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Abstract

We prove an analogue of Selberg’s zero density estimate for ζ (s) that holds for any GL2

L-function. We use this estimate to study the distribution of the vector of fractional parts of
γα, where α ∈Rn is fixed and γ varies over the imaginary parts of the nontrivial zeros of a
GL2 L-function.

2020 Mathematics Subject Classification: 11M41 (Primary)

1. Introduction and statement of results
1·1. Main results

Let ζ (s) be the Riemann zeta function, and let N(σ , T) denote the number of zeros β + iγ
of ζ (s) with β ≥ σ ≥ 0 and |γ | ≤ T . The asymptotic

N(T) := N(0, T) ∼ 1

π
T log T (1·1)

follows from the argument principle. The Riemann hypothesis (RH) asserts that ζ (s) �= 0 for
Re(s) > 1/2, so N(σ , T) = 0 for σ > 1/2. Selberg [Tit86, theorem 9·19C] proved a delicate
zero density estimate that recovers the upper bound in (1·1) at σ = 1/2, namely

N(σ , T) � T1− 1
4 (σ− 1

2 ) log T , σ ≥ 1

2
. (1·2)
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(See Baluyot [Bal17, theorem 1·2·1] for an improvement.) Selberg’s estimate implies that

1

N(T)
#
{
ρ = β + iγ : ζ (ρ) = 0, |γ | ≤ T , β ∈

[1

2
− 4 log log T

log T
,

1

2
+ 4 log log T

log T

]}
� 1

log T
.

As an application of (1·2), Selberg proved a central limit theorem for log |ζ (1/2 + it)|:

lim
T→∞

1

T
meas

{
T ≤ t ≤ 2T : log |ζ ( 1

2 + it)| ≥ V
√

1
2 log log T

}
∼ 1√

2π

∫ ∞

V
e−u2/2du. (1·3)

Let A be the set of cuspidal automorphic representations of GL2 over Q with unitary
central character. For π ∈ A , let L(s, π) be its standard L-function. Define

Nπ (σ , T) := #{ρ = β + iγ : β ≥ σ , |γ | ≤ T , L(ρ, π) = 0}.
As with ζ (s), the argument principle can be used to prove that

Nπ (T) := Nπ (0, T) ∼ (2/π)T log T . (1·4)

The generalised Riemann hypothesis (GRH) asserts that L(s, π) �= 0 for Re(s) > 1/2. Selberg
[Sel92] observed that analogues of (1·2) and (1·3) should also hold for Hecke–Maaß new-
forms. When π ∈ A corresponds with a holomorphic cuspidal newform of even weight
k ≥ 2, Luo [Luo95, theorem 1·1] and Li [FZ15, section 7] proved that Nπ (σ , T) �
T1− 1

72 (σ− 1
2 ) log T . We prove:

THEOREM 1·1. Let θ ∈ [0, 7/64] be an admissible exponent toward the generalised
Ramanujan conjecture for Hecke–Maaß newforms (see (2·1)), and fix 0 < c < 1/4 − θ/2.

If π ∈ A , σ ≥ 1/2, and T ≥ 2, then Nπ (σ , T) � T1−c(σ− 1
2 ) log T. The implied constant

depends at most on π .

Remark 1. Under the generalised Ramanujan conjecture for all Hecke–Maaß newforms, we
may take θ = 0. In this case, our result is as strong as Selberg’s zero density estimate (1·2)
for ζ (s). Currently, the best unconditional bound is θ ≤ 7/64, so we may choose any c <

25/128. This noticeably improves the work of Luo and Li, and it holds for any π ∈ A . The
constant 1/4 − θ/2 is, as of now, the supremum over all 	 for which we can unconditionally
prove an asymptotic for the second mollified moment of L(s, π) on Re(s) = 1/2 + 1/log T
with a mollifier of length T	 .

COROLLARY 1·2. Let π ∈ A . If V ∈R, then as T → ∞, we have:

lim
T→∞

1

T
meas

{
T ≤ t ≤ 2T : log |L( 1

2 + it, π)| ≥ V
√

1
2 log log T

}
= 1√

2π

∫ ∞

V
e−u2/2du;

lim
T→∞

1

T
meas

{
T ≤ t ≤ 2T : arg L( 1

2 + it, π) ≥ V
√

1
2 log log T

}
= 1√

2π

∫ ∞

V
e−u2/2du.

Proof. Bombieri and Hejhal [BH95, theorem B] proved that this follows from a zero
density estimate of the quality given by Theorem 1·1.
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Remark 2. Radziwiłł and Soundararajan [RS17] recently found a second proof of (1·3)
which avoids the use of zero density estimates. Their work was recently extended to holo-
morphic newforms by Das [Das20]. The proof relies on both the generalised Ramanujan
conjecture and the Sato–Tate conjecture, neither of which is known for any Hecke–Maaß
newform.

We study the distribution of imaginary parts of the nontrivial zeros of L(s, π) using
Theorem 1·1. First, we give a partial history of such results for ζ (s). Hlawka [Hla75] proved
that if α ∈R is fixed and h : T→C is continuous, then

lim
T→∞

1

N(T)

∑
|γ |≤T

h(αγ ) =
∫
T

h(t)dt, (1·5)

where γ varies over the imaginary parts of the nontrivial zeros of ζ (s) and T=R/Z. Thus
the sequence of fractional parts {γα} is equidistributed modulo 1. However, given a rate of
convergence, there exist continuous functions h such that the limit in (1·5) cannot be attained
with said rate (see also [FZ05, theorem 7]). Therefore, (1·5) is the best that one can say for
arbitrary h.

Ford and Zaharescu [FZ05, corollary 2] established the existence of a second order term,
proving that if h : T→C is twice continuously differentiable,1 then

∑
|γ |≤T

h(αγ ) = N(T)
∫
T

h(t)dt + T
∫
T

h(t)gα(t)dt + o(T), (1·6)

where

gα(t) =

⎧⎪⎪⎨
⎪⎪⎩

log p

π
Re

∞∑
k=1

e−2π iqkt

pak/2

if there exists a prime p and a, q ∈Z such that

gcd (a, q) = 1 and α = a

q

log p

2π
,

0 otherwise.

(1·7)

Despite the limitations on the analytic properties of h, Ford and Zaharescu still conjectured
[FZ05, conjecture A] that for any interval I⊆T of length |I|, we have

∑
|γ |≤T
{αγ }∈I

1 = |I|N(T) + T
∫
I

gα(t)dt + o(T), (1·8)

which implies that

Dα(T) := sup
I⊆T

∣∣∣ 1

N(T)

∑
|γ |≤T
{αγ }∈I

1 − |I|
∣∣∣ = T

N(T)
sup
I⊆T

∣∣∣ ∫
I

gα(t)dt
∣∣∣ + o

( 1

log T

)
. (1·9)

Ford, Soundararajan, and Zaharescu [FSZ09] made some progress toward the conjectured
asymptotics (1·8) and (1·9). Unconditionally, they proved that

Dα(T) ≥ T

N(T)
sup
I⊆T

∣∣∣ ∫
I

gα(t)dt
∣∣∣ + o

( 1

log T

)
. (1·10)

1 On RH, absolute continuity suffices.

https://doi.org/10.1017/S0305004122000445 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000445


608 O. BECKWITH et al.

Assuming RH, they proved that

∣∣∣ ∑
|γ |≤T
{αγ }∈I

1 − |I|N(T) − T
∫
I

gα(t)dt
∣∣∣ ≤

(α

2
+ o(1)

)
T . (1·11)

Along with making some appealing connections between the conjectured asymptotics (1·8)
and (1·9) and other intriguing open problems like pair correlation of zeros of ζ (s) and the dis-
tribution of primes in short intervals, they proved analogues for other L-functions of (1·10)
(assuming a zero density estimate of the form (1·2)) and (1·11) (assuming GRH).

In this paper, we extend the work in [FZ05, FSZ09, FMZ17, LZ21] to L(s, π) for any
π ∈ A using Theorem 1·1. Let n � 1. Consider the α ∈Rn for which there exists a constant
Cα > 0 such that2

|m · α| ≥ Cαe−‖m‖2 for all m ∈Zn \ {0}, (1·12)

where ‖m‖p is the �p norm on Rn for 1 ≤ p ≤ ∞. This is a technical artifact of our exten-
sion to Rn; when n = 1, the condition reduces to α �= 0. Our density function gπ ,α(t), which
extends (1·7) for n ≥ 2, is identically zero unless there exists a matrix M = (bjk) ∈Mr×n(Z)
with linearly independent row vectors bj and gcd (bj1, . . . , bjn) = 1 for all 1 ≤ j ≤ r; fully
reduced rationals a1/q1, . . . , ar/qr; and distinct primes p1, . . . , pr such that

Mαᵀ =
(

a1

q1

log p1

2π
, . . . ,

ar

qr

log pr

2π

)ᵀ
. (1·13)

Among such possible matrices M, choose one with maximal r, which uniquely determines
the row vectors bj = (bj1, . . . , bjn). If such an M exists, then define

gπ ,α(t) := − 2

π
�

r∑
j=1

∞∑
l=1

�π (pj
ajl)

pj
ajl/2

e−2π iqjl(bj·t), (1·14)

where

−L′(s, π)

L(s, π)
=

∞∑
n=1

�π (n)

ns
, Re(s) > 1.

Let π ∈ A , n ≥ 1, and B⊆Tn be a product of n subintervals of T. The conjecture in (1·8)
can be extended to π ∈ A as follows:

∑
|γ |≤T

{γα}∈B

1 = vol(B)Nπ (T) + T
∫
B

gπ ,α(t)dt + o(T), (1·15)

where γ ranges over the imaginary parts of the nontrivial zeros of L(s, π). As progress
toward (1·15), we prove an unconditional n-dimensional version of (1·6) for GL2

2 The set of vectors α for which there exists Cα > 0 such that (1·12) holds have full Lebesgue measure in Rn

by work of Kemble [Kem05] and Khintchine [Khi24].
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L-functions. In what follows, let Cu(Tn) be the set of u-times continuously differentiable
functions h : Tn →R. Let γ vary over the imaginary parts of the nontrivial zeros of L(s, π).

THEOREM 1·3. Let π ∈ A . Let α ∈Rn satisfy (1·12). If h ∈ Cn+2(Tn), then

∑
|γ |≤T

h(γα) = Nπ (T)
∫
Tn

h(t)dt + T
∫
Tn

h(t)gπ ,α(t)dt + o(T), (1·16)

where dt is Lebesgue measure on Tn. The implied constant depends on π , h, and α.

Remark 3. With extra work, we may allow h ∈ Cn+1(Tn). Also, under some extra conditions
on α which exclude a density zero subset of Rn, we expect to further quantify the o(T) error
term in (1·16).

Define the discrepancy

Dπ ,α(T) := sup
B⊆Tn

∣∣∣ 1

Nπ (T)

∑
|γ |≤T

{γα}∈B

1 − vol(B)
∣∣∣.

Our next result follows quickly from Theorem 1·3.

COROLLARY 1·4. Let π ∈ A . If α ∈Rn satisfies (1·12), then

Dπ ,α(T) ≥ T

Nπ (T)

∫
Tn

gπ ,α(t)dt + o
( 1

log T

)
.

When n = 1, we recover an unconditional analogue of (1·10) for all π ∈ A .This special case
of Corollary 1·4 was proved in [FSZ09] under the hypothesis of a zero density estimate of
the form proved in Theorem 1·1.

Remark 4. Let d ≥ 3 be an integer, and let L(s, π) be the standard L-function associated to
a cuspidal automorphic representation π of GLd over Q. Let Nπ (σ , T) be the number of
nontrivial zeros β + iγ of L(s, π) with β ≥ σ and |γ | ≤ T . If there exist constants cπ > 0

and dπ > 0 such that Nπ (σ , T) � T1−cπ (σ− 1
2 )(log T)dπ , then one can prove an analogue of

Theorem 1·3 and Corollary 1·4 for L(s, π). Such an estimate for Nπ (σ , T) is not yet known
for any d ≥ 3, and it appears to be quite difficult to prove.

1·2. Application to “zero races”

In a letter to Fuss, Chebyshev observed that the generalised Riemann hypothesis implies
that primes p ≡ 3 (mod 4) tend to be more numerous than primes p ≡ 1 (mod 4). Using the
generalised Riemann hypothesis and other hypotheses, Rubinstein and Sarnak [RS94] began
a systematic study of “prime number races” in which they determine how often π(x;4, 3) >

π(x;4, 1), where π(x;q, a) equals #{p ≤ x : p ≡ a (mod q)}. They proved that

lim
X→∞

1

log X

∫
2≤t≤X

π(t;4,3)>π(t;4,1)

dt

t
= 0.9959 . . .

Thus the “bias” toward primes of the form 4n + 3 is quite strong. The literature on prime
number races which study such inequities is quite vast. See, for instance, the work of Fiorilli,
Ford, Harper, Konyagin, Lamzouri and Martin [FM13, FK02, FLK13, FHL19].
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We use Theorem 1·3 to study inequities not between primes in different residue classes,
but between zeros of different L-functions. Define

C r(Tn) := {h ∈ Cr(Tn) : h is nonnegative and not identically zero}.
Let h ∈ C n+2(Tn), and let α satisfy (1·12). We consider two holomorphic cusp forms f1 and
f2 with trivial nebentypus, where

fj(z) =
∞∑

n=1

λfj(n)n
kj−1

2 e2π inz ∈ Snew
kj

(�0(qj)), j ∈ {1, 2}

have trivial nebentypus, even integral weights kj ≥ 2 and squarefree levels qj ≥ 1. We assume
that fj is normalised so that λfj(1) = 1 and that fj is an eigenfunction of all of the Hecke
operators. We call such cusp forms newforms (see [Ono04, section 2·5]). It is classical that
there exists πj ∈ A such that L(s, fj) = L(s, πj), so λfj(n) = λπj(n), gfj,α(t) = gπj,α(t), etc.

We say f1 wins the (α, h)-race (against f2) if for all large T , we have∑
|γ1|�T

h(αγ1) >
∑

|γ2|�T

h(αγ2),

where γj runs over the imaginary parts of the nontrivial zeros of L(s, fj). If neither f1 nor f2
wins the (α, h)-race, we say the race is undecided. The results of [LZ21] suggest that the
winner of a decided (α, h)-race is determined by the levels q1 and q2 and the behavior of
gf1,α and gf2,α .

First, we show that if q1 = q2 and h ∈ C 3(T), then the proportion of primes p such that f1
wins the (( log p)/(2π), h)-race is 1/2.

COROLLARY 1·5. For j = 1, 2, let qj be squarefree and fj ∈ Snew
kj

(�0(qj)) be non-CM new-

forms. Suppose that f1 �= f2 ⊗ χ for all primitive Dirichlet characters χ . If h ∈ C 3(T),
then

#{p � X : f1 wins the ( log p
2π

, h)-race}
#{p ≤ X} = 1

2
+ O

(√
log log log X

(log log X)1/4

)
.

Next we look at the distribution of

H(f1, f2, h, α) := lim
T→∞

∑
|γ1|<T h(αγ1) − ∑

|γ2|<T h(αγ2)

T
− 1

π
log

q1

q2

∫
T

h(t)dt

as α varies over values of log p/2π for prime values of p. Given I ⊆ [−2, 2], let μST(I) be
the Sato–Tate measure 1/(2π)

∫
I

√
4 − t2dt, and let μST ,2 be the product measure defined on

boxes I1 × I2 ⊆ [−2, 2] × [−2, 2] by μST,2(I1 × I2) = μST(I1)μST(I2). For I ⊆ [−4, 4], we
define

ν(I) := μST ,2({(x, y) ∈ [−2, 2]2 : x − y ∈ I}). (1·17)

For h ∈ C 3(T), we set

kh :=
∫ 1

0
h(t) cos (2π t)dt.

https://doi.org/10.1017/S0305004122000445 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000445


A zero density estimate for GL2 L-functions 611

In the following statement and throughout the paper, for any interval I and β ∈R, we let
βI = {βx : x ∈ I}.
COROLLARY 1·6. For j = 1, 2, let qj be squarefree and fj ∈ Snew

kj
(�0(qj)) be normalised

holomorphic non-CM newforms with trivial nebentypus. Suppose that f1 �= f2 ⊗ χ for all
primitive Dirichlet characters χ . Let

εX := (log log log X)1/4

(log log X)1/8
.

Assume h ∈ C 3(T) is such that kh �= 0. Then for any interval I ⊆ [−4, 4], we have

#{p ∈ [(1 − εX)X, X] : log X√
X

H(f1, f2, h, log p
2π

) ∈ I}
#{p ∈ [(1 − εX)X, X]} = ν

( π

2kh
I
)

+ O(εX)

with an implied constant independent of I .

If q1 > q2, then in contrast to Corollary 1·5, f1 wins the (( log p)/(2π), h)-race for all
except finitely many primes p.

COROLLARY 1·7. For j = 1, 2, let fj ∈ Snew
kj

(�0(qj)) be normalised holomorphic newforms

with trivial nebentypus. If q1 > q2, then for any h ∈ C 3(T), there are at most finitely many
primes p such that f2 wins the (( log p)/(2π)-race.

Corollary 1·7 shows that it is rare for f1 to win an (α, h) race against f2 if q2 > q1, but
we can show this occurs infinitely often. Our result can be stated neatly in terms of local
races rather than in terms of the (α, h)-races described above. For t0 ∈T, we say that f1
wins the local (α, t0)-race against f2 if there exists a neighbourhood U of t0 ∈T such that the
(α, h)-race is won by f1 for all h ∈ C 3(T) which are supported on U.

COROLLARY 1·8. For j = 1, 2, let qj be squarefree and fj ∈ Snew
kj

(�0(qj)) be normalised
holomorphic non-CM newforms with trivial nebentypus. Suppose that f1 �= f2 ⊗ χ for all
primitive Dirichlet characters χ . Fix t0 ∈ [0, 1). Let q1 be sufficiently large, and let q2 ∈
(q1, q1 + q1/2

1 ], and let k1 and k2 be fixed. There exists α ∈R such that f1 wins the local
(α, t0)-race against f2.

In addition to Theorem 1·3, the proofs of these corollaries rely on a quantifiable under-
standing of the joint distribution of λf1(p) and λf2(p) as p varies over the primes. Such an
understanding follows from the effective version of the Sato–Tate conjecture which counts
the number of primes p ≤ X such that (λf1(p), λf2(p)) ∈ I1 × I2 proved by the third author
in [Tho21] (see Theorem 2·1 below). One can prove analogues of Corollaries 1·5, 1·6 and
1·8 for Dirichlet L-functions by replacing the effective Sato–Tate estimates with results on
primes in arithmetic progressions.

2. Preliminaries
2·1. GL2 L-functions over Q

Let π ∈ A . Here, we state the essential properties of L-functions of L(s, π) that we use
throughout our proofs. See [IK04, chapter 5] for a convenient summary. Given π ∈ A with
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level qπ , there exist suitable complex numbers α1,π (p) and α2,π (p) such that

L(s, π) =
∏

p prime

2∏
j=1

(1 − αj,π (p)p−s)−1 =
∞∑

n=1

λπ (n)

ns
.

The sum and product both converge absolutely for Re(s) > 1. There also exist spectral
parameters κπ (1) and κπ (2) such that if we define

L(s, π∞) = π−s�
(s + κπ (1)

2

)
�

(s + κπ (2)

2

)
,

then the completed L-function �(s, π) := qs/2
π L(s, π)L(s, π∞) is entire of order 1.

Let π̃ ∈ A be the contragredient representation. We have αj,π̃ (p) = αj,π (p) and κπ̃ (j) =
κπ (j) for j = 1, 2. Moreover, there exists a complex number W(π) of modulus 1 such that for
all s ∈C, we have

�(s, π) = W(π)�(1 − s, π̃).

Building on work of Kim and Sarnak [Kim03, appendix], Blomer and Brumley [BB11]
proved that there exists θ ∈ [0, 7/64] such that we have the uniform bounds

logp |αj,π (p)|, −Re(κπ (j)) ≤ θ . (2·1)

The generalised Ramanujan conjecture and the Selberg eigenvalue conjecture assert that
(2·1) holds with θ = 0.

The Rankin–Selberg L-function3

L(s, π ⊗ π̃) =
∞∑

n=1

λπ×π̃ (n)

ns
.=

∏
p�qπ

2∏
j=1

2∏
j′=1

(1 − αj,π (p)αj′,π (p)p−s)−1, Re(s) > 1

factors as ζ (s)L(s, Ad2π), where the adjoint square lift Ad2π is an automorphic representa-
tion of GL3(AQ). Thus, L(s, Ad2π) is an entire automorphic L-function. This fact and the
bound |λπ (n)|2 ≤ λπ×π̃ (n) [JLW21, lemma 3·1] enable us to prove via contour integration
that ∑

n≤X

|λπ (n)|2 ≤
∑
n≤X

λπ×π̃ (n) �π X. (2·2)

It follows from [IK04, theorem 5·42] applied to ζ (s) and L(s, Ad2π) that there exists an
effectively computable constant cπ > 0 such that L(s, π × π̃ ) �= 0 in the region

Re(s) ≥ 1 − cπ

log (|Im(s)| + 3)
. (2·3)

3 The
.= suppresses the more complicated Euler factors at primes p|qπ . Their explicit description does not

arise in our proofs.
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2·2. Holomorphic newforms

Many of our corollaries pertain specifically to π ∈ A corresponding to holomorphic
newforms. As above, let

f (z) =
∞∑

n=1

λf (n)n
k−1

2 e2π inz ∈ Snew
k (�0(q))

be a holomorphic cuspidal newform (normalised so that λf (1) = 1) of even integral weight
k ≥ 2, level q ≥ 1, and trivial nebentypus. If πf ∈ A corresponds with f , then L(s, f ) =
L(s, πf ), λf (n) = λπf (n), etc.

For these newforms, it follows from Deligne’s proof of the Weil conjectures that the
generalised Ramanujan conjecture holds. Thus, for f a holomorphic cuspidal newform as
above, we may take θ = 0 in (2·1). Since we assume that f has trivial central character,
Deligne’s bound implies that there exists θp ∈ [0, π] such that

λf (p) = 2 cos θp.

The Sato–Tate conjecture, now a theorem due to Barnet-Lamb, Geraghty, Harris, and Taylor
[BLGHT11], states that the sequence (θp) is equidistributed in the interval [−2, 2] with
respect to the measure 2/π( sin t)2dt. In other words, if I ⊆ [0, π] is a subinterval, then

lim
X→∞

#{p ≤ X : θp ∈ I}
#{p ≤ X} = 2

π

∫
I

( sin t)2dt, π(X) := #{p prime : p ≤ X}.

After a change of variables, this implies that for any interval I ⊆ [−2, 2], we have

lim
X→∞

#{λf (p) ∈ I : p � X}
#{p ≤ X} = 1

2π

∫
I

√
4 − t2dt =: μST(I). (2·4)

A recent paper by Thorner [Tho21] provides both an unconditional and a GRH-conditional
rate of convergence in (2·4).

Our corollaries of Theorem 1·3 require a natural refinement of the Sato–Tate conjecture.
For j = 1, 2, let fj ∈ Snew

kj
(�0(qj)) be a holomorphic cuspidal newform as above. Suppose that

f1 �= f2 ⊗ χ for all primitive nontrivial Dirichlet characters χ . Building on work of Harris
[Har09], Wong [Won19] proved that the sequences (λf1(p)) and (λf2(p)) exhibit a joint
distribution: If I1, I2 ⊆ [−2, 2], then

lim
X→∞

#{p ≤ X : λf1(p) ∈ I1, λf2(p) ∈ I2}
#{p ≤ X} = μST(I1)μST(I2). (2·5)

Our corollaries of Theorem 1·3 require a nontrivial unconditional bound on the rate of
convergence in (2·5). Such a bound was recently proved in [Tho21, theorem 1·2].

THEOREM 2·1. For j = 1, 2, let qj be squarefree and fj ∈ Snew
kj

(�0(qj)) be a normalised
holomorphic cuspidal newform with trivial nebentypus. Suppose that f1 �= f2 ⊗ χ for all
primitive nontrivial Dirichlet character χ . Let I1, I2 ⊆ [−2, 2] be subintervals. There exists
an absolute and effectively computable constant c > 0 such that
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614 O. BECKWITH et al.∣∣∣#{p � X : λf1(p) ∈ I1, λf2(p) ∈ I2}
#{p ≤ X} − μST(I1)μST(I2)

∣∣∣ ≤ c
log log (k1k2q1q2 log X)√

log log X
.

We use the following result to prove our corollaries of Theorem 1·3.

COROLLARY 2·2. Let f1 and f2 be as in Theorem 2·1. Recall the definition of ν in (1·17). If
I ⊆ [−4, 4], then

#{p � X : λf1(p) − λf2(p) ∈ I}
#{p ≤ X} = ν(I) + O

(√
log log log X

(log log X)1/4

)
,

with an implied constant independent of I .

Proof. Let

g(X) := (log log X)1/4

√
log log log X

, S := {(x, y) ∈ [−2, 2]2 : x − y ∈ I}.

We will define rectangles whose unions approximate S. Let xj = −2 + j�4/g(X)�. If I =
(c, d), set Rj = [xj, xj+1] × [xj − d, xj+1 − c], and similarly Tj := [xj, xj+1] × [xj+1 − d, xj −
c]. By construction, we have ∪jTj ⊆ S ⊆ ∪jRj, which implies that

#{p � X : (λf1(p), λf2(p)) ∈ ∪Tj}� #{p � X : (λf1(p), λf2(p)) ∈ S}
� #{p � X : (λf1(p), λf2(p)) ∈ ∪jRj}. (2·6)

We apply Theorem 2·1 to count the primes p with (λf1(p), λf2(p)) in ∪jRj.

#{p � X : (λf1(p), λf2(p)) ∈ ∪jRj}
#{p ≤ X} =

g(X)∑
j=1

(
μST ,2(Rj) + O

( log log log X√
log log X

))

= μST ,2( ∪j Rj) + O
(

g(X)
log log log X√

log log X

)
.

Since the area of ∪jRj \ S is at most g(X)�4/g(X)�2, we have

μST ,2( ∪j Rj) − μST ,2(S) = μST ,2(( ∪j Rj) \ S) = O(g(X)−1),

and we conclude that

#{p � X : (λf1(p), λf2(p)) ∈ ∪jRj}
#{p ≤ X}

= ν(I) + O
(

g(X)−1 + g(X)
log log log X√

log log X

)
= ν(I) + O

(√
log log log X

(log log X)1/4

)
.

(2·7)

The same argument shows that (2·7) holds with Rj replaced with Tj on the left-hand side.
The lemma now follows from (2·6).

Finally, we require a refinement of (1·4), namely

Nf (T) = T log
(

qf

( T

2πe

)2) + O(log (kf qf T)). (2·8)

This is [IK04, theorem 5·8] applied to L(s,f ).
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3. Proof of Theorem 1·1
Let π ∈ A . We detect the zeros of L(s, π) by estimating a mollified second moment

of L(s, π) near the line Re(s) = 1/2. To describe our mollifier, we define μπ (n) by the
convolution identity

∑
d|n

μπ (d)λπ (n/d) =
{

1 if n = 1,

0 if n > 1
(3·1)

so that

1

L(s, π)
=

∞∑
n=1

μπ (n)

ns
, Re(s) > 1.

Let T > 0 be a large parameter, and let 0 < 	 < 1/4. Define P(t) by

P(t) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ t ≤ T	/2,

2(1 − log t
log T	 ) if T	/2 < t ≤ T	 ,

0 if t > T	 .

(3·2)

Our mollifier is

Mπ (s, T	 ) =
∑

n≤T	

μπ (n)

ns
P(n). (3·3)

As a proxy for detecting zeros of L(s, π) near Re(s) = 1/2, where L(s, π) oscillates wildly,
we detect zeros of the mollified L-function L(s, π)Mπ (s, T	 ) near Re(s) = 1/2. To this end,
we let w : R→R be an infinitely differentiable function whose support is a compact subset
of [T/4, 2T] and whose j-th derivative satisfies |w(j)(t)| �w,j ((log T)/T)j for all j ≥ 0. Also,
let w(t) = 1 for t ∈ [T/2, T]. We will estimate

If (α, β) =
∫ ∞

−∞
w(t)L( 1

2 + α + it, π)L( 1
2 + β − it, π̃ )|Mπ ( 1

2 + 1
log T + it, T	 )|2dt,

eventually choosing α and β to equal 1/ log T . Define

G(s) = es2 (α + β)2 − (2s)2

(α + β)2
,

gα,β (s, t) = L( 1
2 + α + s + it, π∞)L( 1

2 + β + s − it, π̃∞)

L( 1
2 + α + it, π∞)L( 1

2 + β − it, π̃∞)
,

Vα,β (s, t) = 1

2π i

∫
Re(s)=1

G(s)

s
gα,β (s, t)x−sds,

Xα,β (t) = L( 1
2 − α − it, π∞)L( 1

2 − β + s + it, π̃∞)

L( 1
2 + α + it, π∞)L( 1

2 + β − it, π̃∞)
.

As in [Ber15, AT21], it follows from the approximate functional equation (see [IK04,
section 5.2] also) that

If (α, β) =
∑

a,b≤T	

μπ (a)μπ (b)√
ab

P(a)P(b)

(ab)
1

log T

(D+
a,b(α, β) + D−

a,b(α, β) + N+
a,b(α, β) + N−

a,b(α, β)),
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where we have split the sum into diagonal terms

D+
a,b(α, β) =

∑
am=bn

λπ (m)λπ (n)

m
1
2 +αn

1
2 +β

∫ ∞

−∞
w(t)Vα,β (mn, t) dt,

D−
a,b(α, β) =

∑
am=bn

λπ (m)λπ (n)

m
1
2 −βn

1
2 −α

∫ ∞

−∞
w(t)Xα,β (t)V−β,−α(mn, t) dt

and off-diagonal terms

N+
a,b(α, β) =

∑
am �=bn

λπ (m)λπ (n)

m
1
2 +αn

1
2 +β

∫ ∞

−∞
w(t)

( bn

am

)it
Vα,β (mn, t) dt,

N−
a,b(α, β) =

∑
am �=bn

λπ (m)λπ (n)

m
1
2 −βn

1
2 −α

∫ ∞

−∞
w(t)

( bn

am

)it
Xα,β (t)V−β,−α(mn, t) dt.

LEMMA 3·1. Let ε > 0. If α, β ∈C satisfy |α|, |β| � 1/log T and |α + β| � 1/log T,

then for any integers a, b ≥ 1, we have that N±
a,b(α, β) �ε (ab)

1
2 T

1
2 +θ (abT)ε.

Proof. This is [AT21, proposition 3·4].

COROLLARY 3·2. Fix 0 < 	 < 1/4 − θ/2. There exists a constant δ > 0 such that

∣∣∣ ∑
a,b≤T	

μπ (a)μπ (b)√
ab

P(a)P(b)

(ab)
1

log T

(N+
a,b(α, β) + N−

a,b(α, β))
∣∣∣ � T1−δ .

Proof. Let ε > 0. First, observe that |μπ (a)| � 1 + |λπ (a)| � 1 + |λπ (a)|2. We then
apply Lemma 3·1 and bound everything else trivially to obtain

∑
a,b≤T	

μπ (a)μπ (b)√
ab

P(a)P(b)

(ab)
1

log T

∑
±

N±
a,b(α, β) � T

1
2 +θ+ε

( ∑
a≤T	

1 +
∑

a≤T	

|λπ (a)|2
)2

.

By (2·2), this is �f ,ε T
1
2 +θ+2	+ε. If 	 ≤ 1/4 − θ/2 − ε, then the above display is � T1−ε.

PROPOSITION 3·3. If T is sufficiently large and 	 ∈ (0, 1/4 − θ/2) is fixed, then

∫ T

T/2
|L( 1

2 + 1
log T + it, π)Mπ ( 1

2 + 1
log T + it, T	 )|2dt � T .

Proof. In light of Corollary 3·2, it remains to bound the diagonal contribution. We first
note by a calculation identitcal to [Ber15, lemma 11] that

∑
a,b≤T	

μπ (a)μπ (b)√
ab

P(a)P(b)

(ab)
1

log T

(D+
a,b(α, β) + D−

a,b(α, β))

=
∑

a,b≤T	

μπ (a)μπ (b)√
ab

P(a)P(b)

(ab)
1

log T

(D+
a,b(α, β) + T−2(α+β)D+

a,b( − α, −β)) + O
( T

log T

)
.
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So it suffices for us to estimate

ID(α, β) =
∑

a,b≤T	

μπ (a)μπ (b)√
ab

P(a)P(b)

(ab)
1

log T

D+
a,b(α, β)

with α = β = 1/log T .

Let σ0 = 1/2 + 1/log T . We observe via the Mellin inversion that ID(α, β) equals

4

(log (T	 ))2

∫ ∞

−∞
1

(2π i)3

∫
(1)

∫
(1)

∫
(1)

T
	 (u+v)

2 (T
u	
2 − 1)(T

v	
2 − 1)

G(s)

s
gα,β (s, t)

×
∑

a,b,m,n≥1
am=bn

μπ (a)μπ (b)λπ (m)λπ (n)

aσ0+vbσ0+um
1
2 +α+sn

1
2 +β+s

ds
du

u2

dv

v2
dt.

By a computation identical to [Ber15, lemma 6], there exists a product of half-planes con-
taining an open neighborhood of the point u = v = s = 0 and an Euler product Aα,β (u, v, s),
absolutely convergent for (u,v,s) in said product of half-planes, such that

∑
a,b,m,n≥1

am=bn

μπ (a)μπ (b)λπ (m)λπ (n)

aσ0+vbσ0+um
1
2 +α+sn

1
2 +β+s

= Aα,β (u + 1
log T , v + 1

log T , s)

×
L(1 + α + β + 2s, π ⊗ π̃ )L(1 + 2

log T + u + v, π ⊗ π̃ )

L(1 + 1
log T + α + u + s, π ⊗ π̃)L(1 + 1

log T + β + v + s, π ⊗ π̃ )
.

By Möbius inversion and a continuity argument, one can prove that A0,0(0, 0, 0) = 1 [Ber15,
lemma 7].

Upon choosing δ sufficiently small and shifting the contours to Re(u) = δ, Re(v) = δ, and
Re(s) = −δ/2, we find that

ID(α, β) = 4L(1 + α + β, π ⊗ π̃)

(2π i)2(log (T	 ))2

∫
R

w(t)dt
∫

(δ)

∫
(δ)

T
	 (u+v)

2 (T
u	
2 − 1)(T

v	
2 − 1)

×
L(1 + 2

log T + u + v, π ⊗ π̃ )Aα,β (u + 1
log T , v + 1

log T , 0)

L(1 + 1
log T + α + u, π ⊗ π̃ )L(1 + 1

log T + β + v, π ⊗ π̃)

du

u2

dv

v2
+ O

( T

log T

)
.

The contribution from the pole at u = v = 0 determines the magnitude of the double integral
over u and v, and this magnitude is �π (log T)2 for α and β in our prescribed range. (This
follows once we push the u- and v-contours to the left using (2·3).) Since

∫
R w(t)dt � T

by hypothesis, we combine all preceding contributions and choose α = β = 1/ log T to
conclude the desired bound.

COROLLARY 3·4. If T is sufficiently large and 	 ∈ (0, 1/4 − θ/2) is fixed, then∫ T

T/2
|L( 1

2 + 1
log T + it, π)Mπ ( 1

2 + 1
log T + it, T	 ) − 1|2dt � T .

Proof. This follows from Proposition 3·3 and the Cauchy–Schwarz inequality.

We prove a corresponding estimate on a vertical line to the right of Re(s) = 1.
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LEMMA 3·5. If 	 ∈ (0, 1/4 − θ/2) and A > θ are fixed and T is sufficiently large, then

∫ T

T/2
|L(1 + A + it, π)Mπ (1 + A + it, T	 ) − 1|2dt �A T1+(θ−A− 1

2 )	 (log T)15.

Proof. Let A > θ . It follows immediately from [MV74, corollary 3] that if T > 1 and (bn)
is any sequence of complex numbers satisfying

∑
n n|bn|2 < ∞, then

∫ T

T/2

∣∣∣ ∞∑
n=1

bnn−it
∣∣∣2

dt =
∞∑

n=1

|bn|2(T/2 + O(n)). (3·4)

We define an by the identity

L(1 + A + it, π)Mπ (1 + A + it, T	 ) − 1 =
∞∑

n=1

ann−1−A−it.

By (3·1), (3·2), and (3·3), we have that an = 0 for all n ≤ T	/2 and |an|2 � (nθd4(n))2 �
n2θd16(n), where dk(n) is the n-th Dirichlet coefficient of ζ (s)k. The desired result follows
once we apply (3·4) with bn = ann−1−A.

Proof of Theorem 1·1. We use Gabriel’s convexity principle [Tit86, section 7·8] to inter-
polate the bounds in Corollary 3·4 and Lemma 3·5. In particular, if 0 < 	 < 1/4 − θ/2 and
A > θ are fixed and c = 	 (1 + 2A − 2θ)/(1 + 2A), then in the range 1/2 + 1/log T ≤ σ ≤
1 + A, we have

∫ T

T/2
|L(σ + it, π)Mπ (σ + it, T	 ) − 1|2dt

� T
1+A−σ

1+A−( 1
2 + 1

log T ) (T1+(θ−A− 1
2 )	 (log T)15)

1− 1+A−σ

1+A−( 1
2 + 1

log T ) � T1−c(σ− 1
2 ).

(3·5)

Define �(s) := 1 − (1 − L(s, π)Mπ (s, T	 ))2. By construction, if α ∈C, then

ord
s=α

�(s) ≥ ord
s=α

L(s, π)Mπ (s, T	 ).

For any M � 1, let CM be the rectangular contour with corners σ + iT/2, σ + iT , M + iT/2,
and M + iT . Applying Littlewood’s lemma ([Tit58, pp. 132–133]) and letting M → ∞, we
have∫ 1

σ

(Nπ (σ ′, T) − Nπ (σ ′, T
2 ))dσ ′ � lim

M→∞
1

2π

∫
CM

log �(s)ds

= 1

2π

∫ T

T/2
log |�(σ + it)|dt + 1

2π

∫ ∞

σ

arg (�(x + iT))dx − 1

2π

∫ ∞

σ

arg (�(x + iT
2 ))dx.

In view of the bound log |1 + z|� |z|, it follows from (3·5) that

1

2π

∫ T

T/2
log |�(σ + it)|dt ≤

∫ T

T/2
|L(σ + it, π)Mπ (σ + it, T	 ) − 1|2dt � T1−c(σ− 1

2 ).
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For the second and third integrals, we consider the integrals over x � 1 and over x > 1
separately. For x ∈ (1, ∞) we can trivially bound the Dirichlet series as

|1 − L(x + iT , π)Mπ (x + iT , T	 )|�
∞∑

n=2

|an|n−x � 2−x,

where (an) is a certain sequence of complex numbers such that |an| �ε nθ+ε for any fixed
ε > 0 and all n ≥ 2. Thus, we have

| arg (1 − (1 − L(x + iT , π)Mπ (x + iT , T	 ))2)| � 2−x,

so ∣∣∣ ∫ ∞

1
arg (�(x + iT))dx

∣∣∣, ∣∣∣ ∫ ∞

1
arg (�(x + 2iT))dx

∣∣∣ � 1.

To handle the integrals for 1/2 + 1/log T ≤ x ≤ 1, we use the trivial bound

∣∣∣ ∫ 1

σ

arg (�(x + 2iT))dx
∣∣∣ ≤ (1 − σ ) max

σ≤x≤1
| arg (�(x + 2iT))| � log T .

A proof of the final bound is contained within the proof of [IK04, theorem 5·8]. The
corresponding integral for �(x + iT) has the same bound.

By the preceding work, it follows by dyadic decomposition that∫ 1

σ

Nπ (σ ′, T)dσ ′ � T1−c(σ− 1
2 ),

1

2
+ 1

log T
≤ σ ≤ 1.

This estimate, the mean value theorem for integrals, and the fact that Nπ (σ , T) is monotoni-
cally decreasing as σ increases together imply that

Nπ (σ , T) ≤ 1

σ − (σ − 1
log T )

∫ σ

σ− 1
log T

Nπ (σ ′, T)dσ ′

� 1

σ − (σ − 1
log T )

∫ 1

σ− 1
log T

Nπ (σ ′, T)dσ ′ � T1−c(σ− 1
2 ) log T .

If 1/2 ≤ σ ≤ 1/2 + 1/log T , then (1·4) implies that Nπ (σ , T) � T log T �
T1−c(σ−1/2) log T .

To finish the proof, note that if θ = 0, then for all A > 0, we have c = 	 . If θ > 0, then
fix 0 < ε < θ	/(θ + 1/2) and choose A = θ	/ε − 1/2. With these choices, we find that
c > 	 − ε. Theorem 1·1 now follows.

4. Proof of Theorem 1·3
We begin with a few preliminary lemmas. Throughout the section, θ is an admissible

exponent toward the generalised Ramanujan conjecture as in Theorem 1·1. Our first result
is an n-dimensional version of the Riemann–Lebesgue lemma.

LEMMA 4·1. Let J ≥ 1. Suppose that h ∈ Cn+2(Tn) has the Fourier expansion

h(t) =
∑

m∈Zn

cme2π i(m·t).
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We have |cm| �h ‖m‖−n−2
2 , and consequently, we have

h(t) =
∑

m∈Zn

‖m‖2≤J

cme2π i(m·t) + Oh(J−2).

Proof. We have

cm =
∫
Tn

h(t)e−2π i(m·t)dt. (4·1)

Let m = (m1, m2, . . . , mn). Choose j ∈ {1, . . . , n} such that |mj| = ‖m‖∞. Integrate (4·1) by
parts for n + 2 times with respect to the coordinate tj of t so that

cm = (−1)n+2

(2πmj)n+2

∫
Tn

( ∂n+2

∂tn+2
j

h(t)
)

e−2π i(m·t)dt. (4·2)

Since
√

n‖m‖∞ ≥ ‖m‖2, the desired result follows from the triangle inequality.

LEMMA 4·2. Let x > 1 and T � 2, and let 〈x〉 being the closest integer to x. We have

∑
|γ |≤T

xρ = −�π (〈x〉)
π

· eiT log (x/〈x〉) − 1

i log (x/〈x〉) + O
(

x1+θ (log (2x) + log T) + log T

log x

)
.

Proof. This is [FSZ09, lemma 2] with ε = θ .

Using Theorem 1·1 and Lemma 4·2, we prove an analogue of [FZ05, (3·8)].

LEMMA 4·3. Let c be as in Theorem 1·1. If 1 < x < exp ((c/3)(log T/log log T)), then

∑
|γ |≤T

xiγ =
∑

|γ |≤T

xρ− 1
2 + O

(T(log x)2

log T
+ T

(log T)2

)
.

Proof. Let δ = ((3/c)(log log T/log T)), so 0 < δ log x < 1. By Theorem 1·1, we have that

∣∣∣ ∑
|γ |≤T

|β− 1
2 |�δ

(xiγ − xρ− 1
2 )

∣∣∣ �
∑

|γ |≤T
β� 1

2 +δ

xβ− 1
2 � xδNπ ( 1

2 + δ, T)

+ log x
∫ 1

1
2 +δ

xσ− 1
2 Nπ (σ , T)dσ � T

(log T)2
.

By the functional equation for L(s, π), β + iγ is a nontrivial zero if and only if 1 − β + iγ
is a nontrivial zero. Therefore, we have∣∣∣ ∑

|γ |≤T
|β− 1

2 |<δ

(xiγ − xρ− 1
2 )

∣∣∣ =
∣∣∣ ∑

|γ |≤T
1
2 <β< 1

2 +δ

(xiγ (1 − xβ− 1
2 ) + xiγ (1 − x

1
2 −β )

∣∣∣
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≤
∑

|γ |≤T
0<β− 1

2 <δ

|xiγ (1 − xβ− 1
2 ) + xiγ (1 − x−(β− 1

2 ))|

=
∑

|γ |≤T
0<β− 1

2 <δ

(xβ− 1
2 + x−(β− 1

2 ) − 2). (4·3)

Note that xβ−1/2 + x−(β−1/2) − 2 = (2 sinh (1/2(β − 1) log x))2. Note that if 0 < β −
1/2 < δ, then 0 < (1/2)(β − 1/2) log x < 1/2. Since y < sinh (y) < 2y for 0 < y < 1/2,
(4·3) is

� (log x)2
∑

|γ |≤T
0<β− 1

2 <δ

(
β − 1

2

)2 � (log x)2
∫ δ

0
σNπ ( 1

2 + σ , T)dσ � T(log x)2

log T
.

The desired result follows.

Proof of Theorem 1·3. Let h ∈ Cn+2(Tn), and let α satisfy (1·12). Let J ∈
[1, 100 log (eT)]. We begin with the expansion∑

|γ |�T

h(γα) =
∑

|γ |�T

∑
m∈Zn

cme2π iγ (m·α)

= Nπ (T)
∫
Tn

h(t)dt +
∑

|γ |�T

( ∑
1�‖m‖2�J

+
∑

‖m‖2>J

)
cme2π iγ (m·α).

By Lemma 4·1, we have

∑
|γ |�T

h(γα) − Nπ (T)
∫
Tn

h(t)dt =
∑

|γ |�T

∑
1�‖m‖2�J

cme2π iγ (m·α) + O
(Nπ (T)

J2

)
. (4·4)

Write xm = e2π(m·α). Since xiγ
−m = x−iγ

m and c−m = −cm, we find that (4·4) equals

2�
∑

1�‖m‖2�J
m·α>0

cm

∑
0<γ�T

xiγ
m + O

(Nπ (T)

J2

)
.

Choose J so that ‖m‖2 ≤ J implies log xm < ((c/3)(log T/log log T)) (with c as in Theorem
1·1). By Lemma 4·3 and the above display, (4·4) equals

2�
∑

1�‖m‖2�J
m·α>0

cm

∑
|γ |≤T

x
ρ− 1

2
m + O

(Nπ (T)

J2
+ T

log T

∑
1�‖m‖2�J

1

‖m‖n+2
2

(
(log xm)2 + 1

log T

))
.

Since log xm ≤ 2π‖m‖2‖α‖2, it follows from our preliminary bound for J that (4·4) equals

2�
∑

1�‖m‖2�J
m·α>0

cm

∑
|γ |≤T

x
ρ− 1

2
m + O

(Nπ (T)

J2
+ T log log T

log T

)
. (4·5)
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We apply Lemma 4·2 to conclude that (4·5) equals

−2T

π
�

∑
1�‖m‖2�J

m·α>0

cm�π (〈xm〉)√
xm

· eiT log xm〈xm〉 − 1

iT log xm〈xm〉
+ E , (4·6)

where E satisfies (note that log xm = 2π(m · α))

|E | �
∑

1�‖m‖2�J
m·α>0

x1+θ
m ( log (2xm) + log T) +

∑
1�‖m‖2�J

m·α>0

log T

m · α +
(Nπ (T)

J2
+ T log log T

log T

)
.

Our choice of J ensures that log (2xm) � log T , so it follows from (1·12) that

|E | �
∑

1�‖m‖2�J
m·α>0

(x1+θ
m + e‖m‖2 ) log T + Nπ (T)

J2
+ T log log T

log T
.

Since x1+θ
m = e2π(1+θ )(m·α) ≤ e4π‖m‖2‖α‖2 , it follows that

|E | � e(n+4π‖α‖2)J log T + Nπ (T)

J2
+ T log log T

log T
. (4·7)

We choose J = (log T)2/3. Since Nπ (T) � T log T , (4·6) equals

−2T

π
�

∑
1�‖m‖2�J

m·α>0

cm�π (〈xm〉)√
xm

· eiT log xm〈xm〉 − 1

iT log xm〈xm〉
+ O

( T

(log T)1/3

)
. (4·8)

Observe that if xm �= 〈xm〉, then |eiT log xm〈xm〉 − 1| ≤ |iT log (xm/〈xm〉)|. Also, since 0 ≤
θ < 1/2, it follows that |�π (〈xm〉)| � √

xm. The proof of Lemma 4·1 ensures that |cm| �
‖m‖−n−2

2 , so the sum over m converges absolutely. By the decay of |cm|, our choice of J,
and (4·7), (4·8) equals

− 2T

π
�

( ∑
m·α>0

xm=〈xm〉

cm�π (xm)√
xm

+
∑

m·α>0
xm �=〈xm〉

cm�π (〈xm〉)√
xm

· eiT log xm〈xm〉 − 1

iT log xm〈xm〉

)

+ O
( T

(log T)1/3

)
. (4·9)

In particular, each sum over m converges absolutely.
To handle the sum over m such that xm �= 〈xm〉, we note (by absolute convergence) that

for all ε > 0, there exists Mε = Mε(α, h) > 0 such that

∣∣∣ ∑
‖m‖2>Mε

m·α>0
xm �=〈xm〉

cm�π (〈xm〉)√
xm

· eiT log xm〈xm〉 − 1

iT log xm〈xm〉

∣∣∣ < ε.

Consequently, we have
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π
�

∑
‖m‖2≥1
m·α>0

xm �=〈xm〉

cm�π (〈xm〉)√
xm

· eiT log xm〈xm〉 − 1

iT log xm〈xm〉

∣∣∣

≤
∣∣∣� ∑

‖m‖2≤Mε
m·α>0

xm �=〈xm〉

cm�π (〈xm〉)√
xm

· eiT log xm〈xm〉 − 1

log xm〈xm〉

∣∣∣ + εT .

As we let ε → 0 sufficiently slowly, we conclude that (4·6) equals o(T), as desired.
For the sum over m such that xm = 〈xm〉, which means xm ∈Z, the terms which are not

prime powers will vanish due to the presence of the von Mangoldt function. For the other
terms which are prime powers, we have m · α = (k log p)/(2π) for some k ∈N by the defini-
tion of xm. This will only happen when m is a multiple of qjbj for some j ∈ {1, . . . , r} due to
our choice of the vector α in (1·13), so

− 2

π
�

∑
m·α>0

xm=〈xm〉

cm�π (xm)√
xm

= − 2

π
�

r∑
j=1

∞∑
l=1

�π (p
ajl
j )

p
ajl/2
j

clqjbj =
∫
Tn

h(t)gπ ,α(t)dt.

The last equation holds because of (1·14) and (4·1).

5. Proof of Corollary 1·4
Let B⊆Tn be a product of n subintervals of T for which | ∫B gf ,α(t)dt| attains its

maximum. For ε > 0, let ϕε : Tn →R satisfy the following conditions:

(i) ϕε is nonnegative and infinitely differentiable;

(ii) ϕε is supported on a compact subset of Uε := {t ∈Tn : ‖t‖2 < ε}; and

(iii)
∫
Tn ϕε(t)dt = 1.

Let 1B be the indicator function of B, and define hε(t) = ∫
Tn ϕε(t)1B(x − t)dt. Then hε is

infinitely differentiable, and thus Theorem 1·3 holds with r arbitrarily large for h = hε.
Consequently, for any fixed r ≥ n + 2, we have∫

Tn
hε(y)

( ∑
|γ |≤T

{γα}∈B+y

1 − vol(B)Nπ (T)
)

dy = T
∫

Uε

hε(y)
∫
B+y

gf ,α(x)dxdy + o(T).

It follows from our definition of gf ,α(t) in (1·14) that gf ,α(t) � 1, hence

∣∣∣ ∫
B+y

gf ,α(x)dx −
∫
B

gf ,α(x)dx
∣∣∣ � ε

for all y ∈ Uε. Thus, we have∫
Tn

hε(y)
( ∑

|γ |≤T
{γα}∈B+y

1 − vol(B)Nπ (T)
)

dy = T
∫
B

gf ,α(t)dt + O(εT) + o(T).
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By the mean value theorem, there exists y ∈ Uε such that∣∣∣ ∑
|γ |≤T

{γα}∈B+y

1 − vol(B)Nπ (T)
∣∣∣ ≥ T

∣∣∣ ∫
B

gf ,α(t)dt
∣∣∣ + O(εT) + o(T).

The proof follows once we let ε → 0 sufficiently slowly as a function of T .

6. Proofs of Corollaries 1·5-1·8
Throughout Sections 6·3-6·5, all levels are assumed to be squarefree.

6·1. An estimate for the density function

We begin with a useful estimate for the density function gf ,α associated to a holomorphic
cuspidal newform f ∈ Snew

k (�0(q)) as in Section 2.2.

LEMMA 6·1. Let f ∈ Sk(�0(q)) be a newform and let α = (a log p)/(2πq). Then we have∣∣∣gf ,α(t) + 2

π

�π (pa)

pa/2
cos (2πqt)

∣∣∣ ≤ 4 log p

πpa(1 − p−a/2)
.

Proof. In this case, Deligne’s bound implies that∣∣∣gf ,α(t) + 2

π

�π (pa)

pa/2
cos (2πqt)

∣∣∣
=

∣∣∣ 2

π

∞∑
�=2

�π (pa�)

p
a�
2

cos (2πq�t)
∣∣∣� ∞∑

�=2

2 log p

pa�/2
= 2 log p

pa(1 − p−a/2)
.

6·2. Proof of Corollary 1·5
First, we prove a simple criterion for f1 winning the (( log p)/(2π), h)-race. From

Lemma 6·1, we obtain∫
T

h(t)(gf1,α(t) − gf2,α(t))dt >
(λf2(p) − λf1(p))2 log p

π
√

p

∫
T

h(t) cos (2π t)dt

−
∫
T h(t)dt · 8 log p

πp(1 − p−1/2)
.

Consequently, the inequality

(λf2(p) − λf1(p))
∫
T

h(t) cos (2π t)dt >
4

∫
T h(t)dt√

p(1 − p−1/2)
, (6·1)

implies that ∫
T

h(t)(gf1,α(t) − gf2,α(t))dt > 0,

which by Theorem 1·3 tells us that f1 wins the (( log p)/(2π), h)-race.
Throughout the proof, we let kh := ∫

T h(t) cos (2π t)dt. The number of p for which f1 wins
the race is equal to T1 − T2 + T3, where

T1 := #{p � X : kh(λf2(p) − λf1(p)) > 0},
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T2 := #{p � X : f1 loses the (α, h)-race, and kh(λf2(p) − λf1(p)) > 0},
T3 := #{p � X : f1 wins the (α, h)-race, and kh(λf2(p) − λf1(p)) � 0}.

From the symmetry of μST ,2, we see that ν({(x, y) ∈ [−2, 2]2 : x − y > 0}) = 1/2. By
Corollary 2·2 with I = (0, 4), we have

T1 = 1

2
π(X) + O

(
π(X)

√
log log log X

(log log X)1/4

)
.

We have to show that T2 and T3 are both O(π(X)(
√

log log log X/(log log X)1/4)). Note
that

T2 = #{√X � p � X : f1 loses the (α, h)-race, and kh(λf2(p) − λf1(p)) > 0} + O(π(
√

X)).

If p �
√

X and f1 loses the (α, h)-race and kh(λf2(p) − λf1(p)) > 0, then by (6·1), we have

kh(λf2(p) − λf1(p)) ∈
(

0,
4

∫
T h(t)dt√

p(1 − p−1/2)

]
⊆

(
0,

4
∫
T h(t)dt

X
1
4 (1 − X−1/2)

]
.

Denoting by JX the rightmost interval in the preceding display, we have

#{p � X : f1 loses the (α, h)-race, and kh(λf2(p) − λf1(p)) > 0}
� #{p � X : λf2(p) − λf1(p) ∈ JX} + O(π(

√
X)).

By Corollary 2·2, this is at most

#{p � X : f1 loses the (α, h)-race, and kh(λf2(p) − λf1(p)) > 0}
≤ ν

(
|kh|−1JX

)
π(X) + O

(
π(X)

√
log log log X

(log log X)1/4

)
.

Since ν(|kh|−1JX) = O(|JX|) = O(X−1/4), it follows that

#{p � X : f1 loses the (α, h)-race, and kh(λf2(p) − λf1(p)) > 0} = O
(
π(X)

√
log log log X

(log log X)1/4

)
.

If the conditions for T3 are true, then

kh(λf2(p) − λf1(p)) ∈
[
− 4

∫
T h(t)dt√

p(1 − p−1/2)
, 0

]
.

Therefore, T3 � π(X)(
√

log log log X/(log log X)1/4) by the argument used to bound T2.
The result follows from the estimate shown for T1 and the bounds for T2 and T3.

6·3. Proof of Corollary 1·6
Proof. From Theorem 1·3, Lemma 6·1, and (2·8) we have

H
(

f1, f2, h,
log p

2π

)
= 2kh

π
· log p · (λf2(p) − λf1(p))

p1/2
+ Oh

( log p

p

)
. (6·2)

Consider the statements

2kh

π
(λf2(p) − λf1(p)) ∈ I (6·3)
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and
√

X

log X
H(f1, f2, h,

log p

2π
) ∈ I . (6·4)

Defining

T1 := #{p ∈ [(1 − εX)X, X] : (6·3) holds},
T2 := #{p ∈ [(1 − εX)X, X] : (6·3) holds and (6·4) fails},
T3 := #{p ∈ [(1 − εX)X, X] : (6·3) fails and (6·4) holds},

we have

#
{

p ∈ [(1 − εX)X, X] :

√
X

log X
H

(
f1, f2, h,

log p

2π

)
∈ I

}
= T1 − T2 + T3.

By Corollary 2·2 we have:

T1 = #{p � X : (6·3) holds} − #{p � (1 − εX)X : (6·3) holds}
= ν

( π

2kh
I
)
π(X) + O(π(X)ε2

X)

− ν
( π

2kh
I
)
π((1 − εX)X) + O

(
π(X − εXX)ε2

X

)
= ν

( π

2kh
I
)

·
(
π(X) − π((1 − εX)X)

)
+ O

(
π(X)ε2

X

)
.

We proceed to show that T2 and T3 are O
(
ε2

Xπ(X)
)

as X → ∞. We first examine T2. Set

I = (δ1, δ2). If the condition in (6·4) is false, then
√

X

log X
H

(
f1, f2, h,

log p

2π

)
/∈ [δ1, δ2].

Applying (6·2), we deduce that
√

X

log X

2kh

π
· log p · (λf2(p) − λf1(p))

p1/2
/∈

[
δ1 + C log p

p
, δ2 − C log p

p

]
,

where C is an implied constant in (6·2). Then (6·3) gives us

2kh

π
(λf2(p) − λf1(p)) ∈

(
δ1, δ1

(p1/2 log X

X1/2 log p

)
+ C√

p

)
∪

(
δ2

(p1/2 log X

X1/2 log p

)
− C√

p
, δ2

)
. (6·5)

Since p ∈ [(1 − εX)X, X], it follows that (λf2(p) − λf1(p)) ∈ IX , where IX is

π

2kh

(
δ1,

δ1 log X

log X(1 − εX)
+ C√

X(1 − εX)

)
∪ π

2kh

(
δ2

√
1 − εX − C√

X(1 − εX)
, δ2

)
.

By Corollary 2·2, we have

#{(1 − εX)X � p � X : (λf1(p) − λf2(p)) ∈ IX}
= ν(IX)(π(X) − π((1 − εX)X)) + O

(
π(X)ε2

X

)
.
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From the prime number theorem, we obtain

π(X) − π((1 − εX)X) ∼ εXπ(X).

Combining this with the fact that ν(IX) = O(εX), we conclude the following:

#{(1 − εX)X � p � X : (λf1(p) − λf2(p)) ∈ IX} = O(ε2
Xπ(X)).

Therefore, T2 = O(ε2
Xπ(X)). A very similar argument can be used to bound T3. More

specifically, if (6·4) holds, then we have
√

X

log X

2kh

π
· log p · (λf2(p) − λf1(p))

p1/2
∈ (δ1 − C log p

p
, δ2 + C log p

p
),

If (6·3) fails and (6·4) holds, then, much like (6·5), we obtain

2kh

π
(λf2(p) − λf1(p)) ∈

(
δ1

(p1/2 log X

X1/2 log p

)
− C√

p
, δ1

)
∪

(
δ2, δ2

(p1/2 log X

X1/2 log p

)
+ C√

p

)
.

By Corollary 2·2, the number of such p ∈ ((1 − εX)X, X) is O(ε2
Xπ(X)).

6·4. Proof of Corollary 1·7
By Theorem 1·3, if f2 wins the (α, h)-race, where α = log p/2π , then we must have

0 <
log (q1/q2)

π

∫
T

h(t)dt <

∫
T

h(t)(gf2,α(t) − gf1,α(t))dt.

By Lemma 6·1, we have∣∣∣ ∫
T

(gf2,α(t) − gf1,α(t))h(t)dt
∣∣∣ ≤

∫
T

h(t)dt · 2 log p

π

(
p− 1

2 + 1

(p
1
2 − 1)p

1
2

)
.

It follows that log (q1/q2) � 2p−1/2(1 + (p
1
2 − 1)−1) log p. The left hand side is independent

of α and positive, while the right hand side tends to zero as p grows. Thus, this inequality
holds for only finitely many primes p.

6·5. Proof of Corollary 1·8
Fix t0 ∈ [0, 1), and k1, k2 ∈Z. By Theorem 1·3 and the same reasoning as in [LZ21,

theorem 1·2], that f1 wins the local (α, t0)-race against f2 if

gf1,α(t0) + log q1

2π
> gf2,α(t0) + log q2

2π
,

or, equivalently, if (1/2π ) log (q1/q2) > gf2,α(t0) − gf1,α(t0).
We first assume t0 �= 1/4, 3/4. For α = log p/2π and q2 ∈ (q1, q1 + √

q1), by Lemma 6·1,
the following is sufficient to guarantee that f1 wins the (α, t0) race:

√
p

2 log p
log (1 + q−1/2

1 ) < cos (2π t0)(λf2(p) − λf1(p)) − 4

p1/2(1 − p−1/2)
. (6·6)

This inequality is automatically true if both

(λf1(p) − λf2(p)) cos (2π t0) � | cos (2π t0)|
2

(6·7)
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and

| cos (2π t0)|
2

>
p1/2

2 log p
log (1 + q−1/2

1 ) + 4

p1/2(1 − p−1/2)
(6·8)

are satisfied.
Now set X = q1/4

1 and Y = q1/6
1 . For p ∈ [Y , X), if q1 is sufficiently large, then (6·8) is

satisfied. Choose I1, I2 ⊆ [−2, 2] such that (λf1(p), λf2(p)) ∈ I1 × I2 implies (6·7). Suppose
f1 ∈ Snew

k1
(�0(q1)), f2 ∈ Snew

k2
(�0(q2)) are non-CM newforms, where q2 ∈ [q1, q1 + √

q1], and
assume, as in the statement of the Corollary, that f2 �= f1 ⊗ χ for any primitive Dirichlet
character χ . Let

πf1,f2,I1,I2(X) := #{p � X : (λf1(p), λf2(p)) ∈ I1 × I2}.
Then by Theorem 2·1 we have

πf1,f2,I1,I2(X) − πf1,f2,I1,I2(Y) �μST(I1)μST(I2)(π(X) − π(Y))

− cπ(X)
log log log (k1k2q

1
4 + 1

2 +1
1 )

(log log q1/4
1 )1/2

− cπ(Y)
log log log (k1k2q

1
6 + 1

2 +1
1 )

(log log q1/6
1 )1/2

.

So if q1 is sufficiently large, then πf1,f2,I1,I2(X) > πf1,f2,I1,I2(Y). So there exists p between Y
and X such that (6·6) is satisfied and therefore f1 wins the local (t0, ( log p)/(2π)) race.

Finally, if t0 = 1/4, 3/4, then instead of (6·6), we wish to find p such that

p

2 log p
log (1 + q−1/2

1 ) < (λf1(p)2 − λf2(p)2) − 4

p3/2(1 − p−1/2)
.

We obtain this the same way as the first case.

7. Example

We conclude with a numerical example to illustrate (1·15). For our example, we consider
the L-function L(s, �) associated to the discriminant modular form

�(z) = e2π iz
∞∏

n=1

(1 − e2π inz)24 =
∞∑

n=1

τ (n)e2π inz ∈ Snew
12 (�0(1)),

where τ (n) denotes the Ramanujan tau function. We use Rubinstein’s lcalc package [Rub14]
to calculate the 2 · 105 nontrivial zeros L(s, �) up to height T = 74920.77.

Let M and α satisfy the following relation for (1·13),

Mαᵀ =
(

1 1
1 2

) (
α1

α2

)
= 1

2π

(
log 2
log 3

)
,

so that (1·14) will define our density function g�,α(x, y). We graph g�,α(x, y) in Figure 1(a)
below. Next, we partition the unit square [0, 1) × [0, 1) as

[0, 1) × [0, 1) =
29⋃

a=0

29⋃
b=0

Sa,b, Sa,b :=
[ a

30
,

a + 1

30

)
×

[ b

30
,

b + 1

30

)
.
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Fig. 1. Example.

Given (x, y) ∈ [0, 1) × [0, 1), there exists a unique pair of integers a and b with 0 ≤ a, b ≤ 29
such that (x, y) ∈ Sa,b. Denoting this unique square as S(x,y), we define

g̃�,α(x, y) := #{ρ = β + iγ : L(ρ, �) = 0 and ({α1γ }, {α2γ }) ∈ S(x, y)}.
This gives us a discretised approximation to g�,α(x, y), which we plot in Figure 1(b) above.

REFERENCES

[AT21] N. ANDERSEN and J. THORNER. Zeros of GL2 L-functions on the critical line. Forum Math.
33 (2021), no. 2, 477–491.

[Bal17] S. ALAN C. BALUYOT. On the Zeros of Riemann’s Zeta-function. (ProQuest LLC, Ann
Arbor, MI, 2017). PhD. thesis. University of Rochester.

[BB11] V. BLOMER and F. BRUMLEY. On the Ramanujan conjecture over number fields. Ann. of
Math. (2) 174 (2011), no. 1, 581–605.

[Ber15] D. BERNARD. Modular case of Levinson’s theorem. Acta Arith. 167 (2015), no. 3, 201–237.
[BH95] E. BOMBIERI and D. A. HEJHAL. On the distribution of zeros of linear combinations of Euler

products. Duke Math. J. 80 (1995), no. 3, 821–862.
[BLGHT11] T. BARNET-LAMB, D. GERAGHTY, M. HARRIS and R. TAYLOR. A family of Calabi-Yau

varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 29–98.
[Das20] M. DAS. Selberg’s Central Limit Theorem for L-functions of level aspect. (2020),

arXiv:2012.10766.
[FHL19] K. FORD, A. J. HARPER and Y. LAMZOURI. Extreme biases in prime number races with

many contestants. Math. Ann. 374 (2019), no. 1-2, 517–551.
[FK02] K. FORD and S. KONYAGIN. The prime number race and zeros of L-functions off the critical

line. Duke Math. J. 113 (2002), no. 2, 313–330.
[FLK13] K. FORD, Y. LAMZOURI and S. KONYAGIN. The prime number race and zeros of Dirichlet

L-functions off the critical line: Part III. Q. J. Math. 64 (2013), no. 4, 1091–1098.
[FM13] D. FIORILLI and G. MARTIN. Inequities in the Shanks–Rényi prime number race: an

asymptotic formula for the densities. J. Reine Angew. Math. 676 (2013), 121–212.
[FMZ17] K. FORD, X. MENG and A. ZAHARESCU. Simultaneous distribution of the fractional parts

of Riemann zeta zeros. Bull. Lond. Math. Soc. 49 (2017), no. 1, 1–9.
[FSZ09] K. FORD, K. SOUNDARARAJAN and A. ZAHARESCU. On the distribution of imaginary parts

of zeros of the Riemann zeta function. II. Math. Ann. 343 (2009), no. 3, 487–505.

https://doi.org/10.1017/S0305004122000445 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000445


630 O. BECKWITH et al.

[FZ05] K. FORD and A. ZAHARESCU. On the distribution of imaginary parts of zeros of the Riemann
zeta function. J. Reine Angew. Math. 579 (2005), 145–158.

[FZ15] K. FORD and A. ZAHARESCU. Unnormalized differences between zeros of L-functions.
Compositio. Math. 151 (2015), no. 2, 230–252.

[Har09] M. HARRIS, Potential automorphy of odd-dimensional symmetric powers of elliptic curves
and applications, Algebra, arithmetic and geometry: in honor of Yu. I. Manin. Vol. II. Progr.
Math., vol. 270 (Birkhäuser Boston, Boston, MA, 2009), pp. 1–21.

[Hla75] E. HLAWKA. Über die Gleichverteilung gewisser Folgen, welche mit den Nullstellen der
Zetafunktion zusammenhängen. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 184
(1975), no. 8-10, 459–471.

[IK04] H. IWANIEC and E. KOWALSKI. Analytic Number Theory. (American Mathematical Society
Colloquium Publications, American Mathematical Society, 2004).

[JLW21] Y. JIANG, G. LÜ and Z. WANG. Exponential sums with multiplicative coefficients without
the Ramanujan conjecture. Math. Ann. 379 (2021), no. 1-2, 589–632.

[Kem05] R. S. KEMBLE. A Groshev theorem for small linear forms. Mathematika 52 (2005), no. 1-2,
79–85 (2006).

[Khi24] A. KHINTCHINE. Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der
Diophantischen Approximationen. Math. Ann. 92 (1924), no. 1-2, 115–125.

[Kim03] H. H. KIM. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. J.
Amer. Math. Soc. 16 (2003), no. 1, 139–183, With appendix 1 by Dinakar Ramakrishnan and
appendix 2 by Kim and Peter Sarnak.

[Luo95] W. Z. LUO. Zeros of Hecke L-functions associated with cusp forms. Acta Arith. 71 (1995),
no. 2, 139–158.

[LZ21] D. LIU and A. ZAHARESCU. Races with imaginary parts of zeros of the Riemann zeta
function and Dirichlet L-functions. J. Math. Anal. Appl. 494 (2021), no. 1, 124591.

[MV74] H. L. MONTGOMERY and R. C. VAUGHAN. Hilbert’s inequality. J. London Math. Soc. (2) 8
(1974), 73–82.

[Ono04] K. ONO, The web of modularity: arithmetic of the coefficients of modular forms and q-series,
CBMS Regional Conference Series in Mathematics, vol. 102. Published for the Conference
Board of the Mathematical Sciences, Washington, DC (American Mathematical Society,
Providence, RI, 2004).

[RS94] M. RUBINSTEIN and P. SARNAK. Chebyshev’s bias. Experiment. Math. 3 (1994), no. 3,
173–197.

[RS17] M. RADZIWIŁŁ and K. SOUNDARARAJAN. Selberg’s central limit theorem for
log |ζ (1/2 + it)|. Enseign. Math. 63 (2017), no. 1-2, 1–19.

[Rub14] M. RUBINSTEIN. L-function c++ class library and the command line program lcalc.
https://github.com/agrawroh/l-calc (2014).

[Sel92] A. SELBERG, Old and new conjectures and results about a class of Dirichlet series.
Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), University
of Salerno (1992), pp. 367–385.

[Tho21] J. THORNER, Effective forms of the Sato-Tate conjecture, Res. Math. Sci. 8 (2021), no. 1, 4.
[Tit58] E. C. TITCHMARSH, The Theory of Functions (Oxford University Press, Oxford, 1958).

Reprint of the second (1939) edition.
[Tit86] E. C. TITCHMARSH, The Theory of the Riemann Zeta-function, second ed. (The Clarendon

Press, Oxford University Press, New York, 1986). Edited and with a preface by D. R. Heath–
Brown.

[Won19] P.-J. WONG, On the Chebotarev–Sato–Tate phenomenon, J. Number Theory 196 (2019),
272–290.

https://doi.org/10.1017/S0305004122000445 Published online by Cambridge University Press

https://github.com/agrawroh/l-calc
https://doi.org/10.1017/S0305004122000445

	Introduction and statement of results
	Main results
	Application to "201C`zero races"201D`

	Preliminaries
	"026E30F operatornameGL_2 L-functions over "026E30F mathbbQ
	Holomorphic newforms

	Proof of Theorem 1.1
	Proof of Theorem 1.3
	Proof of Corollary 1.4
	Proofs of Corollaries 1.5-1.8
	An estimate for the density function
	Proof of Corollary 1.5
	Proof of Corollary 1.6
	Proof of Corollary 1.7
	Proof of Corollary 1.8

	Example

