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AN /7 SATURATION THEOREM FOR SPLINES
G. J. BUTLER AND F. B. RICHARDS

1.LetA,: 0 = x,™ < 2™ < ... < %, = 1 be asubdivision of [0, 1], and
let ¥:(4,) denote the class of functions whose restriction to each sub-interval
[x;1™, x,™) is a polynomial of degree at most k. Gaier [1] has shown that for
uniform subdivisions A, (that is, subdivisions for which x,™ = ¢/n)

IIf = F@ll, = o(m™)

if and only if f is a polynomial of degree at most k. Here, and subsequently, ||-||,
denotes the usual norm in L?[0, 1], 1 < p =< o0, and we should emphasize that
functions differing only on a set of Lebesgue measure zero are identified.

One of the authors [4] has recently characterized those functions f for which

[|f — &80 |le = O(m ).

In this paper we solve the corresponding problem for the L? norms, 1 < p < .
Let

1 1/p
Lip, ) = 47+ ([ 116+ 0 = spas) " = 06
(f assumed to be identically zero outside [0, 1]) and define
L= {f: f€ C*0, 1], f ®D is absolutely continuous, f® € Lip(1, L?)}.
Our main result is the following

THEOREM. Let f be a real-valued function on [0, 1] and let {A,}7 be uniform
subdivisions. Then

1 IIf = @)l = O™,
if and only if f € L.

Acknowledgement. The authors wish to thank Professor Z. Ditzian for some
helpful comments.

2. In this section we shall demonstrate the sufficiency part of (1); in fact we
shall establish the following more general result, namely,

LemMA 3. Let f € L 5. Then, given any sequence of arbitrary subdivisions
{An ), there exists a sequence of spline functions {S,}em1 of degree k with knots
at the points of A, (i.e., S, € L(A,) M C¥10, 1]) satisfying

@) If = Salls = Ol Aq][*Y),

where ”An“ = maxi<izp (xi(n) — xi——l(n)).
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We must first prove two other lemmas.
Lemwma 1. If f € Lip(1, L?), then
®3) lf = o), = O(|AdlD

Proof. We first remark that f € Lip(1, L?) implies via the Hoélder inequality
that f € Lip(1, LY), so that f is of bounded variation [2] and hence f € L?[0, 1].
Let us define

1Anll n—1 Zit+1—Zi
D, = fo ) et e — st x)P ded
With the change of variables
U =x—+ x4 v =1—x,

and since f € Lip(1, L?), we have

n—1
D, =Y f
i=0

—HAall

1An]l

[ 1+ 0) = s auas

< K||al|[,
where K is independent of #. Thus there exists 7,, 0 < 7, < ||A,||, such that
n—1 Ti+1—2T4
2 [ + %) = fo + 29" dx < K[|A,|]".

0

Choosing g, to be the step function taking the value f(z, 4+ x;) on [x;, X41), it
follows that
||f - ‘Tn”p = O(“AnH)

LeEmMMA 2. Let f € L?[0, 1] and v be a natural number. If s, € F,_1(A,) M C"2,

n=12, ..., and ¢ is a positive function on the natural numbers such that
4) [|f — sall, = O(é(n)),

then there exists a sequence {S,}me1, Sy € F(A,) M C, satisfying

(5) HF - Sn”p = O(IIAnl|¢(n))

where

F(x) = f f(t)dt.
0
(C is wnterpreted to be the space of all real-valued functions.)

Proof. Consider the B-spline M;(x) of degree » — 1 for the subdivision
A, t=0,1,...,n — v, defined in [6]. It is known [6] that M ;(x) is a non-
negative function having support in [x;, x..), M; € &, M C~2 and

(6) J;l M (x)dx = 1.
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Following [3], define
Zi+1
Ai=f. (f(t)—sn(t))dt, i=0r1r--"n—1’

Zi+1
o= [0 - s, i=01. L n—1,
zq

and
Sp(x) = J; sa(t)dt + Z Aif M ,(t)dt.

Suppose that x; < x < x;4;. Then

n

v

4, f M, (t)dt
0

A;— Y A,J; M ,(t)ds.
=0

F(x) — S.(x) = J: (f@) — s.(@))dt —

- .
Il
- o

= [ 00 - s +

<.
I
=

By (6),

JM,(t)dt=1 for j<7—v» and fMj(t)dt=O for j =74 1.
0 0

5 a1 [mea))

+ Aij; Mi(t)dtl

Thus
|F(x) — S,(x)| = I f (ft) — sn(t))dt)-l—

IA

i

1/p
=4+ X ]Aj|§K[ Z I‘Ta‘p]/

j=i—v+1 -
for some constant K = K(»). Hence
Ti+1 i
™ [ r@ — sawpa < 2 AP — ).

But by Holder's inequality,

Ajp < (w1 — xi)p—l fzm If(t) - sn(t)|"dt

zj

<l 77 170 - sora;

zj

thus
fo "\ F@) — S,
SRIMPE Y Ga—x) [0 - s

=0 j=i—v+1
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and by reversing the order of summation, we obtain
1 n—1 Zj+1
® [ 1Pe) - S@PaE s RIMP S Go-x) [ 150 - sOP
I= zj

s KUIaIP [ 170 - sora

for some constant K; = K;(»). The lemma follows on applying (4) in (8).

Lemma 3 is an easy consequence of Lemmas 1 and 2.

3. We now seek to establish the necessity part of (1). In this section, all
subdivisions A, are assumed to be uniform.

It will be convenient to state at this point the L? version of Markoff’s in-
equality and of two inequalities due to Gaier.

LEmmA 4 (Markoff [1]). Let P be a polynomial of degree k on [a,b] and
0 < j = k. Then there exists a constant K = K(p, k, j) such that

) | [ rowra]” s ko - o] [ e

LemwMA 5 (Gaier [1]). Suppose P is a funciion on | —a, b] which reduces to a poly-
nomaial of degree k on each of [—a, 0] and (0, 0], and define h = P(0+) — P(0—).
Then there exists a constant K = K(p, k) such that

b 1/p
(10) b < K (min <a,b>>—”"[ f_ ) |P<x>|”dx] :

Lemma 6 (Gaier [1]). Let T, € (7)), j=n,n + 1, and let b, denote the
jgumpsof T, atx; =1/n,0o=1,...,n — 1,2.e, b, = T, (x;4+) — T, (x;—).
Let 0 < € < 1/2. Then there exists a constant C = C(e) such that

(i+D) /(4D 1/p
(11) |h| = cn”“"'[ fum | T — Tni"dx]
if e Zi/m = (1 — ¢).
Next we prove

LEMMA 7. Let

(12) If = Sull, = O(w™)
for some sequence S, € Fr(A,), n =1,2,...
Then
(13) f € C*10, 1], f & 4s absolutely continuous
and
(14) [17® = S2l, = 02@™.
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Proof. Since Sen — Sgn+1 € Fx(Asm+1), we may apply (9) to obtain
(15) [|S57 — S§2%|], < K2 Ser — Sons1l|,
SK27H oy =1,2,.. .k,

where K = K(p, k, v), K, = K,(p, k, v) are constants.
Hence there are functions f, € L?[0, 1] satisfying

(16) 1S5 — full, < K270

for some constant Ky = K(p, k, v).
Therefore Sg.” — f,a.e.on [0, 1]and so for almostall ein [0, 1], we have

17) S (€) = fuile).
Let %, denote the jump of S at x; = 127", and let

xo_{Lx;a

* 7 0,x <O.

For x € [¢, 1 — €], we define
(18) Pon(x) = f S ()dt

= ST — SETO — Ak — i/2')

1

where >_;/ means that we sum over those 7 for which e £ 127" <1 — e
By (11),

(19) = weoe |

IIA

CO2 T P[| S — Sl

< Cl (6) 2—n(k+‘l— v—1/p)

Let

(20) flx) = fjf,(t)dt + fo-1(e).
Then,

J1/m

@1) [ f T — f(x)|”de
1/p

< lfor— S50, + [ J:H |57 (%) — Pan(x) —fy_l(e)l”dx]

+ [ fo ' [Pon() + foma(e) — f(x)l”dx]””

=a" + a2 + a3, say.
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From (17)~(19),

/p

(22) a' = [ J:l—‘ | S5 (e) —fu—l(é)lpdx}l

’ 1/p
—I—[Z Ih?’—l)l"] —0asn— 0.

Using (16), (18) and (20), we have

| [ 500 - roraas]”

< IS —fll, = 0asn— 0.

IIA

(23) a3n

Hence, letting # — 0 in (21) and using (16), (22) and (23), we obtain

fra@®) =7 = [0t + fiao
ae.on el — ¢, v=12 ...,k for almost all e in [0, 1]. Since f, = /, it

follows that f,(x) = f (x) a.e. on [0, 1], and this together with (16) establishes
(14). If & = 0, (13) is redundant. If £ = 1, we have

flx) = fjfl(t)dt + f(e) a.e. on [e, 1 — €]

for almost all € in [0, 3], and from (16), f; € L?[0, 1], and hence f; € L0, 1].
Thus we may find x, € (0, 1) and a sequence €¢; > e, > ... — 0 such that

@) = | @+ fe.

It follows that f(e;) — ¢o, say, as ¢ — 0 and defining

8 = | 1O+ 40

we have f(x) = ¢(x) a.e. on [0, 1], and so f is equivalent to an absolutely con-
tinuous function on [0, 1], which is (13).

Essentially similar arguments enable us to establish (13) for general values
of k. This completes the proof of the lemma.

LemMMA 8. Let £, = 1,2, ..., m, berational numbers with a common denomi-

nator ¢ such that min(¢;,1 — &) <1/4,7=1,2,...,m.Leth;,1=1,2,...,m,
be real numbers such that

(24) 2 k"¢ =z N>,
=1
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and let n be amy integral multiple of q. Then there exists an integer | with
n+1 =1 = 2n, such that

25) 21 kil o (s Al)]k‘H'I > (NIPEHD

for some absolute constant c, where p(£;, A;) = info<,<; [E; — j/I.

Proof. Assume first that 1/4 = & > &2 > ... > &, = 1/q. Define ¢, to be
né;, 1 = 1,2,...,m. Then,is a natural number no greater than z/4. Fix 7 and
let 7 be a natural number with 1 =< » < n. Then either we have (i) #/¢; < 7 <
(h + })/%: for some natural number %, or we have (i) (h — 3)/&; < v < h/¢;
for some natural number #.

If case (i) applies, then, since £; = ¢;/n, wehave kn/t; < r < (b + 1)n/t;, and
S0

ti+h_tir—hn< 1

0 T n4r nm+r) =2 +1)"

I\

t
n
Thus

(26) p(£sy Apyr) = (tr — hm)/(n(n + 1)) = &i5/(n + 1), where s =7 — hn/t,

If case (ii) applies, we have

(h—%)ﬁ§r<M,andso
ti ti

tLi+h & hn — tr < 1

nt+r n nn+r)=2m+r)"

0<

Hence

@7) p(Ey Ayy) = Tt _ £

n(n+r)=n+r’

where s = hn/t; — r. Therefore we have

n

;’11 s A = 2 [p(En A7

r=1

ti—1

= E Z‘ [P(Eiy An+r)]kp+1

r=0 hn/t:;Sr<(h+En/ti
1i

+ Z Z [P(Eiy An+r)]kp+l

=1 (h=n/tiSr<mn/t;
li—:l [%nz/li] E'S kp+1
2 527
=0 =1 \2n

where we have used (26) and (27) to estimate the sums over 7.
Using the integral test to estimate the inner sum above, we obtain

" et 9%, éi>kp+1(i B )kp+2

r=1

v
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Since #/2t; = 1/2¢; = 2, we have n/2t; — 1 = n/4¢;. Hence

- kp+1 —16—3kp—4 é ek n kot
(28) 2 [P(Eu n+r) = (kp + 2) 2 t; ” ‘,

r=1
—k:
= C1n p.

v

Thus from (24) and (28),

2n m m 2n
2 e AT = 2 3 [hl (s AP

kp 1—
ClN'}’L p p

Hence there exists / with # + 1 £ I < 2% such that

%

m

Zl lhi|p[P(Eiy Al)]kp+l = Can_l_kpql-p
= > NP

\

for some constant ¢, since ¢ < I £ 2#u. [t is obvious that the proof may easily be
modified for the slightly more general statement of the lemma.

LEMMA 9. Suppose

(29) [ f: If — Sn(t)ll’dt]l/p < Kn*!

for some sequence S, € F (A, n = 1,2,... . Then there is a constant C such
that forn = 1,2, ...,

> Pt < C
i=1 i =
where h,®, 1 = 1,2, ..., n are the jumps of S,®.

Proof. Applying Lemma 6 with 7', =.5;,7 = n,n 4+ 1,and with v = k, e = 1/4,
we deduce that

’ 1
SHOP T S K [ 1S - S S Koo
i 0

for some constants K, K;. If Lemma 9 is to be false, we may suppose, without
loss of generality, that given V > 0, there exists a natural number ¢ such that

2 WPl = N,

pe] 4
where 1/4 = &, > &1 > ... > & = 1/q are the points of [0, 1/4] M A, and
hr®,1=1,2,...,m,are the corresponding jumps of S,®. By Lemma 8 there-

fore, we can find / with 2¢ 4+ 1 =< ] < 4q satisfying

(30) Z B 7lp (&sy ADTTH = eNITPHD.
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Let &, € [ry/l, (r; 4+ 1)/1] = I,,, where 7, is an integer. Applying Lemmas 4 and 5
to the function S ,(x) — S;(x) on I,,, we have

l/p
1] gKQ[p(si,Aor”"[ f |7 — Sé’”l”dt]

1/p
= K3[p(£iy Al)]_k_l/p[ f [Sq - Sl]pdt]
Irl-
so that, since the intervals I,; are pairwise disjoint,

1 m
fo S0 = Side 2 Ko 3 (KO Plo(en 4017
2 KNI
by (30). Thus

Hf - Sl”z) = ”Sq - Sl”p - Hf - Sq“z)
= K;NI+1 — Kg—k—l
> (K,N — 4+1K) -

s sufficiently large. This proves the lemma.

—_

which contradicts (29) if N

We are now in a position to prove the necessity part of the theorem which we
state as

LemMmA 10. If || f — FLill, = O(w™1), then f € L)2.
Proof. Suppose K > 0 and S, € ¥;(4,) satisfy
[ 1 1/p
(31) f |f — S,,l"dt] <Kn*'Y n=12....
L 0

By Lemma 7, f € C*'[0, 1], f ®~V is absolutely continuous on [0, 1], and

|

[ 1 1/p
(32) f if(k)—agnlpdt] <K?2" wu=12...
L 0

where ¢, = S5,®. Let 0 < § < 1 and choose # such that 27" < § < 27", Let
h,1=1,2,...,2" — 1bethejumpsof Ss,» =0,1,...,k 1f0 =2 22" — 2,

we have
(i41)2-n
o fz loan(t 4 8) — on()’dt < 27" HELP,
and
1-46
(34) f lO’Qﬂ(t + 6) — U2ﬂ(t)lpdt =0.
1—-2-n
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Hence

18 1/p
(35) [ ) If("’(t+6)—f(’“)(t)l"dt] = 2/%0 = @1l

1/p 2n—1 1/p
< Kr21—n + 2—n/p|:z ih(ik)lp]

=1

+ [ fol_s loan(t + 8) — agn(t)|”dt]

by (32)-(34). We now apply lemma 9 to (35) and find a constant C such that

I

[ fo - lf“‘)(t+a>—f“”(t)|”dt]l < (K" + C'M)2

< (4K’ 4+ 2C"7)s.
Hence

[ fol lF 9+ 6) —f(k)(t)|dt]w = 0(5)

and so f® € &2, This completes the proof of the theorem.

Remark. Other characterizations are possible, using the result [2] that f ¢ & ,*
if and only if f® is of p-bounded variation on [0, 1], i.e., the supremum over all
subdivisions §,: 0 = x¢ < x; < ... < %, = 1 of the sum

n=l1 1/p
[Z:o |f(k) (% 441) _f(k)(xi)|p(xi+1 - xt)lﬁp]

if finite, and, for p > 1, the result [5] that f is of p-bounded variation on [0, 1]
if and only if f is absolutely continuous and f' € L?[0, 1].
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