AN L^p SATURATION THEOREM FOR SPLINES

G. J. BUTLER AND F. B. RICHARDS

1. Let $\Delta_n: 0 = x_0^{(n)} < x_1^{(n)} < \ldots < x_n^{(n)} = 1$ be a subdivision of [0, 1], and let $\mathscr{S}_k(\Delta_n)$ denote the class of functions whose restriction to each sub-interval $[x_{i-1}^{(n)}, x_i^{(n)})$ is a polynomial of degree at most k. Gaier [1] has shown that for uniform subdivisions Δ_n (that is, subdivisions for which $x_i^{(n)} = i/n$)

$$||f - \mathcal{S}_k(\Delta_n)||_n = o(n^{-k-1})$$

if and only if f is a polynomial of degree at most k. Here, and subsequently, $||\cdot||_p$ denotes the usual norm in $L^p[0, 1]$, $1 \le p \le \infty$, and we should emphasize that functions differing only on a set of Lebesgue measure zero are identified.

One of the authors [4] has recently characterized those functions f for which

$$||f - \mathcal{S}_k(\Delta_n)||_{\infty} = O(n^{-k-1}).$$

In this paper we solve the corresponding problem for the L^p norms, $1 \le p < \infty$. Let

$$Lip(1, L^{p}) = \left\{ f : \left(\int_{0}^{1} |f(x + \delta) - f(x)|^{p} dx \right)^{1/p} = O(\delta) \right\}$$

(f assumed to be identically zero outside [0, 1]) and define

$$\mathcal{L}_{p}^{k} = \{f : f \in C^{k-1}[0, 1], f^{(k-1)} \text{ is absolutely continuous, } f^{(k)} \in \text{Lip}(1, L^{p})\}.$$

Our main result is the following

THEOREM. Let f be a real-valued function on [0, 1] and let $\{\Delta_n\}_{n=1}^{\infty}$ be uniform subdivisions. Then

$$(1) ||f - \mathcal{S}_k(\Delta_n)||_p = O(n^{-k-1}),$$

if and only if $f \in \mathcal{L}_{p}^{k}$.

Acknowledgement. The authors wish to thank Professor Z. Ditzian for some helpful comments.

2. In this section we shall demonstrate the sufficiency part of (1); in fact we shall establish the following more general result, namely,

Lemma 3. Let $f \in \mathcal{L}_p^k$. Then, given any sequence of arbitrary subdivisions $\{\Delta_n\}_{n=1}^{\infty}$, there exists a sequence of spline functions $\{S_n\}_{n=1}^{\infty}$ of degree k with knots at the points of Δ_n (i.e., $S_n \in \mathcal{S}_k(\Delta_n) \cap C^{k-1}[0, 1]$) satisfying

(2)
$$||f - S_n||_p = O(||\Delta_n||^{k+1}),$$

where $||\Delta_n|| = \max_{1 \le i \le n} (x_i^{(n)} - x_{i-1}^{(n)}).$

Received September 28, 1971 and in revised form, February 29, 1972.

We must first prove two other lemmas.

LEMMA 1. If $f \in \text{Lip}(1, L^p)$, then

$$(3) ||f - \mathcal{S}_0(\Delta_n)||_p = O(||\Delta_n||)$$

Proof. We first remark that $f \in \text{Lip}(1, L^p)$ implies via the Hölder inequality that $f \in \text{Lip}(1, L^1)$, so that f is of bounded variation [2] and hence $f \in L^p[0, 1]$. Let us define

$$D_n = \int_0^{||\Delta_n||} \sum_{i=0}^{n-1} \int_0^{x_{i+1}-x_i} |f(t+x_i) - f(x+x_i)|^p dx dt.$$

With the change of variables

$$u = x + x_i, \qquad v = t - x,$$

and since $f \in \text{Lip}(1, L^p)$, we have

$$D_{n} \leq \sum_{i=0}^{n-1} \int_{-||\Delta_{n}||}^{||\Delta_{n}||} \int_{x_{i}}^{x_{i+1}} |f(u+v) - f(u)|^{p} du dv$$
$$\leq K||\Delta_{n}||^{p+1},$$

where K is independent of n. Thus there exists τ_n , $0 \le \tau_n \le ||\Delta_n||$, such that

$$\sum_{i=0}^{n-1} \int_{0}^{x_{i+1}-x_{i}} |f(\tau_{n}+x_{i})-f(x+x_{i})|^{p} dx \leq K||\Delta_{n}||^{p}.$$

Choosing σ_n to be the step function taking the value $f(\tau_n + x_i)$ on $[x_i, x_{i+1})$, it follows that

$$||f - \sigma_n||_n = O(||\Delta_n||).$$

LEMMA 2. Let $f \in L^p[0, 1]$ and ν be a natural number. If $s_n \in \mathscr{S}_{\nu-1}(\Delta_n) \cap C^{\nu-2}$, $n = 1, 2, \ldots$, and ϕ is a positive function on the natural numbers such that

(4)
$$||f - s_n||_p = O(\phi(n)),$$

then there exists a sequence $\{S_n\}_{n=1}^{\infty}$, $S_n \in \mathscr{S}_{\nu}(\Delta_n) \cap C^{\nu-1}$, satisfying

(5)
$$||F - S_n||_p = O(||\Delta_n||\phi(n))$$

where

$$F(x) = \int_0^x f(t)dt.$$

(C^{-1} is interpreted to be the space of all real-valued functions.)

Proof. Consider the *B*-spline $M_i(x)$ of degree $\nu - 1$ for the subdivision Δ_n , $i = 0, 1, \ldots, n - \nu$, defined in [6]. It is known [6] that $M_i(x)$ is a non-negative function having support in $[x_i, x_{i+\nu}]$, $M_i \in \mathscr{S}_{\nu-1} \cap C^{\nu-2}$ and

$$\int_0^1 M_i(x) dx = 1.$$

Following [3], define

$$A_{i} = \int_{x_{i}}^{x_{i+1}} (f(t) - s_{n}(t))dt, \qquad i = 0, 1, \dots, n-1,$$

$$\tilde{A}_{i} = \int_{x_{i}}^{x_{i+1}} |f(t) - s_{n}(t)|dt, \qquad i = 0, 1, \dots, n-1,$$

and

$$S_n(x) = \int_0^x s_n(t)dt + \sum_{i=0}^{n-\nu} A_i \int_0^x M_i(t)dt.$$

Suppose that $x_i \leq x \leq x_{i+1}$. Then

$$F(x) - S_n(x) = \int_0^x (f(t) - s_n(t))dt - \sum_{j=0}^{n-\nu} A_j \int_0^x M_j(t)dt$$
$$= \int_{x_i}^x (f(t) - s_n(t))dt + \sum_{j=0}^{i-1} A_j - \sum_{j=0}^{n-\nu} A_j \int_0^x M_j(t)dt.$$

By (6),

$$\int_0^x M_j(t)dt = 1 \quad \text{for} \quad j \le i - \nu \quad \text{and} \quad \int_0^x M_j(t)dt = 0 \quad \text{for} \quad j \ge i + 1.$$

Thus

$$|F(x) - S_n(x)| \le \left| \int_{x_i}^x (f(t) - s_n(t))dt \right| + \left| \sum_{j=i-\nu+1}^{i-1} A_j \left(1 - \int_0^x M_j(t)dt \right) \right| + \left| A_i \int_0^x M_i(t)dt \right|$$

$$\leq \tilde{A}_i + \sum_{j=i-\nu+1}^{i} |A_j| \leq K \left[\sum_{j=i-\nu+1}^{i} \tilde{A}_j^p \right]^{1/p}$$

for some constant $K = K(\nu)$. Hence

(7)
$$\int_{x_i}^{x_{i+1}} |F(x) - S_n(x)|^p dx \le K^p \sum_{j=i-p+1}^i \widetilde{A}_j^p (x_{i+1} - x_i).$$

But by Hölder's inequality,

$$\widetilde{A}_{j}^{p} \leq (x_{j+1} - x_{j})^{p-1} \int_{x_{j}}^{x_{j+1}} |f(t) - s_{n}(t)|^{p} dt
\leq ||\Delta_{n}||^{p-1} \int_{x_{j}}^{x_{j+1}} |f(t) - s_{n}(t)|^{p} dt;$$

thus

$$\int_{0}^{1} |F(x) - S_{n}(x)|^{p} dx$$

$$\leq K^{p} ||\Delta_{n}||^{p-1} \sum_{i=0}^{n-1} \sum_{j=i-r+1}^{i} (x_{i+1} - x_{i}) \int_{x_{j}}^{x_{j+1}} |f(t) - s_{n}(t)|^{p} dt$$

and by reversing the order of summation, we obtain

(8)
$$\int_{0}^{1} |F(x) - S_{n}(x)|^{p} dx \leq K^{p} ||\Delta_{n}||^{p-1} \sum_{j=0}^{n-1} (x_{j+\nu} - x_{j}) \int_{x_{j}}^{x_{j+1}} |f(t) - s_{n}(t)|^{p} dt$$
$$\leq K_{1}^{p} ||\Delta_{n}||^{p} \int_{0}^{1} |f(t) - s_{n}(t)|^{p} dt$$

for some constant $K_1 = K_1(\nu)$. The lemma follows on applying (4) in (8). Lemma 3 is an easy consequence of Lemmas 1 and 2.

3. We now seek to establish the necessity part of (1). In this section, all subdivisions Δ_n are assumed to be uniform.

It will be convenient to state at this point the L^p version of Markoff's inequality and of two inequalities due to Gaier.

Lemma 4 (Markoff [1]). Let P be a polynomial of degree k on [a, b] and $0 \le j \le k$. Then there exists a constant K = K(p, k, j) such that

(9)
$$\left[\int_a^b |P^{(j)}(x)|^p dx \right]^{1/p} \le K(b-a)^{-j} \left[\int_a^b |P(x)|^p dx \right]^{1/p}.$$

Lemma 5 (Gaier [1]). Suppose P is a function on [-a, b] which reduces to a polynomial of degree k on each of [-a, 0] and (0, b], and define h = P(0+) - P(0-). Then there exists a constant K = K(p, k) such that

(10)
$$|h| \le K(\min(a,b))^{-1/p} \left[\int_{-a}^{b} |P(x)|^p dx \right]^{1/p}.$$

LEMMA 6 (Gaier [1]). Let $T_j \in \mathcal{S}_k(\Delta_j)$, j=n, n+1, and let $h_i^{(r)}$ denote the jumps of $T_n^{(r)}$ at $x_i=i/n, i=1,\ldots,n-1$, i.e., $h_i^{(r)}=T_n^{(r)}(x_i+)-T_n^{(r)}(x_i-)$. Let $0<\epsilon<1/2$. Then there exists a constant $C=C(\epsilon)$ such that

$$|h_i^{(\nu)}| \le C n^{\nu+1/p} \left[\int_{i/(n+1)}^{(i+1)/(n+1)} |T_{n+1} - T_n|^p dx \right]^{1/p}$$

if $\epsilon \leq i/n \leq (1 - \epsilon)$.

Next we prove

Lemma 7. Let

$$||f - S_n||_p = O(n^{-k-1})$$

for some sequence $S_n \in \mathscr{S}_k(\Delta_n)$, n = 1, 2, ...Then

(13)
$$f \in C^{k-1}[0, 1], f^{(k-1)}$$
 is absolutely continuous

and

(14)
$$||f^{(k)} - S_{2^n}^{(k)}||_p = O(2^{-n}).$$

Proof. Since $S_{2^n} - S_{2^{n+1}} \in \mathscr{S}_k(\Delta_{2^{n+1}})$, we may apply (9) to obtain

(15)
$$||S_{2^{n}}^{(\nu)} - S_{2^{n+1}}^{(\nu)}||_{p} \le K(2^{n+1})^{\nu}||S_{2^{n}} - S_{2^{n+1}}||_{p}$$
$$\le K_{1}2^{-n(k+1-\nu)}, \qquad \nu = 1, 2, \dots, k,$$

where $K = K(p, k, \nu)$, $K_1 = K_1(p, k, \nu)$ are constants. Hence there are functions $f_{\nu} \in L^p[0, 1]$ satisfying

(16)
$$||S_{2^n}^{(\nu)} - f_{\nu}||_{p} \le K_2 2^{-n(k+1-\nu)}$$

for some constant $K_2 = K_2(p, k, \nu)$.

Therefore $S_{2^{n(\nu)}} \to f_{\nu}$ a.e. on [0, 1] and so for almost all ϵ in [0, 1], we have

(17)
$$S_{2^n}^{(\nu-1)}(\epsilon) \to f_{\nu-1}(\epsilon).$$

Let $h_i^{(\nu)}$ denote the jump of $S_{2n}^{(\nu)}$ at $x_i = i2^{-n}$, and let

$$x_{+}^{0} = \begin{cases} 1, x \geq 0, \\ 0, x < 0. \end{cases}$$

For $x \in [\epsilon, 1 - \epsilon]$, we define

(18)
$$P_{2^{n}}(x) = \int_{\epsilon}^{x} S_{2^{n}}^{(\nu)}(t)dt$$
$$= S_{2^{n}}^{(\nu-1)}(x) - S_{2^{n}}^{(\nu-1)}(\epsilon) - \sum_{i}' h_{i}^{(\nu-1)}[x - i/2^{n}]_{+}^{0},$$

where \sum_{i}' means that we sum over those i for which $\epsilon \leq i2^{-n} \leq 1 - \epsilon$. By (11),

(19)
$$\left[\sum_{i}'|h_{i}^{(\nu-1)}|^{p}\right]^{1/p} \leq C(\epsilon)2^{n(\nu-1+1/p)}||S_{2n}-S_{2n+1}||_{p}$$
$$\leq C_{1}(\epsilon)2^{-n(k+2-\nu-1/p)}.$$

Let

(20)
$$\tilde{f}(x) = \int_{-\infty}^{x} f_{\nu}(t)dt + f_{\nu-1}(\epsilon).$$

Then,

$$(21) \left[\int_{\epsilon}^{1-\epsilon} |f_{\nu-1}(x) - \bar{f}(x)|^p dx \right]^{1/p}$$

$$\leq ||f_{\nu-1} - S_{2n}^{(\nu-1)}||_p + \left[\int_{\epsilon}^{1-\epsilon} |S_{2n}^{(\nu-1)}(x) - P_{2n}(x) - f_{\nu-1}(\epsilon)|^p dx \right]^{1/p}$$

$$+ \left[\int_{0}^{1} |P_{2n}(x) + f_{\nu-1}(\epsilon) - \bar{f}(x)|^p dx \right]^{1/p}$$

$$= \alpha_1^n + \alpha_2^n + \alpha_3^n, \text{ say.}$$

From (17)–(19),

$$(22) \quad \alpha_2^n \leqq \left[\int_{\epsilon}^{1-\epsilon} \left| S_{2^n}^{(\nu-1)}(\epsilon) - f_{\nu-1}(\epsilon) \right|^p dx \right]^{1/p} + \left[\sum_{i}' \left| h_i^{(\nu-1)} \right|^p \right]^{1/p} \to 0 \text{ as } n \to \infty.$$

Using (16), (18) and (20), we have

(23)
$$\alpha_3^n \leq \left[\int_0^1 \int_{\epsilon}^x |S_{2n}^{(\nu)}(t) - f_{\nu}(t)|^p dt \, dx \right]^{1/p}$$
$$\leq ||S_{2n}^{(\nu)} - f_{\nu}||_p \to 0 \text{ as } n \to \infty.$$

Hence, letting $n \to \infty$ in (21) and using (16), (22) and (23), we obtain

$$f_{\nu-1}(x) = \bar{f}(x) = \int_{\epsilon}^{x} f_{\nu}(t)dt + f_{\nu-1}(\epsilon)$$

a.e. on $[\epsilon, 1 - \epsilon]$, $\nu = 1, 2, \ldots, k$, for almost all ϵ in [0, 1]. Since $f_0 = f$, it follows that $f_{\nu}(x) = f^{(\nu)}(x)$ a.e. on [0, 1], and this together with (16) establishes (14). If k = 0, (13) is redundant. If k = 1, we have

$$f(x) = \int_{\epsilon}^{x} f_1(t)dt + f(\epsilon)$$
 a.e. on $[\epsilon, 1 - \epsilon]$

for almost all ϵ in $[0, \frac{1}{2}]$, and from (16), $f_1 \in L^p[0, 1]$, and hence $f_1 \in L^1[0, 1]$. Thus we may find $x_0 \in (0, 1)$ and a sequence $\epsilon_1 > \epsilon_2 > \ldots \to 0$ such that

$$(x_0) = \int_{\epsilon_i}^{x_0} f_1(t)dt + f(\epsilon_i).$$

It follows that $f(\epsilon_i) \to \phi_0$, say, as $i \to \infty$ and defining

$$\phi(x) = \int_0^x f_1(t)dt + \phi_0,$$

we have $f(x) = \phi(x)$ a.e. on [0, 1], and so f is equivalent to an absolutely continuous function on [0, 1], which is (13).

Essentially similar arguments enable us to establish (13) for general values of k. This completes the proof of the lemma.

LEMMA 8. Let ξ_i , $i=1,2,\ldots,m$, be rational numbers with a common denominator q such that $\min(\xi_i, 1-\xi_i) \leq 1/4, i=1,2,\ldots,m$. Let h_i , $i=1,2,\ldots,m$, be real numbers such that

(24)
$$\sum_{i=1}^{m} |h_i|^p q^{p-1} \ge N > 0,$$

and let n be any integral multiple of q. Then there exists an integer l with $n+1 \le l \le 2n$, such that

(25)
$$\sum_{i=1}^{m} |h_i|^p [\rho(\xi_i, \Delta_l)]^{kp+1} \ge cN l^{-p(k+1)}$$

for some absolute constant c, where $\rho(\xi_i, \Delta_l) = \inf_{0 \le j \le l} |\xi_i - j/l|$.

Proof. Assume first that $1/4 \ge \xi_1 > \xi_2 > \ldots > \xi_m \ge 1/q$. Define t_i to be $n\xi_i, i = 1, 2, \ldots, m$. Then t_i is a natural number no greater than n/4. Fix i and let r be a natural number with $1 \le r \le n$. Then either we have (i) $h/\xi_i \le r < (h + \frac{1}{2})/\xi_i$ for some natural number h, or we have (ii) $(h - \frac{1}{2})/\xi_i \le r < h/\xi_i$ for some natural number h.

If case (i) applies, then, since $\xi_i = t_i/n$, we have $hn/t_i \le r < (h + \frac{1}{2})n/t_i$, and so

$$0 \leq \frac{t_i}{n} - \frac{t_i + h}{n+r} = \frac{t_i r - hn}{n(n+r)} \leq \frac{1}{2(n+r)}.$$

Thus

(26)
$$\rho(\xi_i, \Delta_{n+r}) = (t_i r - hn)/(n(n+r)) = \xi_i s/(n+r)$$
, where $s = r - hn/t_i$ If case (ii) applies, we have

$$(h - \frac{1}{2})\frac{n}{t_i} \le r < \frac{hn}{t_i}, \text{ and so}$$

$$0 < \frac{t_i + h}{n+r} - \frac{t_i}{n} = \frac{hn - t_i r}{n(n+r)} \le \frac{1}{2(n+r)}.$$

Hence

(27)
$$\rho(\xi_i, \Delta_{n+r}) = \frac{hn - t_i r}{n(n+r)} = \frac{\xi_i s}{n+r},$$

where $s = hn/t_i - r$. Therefore we have

$$\sum_{r=n+1}^{2n} \left[\rho(\xi_{i}, \Delta_{r}) \right]^{kp+1} = \sum_{r=1}^{n} \left[\rho(\xi_{i}, \Delta_{n+r}) \right]^{kp+1}$$

$$= \sum_{h=0}^{t_{i}-1} \sum_{hn/t_{i} \leq r < (h+\frac{1}{2})n/t_{i}} \left[\rho(\xi_{i}, \Delta_{n+r}) \right]^{kp+1}$$

$$+ \sum_{h=1}^{t_{i}} \sum_{(h-\frac{1}{2})n/t_{i} \leq r < hn/t_{i}} \left[\rho(\xi_{i}, \Delta_{n+r}) \right]^{kp+1}$$

$$\geq 2 \sum_{h=0}^{t_{i}-1} \sum_{s=1}^{\left[\frac{1}{2}n/t_{i}\right]} \left(\frac{\xi_{i}s}{2n} \right)^{kp+1}$$

where we have used (26) and (27) to estimate the sums over r.

Using the integral test to estimate the inner sum above, we obtain

$$\sum_{\tau=1}^{n} \left[\rho(\xi_{i}, \Delta_{n+\tau}) \right]^{kp+1} \ge \frac{2t_{i}}{kp+2} \left(\frac{\xi_{i}}{2n} \right)^{kp+1} \left(\frac{n}{2t_{i}} - 1 \right)^{kp+2}.$$

Since $n/2t_i = 1/2\xi_i \ge 2$, we have $n/2t_i - 1 \ge n/4t_i$. Hence

(28)
$$\sum_{\tau=1}^{n} \left[\rho(\xi_{i}, \Delta_{n+\tau}) \right]^{kp+1} \ge (kp+2)^{-1} 2^{-3kp-4} t_{i} \left(\frac{\xi_{i}}{n} \right)^{kp+1} \left(\frac{n}{t_{i}} \right)^{kp+2} = C_{1} n^{-kp}.$$

Thus from (24) and (28),

$$\sum_{r=n+1}^{2n} \sum_{i=1}^{m} |h_{i}|^{p} [\rho(\xi_{i}, \Delta_{r})]^{kp+1} = \sum_{i=1}^{m} \sum_{r=n+1}^{2n} |h_{i}|^{p} [\rho(\xi_{i}, \Delta_{r})]^{kp+1}$$

$$\geq C_{1} N n^{-kp} q^{1-p}.$$

Hence there exists l with $n + 1 \le l \le 2n$ such that

$$\sum_{i=1}^{m} |h_{i}|^{p} [\rho(\xi_{i}, \Delta_{l})]^{kp+1} \geq c_{1} N n^{-1-kp} q^{1-p}$$
$$\geq c N l^{-p(k+1)}$$

for some constant c, since $q < l \le 2n$. It is obvious that the proof may easily be modified for the slightly more general statement of the lemma.

LEMMA 9. Suppose

(29)
$$\left[\int_{0}^{1} |f - S_{n}(t)|^{p} dt \right]^{1/p} \leq K n^{-k-1}$$

for some sequence $S_n \in \mathcal{S}_k(\Delta_n)$, $n = 1, 2, \ldots$. Then there is a constant C such that for $n = 1, 2, \ldots$,

$$\sum_{i=1}^{n} |h_{i}^{(k)}|^{p} n^{p-1} \leq C,$$

where $h_i^{(k)}$, $i = 1, 2, \ldots, n$ are the jumps of $S_n^{(k)}$.

Proof. Applying Lemma 6 with $T_j = S_j$, j = n, n + 1, and with $\nu = k$, $\epsilon = 1/4$, we deduce that

$$\sum_{i}' |h_{i}^{(k)}|^{p} n^{-1-pk} \leq K \int_{0}^{1} |S_{n+1} - S_{n}|^{p} \leq K_{1} n^{-p(k+1)}$$

for some constants K, K_1 . If Lemma 9 is to be false, we may suppose, without loss of generality, that given N > 0, there exists a natural number q such that

$$\sum_{i=1}^{m} |h_i^{(k)}| q^{p-1} \ge N,$$

where $1/4 \ge \xi_m > \xi_{m-1} > \ldots > \xi_1 = 1/q$ are the points of $[0, 1/4] \cap \Delta_q$ and $h_i^{(k)}$, $i = 1, 2, \ldots, m$, are the corresponding jumps of $S_q^{(k)}$. By Lemma 8 therefore, we can find l with $2q + 1 \le l \le 4q$ satisfying

(30)
$$\sum_{i=1}^{m} |h_i^{(k)}|^p [\rho(\xi_i, \Delta_l)]^{kp+1} \ge cN l^{-p(k+1)}.$$

Let $\xi_i \in [r_i/l, (r_i+1)/l] = I_{r_i}$, where r_i is an integer. Applying Lemmas 4 and 5 to the function $S_q(x) - S_l(x)$ on I_{r_i} , we have

$$\begin{aligned} |h_i^{(k)}| &\leq K_2[\rho(\xi_i, \Delta_l)]^{-1/p} \bigg[\int_{I_{r_i}} |S_q^{(k)} - S_l^{(k)}|^p dt \bigg]^{1/p} \\ &\leq K_3[\rho(\xi_i, \Delta_l)]^{-k-1/p} \bigg[\int_{I_{r_i}} |S_q - S_l|^p dt \bigg]^{1/p} \end{aligned}$$

so that, since the intervals I_{r_i} are pairwise disjoint,

$$\int_{0}^{1} |S_{q} - S_{l}|^{p} dt \ge K_{4} \sum_{i=1}^{m} |h_{i}^{(k)}|^{p} [\rho(\xi_{i}, \Delta_{l})]^{kp+1}$$

$$\ge K_{5} N l^{-p(k+1)}$$

by (30). Thus

$$||f - S_l||_p \ge ||S_q - S_l||_p - ||f - S_q||_p$$

$$\ge K_5 N l^{-k-1} - K q^{-k-1}$$

$$\ge (K_5 N - 4^{k+1} K) l^{-k-1}$$

which contradicts (29) if N is sufficiently large. This proves the lemma.

We are now in a position to prove the necessity part of the theorem which we state as

Lemma 10. If
$$||f - \mathcal{S}_k||_p = O(n^{-k-1})$$
, then $f \in \mathcal{L}_k^p$.

Proof. Suppose K>0 and $S_n\in\mathscr{S}_k(\Delta_n)$ satisfy

(31)
$$\left[\int_0^1 |f - S_n|^p dt \right]^{1/p} \leq K n^{-k-1}, \qquad n = 1, 2, \dots.$$

By Lemma 7, $f \in C^{k-1}[0, 1]$, $f^{(k-1)}$ is absolutely continuous on [0, 1], and

(32)
$$\left[\int_0^1 |f^{(k)} - \sigma_{2n}|^p dt \right]^{1/p} \leq K' 2^{-n}, \qquad n = 1, 2, \dots$$

where $\sigma_n = S_n^{(k)}$. Let $0 < \delta < 1$ and choose n such that $2^{-n-1} \le \delta < 2^{-n}$. Let $h_i^{(\nu)}, i = 1, 2, \ldots, 2^n - 1$ be the jumps of $S_{2^n}^{(\nu)}, \nu = 0, 1, \ldots, k$. If $0 \le i \le 2^n - 2$, we have

(33)
$$\int_{i^{2-n}}^{(i+1)^{2-n}} |\sigma_{2^n}(t+\delta) - \sigma_{2^n}(t)|^p dt \leq 2^{-n} |h_{i+1}^{(k)}|^p,$$

and

(34)
$$\int_{1-2^{-n}}^{1-\delta} |\sigma_{2^n}(t+\delta) - \sigma_{2^n}(t)|^p dt = 0.$$

Hence

(35)
$$\left[\int_{0}^{1-\delta} |f^{(k)}(t+\delta) - f^{(k)}(t)|^{p} dt\right]^{1/p} \leq 2||f^{(k)}(t) - \sigma_{2^{n}}(t)||_{p}$$

$$+ \left[\int_{0}^{1-\delta} |\sigma_{2^{n}}(t+\delta) - \sigma_{2^{n}}(t)|^{p} dt\right]^{1/p} \leq K' 2^{1-n} + 2^{-n/p} \left[\sum_{i=1}^{2^{n}-1} |h_{i}^{(k)}|^{p}\right]^{1/p}$$

by (32)–(34). We now apply lemma 9 to (35) and find a constant C such that

$$\left[\int_{0}^{1-\delta} |f^{(k)}(t+\delta) - f^{(k)}(t)|^{p} dt\right]^{1/p} \leq (2K' + C^{1/p})2^{-n}$$

$$\leq (4K' + 2C^{1/p})\delta.$$

Hence

$$\left[\int_{0}^{1} |f^{(k)}(t+\delta) - f^{(k)}(t)|dt\right]^{1/p} = O(\delta)$$

and so $f^{(k)} \in \mathcal{L}_k^p$. This completes the proof of the theorem.

Remark. Other characterizations are possible, using the result [2] that $f \in \mathcal{L}_p^k$ if and only if $f^{(k)}$ is of *p-bounded variation* on [0, 1], i.e., the supremum over all subdivisions $\delta_n : 0 = x_0 < x_1 < \ldots < x_n = 1$ of the sum

$$\left[\sum_{i=0}^{n-1} |f^{(k)}(x_{i+1}) - f^{(k)}(x_i)|^p (x_{i+1} - x_i)^{1-p}\right]^{1/p}$$

if finite, and, for p > 1, the result [5] that f is of p-bounded variation on [0, 1] if and only if f is absolutely continuous and $f' \in L^p[0, 1]$.

REFERENCES

- D. Gaier, Saturation bei Spline-Approximation und Quadratur, Numer. Math. 16 (1970), 129-140.
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, Math. Z. 27 (1928), 565-606.
- 3. V. Popov and Bl. Sendov, Classes characterized by best possible approximations by spline functions, Math. Notes No. 2, 18 (1970), 550-557.
- F. Richards, On the saturation class for spline functions (to appear in Proc. Amer. Math. Soc., May 1972).
- 5. F. Riesz, Systeme integrierbarer Funktionen, Math. Ann. 69 (1910), 449-497.
- I. J. Schoenberg, On interpolation by spline functions and its minimal properties, On Approximation Theory (Intern. Ser. Numerical Math. (ISNM) 5 (1964), 109–129, Birkhauser, Basel/Stuttgart).

University of Alberta, Edmonton, Alberta