Model (see Fig. 13). It shows that
we can improve our estimates of the power spectrum with an
increased number of datasets. Thus, the analysis is data-limited for
the amount of the data used. However, similar to the EoR0 case,
the 2-sided KS test rejected the null hypothesis for all cases on
Model, whereas fail to reject the null hypothesis in favour of the
two distributions Model with gij might be drawn from the same
distribution.

Since our observations lie in the middle of the DTV broad-
casting band, we further investigated for residual RFI in our data.
We shifted our entire analysis to the lower frequency band (167–
177 MHz), avoiding the central DTV-affected band (although, as
shown in figure no. 2 in Offringa et al. 2015, the DTV RFI nearly
covers the entire EoR high-band observations). This analysis can
help understand whether the residual RFI or other systematics are
present in the data. Note that since we reduced our bandwidth
by nearly three, we reduced our sensitivity by the same factor in
the delay power spectrum. Therefore, the direct comparison of
the mean power at k|| > 0.15 pseudo hMpc−1 might not be valid
with the previous result. The closure phase power spectrum for
the shifted spectrum is shown in Figs. A2 and A3. We can see sig-
nificant improvements in the peak power of the DATA and Model
compared to previous results. However, the overall RMS level was
increased by an order of magnitude in all cases, possibly due to
the lesser sensitivity (lower sample size). The DATA peak power
at τ = 0μs, especially in the EoR0 field, now matches the Model.
Thus, we can justifiably argue that DTV RFI, which is expected
to be prominent near 180 MHz, significantly contributed to the
systematics present in the EoR0 DATA. On the other hand, EoR1
DATA seem relatively similar in both analyses, thus indicating
that the systematics (such as persistent RFI) other than DTV RFI
might be present in the data. Our findings are also confirmedwhen
performing the KS-test on the DATA and Model, which shows
non-rejection of the null hypothesis in all EoR1 field scenarios.We
also compared the results with Model with gij which are shown in
Table 3 shows KS-test outcomes of the Data and Model and Data
and Model with gij on the shifted spectrum.

We estimated the 2σ (95% confidence interval assuming
Gaussianity from the convergence to Central Limit Theorem)
on the 21-cm power spectrum for both the EoR0 and EoR1
fields. Our best upper limit on the 21-cm power spectrum of
� (184 pseudomK)2 came from EoR1 field on 14 m triads at
k= 0.36 pseudo hMpc−1 with the noise-only uncertainties. In the
EoR0 field, our best estimate, � (188 pseudomK)2, came from
the 24 m triads at k= 0.18 pseudo hMpc−1 again using the noise-
only uncertainty. However, as we discussed earlier, the systematics

Table 3. 2-sided KS test outcomes on DTV avoided band. The null hypoth-
esis compares the Data and Model, Data and Model with gij at k|| >
0.15 [pseudo hMpc−1].

2-sided KS-test

field ∇ Model Model with gij
p-value statistic p-value statistic

14 m 0.04 0.54 0.98 0.15

EoR0 24 m 0.01 0.61 0.30 0.38

28 m 0.04 0.54 0.13 0.46

14 m 0.13 0.46 0.90 0.23

EoR1 24 m 0.59 0.30 0.30 0.38

28 m 0.13 0.46 0.13 0.46

or residual RFI might have still affected these estimates, which
we aim to address by introducing baseline-dependent gains in
the modelling. It should be noted that, the exact nature of such
baseline-dependent gains is not well understood. We have seen
that, unlike Foregrounds, which usually gets restricted in lower
delay modes, allowing faint HI signal to fluctuate visible at higher
delay modes, the systematics equally affect all delay modes. Thus,
for the scientific goal of observing milliradian-level sensitivity
could be a significant challenge if such baseline dependent gains
are present in the DATA. However, with extensive coherent aver-
aging, the effect of such can be reduced. It should also be noted
that the exact description of anomalies in the DATA can not
be solely due to baseline-dependent systematics. Therefore, we
state that if only the baseline-dependent systematics is present in
the data, the level of noise introduced by the baseline-dependent
gains justifies our DATA. Nevertheless, the level of fiducial HI
and FG+HI powers are still lower than the data by 4–5 and 3–
4 orders of magnitude, respectively; however, since our analysis
is still data-limited, there is significant scope for improving upon
the current estimates. Table 2 provides the best 2σ estimates while
table Appendix 1.5 provides all estimates for each triad studied
here.

8. Summary

We present independent EoR 21-cm power spectrum results from
the closure phase analysis of ≈ 12 h of MWA phase II data in
the frequency range 167–197 MHz on three redundant baseline
groups, namely, 14, 24, and 28m baselines. Using the closure phase
diagnostic, we found evidence for significant baseline-dependent
systematics in the MWA data. Our best estimates of the 21-cm
power spectrum at z = 6.79 are � (184 pseudomK)2 at k= 0.36
pseudo hMpc−1 in the EoR1 field using 14 m baseline triads and
� (188 pseudomK)2 at k= 0.18pseudo hMpc−1 in the EoR0 field
using 24 m baseline triads. Even with the limited amount of data
analysed, our closure phase method shows significant promise
in independently constraining the 21-cm power spectrum dur-
ing the EoR. Our results are still data-limited; hence, there is
scope for further improvement by including more data in the
analysis. Extensive sky modelling, such as accounting for the
Galactic diffuse emission, is required before directly comparing
the closure phase analysis with the standard visibility-based power
spectrum.
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Appendix 1. Appendix

Appendix 1.1. Inner vs Outer triads

The core of MWAHexagons may bemore affected bymutual cou-
pling than the tiles near the edges. Therefore, we tried to perform
an independent check on the power differences between the inner
and outer tile triads to quantify the cross-talk level in the data.
We chose 14m baseline triads to get a higher count and only esti-
mated the closure phase power spectrum from them.We used first
and second outer layer of the Hexagon configuration as the outer
triads, and third and fourth tile layers as inner triads (see right
panel of Fig. 5). In scenarios, where either two tiles from outer
while the third from inner, or vice versa, we considered those triads
to be outer or inner triads, respectively. Fig. A1 shows the clo-
sure phase power spectrum of the inner and outer triads at 14m
baseline lengths. We observed the relative percentage difference
between the RMS power estimated for k|| > 0.15 pseudo hMpc−1

between inner triads is higher than the outer triads are about
41%, 34% for EoR0 and EoR1 fields, respectively. However, the rel-
ative difference with theModel RMS (Figs. A2, A3)≈ 6%, -25% for
inner and outer triads in EoR0 field, and ≈ 186%, 114% for inner
and outer triads in EoR1 field. These when comparing with the
mean RMS value of theModel (≈ 108, 107pseudomK2h−3Mpc3 for
E0R0, EoR1 fields) consistent with each other.
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Figure A1. Power spectrum comparison between the Inner (filled circles) and Outer (empty circles) in 14 m triads for EoR0 (Left) and EoR1 (Right) fields, respectively.
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Appendix 1.2. Avoiding DTV

The observations are centred around 180 MHz, which overlap
with the Australian Digital Television (DTV) band; therefore,
despite the extensive RFI flagging, some RFI could remain in the
final processed data. Therefore, a useful test would be to shift the
spectral window to lower frequencies, avoiding the DTV band in
the analysis.

To do this, we worked with the first ≈ 10 MHz band (167–
177 MHz) of the total 30.72 MHz bandwidth and estimated the
cross-power spectrum using the same procedure. However, the
effective bandwidth for this analysis was reduced to ≈ 3.3 MHz,
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Figure A2. Cross power spectrum of the closure phase delay spectrum for EoR0 observing field when the window function is shifted towards lower frequencies (167–177) MHz to
avoid the DTV frequency band around 180 MHz. All symbols, colours, and line styles are the same as in Fig. 12.

thus reducing the sensitivity by the same factor. The idea was
to check whether the floor level of the power spectra (refer to
Figs. 12, 13), which shows the excess power in the DATA, reduces
and matches with the Model in the shifted window. It would sug-
gest that the RFI could be localised in the central portion of the
band, which is one of the major contributors to the excess power.
However, the power spectra of shifted window (see Figs. A2 and
A3) show similar behaviour as that in Figs. 12 and 13, indicat-
ing that the level of the RFI might be ubiquitous across the entire
observing band along with the systematics in the data which are
not being modelled in the simulations.
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Figure A3. Same as Fig. A2 but for the EoR1 field.

Appendix 1.3. Diagnosing bandpass systematics

We checked the closure phases for the baseline-dependent system-
atics, which persisted in the MWA data by modifying the antenna
element-based gains (g′

is Equation 3). First, we created one set of
MWA bandpass using random Gaussian between [0, 1] for each
edge-channel frequency. We multiplied these by each visibilities
in the correct parity pair order. It provides us with modified visi-
bilities with randomised gains at the edge channels, which mimics
the bandpass-affected visibilities. We used simulated flux densi-
ties for this procedure since they were produced ideally with unity
antenna gains (although it does not affect having unity gains in the
first place).

Second, we used two scenarios to modify the bandpass fur-
ther. In the first, the antenna element-based gains were modi-
fied with new gains multiplied by the existing ones. This step
verifies how the individual antenna-based gains vanish in the
closure phase, illustrated in the top panel of Fig. A4. In the
second scenario, instead of multiplicative gains from individ-
ual antenna elements (e.g. gi, gj), we multiplied an additional
baseline-dependent term (gij) that is not factorisable into element-
based terms. It demonstrated that baseline-dependent gains do
not cancel in the closure phase; see the same Fig. A4 bottom
panel, where the residual difference between the residuals between
the closure phase modified with gij and the original does not
vanish.
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Appendix 1.4. Incomplete modelling

Realistic vs. ideal beams or using fewer foreground sources can
affect the final power estimates. Thus, we produced two test fore-
ground simulations, one with the same 20 000 foreground sources
but with ideal beam conditions where all dipole gains are active
and set to unity (FGI20k) and a second with only 5,000 fore-
ground sources and real beam conditions, dead/missing dipoles
incorporated in the beam evaluation (FGR5k), which we compared
against 20 000 foreground sources but with real beam conditions
(FGR20k). Note that in themain results, we used 20 000 foreground
sources with real beams, which are compared against the two test
scenarios. The three cases’ final closure phase power spectrum,

foreground with real dipole gains with 20 000 sources, foreground
with unity dipole gains with 20 000 sources, and foreground with
real dipole gains with 5 000 sources, are shown in Fig. A5. We
obtained RMS power at ≥ 1.0 pseudo hMpc−1 to differentiate the
two scenarios with the foreground with real dipole gains with 20
000 sources. The relative percentage error for unity dipole gains
(20 000 sources) at 14, 24m, and 28m baselines are 4%, 39%, 0.3%,
and for real dipole gains (5 000 sources) at 14, 24, 28 m baselines
are 1.7%, 1.9%, 40%, respectively. Comparing with the RMS value
of the Model from Figs. A2, A3) (≈ 108, 107pseudomK2h−3Mpc3
for E0R0, EoR1 fields), these relative differences in both
the scenarios are sufficiently less, thus, consistent with the
Model.
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Appendix 1.5. Data Structure Flowchart

As we proceed through the different averaging steps, the data
structure is shown as a flowchart in Fig. A6.

Table A1. Complete table of 2σ upper limit estimates of 21-cm power spectrum (pseudomK2).

	2∇UL(pseudomK2)

Field EoR0 EoR1

Baseline ∇:14m ∇:24m ∇:28m ∇:14m ∇:24m ∇:28m
k (pseudo hMpc−1) N. N.+Sys. N. N.+Sys. N. N.+Sys. N. N.+Sys. N. N.+Sys. N. N.+Sys.
0.18 – (392∗)2 (188∗)2 (207∗)2 – – – (526)2 – (361)2 – –

0.24 (347∗)2 (420∗)2 – – – – – (427)2 – (458)2 (236)2 (314)2

0.30 – (534∗)2 – – – – (218)2 (263)2 – (503)2 – (512)2

0.36 (490∗)2 (608∗)2 – – – – (184)2 (330)2 – (849)2 – (572)2

0.42 – (1 562∗)2 – (1065∗)2 (732∗)2 (708∗)2 (474)2 (434)2 – (1037)2 – (762)2

0.48 – (2391)2 (1 133)2 (1358)2 (834)2 (943)2 – – – (1 888)2 – (1 082)2

0.54 – (1 593)2 (658)2 (772)2 – – – – (1252)2 (1 336)2 – (998)2

0.60 (1 152)2 (1 525)2 – – – – – – (1 531)2 (2 013)2 – (1 129)2

0.66 (1 329)2 (1 830)2 (724)2 (932)2 (826)2 (989)2 (687)2 (720)2 – (1 610)2 – (1 639)2

0.72 – (2 298)2 – (1 098)2 (1 436)2 (1 539)2 – – (1 083)2 (2 148)2 – (1 875)2

0.78 (1 252)2 (2 312)2 – – – – (785)2 (855)2 (958)2 (2 090)2 (1 203)2 (1 509)2

0.84 (1 407)2 (2 284)2 (1 660)2 (1 771)2 – – – (884)2 – (2 008)2 – (2 902)2

0.90 – (7 324)2 – – – – – (1 391)2 – (3 798)2 (1 193)2 (2 520)2

0.96 – (8 728)2 (3 935)2 (4 599)2 – – (1 325)2 (1 647)2 – (6 085)2 (598)2 (2 326)2

1.02 (3 608)2 (5 318)2 (2 004)2 (2 214)2 – – (1 045)2 (1 325)2 – (3 104)2 – (1 753)2

1.08 – (5 048)2 – – (1 961)2 (2 473)2 (1 024)2 (1 212)2 – (4 041)2 – (2 176)2

1.14 (3 273)2 (4 149)2 – (3 152)2 – – (1 375)2 (1 648)2 – (4 893)2 (1 327)2 (2 708)2

1.20 – (3 694)2 – – (2 501)2 (2 524)2 (1 828)2 (1 758)2 (2 342)2 (3 550)2 – (2 273)2

1.26 (2 841)2 (5 036)2 – – – – – – (1 038)2 (4 967)2 (2 468)2 (3 158)2
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Table A1. (Continued)

	2∇UL(pseudomK2)

Field EoR0 EoR1

Baseline ∇:14m ∇:24m ∇:28m ∇:14m ∇:24m ∇:28m
k (pseudo hMpc−1) N. N.+Sys. N. N.+Sys. N. N.+Sys. N. N.+Sys. N. N.+Sys. N. N.+Sys.
1.32 (5 160)2 (6 225)2 (2 393)2 (2 832)2 (2 412)2 (2 996)2 – – (1 360)2 (5 115)2 (1 885)2 (3 286)2

1.38 (6 337)2 (8 341)2 – (7 501)2 – – (1 393)2 (1 788)2 – (9 528)2 – (3 420)2

1.44 – – (4 462)2 (4 316)2 (5 041)2 (5 977)2 – (2 156)2 (3 262)2 (6 583)2 – (3 391)2

1.50 (5 275)2 (7 175)2 (2 466)2 (3 263)2 (2 525)2 (3 751)2 (2 926)2 (2 748)2 (739)2 (3 695)2 (3 758)2 (4 835)2

1.56 (5 722)2 (6 703)2 (3 258)2 (3 487)2 – – – (3 149)2 (3 273)2 (4 824)2 – (5 720)2

1.62 (6 298)2 (6 931)2 – – – – (2 313)2 (2 826)2 – (5 113)2 (2 798)2 (4 530)2

1.68 (5 693)2 (7 257)2 – – (3 419)2 (3 759)2 (2 551)2 (2 965)2 – (7 644)2 – (4 205)2

1.74 – (6 169)2 – – – (4 612)2 (1 920)2 (2 523)2 – (3 926)2 – (5 890)2

1.80 – (10 763)2 (5 303)2 (5 298)2 – (10 595)2 (2 145)2 (2 714)2 (3 837)2 (7 290)2 (4 584)2 (5 548)2

1.86 – (19 820)2 – – – – (3 223)2 (3 471)2 – (15 979)2 – (9 441)2

1.92 – (12 907)2 (6 168)2 (7 035)2 – – (3 953)2 (3 897)2 (3 023)2 (7 422)2 – (9 452)2

1.99 – – (4 682)2 (5 501)2 (7 153)2 (7 474)2 – (4 728)2 – (8 259)2 (3 951)2 (6 392)2

2.05 – (12 125)2 – – – – (3 891)2 (4 085)2 – (8 977)2 (2 479)2 (7 569)2

2.11 (6 947)2 (11 203)2 – – – (7 096)2 – (4 641)2 – (5 832)2 – (8 127)2

2.17 (8 365)2 (8 825)2 (4 205)2 (5 379)2 – (7 607)2 – – (6 522)2 (9 015)2 – –

2.23 – (13 263)2 – – (6 100)2 (6 331)2 – – (5 587)2 (10 802)2 – –

2.29 – (16 087)2 – – (6 661)2 (8 300)2 (5 563)2 (4 660)2 (4 315)2 (8 076)2 – (9 638)2

2.35 – (17 405)2 (7 399)2 (8 814)2 (5 434)2 (6 674)2 (5 612)2 (6 196)2 – (14 833)2 – (11 609)2

2.41 (9 506)2 (13 119)2 (7 532)2 (8 437)2 (8 020)2 (9 034)2 (4 847)2 (5 121)2 – (11 582)2 – (11 719)2

2.47 (11 678)2 (14 416)2 – – (5 505)2 (7 577)2 (4 176)2 (4 897)2 (6 363)2 (10 704)2 (3 984)2 (8 565)2

ak-modes where the uncertainty brackets do not include zero power are masked and shown with dashes (−).
blimits quoted with an asterisk (∗) might be affected by systematics or persistent residual RFI.
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Figure A6. Schematic flow chart of the data structure through processing pipeline.
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