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Abstract

We study pencils of hypersurfaces over finite fields Fq such that each of the q + 1 members defined over
Fq is smooth.
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1. Introduction

It is a well-known principle in algebraic geometry that ‘most’ hypersurfaces in Pn of
a given degree d defined over some field k are smooth. When the underlying field is
algebraically closed, we can make this precise by asserting that smooth hypersurfaces
of a given degree form a dense open subset of the parameter space under the Zariski
topology. When k = Fq is a finite field, it becomes more subtle to quantify the principle
that the number of smooth hypersurfaces of a fixed degree d defined over Fq is
sufficiently large.

As an application of the Lang–Weil theorem [7], the proportion of smooth
hypersurfaces of degree d defined over Fq tends to 1 as q→ ∞. While this justifies the
abundance of smoothness over finite fields, it does not answer finer questions on the
distribution of smooth hypersurfaces. In this paper, we consider the following general
question on the existence of smooth hypersurfaces along linear subspaces.

QUESTION 1.1. Fix a prime power q. Let (n, d, r) be any triple of positive integers.
Does there exist a linear subspace L of projective dimension r over Fq parametrising
degree d hypersurfaces in Pn such that each of the Fq-members of L is smooth?

To be more precise, suppose that we have r + 1 hypersurfaces X0, . . . , Xr defined by
Xi = {Fi = 0} for some homogeneous polynomials Fi ∈ Fq[x0, . . . , xn]. We can consider
the vector space L = 〈F0, . . . , Fr〉 spanned by the Fi. If L has maximal dimension
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r + 1, we say that L has projective dimension r. By Fq-members of L, we mean the
elements ofL defined over Fq, or equivalently, the hypersurfaces which are expressible
as X = {a0F0 + a1F1 + · · · + arFr = 0}, where ai ∈ Fq for 0 ≤ i ≤ r. Note that L has
exactly #Pr(Fq) = qr + qr−1 + · · · + 1 many Fq-members.

When r = 1, the space L = 〈F0, F1〉 is called a pencil. Question 1.1 in this special
case reduces to the following question.

QUESTION 1.2. Does there exist a pencil L of hypersurfaces in Pn of degree d over Fq
such that each of the q + 1 members of L defined over Fq is smooth?

Our main result asserts that Question 1.2 has a positive answer when q is sufficiently
large compared to d. More precisely, we prove the following effective result.

THEOREM 1.3. Let n, d be positive integers with n ≥ 2 and d ≥ 2. Suppose that

q >
(1+
√

2
2

)2
((n + 1)(d − 1)n)2((n + 1)(d − 1)n − 1)2((n + 1)(d − 1)n − 2)2.

Then there exists a pencil of hypersurfaces of degree d in Pn such that each of the q + 1
members defined over Fq is smooth.

We remark that the case n = 2 and d = 2 in Question 1.2 was investigated in our
previous work [1, Example 2.6]. In that example, the smooth conics D1, D2, . . ., Dq+1
arise from a pencil of conics for a suitably constructed base locus B, which consists
of three Galois-conjugate Fq3 -points and a single Fq-point. The construction works for
any prime power q and it follows that Question 1.2 has a positive answer in the case
(n, d) = (2, 2) over Fq for each q.

REMARK 1.4. It is impossible for Question 1.1 to have a positive answer for all possible
choices of (n, d, r). Indeed, r must be strictly less than the dimension of the projective
space parametrising all degree d hypersurfaces in Pn. In particular, it is necessary that
r ≤

(
n+d

d

)
− 2. However, this condition is not sufficient in general; indeed, Example 1.6

below shows that Question 1.1 has a negative answer in the case (n, d, r) = (2, 2, 3)
over F2, and yet r = 3 <

(
2+2

2

)
− 2 = 4. Nevertheless, we expect that Question 1.2

always has a positive answer. In other words, we believe that Theorem 1.3 should be
true with no additional hypothesis on q and d.

EXAMPLE 1.5. Let q = 2. Consider the polynomials f0=x2 + y2 + xz, f1=xy + xz + z2

and f2 = x2 + yz in F2[x, y, z]. One can check that the seven conics defined by
f0, f1, f2, f0 + f1, f0 + f2, f1 + f2, f0 + f1 + f2 are all smooth. In other words, the conic
defined by

a0 f0 + a1 f1 + a2 f2 = 0

is smooth for each [a0 : a1 : a2] ∈ P2(F2). Thus, Question 1.1 has a positive answer for
the case (n, d, r) = (2, 2, 2) over F2.

EXAMPLE 1.6. Let q = 2. When (n, d, r) = (2, 2, 3), we are searching for r + 1 = 4
conics { f0 = 0}, { f1 = 0}, { f2 = 0}, { f3 = 0} such that {a0 f0 + a1 f1 + a2 f2 + a3 f3 = 0} is

https://doi.org/10.1017/S0004972722000776 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000776
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a smooth conic for each of the 15 values of [a0 : a1 : a2 : a3] ∈ P3(F2). There are
q5 − q2 = 28 smooth conics over F2. Checking all possible

(
28
4

)
= 20475 subsets of

size 4 in Macaulay2, we see that no such 4-tuple ( f0, f1, f2, f3) exists. Thus, Question
1.1 has a negative answer for the case (n, d, r) = (2, 2, 3) over F2.

Based on the examples above, it would be interesting to characterise all triples
(n, d, r) for a given finite field Fq such that Question 1.1 has a positive answer.

The present paper is organised as follows. In Section 2, we give a proof of our main
theorem. In Section 3, we give a concrete approach to settle Question 1.2 affirmatively
in the special case (n, d) = (3, 2) for all q.

2. Main result

We begin the section by explaining the strategy behind the proof of Theorem 1.3.
The key observation is that a pencil of hypersurfaces of degree d can be viewed as
a line inside the parameter space PN with N =

(
n+d

d

)
− 1 whose points correspond to

degree d hypersurfaces in Pn. It turns out that the singular hypersurfaces of degree
d are parametrised by a hypersurface D inside PN , known as the discriminant. The
singular members of a given pencil L � P1 precisely correspond to the intersection
L ∩D. Thus, it suffices to find an Fq-line that meets the discriminant hypersurface
only at non-Fq-points. We prove a general result that guarantees such a line for any
hypersurface X in Proposition 2.4. The proof of this latter result naturally reduces
(after slicing X by a suitable plane defined over Fq) to the case when X is a plane
curve. The case of plane curves is proved separately in Proposition 2.1 and contains
the novel part of the paper.

Before we proceed with more technical details, we clarify the usage of the word
‘irreducible’. Given a hypersurface X ⊂ Pn defined by {F = 0} over Fq, we say that X is
irreducible if F cannot be factored into a product of two polynomials of smaller degree
in Fq[x0, . . . , xn]. We say that X is geometrically irreducible if X is irreducible when
viewed over the algebraic closure Fq.

As suggested above, we begin by proving an effective result that guarantees the
existence of an Fq-line whose intersection with a given plane curve has no Fq-points.

PROPOSITION 2.1. Suppose that C ⊂ P2 is a geometrically irreducible curve of degree
δ ≥ 2 defined over Fq. If q > 1

4 (1+
√

2)2δ2(δ − 1)2(δ − 2)2, then we can find an Fq-line
L ⊂ P2 such that the intersection C ∩ L has no Fq-points.

PROOF. Let (P2)∗(Fq) denote the set of all Fq-lines in P2. Consider the finite set

I = {(L, P) | L ∈ (P2)∗(Fq) and P ∈ (L ∩ C)(Fq)},
where (L ∩ C)(Fq) stands for the set of Fq-points of the intersection L ∩ C. We count
the cardinality of I in two different ways. First, fixing a point P ∈ C(Fq), there are
exactly q + 1 distinct Fq-lines L passing through P, which yields

#I = (q + 1) · Nq(C), (2.1)
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where Nq(C) denotes #C(Fq). However, we can fix an Fq-line L and let mL denote
#(C ∩ L)(Fq). Then,

#I =
∑

L∈(P2)∗(Fq)

mL. (2.2)

For each i with 0 ≤ i ≤ δ, we define

Ti := {L ∈ (P2)∗(Fq) | mL = i}.

It is clear that (P2)∗(Fq) is a disjoint union of Ti for 0 ≤ i ≤ δ. Combining (2.1) and
(2.2), we obtain

(q + 1) · Nq(C) =
∑

L∈(P2)∗(Fq)

mL =
∑
L∈T1

mL +
∑
L∈T2

mL + · · · +
∑
L∈Tδ

mL. (2.3)

Next, consider the finite set

J = {(L, {P1, P2}) | L ∈ (P2)∗(Fq) and {P1, P2} ⊂ (L ∩ C)(Fq)}.

Note that the notation {P1, P2} implicitly assumes P1 � P2. Since P1 and P2 uniquely
determine L, we have #J =

(
Nq(C)

2

)
. However,

#J =
∑
L∈T2

(
2
2

)
+

∑
L∈T3

(
3
2

)
+ · · · +

∑
L∈Tδ

(
δ

2

)
,

because a given element in Ti contributes exactly
(

i
2

)
pairs to its second coordinate.

Let ti = #Ti. Combining the two formulae for the cardinality of J ,
(
Nq(C)

2

)
=

δ∑
i=2

ti ·
(
i
2

)
.

Consequently,

Nq(C) · (Nq(C) − 1) =
δ∑

i=2

ti · i(i − 1) ≤ δ
δ∑

i=2

ti · (i − 1),

giving

δ∑
i=2

ti · (i − 1) ≥
Nq(C) · (Nq(C) − 1)

δ
. (2.4)

After rewriting (2.3) as

(q + 1) · Nq(C) =
δ∑

i=1

ti · i =
δ∑

i=1

ti +
δ∑

i=2

ti(i − 1)
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and substituting (2.4), we obtain

(q + 1) · Nq(C) ≥
δ∑

i=1

ti +
Nq(C) · (Nq(C) − 1)

δ
.

Thus,
δ∑

i=1

ti ≤ (q + 1) · Nq(C) −
Nq(C) · (Nq(C) − 1)

δ
.

Using the fact that
∑δ

i=0 ti = q2 + q + 1, we obtain

t0 = (q2 + q + 1) −
δ∑

i=1

ti ≥ (q2 + q + 1) − (q + 1) · Nq(C) +
Nq(C) · (Nq(C) − 1)

δ
.

Our goal is to show that t0 > 0 because t0 exactly counts the Fq-lines where
(L ∩ C)(Fq) = ∅. We will use the Hasse–Weil inequality for geometrically irreducible
plane curves [2, Corollary 2.5], which states that

q + 1 − (δ − 1)(δ − 2)
√

q ≤ Nq(C) ≤ q + 1 + (δ − 1)(δ − 2)
√

q. (2.5)

We obtain

t0 ≥ (q2 + q + 1) − (q + 1) · Nq(C) +
Nq(C) · (Nq(C) − 1)

δ

= (q2 + q + 1) − Nq(C)
(δ(q + 1) − Nq(C) + 1

δ

)

≥ (q2 + q + 1) − Nq(C)
(δ(q + 1) − (q + 1 − (δ − 1)(δ − 2)

√
q) + 1

δ

)

= (q2 + q + 1) − Nq(C)
( (δ − 1)(q + 1) + (δ − 1)(δ − 2)

√
q + 1

δ

)
.

To prove that t0 > 0, we will focus on proving

δ(q2 + q + 1) > Nq(C)((δ − 1)(q + 1) + (δ − 1)(δ − 2)
√

q + 1).

Using (2.5), it suffices to show that

δ(q2 + q + 1) > (q + 1 + (δ − 1)(δ − 2)
√

q)((δ − 1)(q + 1) + (δ − 1)(δ − 2)
√

q + 1).

After simplifying and rearranging the terms, it is enough to prove that

q2 > δ(δ − 1)(δ − 2)q
√

q + [(δ − 1)2(δ − 2)2 + (δ − 1)]q + (δ + 1)(δ − 1)(δ − 2)
√

q.

This is clearly true when δ = 2, so we will assume δ ≥ 3 for the rest of the proof.
Assuming q > 1

2 (δ + 1)(δ − 1)(δ − 2)
√

q, it suffices to prove that

q > δ(δ − 1)(δ − 2)
√

q + [(δ − 1)2(δ − 2)2 + (δ + 1)].
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Using the quadratic formula and δ2(δ − 1)2(δ − 2)2 ≥ 4(δ − 1)2(δ − 2)2 + 4(δ + 1) for
δ ≥ 3, one can check that the desired inequality holds provided that

q >
(1+
√

2
2

)2
δ2(δ − 1)2(δ − 2)2.

Finally, we have to make sure that our earlier assumption q > 1
2 (δ + 1)(δ − 1)(δ − 2)

√
q

is valid. This is indeed the case since

q >
(1+
√

2
2

)2
δ2(δ − 1)2(δ − 2)2 >

(1
2

(δ + 1)(δ − 1)(δ − 2)
)2

for δ ≥ 3. This completes the proof. �

REMARK 2.2. The conclusion of Proposition 2.1 continues to hold when X is
irreducible over Fq. Indeed, if X is irreducible but not geometrically irreducible,
we can write X = X1 ∪ X2 ∪ · · · ∪ Xs, where each Xi is geometrically irreducible and
s ≥ 2. Without loss of generality, we have Xi = φ

i(X1), where φ : P2 → P2 denotes
the Frobenius map [x : y : z] �→ [xq : yq : zq]. As a result, each Fq-point of X belongs
to Xi for 1 ≤ i ≤ s. In particular, each Fq-point of X must belong to the intersection
X1 ∩ X2. Let δ = deg(X), δ1 = deg(X1) and δ2 = deg(X2). Applying Bézout’s theorem,
we obtain #X(Fq) ≤ δ1δ2 ≤ 1

4 (δ1 + δ2)2 ≤ 1
4δ

2. Thus, the total number of Fq-lines
passing through some Fq-point of X is at most 1

4δ
2 · (q + 1) < q2 + q + 1 because

q > 1
4 (1+

√
2)2δ2(δ − 1)2(δ − 2)2 > 1

4δ
2 for δ ≥ 3. For δ = 2, the conclusion is still true

because 1
4δ

2 = 1 and q ≥ 2. In particular, there exists an Fq-line L which does not pass
through any Fq-point of X, as desired.

REMARK 2.3. We remark that an alternative way to prove Proposition 2.1 is to use
the Chebotarev density theorem for varieties over finite fields [5, Theorem 3]. From a
given plane curve C, one can construct a finite étale map f : X → Y where Y = (P2)∗

parametrises lines in P2 and f −1(L) records the intersection L ∩ C. Thus, the problem
reduces to finding an Fq-point L ∈ Y such that f −1(L) has no fixed point in its orbit
under the Frobenius action. Since the orbit decomposition should behave uniformly as
q→ ∞, we obtain the desired conclusion for q � d. Making the bound q � d effective
via this method is much more complex as there are many implicit constants. We
believe that our approach has advantages of being both elementary and yet providing
an explicit bound q > ( 1

2 (1+
√

2)δ(δ − 1)(δ − 2))2.

Using a slicing method, we can generalise the previous result to any geometrically
irreducible hypersurface of degree at least 4.

PROPOSITION 2.4. Suppose X ⊂ Pn is a geometrically irreducible hypersurface of
degree δ ≥ 4 defined over Fq. If q > 1

4 (1+
√

2)2δ2(δ − 1)2(δ − 2)2, we can find an
Fq-line L ⊂ Pn such that the intersection X ∩ L has no Fq-points.

PROOF. Using Kaltofen’s result [6, Theorem 5], which was made explicit in [3,
Corollary 3.2], we can find an Fq-plane H ⊂ Pn such that C := X ∩ H is a geometrically
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irreducible plane curve provided that q > 1
2 (3δ4 − 4δ3 + 5δ2). We can use this result

since it is straightforward to verify that

(1+
√

2
2

)2
δ2(δ − 1)2(δ − 2)2 ≥ 1

2
(3δ4 − 4δ3 + 5δ2)

for all δ ≥ 4. Applying Proposition 2.1 to the curve C inside H � P2, we immediately
obtain the desired result. �

We are now ready to present the proof of the main result.

PROOF OF THEOREM 1.3. We apply Proposition 2.4 to the discriminant hypersurface
X = Dn,d which parametrises all singular degree d hypersurfaces in Pn. It is known
that X is geometrically irreducible [4, Proposition 7.1] and the degree of X is δ =
(n + 1)(d − 1)n by [4, Proposition 7.4]. Note that the inequality δ ≥ 4 always holds
except for the case (n, d) = (2, 2), which was already handled in our previous paper [1,
Example 2.6]. We obtain an Fq-line L whose intersection with X has no Fq-points; this
line L � P1 corresponds to a pencil of hypersurfaces of degree d such that each of the
q + 1 distinct Fq-members is smooth. �

3. The pencil of quadric surfaces

In this section, we show that Question 1.2 has a positive answer when (n, d) = (3, 2)
for all q. There are at least two approaches to show that there exists a pencil of quadric
surfaces in P3 where each Fq-member is smooth. First, applying Theorem 1.3 directly
with (n, d) = (3, 2), there exists a desired pencil provided that

q >
(1+
√

2
2

)2
· 42 · 32 · 22 ≈ 839.3.

Thus, we only need to check the conclusion for all prime powers q ≤ 839. This can
be achieved by randomly sampling a pair of quadrics using a computer algebra system
and searching until one finds a pencil that works. The second method, presented below,
is more conceptual and directly constructs the desired pencil.

We will first focus on the case when q is odd and afterwards consider the case when
q is even. We begin with an elementary lemma which will help us in showing the
irreducibility of a certain quadratic later in the construction.

LEMMA 3.1. Suppose Fq is a finite field with q odd. Then there exists a square s ∈ Fq
such that s + 1 is a nonsquare.

PROOF. Assume, to the contrary, that for each square s ∈ Fq, the element s + 1 is also a
square. Write q = pr where p is an odd prime number and r ≥ 1. Observe that for each
x ∈ Fq, either all of the numbers x, x + 1, . . . , x + p − 1 are squares or none of them is
a square. Indeed, once there exists a square in this sequence, our assumption leads to
all of them being squares.
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Now, there are exactly

1 +
q − 1

2
= 1 +

pr − 1
2
=

pr + 1
2

squares in Fq. However, the observation above implies that the number of squares must
be a multiple of p. This is a contradiction, as p does not divide (pr + 1)/2. �

COROLLARY 3.2. Suppose Fq is a finite field with q odd. Then there exists an element
c ∈ Fq such that c2 − 2c + 5 is a nonsquare in Fq.

PROOF. By Lemma 3.1, there exists a square s = b2 ∈ Fq such that s + 1 ∈ Fq
is a nonsquare. Let c = 2b + 1. Then c2 − 2c + 5 = 4(b2 + 1) = 4(s + 1) is a non-
square. �

The following construction shows that Question 1.2 has a positive answer in the
case (n, d) = (3, 2) over Fq for each odd q.

PROPOSITION 3.3. Let q be an odd prime power. Let c ∈ Fq be such that c2 − 2c + 5
is a nonsquare. Consider the homogeneous quadratic polynomials

f0 = x2 + y2 + z2 + w2 and f1 = xy + yz + zw + cwx

in Fq[x, y, z, w]. Then each of the q + 1 distinct Fq-members of the pencil 〈 f0, f1〉 is a
smooth quadric surface in P3.

PROOF. Recall that an arbitrary element of the pencil is defined by a polynomial h =
s f0 + t f1, where [s : t] ∈ P1. We want to show that none of the singular members of the
pencil is defined over Fq. Given h = s f0 + t f1, we have

hx = 2sx + t(y + cw), hy = 2sy + t(x + z),
hz = 2sz + t(y + w), hw = 2sw + t(z + cx).

The singular points of {h = 0} must satisfy hx = hy = hz = hw = 0. We express these
linear equations in matrix notation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2s t 0 ct
t 2s t 0
0 t 2s t
ct 0 t 2s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
y
z
w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

In particular, the determinant of the matrix above must vanish. One can check that the
determinant is equal to

((1 − c)t2 + 2(c + 1)st − 4s2)((1 − c)t2 − 2(c + 1)st − 4s2).

We claim that each of the quadratic factors is irreducible over Fq. Indeed, the
discriminant of both quadratics is

4(c + 1)2 + 16(1 − c) = 4c2 − 8c + 20 = 4(c2 − 2c + 5),
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which is a nonsquare in Fq by our choice of c. Thus, the four roots of the determinant
are not in Fq, which implies that all the Fq-members of the pencil are smooth. �

Next, we consider the case when q is even. We begin with a quick lemma on the
irreducibility of quadratic polynomials in characteristic 2.

LEMMA 3.4. Let q be an even prime power. Then there exists an element c ∈ Fq such
that t2 + t + c is an irreducible polynomial in Fq[t].

PROOF. Let K be a field extension of Fq with [K : Fq] = 2. Let u ∈ K \ Fq. The
minimal polynomial of u over Fq is given by φ(t) = t2 + bx + d ∈ Fq[t] for some
b, d ∈ Fq. Note that b � 0 because φ is irreducible and char(Fq) = 2. Observe that

ψ(t) :=
1
b2φ(t) =

( t
b

)2
+

( t
b

)
+

d
b2

is also an irreducible polynomial. Letting c = d/b2 ∈ Fq, we see that ψ(tb) = t2 + t + c
is also an irreducible polynomial in Fq[t]. �

The following construction shows that Question 1.2 has a positive answer in the
case (n, d) = (3, 2) over Fq for each even q.

PROPOSITION 3.5. Let q be an even prime power. Let c ∈ Fq be such that t2 + t + c is
an irreducible polynomial in Fq[t]. Consider the homogeneous quadratic polynomials

f0 = x2 + y2 + xy + yz + czw and f1 = x2 + z2 + yz + xw

in Fq[x, y, z, w]. Then each of the q + 1 distinct Fq-members of the pencil 〈 f0, f1〉 is a
smooth quadric surface in P3.

PROOF. Suppose h = s f0 + t f1 defines a singular element of the pencil where
[s : t] ∈ P1. We have

hx = sy + tw, hy = s(x + z) + tz,
hz = s(y + cw) + ty, hw = csz + tx.

The singular points of {h = 0} must satisfy hx = hy = hz = hw = 0. These linear
conditions on s and t can be expressed in matrix notation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 s 0 t
s 0 s + t 0
0 s + t 0 cs
t 0 cs 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
y
z
w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Consequently, the determinant of the matrix on the left-hand side must vanish. One
can check that the determinant is equal to (t2 + st + cs2)2 in characteristic 2. Since
t2 + t + c is an irreducible polynomial in Fq[t] by our choice of c ∈ Fq, the binary form
t2 + st + cs2 does not vanish for each [s : t] ∈ P1(Fq). In particular, each Fq-member of
the pencil is smooth. �
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