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Abstract
In the application of rotorcraft atmospheric environment detection, to reflect the distribution of atmospheric pollu-
tants more realistically and completely, the sampling points must be spread throughout the entire three-dimensional
space, and the cooperation of multiple unmanned aerial vehicles (multi-UAVs) can ensure real-time performance
and increase operational efficiency. In view of the problem of coordinated detection by multi-UAVs, the region divi-
sion and global coverage path planning of the stereo space to be detected are studied. A whale optimization algorithm
based on the simulated annealing-whale optimization algorithm (SA-WOA) is proposed, which introduces adaptive
weights with the Levy flight mechanism, improves the metropolis criterion, and introduces an adaptive tempering
mechanism in the SA stage. Path smoothing is subsequently performed with the help of nonuniform rational B-
spline (NURBS) curves. The comparison of algorithms using the eil76 dataset shows that the path length planned
by the SA-WOA algorithm in this paper is 10.15% shorter than that of the WOA algorithm, 13.25% shorter than the
SA planning result, and only 0.95% difference from the optimal path length in the dataset. From the perspective of
planning time, its speed is similar to WOA, with a relative speed increase of 27.15% compared to SA, proving that
the algorithm proposed in this paper has good planning performance. A hardware system platform is designed and
built, and environmental gas measurement experiments were conducted. The experimental results indicate that the
multi-UAV collaborative environment detection task planning method proposed in this paper has certain practical
value in the field of atmospheric environment detection.

1. Introduction
With the rapid development of industrialization and urbanization, the problem of air pollution has
emerged, which directly affects people’s life happiness indices [1–3]. At present, air pollution mon-
itoring methods are based mainly on ground monitoring or satellite remote sensing. Ground-based
monitoring systems are installed at fixed locations, which makes it impossible to monitor the verti-
cal distribution of pollutants, the overall pollutant concentration in the region or the trend of pollution
diffusion, and the accuracy of such monitoring is strongly dependent on the number of samples and
the sampling location [4]. The satellite remote sensing measurement method has a long measurement
cycle and high cost; coupled with the difficulty of data inversion, it is difficult to obtain the inversion
law between real data and remote sensing data, and the usability of this method is low [5, 6].

An air quality monitoring system based on unmanned aerial vehicles (UAVs) as a flight platform
has many advantages, such as wide monitoring level, fast data acquisition speed, and little interference
from the terrain, and it can effectively compensate for the deficiencies of traditional monitoring methods
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[7]. In the implementation of environmental detection tasks, most of the environmental detection tasks
are characterized by a large three-dimensional space and the need for continuous monitoring. The use
of multi-UAV to replace a single UAV in the implementation of the detection task can greatly make
up for the defects of the single UAV in terms of insufficient energy, lack of resources, and a single
performance and can better coordinate the task. In the atmospheric detection scenario, the purpose is
to find safe paths for each UAV carrying gas measurement sensors to traverse their respective mission
areas, and the acquired paths need to satisfy the maneuverability constraints of the UAVs and the synergy
constraints of the mission in order to ensure the flyability of the trajectories [8]. The essence of this
problem is to solve the problem of multiple drones detecting different task areas, and the detection path
covering the entire area can provide more realistic and accurate data for the fine-grained distribution
of spatial pollutants. This optimal path problem involving multiple robots cooperating to traverse all
sampling points in the area of interest is usually summarized as a multi-agent coverage path planning
(MCPP) problem. The problem is a subfield of trajectory planning in which the algorithm must find the
optimal path for UAVs equipped with finite footprint sensors to cover the free workspace and the optimal
path assignment for each UAV. The technique is applicable to inspection, precision agriculture, search
and rescue, remote sensing, and other tasks [9]. The combination of traditional task decomposition
and path planning has brought many benefits to atmospheric environment monitoring. Through task
decomposition, it can ensure comprehensive coverage of the monitoring area and avoid monitoring
blind spots, and path planning can ensure the coverage density and distribution balance of monitoring
points, ensuring the accuracy and completeness of monitoring data. Good task decomposition and path
planning can enable monitoring equipment to arrive at designated monitoring points on time for real-
time monitoring, reduce the impact of the monitoring process on the environment and resources, and
improve the sustainability of monitoring work. In summary, reasonable task decomposition and path
planning have greatly improved the efficiency, resource utilization, and data quality of monitoring work,
promoting the sustainable development and intelligent application of environmental monitoring.

At present, most MCPP algorithms are developed and extended based on the existing single-drone
coverage path planning (CPP) algorithms [10]. The common CPP algorithms include grid method and
graph traversal method. The grid method divides the coverage area into grids and uses search algorithms
(such as A∗ algorithm) to plan the path of the drone to cover all grids. The graph traversal method maps
the coverage area to the graph and uses the traveling salesman problem (TSP) to solve the shortest CPP
problem within that area. Davoodi proposed a heuristic approximation algorithm to find an approximate
Pareto optimal solution to the problem, which used geometric objects such as Voronoi diagrams and
Delaunay triangulations to solve the approximate traveler’s problem [11]. Rahman solved the obstacle-
aware path planning problem for UAVs by using Dijkstra’s algorithm to find a detour path in the presence
of an obstacle between any two sensors, minimizing the total distance traveled by all UAVs while tak-
ing into account the UAV flight time constraints [12]. Li optimized the heuristic function of A∗ using
the ant colony algorithm (ACA) to obtain the improved A∗ algorithm (Imp-A∗), which greatly short-
ens the path length of the automated rice transplanter moving between the supply pallet and the target
pallet in a greenhouse nursery [13]. Zheng investigated a particle swarm optimization (PSO) algorithm
based on migration learning, which uses the optimal information of the historical problem to guide the
particle swarm to find the optimal path quickly [14]. Zheng combined reinforcement learning with edge-
assembled crossover genetic algorithms and local search heuristics to propose a reinforcement hybrid
genetic algorithm for solving the well-known NP-hard TSP [15].

For the problem of multiple unmanned aerial vehicles (multi-UAVs) CPP, the pairing method or
partitioning method can be used. The pairing method refers to specifying a drone for each target and
using the CPP algorithm to plan the paths of each drone. The partitioning method refers to dividing
the area into multiple subareas, assigning a drone to each subarea, and then using the CPP algorithm
to plan the paths of each drone. George proposed a multi-UAV coverage area partitioning scheme for
splitting convex or nonconvex regions of interest, including any number of no-fly zones, into multiple
parts. This scheme improves the compactness of partitioning and compares multiple solutions based on
the Hert and Lumelsky algorithms [16]. Chen proposed an effective heuristic method for area CPP and
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a new multi-area allocation scheme based on minimum consumption rate based on the flight speed and
scanning width of drones [17]. This method can effectively solve the path planning problem of multi-
ple drones covering multiple areas. Yu proposed a multi-UAV collaborative search algorithm based on
greedy algorithm (MUCS-GD) and binary search algorithm (MUDS-BSAE), which further shortens the
working time of multiple drones [18]. Ahmed proposed an autonomous landmine detection framework
based on UAVs to determine coverage routes for scanning target areas [19]. It extracts regions of inter-
est using deep learning-based segmentation and then constructs coverage route plans for aerial surveys.
Hong optimized a scheme for efficient autonomous execution of area coverage tasks by multiple drones
[20]. The waypoints covering the area were assigned to each drone in the cluster, and the drones could
fill a given area with their footprints in the shortest possible time without overlapping during the mis-
sion. Abdul proposed a multi-objective coverage flight path planning algorithm that enables drones to
find the minimum length, collision-free, and flyable path in a three-dimensional urban environment that
inhabits multiple obstacles and is used to cover spatially distributed areas [21].

After the completion of multi-UAV collaborative task planning, unmanned opportunities in the clus-
ter execute tasks according to the predetermined task plan. However, the task environment in actual
scenarios is often dynamic, and the status of drones or task points can change at any time. At this time,
the drone task planning plan should also be changed accordingly. The reassignment of tasks can enable
the fleet to adapt more quickly to dynamic and changing task environments, improving the responsive-
ness and stability of drone task planning. When performing task reassignment, consideration should
be given to the category of emergency scenarios and the triggering scenarios for the reassignment, the
types and quantities of tasks that need to be reassigned, as well as the current flight status and remaining
energy of the drone. When the existing drones can meet the needs of task reassignment, timely task
reassignment should be carried out; otherwise, additional drones should be dispatched for support or
other means to solve the problem. In emergency situations, drones should first make contingency plans
for task reassignment scenarios. When the fleet encounters unexpected situations during task execution,
a dynamic task reassignment response mechanism will be activated based on the preset scenario.

However, there are still some challenges and problems in CPP for multiple drones, such as the effi-
ciency and real-time performance of path planning, conflicts, and cooperation issues in collaborative
work among multiple drones. When planning multiple drone paths, it is necessary to comprehensively
consider task complexity, communication load, computing resources, and real-time factors. When plan-
ning multiple drone coverage paths, it is necessary to consider the size of the coverage area, the number
of drones, and the type of target task requires selecting appropriate planning methods. Therefore, to
address the current problems of multi-UAV in environmental detection, this paper proposes a multi-UAV
collaborative environmental detection mission planning system, which mainly contains the following
parts:

• A multi-UAV collaborative mission planning method for irregular three-dimensional spaces is
proposed, which can quickly partition, sample, and plan coverage detection paths for multiple
drones in irregular three-dimensional spaces. Nonuniform rational B-spline (NURBS) curves are
used to smooth the planned paths to meet the requirements of continuous flight of drones, thereby
reducing unnecessary energy consumption of drones and improving task execution efficiency.
The problem of traditional multi-drone communication cooperation and individual conflicts has
been solved with the help of a robot operating system (ROS), and the feasibility and stability of
this method have been verified under Linux system with the help of multi-drone ground control
stations and Gazebo simulation platform.

• Simulated annealing-whale optimization algorithm (SA-WOA) is proposed to address the prob-
lems of slow convergence speed, poor path search ability, susceptibility to local optima, and
unsatisfactory planned path length in traditional CPP algorithms. It introduces SA mechanism,
nonlinear convergence factor, and adaptive weight in the contraction and encirclement stage of
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WOA and introduces Levy flight mechanism to perturb the old solution in the search and for-
aging stage. Then, it improves the metropolis criterion in SA and introduces adaptive warming
mechanism to improve the optimization speed of the algorithm so that SA-WOA can plan the
coverage detection path of multiple drones faster and better. Finally, using the eil76 and st70
datasets, SA-WOA was compared with other path planning algorithms, and the results showed
that the proposed SA-WOA had faster convergence speed and better convergence results.

• The hardware platform of the multi-computer collaborative environmental detection system is
designed and constructed, and environmental gas measurement experiments are carried out.
Under the premise that 1-week continuous gas measurement shows the consistency and accuracy
of the multiple sets of gas measurement devices formed in this paper, the multi-UAV detection
paths are generated with the help of multi-UAV collaborative task planning method to cover the
target space for detection, and the pollutant distribution of the space is constructed with the help
of the kriging interpolation method, which verifies that the multi-UAV collaborative environ-
mental detection system designed in this paper has the feasibility and effectiveness. It can help
staff to have a deep understanding of the distribution of pollutants within the three-dimensional
space range and formulate corresponding countermeasures, which has high application value
in three-dimensional space atmospheric environment quality measurement, spatial distribution
analysis of atmospheric pollutants, traceability, and other aspects.

In summary, this paper designs a multi-UAV cooperative mission planning system for atmospheric
environment detection scenarios. Section 2 briefly models the problem of collaborative multicomputer
multi-UAV environmental detection. Section 3 adopts the synergistic method of from-and-to equilib-
rium division by swarm and convex decomposition of concave points for fast division of spatial regions,
and an SA-WOA based on the adaptive weight and SA strategy is proposed. In Section 4, simulation
scenarios are designed to test the multi-UAV cooperative mission planning system, which verifies that
the multi-UAV cooperative mission planning system designed in this paper is able to quickly formu-
late reasonable multi-UAV detection paths while meeting the flight constraints of the aircraft fleet. In
Section 5, a hardware system platform is designed and built for multi-UAV environmental detection task
planning, followed by environmental gas measurement experiments. Section 6 contains conclusions and
suggestions for future work.

2. Problem modeling
In the rotorcraft atmospheric environment detection application, to ensure that the detection results can
truly and completely reflect the fine-grained distribution of atmospheric pollutants in the detection space,
the sampling points must be uniformly spread throughout the entire three-dimensional space, and each
UAV must carry a gas sensing device for traversing all the sampling points in the space; multi-UAVs
can cooperate with each other to ensure that higher operational efficiency is obtained in real time.

To address this problem, the basic idea for collaborative multi-UAV spatial exploration in this paper
is to divide the three-dimensional space into multiple task subareas, assign them to UAV clusters, and
transform the multi-UAV path planning problem into a single-UAV path planning problem with the
solution shown in Fig. 1.

As shown in Fig. 1, the detection space is first vertically projected to obtain a planar irregular region,
which is roughly divided into a convex region and a concave region in terms of shape, and the regions are
quickly divided into multiple task subregions with balanced areas. Each task subregion is covered using
a square hexagon, with the center of the hexagon as the UAV sampling point, resulting in a collection of
sampling points for each task subregion. Then, the improved SA-WOA is used to perform path planning
for the set of sampling points in each task subregion separately to obtain the shortest task path traversing
all the sampling points, which is rounded using the NURBS curve. After obtaining the feasible detection
paths for each UAV to detect the corresponding mission subspace, the paths are combined to obtain the
overall mission detection scheme for coordinated multi-UAV space detection.
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Figure 1. Modeling of the multi-UAV cooperative space exploration problem.

Figure 2. The convex polygonal regions equalized by swarms of UAVs.

3. Design of a multi-UAV cooperative mission planning system
3.1. Irregular region division
A well-balanced division of the vertical projection plane region of space is a prerequisite for fast multi-
UAV detection missions, but researchers often have different understandings of the metrics for well-
balanced division. In this paper, the equal area of subregions is used as the basis for the equalization of
regions, and the convex regions are equalized according to the direction of UAV swarms; for the concave
regions, a combination of concave-point removal and concave-convex decomposition is chosen for the
division.

The vertical projection of the probe space is assumed to be a convex polygonal region, as shown
in Fig. 2, which can be denoted as P = {Pi|i = 1, 2, . . . , N}; the task region is assigned to the swarm
of UAVs, which is represented as U = {Ui|i = 1, 2, . . . , n}; and the algorithmic flow for the balanced
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Table I. The convex zoning process.

Step Context
Input The convex polygonal region: P = {Pi|i = 1, 2, . . . , N}.

The swarm of UAVs: U = {Ui|i = 1, 2, . . . , n}.
Step1 Arrange the vertices P counterclockwise and compute the area of the convex polygon SArea

with the area of the subarea SRequired = SArea
n

.
Step2 Make a set of parallel line bundles along the incoming direction of the swarm and take the

two parallel lines l1, l2 that have exactly intersection with the convex polygon as the
boundary of the scanning line; compute the maximum width of the convex polygon in
the incoming direction of the swarm dmax which is the distance between l1, l2.

Step3 Take n − 1 segmentation lines Li, i = 1, 2, . . . , n − 1 at equal intervals along the direction
of the maximum width dmax.

Step4 Calculate the area of the polygon between Li and the neighboring parallel lines on the
right Sr

Li
.

Step5 If Sr
Li

> SRequired, move Li to the right until Sr
Li

= SRequired.
if Sr

Li
< SRequired, move Li to the left until Sr

Li
= SRequired.

Step6 Move the n − 1 segmentation lines Li, i = 1, 2, . . . , n − 1 sequentially to complete region
segmentation.

Figure 3. A diagram of the methods used to divide the concave area.

partitioning of the region in accordance with the incoming direction of the UAVs is shown in Table I.
The effect of the partitioning is shown in Fig. 2.

Concave-point removal is a relatively traditional concave-point localization algorithm in which the
vertices of the concave polygon are traversed to determine all the concave points and the vertices on both
sides of the concave point are directly connected to remove the concave points. As shown in Fig. 3(a),
by traversing all the vertices to determine that B is concave, directly connecting the vertices A and C
at the two ends of B and deleting the edges AB and BC, a new region ACEFG is obtained as a convex
polygon.

The traditional notch convex decomposition method defines the boundary extension line of the notch
close to the polygon boundary as boundary 1 and the other extension line as boundary 2. When the
partition area on the outside of boundary 1 is smaller than the required area, the partition line is rotated
from boundary 1 to boundary 2 on the notch axis until the partition area is equal to the required area;
then, the subregion is divided, and the division of the remaining area continues.

In addition, we consider two special cases to improve the traditional notch convex decomposition
method, as shown in Fig. 3(b). In the first case, the area outside boundary 1 is larger than the required
area, the partition line is located on the outside of boundary 1, and the planning of the remaining area
continues; the notch still exists so the notch continues to be divided using the method described above.
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The area before dimple removal. The area after dimple removal. The notch-convex decomposition.

(a) (b) (c)

Figure 4. The concave area division effect.

In the second case, the partition line coincides with boundary 2 and still does not reach the required
area; then, the partition line is translated in the direction perpendicular to boundary 2 until the required
subarea is divided.

The concave point removal method shown in Fig. 3(a) can transform a problem with concave regions
into the problem of dividing the convex regions, but if the excess task region ABC generated is too
large, the path and energy consumption of the UAV increase. Directly using the concave point convex
decomposition method in Fig. 3(b) will divide all the concave points in the region one by one, which
will produce too many fragmented task regions; additionally, the divided subregions are not regular and
cannot be allocated to the whole fleet well.

Therefore, in this paper, we consider treating concave regions by removing some of the concave points
and then convexly decomposing the remaining concave points, thus dividing the concave region into a
combination of one or more convex polygonal regions. First, we traverse all the concave points in the
whole region and set the parameter δ to express the cost of removing the concave point as follows:

δ = Sincrease

SArea

(1)

where Sincrease denotes the increased task area after removing the dents and SArea denotes the original task
area before removing the dents. A threshold denoted as w α is set, and if ρ < α is satisfied, then the above
method is directly used to remove the dimple; otherwise, the dimple removal method is abandoned. As
shown in Fig. 4(b), some concave points are directly removed after meeting the threshold condition,
leaving only a few concave points; at this time, the task area is relatively regular and easy to divide, and
the remaining concave points use the method of convex decomposition of concave points, as shown in
Fig. 4(c).

3.2. Detection area sampling
In plane geometry, the three possible geometric shapes that can cover a region completely and without
overlap in a polygon with vertices equidistant from the geometric center are the regular triangle, the
square, and the regular hexagon. A regular hexagon has the largest area provided that the radii of the
outer circles are equal, so the entire geographic area can be covered by the smallest number of regular
hexagons. The effective measurement area for UAV single-point hover sampling is assumed to be spher-
ical, and the use of a positive hexagonal fill in the spatial projection area ensures that both the number
of sampling points and the area of sampling overlap are relatively small, as shown in Fig. 5.

The measurement area is assumed to be an irregular three-dimensional space with a height of H. The
effective measurement range of UAV single-point hover sampling is abstracted as a hexagonal prism
with a side length of L and a height of

√
3L in Fig. 6(a), and the UAV sampling point is located in the

center of the hexagonal prism; this ensures that the UAVs fly to adjacent sampling points in the vertical
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The area covered by the 
triangles.

The area covered by the squares. The area covered by the 
hexagons.

(a) (b) (c)

Figure 5. The graphics overlay comparison.
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prisms.

(a) (b)

Figure 6. The stereo space sampling.

or horizontal directions with path lengths of
√

3L, which is more conducive to the calculation of path
lengths. The hexagonal prism sampling units are used to fill the entire irregular three-dimensional space,
and the three-dimensional space is then divided into N layers of different heights, each containing the
same number of sampling units, to sample the irregular three-dimensional space, as shown in Fig. 6(b).

The fleet has a total of n UAVs, all of which are spatially probed using layered measurements, with
the number of layers set to N = H√

3L
and the number of sampling points for the ith UAV hovering at each

layer set to mi; then, the path length is expressed as follows:

s = (mi − 1) ∗ √
3L ∗ N + √

3L ∗ (N − 1) (2)

The value of L during the sampling process directly affects the coverage density of spatial sampling.
If value of L is too small, UAVs may not be able to complete the assigned task due to too many sampling
points. If value of L is too large, it will lead to sparse distribution of sampling points, and UAVes may
not be able to accurately obtain the distribution of pollutants in that space. Therefore, it is necessary
to find the optimal value of L that can meet the energy constraints of drones. According to the task
subspace parameters after the area division is completed, the space decomposition method based on the
six prism is used first to uniformly decompose each task subspace area to obtain a certain number of
sampling points, and then the sampling points as flight waypoints are used. According to formula (2),
we can directly evaluate the approximate energy consumption of each UAV under the current value of
L, compare it with the maximum energy of the UAV, and then adjust the size of L. If the maximum
energy carried by the drone is less than the energy required for the current planned path, the size of the
hexagonal prism decomposition unit is adjusted to decompose again until the energy meets the demand.
Finally, the value of L is determined, and this value is used to construct a hexagonal prism sampling unit
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to sample each subspace to obtain the optimal set of sampling points for the target space detected by the
aircraft group.

3.3. Improved SA-WOA path planning algorithm
The WOA is a new bionic intelligent optimization algorithm that simulates the foraging behavior of
humpback whales and has the advantages of a simple structure and few adjustment parameters. In the
WOA, the optimal position in the current group is assumed to be the prey, and all the other whale
individuals in the group surround the optimal individual; their positions are updated according to the
optimization rule until the end condition is satisfied. The entire whale foraging process can be divided
into three phases: encircling prey, foaming attacks, and random searches [22].

The SA algorithm is a commonly used algorithm in UAV path planning research. It is a global search
optimization algorithm designed to simulate the annealing process in physics, where a higher tempera-
ture is set in the initial state and the current solution is changed to produce a new solution during each
cooling process. The difference between the new solution and the previous solution is calculated, and the
decision of whether to accept the new solution is made with a certain probability; repetitive iterations
of these steps are applied until the temperature is the lowest, which produces the optimal solution [23].

The traditional whale optimization algorithm has few adjustable parameters and a simple structure,
but it cannot adjust the convergence speed, is prone to problems such as premature convergence, and
easily falls into local extremes for multipeak functions, which leads to the inability of the algorithm
to obtain the global optimum [24]. However, the mechanism of accepting new solutions with a certain
probability in the SA algorithm can be a good solution to the problem of multipeak functions falling
into local extrema [25]. Therefore, to plan the optimal detection path of multiple UAVs more quickly
and with better results, this paper improves upon the WOA based on the SA algorithm; the flow chart of
the improved algorithm is shown in Fig. 7.

In Fig. 7, Xi denotes the population at the very beginning of the algorithm, F(Xi) denotes its fitness,
T0 denotes the initial temperature of the algorithm, t represents the current number of iterations, Tmax

denotes the maximum number of iterations set, and A and C are the coefficients that the whale population
in the algorithm relies on when it performs the contraction envelopment. Since individual whales must
contract their encirclement while swimming spirally toward their prey, in order to clearly express this
behavior, a parameter p is set here to determine whether the current iteration uses spiral position updating
or contraction encirclement to update the position of individual whales.

The SA-WOA algorithm first calculates the initialized population and computes the initial tempera-
ture T0, sets the maximum number of iterations Tmax, computes the population fitness, the value of the
adaptive weighting factor and the values of A and C during each iteration, and then generates a random
number p. When the value of p is not less than 0.5, the algorithm chooses the spiral position updating
method with weights. Otherwise, it enters the SA stage, which first perturbs the current solution to a cer-
tain extent to generate a new solution, and then calculates the difference f between the current solution
and the new solution’s fitness; when f ≤ 0, it indicates that the generated new solution is better than the
old one, and the new solution should be accepted directly at this time, or else it indicates that the new
solution is worse than the current one. In order to avoid the algorithm falling into local optimality and
improve its ability to seek the optimal solution, the new solution should be accepted according to the
metropolis criterion. When the SA stage of the current solution is updated, the temperature of the cur-
rent iteration is calculated with the help of the adaptive tempering function. And then judge the current
iteration A take value; when |A| < 1, the algorithm chooses the shrink-wrap strategy; at this time, the
whale will converge toward the global optimal solution, gradually narrowing the search range during
the search process, which helps to improve the convergence speed and stability of the algorithm, or else
with the help of the Levy flight mechanism to carry out a random search foraging, at this time the whale
will carry out a random search throughout the entire search space, which helps to maintain the diversity
of the algorithm and avoid falling into local optimal solutions. After the iterative process is completed,
the optimal population and its fitness are obtained, which corresponds to the optimal traversal order of
the sampling points and their corresponding path lengths in the path planning problem.
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Figure 7. The SA-WOA algorithmic framework.

3.1.1 Adaptive weighting improvement
The weight factor is the key factor to balance the global exploration ability and local optimization ability
of the algorithm, because the whale optimization algorithm is updated differently from the particle
swarm algorithm, the whale optimization algorithm is updated on the basis of the position of the optimal
whale when updating, and the adaptive weights are added to the head whale instead of the step size as
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in the case of the particle swarm algorithm, the value of the weights is adjusted so that the closer the
position of the optimal position is, the smaller the perturbation to the head whale [26].

The adaptive weighting factor w is introduced into the foaming attack phase of the whale optimiza-
tion algorithm. The humpback whale initiates its attack by using contraction encirclement and spiral
encirclement, which occur simultaneously; thus, the probability of the whale choosing each strategy
is assumed to be 0.5 in the algorithm, and this process is represented by the following mathematical
expression:

X (t + 1) = w ∗ X∗ (t) − A ∗ D (3)

X(t + 1) = D′ ∗ ebl ∗ cos2π l + w ∗ X∗(t) (4)

where t is the current number of iterations, X∗(t) is the currently acquired prey position vector, X(t + 1)
is the next position vector of the whale, D′ is the distance between the individual and the current optimal
position, b is a logarithmic helical shape constant taken as 1, l is a random number in [−1, 1], and D is
the position update vector of the encircling prey phase, which is defined as follows:

D = |C ∗ X∗ (t) − X (t) | (5)

In formula (3) and formula (5), A and C are coefficient vectors, which are defined by the following
equations:

A = 2a ∗ r1 − a (6)

C = 2 ∗ r2 (7)

where a is the convergence factor, which decreases linearly from 2 to 0 with the number of iterations;
r1 and r2 are random numbers in [0, 1].

w is the improved adaptive weight, which is generated as shown below, where the adaptations of the
individual whales are sorted in ascending order during the iterative process:

F = {fi|i = 1, 2, 3, 4, 5 . . . , N} (8)

Then, F is divided into two parts to find the left and right average adaptations, denoted as favg1 and
favg2, respectively, where favg1<favg2.

favg1 =
∑i=N/2

i=1 fi

N/2
, favg2 =

∑i=N
i= N

2 +1 fi

N/2
(9)

where the fitness of the current individual whale, denoted as ft, is compared to favg1 and favg2 to categorize
the weights as follows:

w =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

random(0.85, 1.15) ft ≤ favg1

1 favg1 < ft < favg2

random(0.2, 0.4) p ≤ 0.5

random(1.2, 1.4) p > 0.5
ft ≥ favg2

(10)

If ft ≤ favg1, the fitness of the current whale individual is better than the average fitness of the better
group, which indicates that the individual has a dominant position in the population. At this time, the
optimal whale individual has a small range of jitter, which is conducive to exploring the local optimum
values, so w should be defined as a random number in (0.85, 1.15).

If ft ≥ favg2, the fitness of the current individual whale is worse than the average fitness of the worse
group, which indicates that the position of this individual is not ideal. At this time, to broaden the global
exploration, w should be defined as a random number in (0.2, 0.4) or (1.2, 1.4) with a probability of 50%,
which is beneficial for the individual in searching for prey in other positions and enhances the global
exploration ability.
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In other cases, the current individual whale is in a general position in the group, in which case w is
set to 1, as this is sufficient to let the whale approach the optimal position according to the logic of the
original algorithm.

This random inertia weighting strategy is adopted so that the weights no longer take a fixed value but
are randomly adjusted according to fitness, which makes the whales more diversified in the process of
searching for prey, improves the algorithm’s solution accuracy and convergence speed, and decreases
the likelihood of missing the global optimal solution.

3.3.2 Randomized search strategy
In the random search prey phase, the new solution is generated by perturbing the old solution to a certain
extent. At this time, the new solution should satisfy two conditions: one is that the change between the
old and new solutions cannot lead to too large change in the objective function, and the other is that
the new solution should spread across the solution space to improve the algorithm’s chances of finding
the globally optimal solution. In the traditional whale optimization algorithm, the update mechanism
drives the individuals in the population to move toward the optimal individual in the current iteration
without considering the position of the center of the population or the positions of the individuals in
the previous generation, and this prevents the whale population from adequately covering the entire
search space. Therefore, the algorithm is prone to falling into a locally optimal solution, and premature
convergence occurs. Therefore, in this paper, the Levy flight mechanism is introduced to perturb the old
solution in updating the position.

The Levy flight is a random wandering process and is a good search strategy [27]; the new generation
of optimal individuals generated by Levy flight perturbation is calculated as follows:

Xbest (t + 1) = Xbest (t) + s ∗ Levy(β) (11)

where Xbest(t) denotes the optimal individual produced by the previous t iterations, s denotes the Levy
search path, and Levy(β) denotes the stochastic search path with the following expression:

Levy (β) ∼ μ

|v| 1
β

(12)

where the value of β is generally in the range of 1 < β < 3; here, we take β = 1.5, and μ and v obey the
normal distribution as follows:

μ ∼ N
(
0, σ 2

)
; v ∼ N(0, 1) (13)

σ =
[

� (1 + β) ∗ sin (π ∗ β

2
)

β ∗ �
(

1+β

2

) ∗2
β−1

2

] 1
β

(14)

where � is the Gamma function.

3.3.3 Metropolis guidelines improvement
In the SA algorithm, the metropolis criterion determines whether to accept a new solution, which indi-
rectly determines the algorithm’s optimization ability and convergence speed. The metropolis criterion
expression for the traditional SA algorithm is

p = e− E(Xnew)−E(Xold )
T (15)

However, for path planning problems of different sizes, the value of E(Xnew) − E(Xold) may greatly
differ from the current value of T , which leads to the value of p being too large or too small, thus
affecting the convergence speed of the algorithm. In this paper, the criterion has been improved to avoid
this discrepancy:

p = e− |f (new)−f (old)|
AT , A = LInitial (16)

https://doi.org/10.1017/S0263574724000596 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000596


Robotica 2255

where f (new) represents the fitness function of the new solution, which is defined here as the total length
of the path of the new solution, T is the current temperature, and the new parameter A represents the
length of the shortest path among the nearest-neighbor paths. There are N such paths to represent the
scale of the solution of the problem so that the value of p can be stabilized within a certain range to
ensure that the algorithm converges as soon as possible.

3.3.4 Adaptive warming mechanism
Most of the traditional SA algorithms set the initial temperature high enough to allow the algorithm
to achieve better global optimization, but there is no fixed way to set the temperature. If the initial
temperature is not set properly, the algorithm will likely converge slowly, and it will not be easy to find
the optimal solution. To adapt the initial temperature to the size of this path planning problem, in this
paper, the initial temperature is set to the variance of the nearest-neighbor path lengths, of which there
are N:

T0 = D(
j=N∑
j=1

||Pj+1 − Pj||, i = 1, 2, . . . , N) (17)

The cooling function controls the temperature drop, and the magnitude of the temperature change
reflects the search power of the SA algorithm. When the temperature is high, the algorithm performs
a wide-area search; when the temperature is low, the algorithm performs a local-area search [28]. The
traditional SA algorithm usually selects the standard cooling method for cooling as shown below, but
the cooling speed is relatively slow, so the algorithm can enter the local optimization stage only after
many iterations; additionally, the search ability is weak, and many feasible solutions will be missed:

T = T0 ∗ α, α ∈ (0.80, 0.99) (18)

To solve this problem, SA is improved by choosing the fast cooling method, as shown below. This
cooling method can address the shortcomings of the traditional cooling method, which is slow. With
this new method, the algorithm can be cooled quickly so that it can enter the local optimization stage;
however, entering the low-temperature state too early means that the algorithm moves into the local-
search stage from the wide-area search stage, which prevents the solution of the current state from being
verified and ultimately prevents us from finding a globally optimal solution:

T = T0 ∗ exp (−α ∗ k
1
2 ), α ∈ (0.80, 0.99) (19)

The advantages and disadvantages of the two cooling methods compensate for each other; the adaptive
tempering mechanism is introduced into the SA-WOA in this paper:

T =
{

T0 ∗ (1 + e
− k

kgapIter ∗ cos (k ∗ π

kgapIter
)) k <

kstop

3

T = T0 ∗ α else
(20)

where T0 denotes the initial temperature, T denotes the temperature after the change, α is the cooling
coefficient, k is the number of iterations, kgapIter denotes the number of floating intervals, taken as N, and
kstop is the preset number of iterations. Figure 8 shows a schematic diagram of the three cooling methods.

As shown in Fig. 8, the adaptive tempering introduced in this paper causes the algorithm to progress
through the process of tempering and warming up during the preiteration period, thus jumping out of
local optima and greatly improving the global optimization seeking ability. Moreover, repeatedly raising
and lowering the temperature increases the memory function of the algorithm to maintain the optimal
solution.

3.3.5 Comparison of improved SA-WOA algorithms
According to the improvement of the whale optimization algorithm based on SA algorithm in the above
section, the SA-WOA coding strategy proposed in this paper is shown in Table II.
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Figure 8. A comparison of the three cooling curves.

The eil76 and st70 datasets are typical datasets in the problem repository TSPLIB for the traveler’s
problem and its related problems and are widely used to validate the effect of algorithmic planning for
solving the TSP problem. The effect of the above-improved SA-WOA algorithm is validated using the
eil76 and st70 datasets, which include the coordinate information of 76 and 70 cities, respectively, with
optimal path lengths of 538 and 675, respectively. The computer used for algorithm comparison exper-
iments in this article is the 2022 Lenovo Savior Y9000P, with an Intel core i7-12700H processor and a
basic CPU frequency of 2.7 GHz. It can reach a maximum workload of 4.7 GHz and has 16 GB DDR5-
4800 MHz of RAM. It is equipped with a 512 GB PCIe 4.0 SSD solid-state drive, NVIDIA GeForce
RTX 3060 desktop version, and 8 GB GDDR6 graphics memory. The software running environment is
PyCharm Professional 2020.1, and its configured Python version is 3.7. Typical path planning algorithms
such as basic SA algorithm, whale optimization algorithm, ACA [29], and particle swarm algorithm as
well as improved genetic algorithm (Im-GA) [8] are selected for comparative analysis and 50 repetitions
of each algorithm are performed using the eil76 and st70 datasets, respectively, and the number of gen-
erations of convergence and the value of convergence of each algorithm are recorded. Figure 9 shows
the convergence curves of path planning using the SA-WOA algorithm of this paper for the eil76 and
st70 datasets.

Meanwhile, the average number of converged generations, average convergence value, and average
convergence elapsed time for 50 experiments of each algorithm are calculated, and the results are shown
in Table III.

From Fig. 9, it can be seen that the improved SA-WOA algorithm in this paper has a better initial
solution in path planning for both eil76 and st70 datasets, and the convergence value is significantly
lower than other algorithms. From Table III, it can be seen that the average path lengths planned by
the improved SA-WOA algorithm in this paper for the eil76 and st70 datasets are 543.18 and 677.33,
respectively, which differ from the optimal path lengths of 538 and 675 by only 0.95% and 0.34%,
respectively, and the number of convergence iterations and the convergence elapsed time are both sig-
nificantly reduced. Im-GA is an improved algorithm with adaptive adjustment of crossover and mutation
operators on the basis of genetic algorithm for the CPP problem in 2022. As can be seen from Table III,
when comparing SA-WOA with Im-GA using the eil76 and st70 datasets in the experiments, the planning
path lengths of the SA-WOA proposed in this paper are shorter by 4.08% and 3.17%, respectively, com-
pared to the Im-GA planning lengths, and the SA-WOA uses fewer number of convergent generations
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Table II. The coding strategy for SA-WOA.

Step Context
Input Whale population size N, number of algorithm iterations t, maximum number of iterations

Tmax, cooling factor α, etc.
Step1 Solve for the nearest-neighbor path length for n times to get the initial temperature T0

according to formula (17) and the initialized population Xi.
Step2 while the current iteration number t < Tmax:
Step3 Calculate the fitness value F(Xi) for each individual in the population, calculate the

current temperature of the algorithm, and record the current optimal solution Xbest.
Step4 Updating the optimal individual position.
Step5 for i = 1 to N do:
Step6 Calculate the values of update A and C according to formula (6) and formula (7),

calculate the values of adaptive weights according to formula (10).
Step7 if p < 0.5:
Step8 The SA stage perturbs the old solution Xold to produce a new solution Xnew and

calculates the difference between the fitness of the new solution F(Xnew) and the
fitness of the old solution F(Xold), f = F(Xnew) − F(Xold).

Step9 if f ≤ 0:
Step10 Reception of new solutions generated.
Step11 else if f > 0:
Step12 Decide whether to accept the new solution Xnew according to the improved

metropolis criterion defined in formula (16).
Step13 end if.
Step14 Adaptive rewarming operation according to formula (20).
Step15 if|A| ≥ 1:
Step16 The current solution is perturbed using the Levy flight mechanism according

to formula (11), which in turn updates the current individual position.
Step17 else if |A| < 1:
Step18 Update the current individual position using shrink-wrapping according

to formula (3).
Step19 end if.
Step20 else if p ≥ 0.5:
Step21 Update the current individual position using spiral bracketing with weights

according to formula (4).
Step22 end if.
Step23 end for.
Step24 t = t + 1.
Step25 end while.
Output Optimal solutions and optimal individual fitness.

and convergence time, thus validating the ability of SA-WOA to perform the novelty and superiority of
SA-WOA in performing the covering path planning problem.

The computational complexity of SA-WOA in this article can be approximated as O(NGD), where N
is the population size, G is the number of iterations, and D is the dimension of the solution. This com-
plexity indicates that the running time or number of steps of SA-WOA is related to the population size,
number of iterations, and the dimension of the solution. As these factors increase, the computational
complexity of the algorithm also increases accordingly. It can be seen that SA-WOA is a linear com-
putational complexity, which makes it robust in processing input data of different scales and relatively
easy to scale and apply to problems of different scales. In addition, algorithms with linear complexity
have efficiency and scalability, and relatively small requirements for computing and storage resources.
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The convergence curves for each algorithm for 
the eil76 dataset.

The convergence curves for each algorithm for 
the st70 dataset.

(a) (b)

Figure 9. The algorithm comparison effect.

The above results show that the improved SA-WOA algorithm in this paper can obtain better paths with
fewer iterations in a shorter time and can effectively avoid falling into local optimum.

In order to evaluate the performance of this system, it was compared with the commonly used CPP
methods in previous atmospheric environment monitoring work. As shown in Fig. 10, the path plan-
ning results of the Cube Decomposition Mower Path Planning Method (CLMP), Hexagonal Prism
Decomposition Mower Path Planning Method (HLMP), and Hexagonal Prism Decomposition Coverage
Sampling Planning Method (HDCP) for the same area are presented. Table IV shows the comparison
information and simulation results of the above three methods, where L represents the coverage sam-
pling density, L in the lawn mower path represents the side length of the square unit, and L in the other
two methods represents the side length of the hexagon. From Table IV, it can be seen that under the
same coverage density, the path planned by the algorithm in this paper has a shorter total flight path.
This indicates that the method designed in this paper, which uses hexagonal prism sampling units for
spatial sampling and SA-WOA for path planning, has good performance. It can quickly plan coverage
detection paths for the fleet and save drone energy as much as possible.

3.4. NURBS path smoothing
The above region partitioning and SA-WOA methods are used to conduct multi-UAV path planning tests.
A convex polygonal region and a concave polygonal region are set up. The convex polygonal region has
5 vertices, and the concave polygon consists of 12 vertices with 2 concave vertices, which are assigned
to 3 UAVs. The region partitioning and the path planning results are shown in Fig. 11.

As shown in Fig. 11, the paths planned using the SA-WOA do not meet the requirement of contin-
uous UAV flight, which is second-order continuous differentiability; this leads to repeated deceleration
and acceleration maneuvers at the turning points during UAV mission execution, which increases the
execution time of the swarm. Therefore, the generated paths need to be smoothed to obtain the actual
flight paths of the UAVs to reduce the energy loss of the UAV fleet and improve the detection efficiency.

The paths generated by the SA-WOA can be rounded using a NURBS curve, which has a very pow-
erful and flexible shape control capability, and the small amount of interpolated data it uses makes it
suitable for fast rounding of UAV flight paths [30].

A vector of kth-order NURBS curves with respect to the parameter X can be expressed as follows:

P (X) =
∑n

i=0 Ni,k(X)wiPi∑n
i=0 Ni,k(X)wi

(21)
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Table III. The comparison of parameters of path planning algorithm results.

Dataset Performance index SA-WOA PSO ACO SA WOA Im-GA
eil76 Convergence length (m) 543.18 652.26 567.66 626.13 604.52 566.30

Convergence algebra 231 437 406 384 262 287
Convergence time (s) 3.65 15.55 65.23 5.01 3.92 4.78

st70 Convergence length (m) 677.33 790.36 715.81 801.05 984.35 699.52
Convergence algebra 229.16 442.02 409.38 295.06 351.18 270.80
Convergence time (s) 3.78 15.78 63.39 6.92 5.02 4.13

CLMP. HLMP. HDCP.

(a) (b) (c)

Figure 10. The planning effects of different coverage methods.

which is transformed to obtain the following three-dimensional coordinates:

P(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(X) =
∑n

i=0 Ni,k(X)wixi∑n
i=0 Ni,k(X)wi

y(X) =
∑n

i=0 Ni,k(X)wiyi∑n
i=0 Ni,k(X)wi

z(X) =
∑n

i=0 Ni,k(X)wizi∑n
i=0 Ni,k(X)wi

(22)

where Pi{xi, y, zi} are the control points of this NURBS curve, wi is the corresponding weight of each
control point, and Ni,k(X) is the k-th iteration of the B-spline basis function defined in the X-direction,
which is calculated as follows:

Ni,0(X) =
{

1, Xi ≤ X ≤ Xi+1

0, else
(23)

Ni,k(X) = (X − Xi) Ni,k−1(X)

Xi+k − Xi

+ (Xi+k+1 − X) Ni+1,k−1(X)

Xi+k+1 − Xi+1

, k ≥ 1 (24)

where 0
0
= 0 is specified here to prevent 0

0
from occurring in the above equation.

The third-order NURBS curve is used to round the planned path as shown in Fig. 11, and the effect
is shown in Fig. 12.

Figure 12 shows that after rounding, the path satisfies second-order continuous minimizability; the
UAV flies according to this path and only needs to adjust the roll angle and yaw angle appropriately
when turning without substantial deceleration, which effectively reduces the UAV’s nonessential energy
consumption and enhances the efficiency of mission execution. From the comparison between Fig. 11
and Fig. 12, it can be seen that the smooth path of the NURBS curve introduces a certain degree of path
vector error, that is, the drone cannot pass through the original sampling points at certain turns, which
will have a slight impact on the effectiveness of atmospheric detection. However, this error is tolerable in
the use of the system in this article for atmospheric environment coverage detection in three-dimensional
space. This is because the NURBS curve in this article sets the angle parameter of the curve to ensure
that the smooth path is as close to the original path as possible. In Fig. 12, it can be seen that the curve
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Table IV. The comparison of planning informa-
tion for different coverage methods.

Algorithm name L(m) Path length(m)
CLMP 3.00 956.56
HLMP 622.71
HDCP 602.75

CLMP 4.00 752.32
HLMP 485.45
HDCP 457.26

CLMP 5.00 604.22
HLMP 392.63
HDCP 363.73

The convex area delineation and path planning. The concave area demarcation and path planning.

(a) (b)

Figure 11. The multi-UAV region segmentation and path planning experiment.

The convex area delineation and path rounding. The concave area demarcation and path rounding.

(a) (b)

Figure 12. The NURBS curve paths rounding.
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at the turn is as close to the original sampling point as possible to obtain gas data around the sampling
point while ensuring smoothness. Second, the effectiveness of path smoothing processing depends on
the specific requirements and environmental conditions of the application scenario. When detecting
the coverage of three-dimensional space, path smoothing can significantly improve the stability and
comfort of flight, thereby improving the efficiency and quality of task execution. Meanwhile, the gas
measurement device carried by drones continuously collects gas data during flight. Overall, the gas
data measured by drones is still uniform in the space and effective in constructing the distribution of
pollutants in the subsequent space.

4. Algorithm deployment and simulation experiments
The above improved SA-WOA is deployed on an NVIDIA Xavier NX equipped with UAVs, and the
ROS robotics operating system is used to complete the mission planning and position control of multiple
UAVs. To ensure that the designed flight trajectory meets the constraints, protects personnel safety, min-
imizes damage, and is capable of accomplishing the detection mission, multiple simulation experiments
were conducted using the UAV simulation platform Gazebo.

4.1. Algorithm deployment
The NVIDIA Xavier NX module is an embedded AI edge computing product with a wide range of
standard hardware interfaces [31]. The ROS is an open-source meta-operating system for robots [32].
Various sensors on the robot, such as radar and GPS devices, need to transfer data to achieve reasonable
control of the robot, and the implementation of process communication is the key to transferring data
among them.

In this paper, the communication mechanism of the ROS is used to connect the first and last steps of
the mission planning system as well as achieve the cooperative control of multiple UAVs, and the multi-
UAV path planning algorithm is combined with the multi-UAV control system to control multiple UAVs
for three-dimensional spatial environment detection. The framework of the mission planning system is
shown in Fig. 13, and the planning process for the task system is shown in Table V.

During the preparation work before takeoff, the swarm of drones will run offline algorithm programs
to obtain the predetermined detection path of the current drone. Each drone has its own independent
ROS message and ROS node. After spatial area division, each subarea will use ROS messages from
different nodes to send to different drones to avoid conflicts and ensure the safety of multiple drones.
After the drone takes off, the drones in the cluster automatically publish their attitude information to the
ROS core for other drones to subscribe to, ensuring mutual perception among multiple drones. When the
drones in the cluster encounter some unexpected situations while performing tasks, real-time response
measures need to be taken. When two drones are too close together, it is necessary to set a lower priority
drone to maintain its current position and avoid the higher priority drone. When the distance between
two drones becomes safe, the low priority drone’s flight mission will resume. When the drones in the
cluster encounter problems and are forced to return, the remaining sampling points of the drones will
be reassigned to other drones in the cluster to complete full coverage sampling of all sampling points in
the space.

According to the system framework in Fig. 13, the system functions are divided into multiple ROS
nodes, such as task assignment, path planning, path optimization, control interaction, and task triggering
nodes, and each node completes different functional modules, which are connected to each other but
do not affect each other’s operation. The system architecture of the ROS module of the multi-UAV
Collaborative Space Exploration Mission Planning System is shown in Fig. 14. The functions of each
node are shown in Table VI, and the types of topics used in the mission planning system are shown in
Table VII.
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Figure 13. The mission planning system framework.

After the above node and message design steps are completed, the pose control function provided by
the ROS is used to control the UAV in Gazebo, after which the vehicle flies according to the algorithm-
planned path to verify the effectiveness of the task planning system designed in this paper.

4.2. Multi-UAV cooperative detection simulation experiment
Gazebo is free robotics simulation software that provides high-fidelity physical simulation and a full set
of sensor models used in conjunction with the ROS to provide developers with an excellent simulation
environment [33].

A multi-UAV path planning test was conducted using the above multi-UAV cooperative mission plan-
ning system, and a multi-UAV cooperative atmospheric exploration mission planning simulation and
validation platform was constructed, as shown in Fig. 15.

As shown in Fig. 15, the simulation platform mainly includes the Gazebo simulation platform,
Pixhawk4 flight controller, and UAV ground control station. Gazebo is the core and hub of the entire
system. It is connected to the Pixhawk4 flight controller through a serial port and connected to the
ground station through the UDP, which communicate with each other using the MAVLink protocol. The
Pixhawk4 Flight Controller, also known as the Flight Controller, is equipped with PX4 firmware and
provides a quadcopter drone control model. It sends control commands to Gazebo’s drone body model,
allowing the drone to complete relevant flight maneuvers based on algorithm commands. The drone
ground control station can directly control the flight of the drone and can also perform autonomous flight
missions. The entire simulation process can be visualized from the drone ground station and Gazebo
simulation platform, such as the drone’s flight trajectory, visual images, and position status.

In the simulation experiment, the UAV swarm consists of three UAVs, and the initial position of the
UAV swarm is shown in Fig. 16. In this paper, an actual flight experiment with the multi-UAV planning
system is conducted by setting two kinds of nonregular stereo spaces, convex and nonconvex, near the
ground station, in which the convex polygonal region has five vertices and the concave polygonal region
has 10 vertices, among which there are two concave vertices, as shown in Fig. 17. The parameters of the
planning system are listed in Table VIII.

https://doi.org/10.1017/S0263574724000596 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000596


Robotica 2263

Table V. The planning process for the mission system.

Step Context
Input Turn on the ground station and use the fence to plan the polygon area denoted as

P = {Pi|i = 1, 2, . . . , N}, establish the swarm of UAVs denoted as
U = {Ui|i = 1, 2, . . . , n}, and then set up the parameters.

Step1 Turn on ROS and mini homer to establish UDP connections between the three airplanes
and the ground station.

Step2 The ground station plans and submits the overall mission area set up by the fence to the
ROS node for area delineation and task assignment, and the node publishes the results
after the operation is completed.

Step3 The path planning node subscribes to the task information and performs path planning and
coordinate transformation using SA-WOA algorithm and later publishes the results.

Step4 The path optimization node subscribes to the path coordinate information and performs
path optimization using NURBS and then publishes the results.

Step5 The total number of UAV control nodes is n, each node controls an aircraft, and each node
subscribes to the bit position information of the aircraft it is controlling at the current
moment, and publishes the mission path encapsulated as a ROS message to that UAV.

Step6 The mission execution node unlocks the all UAVs and controls the ascent to their
respective initial altitudes, and the operational UAV control node controls the flight of
each UAV in accordance with its respective mission.

Step7 The drone returns automatically after the mission is completed.

Figure 14. The ROS module message interaction.

A tool called a fence is used in ground control stations to limit the flight area of drones. Fences have
two categories: arbitrary polygons and circles. A safe flight area is selected for the drones by moving
the turning points of the fence. When the drone flies out of this area, safety measures are triggered to
make the drone hover or return to the area. This article uses this tool to plan the boundary of the vertical
projection area of the target three-dimensional space at the ground station, as shown in Fig. 17. Using
fences to depict this boundary can not only accurately select the task area in detail but also limit the
flight space of the drone.

The spatial region shown in Fig. 17 is tasked and assigned to three UAVs, and the effects of region
division and path planning are shown in Fig. 18. The third-order NURBS curves are used to round the
paths shown in Fig. 18 to obtain the mission paths of each UAV, as shown in Fig. 19.

After solving the path planning problem of stereo space region projection, the algorithm is extended
to three-dimensional space so that the mission paths of the UAVs are relatively independent and the
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Table VI. The functions of each ROS node in a multi-computer collaborative mission planning system.

Node name Input node topics Output node topics Role of the node
roscore null null The ROS node, running

ROS master
task_allocation /task_geofence /sampling points Reading fences, zoning,

and sampling
path_planning /sampling points /uav∗/original_path Path planning using the

SA-WOA
path_optimization /uav∗/original_path /uav∗/optimized_path Path rounding using

NURBS curves
uav_control /uav∗/optimized_path /uav∗/mavros/state Controlling position

with mavros
mission_running /uav∗/mavros/state /uav∗/mavros/set_mode Manage the status of

mutil-UAV

Table VII. The ROS topics and services.

Message name Message type Role of the message
/uav∗/mavros/state mavros_msgs/State Subscribe to drone

status
/uav∗/mavros/global_position/global sensor_msgs/NavSatFix Drone location

information
/uav∗/mavros/setpoint_position/global geographic_msgs/GeoPoseStamped Desired drone

location
/uav∗/mavros/cmd/arming mavros_msgs/CommandBool Change drone lock

status
/uav∗/mavros/set_mode mavros_msgs/SetMode Switching drone

mode
/task_geofence custom_msgs/GeoFence Subscribe to mission

fence coordinates
/uav∗/original_path custom_msgs/OriginalPath UAV initial path

waypoint
coordinates

/uav∗/optimized_path custom_msgs/OptimizedPath UAV optimized path
waypoint
coordinates

mission path of the swarm spreads over the whole stereo space; this ensures that the swarm can detect
the condition of the stereo space very well, as shown in Fig. 20.

As shown in Fig. 20, the sampling and path planning for the mission area in this paper can generate
a good swarm detection path; after rounding, the flight path meets the second-order continuous mini-
mizability criterion, and the UAVs flying according to this path only need to adjust the roll angle and
the yaw angle appropriately during the turn without having to perform a large deceleration operation,
which effectively reduces the nonessential energy consumption of the UAVs and enhances the efficiency
of mission execution. When the system completes mission planning, the result is uploaded to the ground
station to generate a detection mission for each UAV, as shown in Fig. 21. The ground station used in
this article was developed using QML on the basis of QGroundControl. The task planning results are
displayed in the ground station view using the combined control steps of “ListView-ListModel-Delete.”
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Figure 15. The simulation platform architecture diagram.

Figure 16. The initial position of the drone swarm.

ListView control is used for storing data, ListModel is used to control the format of each piece of data,
and Delegate is used to display and manipulate the data in ListModel.

The ground station is used to unify the task of turning on multiple UAVs, and the flight status of
each UAV on the detection mission is shown in Fig. 22. The ground station platform used in this paper
can realize real-time display of the UAV flight trajectory. The Mavlink data returned by the three drones
through the ground station are analyzed via the combined control steps of "ListView-ListModel-Delete"
to display their respective position information on the page. When the drone moves, ListModel increases
the number of trajectory points on the drone in real time, and then Delegate control is used to connect
these trajectory points into lines to visualize the real-time trajectory information of the three drones on
the map. After the completion of the task, the complete flight trajectory of the UAV fleet is as shown
in Fig. 22. This trajectory can be detected at the ground station along with the fences that delineate the
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The convex regional space fencing. The concave regional space fencing.

(a) (b)

Figure 17. The fencing of space mission areas.

overall task area. The system generates a three-dimensional spatial detection path, drives the UAVs to
follow the predetermined flight path, and carries out multi-UAV control and trajectory display at the
ground station.

The various results of the task assignment are shown in Table IX. The length of the task path of each
UAV in the fleet is relatively balanced, and the time consumed is relatively short, indicating that the
algorithm in this paper can quickly divide the area and perform path planning for the three-dimensional
space.

Overall, the rotorcraft atmospheric environment monitoring system and monitoring method designed
in this paper are reliable and stable, provide a practical program for constructing atmospheric pollution
distribution maps, and have certain practical application value and significance in three-dimensional
space atmospheric environment monitoring.

5. Experimental of gas detection in stereoscopic space environment
This section mainly focuses on the measurement of environmental gases by multiple UAVs in three-
dimensional spaces. First, a hardware system platform is designed and built for multi-UAV environmen-
tal detection task planning. Then, environmental gas measurement experiments are conducted, which
are divided into two parts. The first part is used to verify the consistency and accuracy of the multiple
gas measurement devices used in the experiment. The second part utilizes the multi-UAV collabora-
tive CPP method to detect the environment in three-dimensional space. Finally, kriging interpolation is
introduced to construct the fine-grained gas distribution in the detection space.

5.1. Multi-UAV environment detection task planning hardware platform
To complete collaborative work among multiple drones for environmental gas measurement, this arti-
cle builds an environmental detection hardware implementation platform based on the aforementioned
multi-UAV collaborative task planning system and the secondary development of ground control sta-
tions. The system mainly includes drone terminals, communication links, ground control terminals, and
gas measurement devices, as shown in Fig. 23 [34, 35].

The gas measurement method uses a self-assembled gas measurement device, which mainly includes
a self-developed multi-sensor information core board, an M701A multi-in-one sensor air quality moni-
toring module produced by Shenchen Technology, and a 10-axis GPS-IMU inertial integrated navigation

https://doi.org/10.1017/S0263574724000596 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000596


Robotica 2267

Table VIII. The key parameters of the planning system.

Key parameter name Value
Number of drones 3
Threshold for the ratio of the area of removed dents 0.04
Sampling sparsity factor 10
Split line scanning step 0.001
Coefficient of cooling 0.95
Maximum iteration factor 500
NURBS evaluation increment 0.001
NURBS fitting order 3

The path planning for convex regions. The path planning for cancave regions.

(a) (b)

Figure 18. The fencing of space mission areas.

The path rounding for convex regions. The path rounding for cancave regions.

(a) (b)

Figure 19. The fencing of space mission areas.
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The multi-UAV 3D convex spatial planning paths. The multi-UAV 3D concave spatial planning paths.

The multi-UAV 3D convex spatial rounding paths. The multi-UAV 3D concave spatial rounding paths.

(a) (b)

(c) (d)

Figure 20. The multi-UAV mission paths in three-dimensional space.

The triple UAV convex regional stereo space exploration mission. The triple UAV concave regional stereo space exploration mission.

(a) (b)

Figure 21. The multi-UAV stereo space exploration missions generated by the mission planning system.
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The triple UAV convex regional stereo space exploration mission
trajectory display.

The triple UAV concave regional stereo space exploration
mission trajectory display.

(a) (b)

Figure 22. The ground station platform complete trajectory display.

module produced by Weite Intelligence, as shown in Fig 24(a). The gas measurement device is assem-
bled with the drone terminal to obtain a single drone capable of performing detection tasks, as shown in
Fig 24(b). As shown in Fig 24(c), the multi-UAV experiment in this article uses three UAVs for collabo-
rative detection, and each aircraft has the same configuration. On this basis, the communication link can
be assembled to obtain the hardware implementation platform of the environmental detection system.

5.2. Gas measurement device availability and consistency experiment
To verify the stability of the gas measurement device and the accuracy and consistency of the mea-
surement data, a 1-week environmental gas measurement experiment was conducted. The measurement
experiment was performed between 9am and 11am every day from December 16, 2023, to December
20, 2023. The GPS coordinates of the experimental location were between 115.791◦E and 115.7935◦E
and between 37.19745◦N and 37.199◦N, with a relative height of 10 m to 50 m in the spatial area.

Three UAVs assembled as described above and one DJI M300RTK device carrying a Sniffer4D V2
olfactory instrument were selected for the experiment. The Sniffer4D V2 is a portable multigas monitor-
ing device with real-time terminal data monitoring and simultaneous monitoring of multiple parameters.
It can be combined with the DJI M300RTK flight platform to obtain accurate distribution information
on air pollution.

The four drones were arranged evenly at the edge of the experimental area, as shown in Fig 25(a).
The same flight path was set for each drone to ensure that the four gas measurement devices had a
basically consistent detection environment. The predetermined flight paths of the four drones are shown
in Fig 25(b). The drones flew vertically from the takeoff position and hovered at 10 m, 20 m, and 30 m
to obtain results from the gas measurement devices at different heights.

Another measurement experiment was conducted after 1 week. After the experiment, the daily
average values of multiple gas measurement devices were taken as the concentration of atmospheric
pollutants for that day. The gas measurement results of the Sniffer 4D V2 were obtained at the same
time, and the air monitoring data from the Luquan No. 1 Middle School monitoring station, which is
6 km away from the experimental site, were compared. The comparison results are shown in Fig. 26.
The red solid line represents the monitoring data of Luquan No. 1 Middle School, the blue solid line
represents the measurement data of the olfactory system at the corresponding times, and the dotted line
represents the measurement data collected by each gas measurement device designed in this article.
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Table IX. The experimental results of zoning and path
planning.

Type Convex Concave
Path length of the uav1 1356 m 951 m
Path length of the uav2 1296 m 932 m
Path length of the uav3 1404 m 975 m
Path standard deviation 44.18 m 17.59 m
Planning time-consuming 3.61 s 3.19 s
Time-consuming task execution 12�43�� 9�26��

Figure 23. The multi-UAV collaborative task planning hardware platform.

The M701A. The single gas measurement aircraft. The three gas measurement aircrafts.

(a) (b) (c)

Figure 24. The gas measurement device.

To verify the accuracy of the measurements taken by the device at different heights, the PM2.5 and
PM10 concentrations at each height of the three gas measurement devices during the experimental period
from December 16, 2023, to December 20, 2023, were compared with the measurement data of the
Sniffer4D V2 at the corresponding time and height. The comparison results are shown in Fig. 27 and
Fig. 28.

The graph shows that although the concentrations of environmental pollutants in the experimen-
tal area detected during this study differ from the measurement results of the Sniffer4D V2 and the
monitoring results at Luquan No. 1 Middle School, the daily trend in pollutant concentrations during
this time period was basically consistent. The comparison of the results at different heights shows that
the changes in the gas measurement device data designed in this article are basically consistent with
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The drones equipped with gas measurement devices. The planned flight path.

(a) (b)

Figure 25. The consistency experiment of gas measurement device.

Figure 26. The comparison curve of device consistency experiment results.

human-detectable gas levels at each height layer, indicating that the device can effectively measure the
concentration of pollutant gases at different height levels.

To further explore the accuracy and consistency of the gas measurement device designed in this
article, the mean absolute error (MAE) and root mean square error (RMSE) were used to measure the
differences among the data obtained by the gas measurement device designed in this period, the Sniffer
4D V2, and the monitoring station at Luquan No.1 Middle School. The average absolute error is the
average absolute error between the true value and the actual measured value. The RMSE is the standard
deviation between the true value and the actual measured value and is used to represent the degree of

https://doi.org/10.1017/S0263574724000596 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000596


2272 Binggang Yu et al.

Figure 27. The comparison of consistency in results of devices with different heights of PM2.5.

Figure 28. The comparison of consistency in results of devices with different heights of PM10.

dispersion of the sample. The formulas for the MAE and RMSE are as follows [36].

MAE = 1

n

n∑
i=1

|xi − x| (25)
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Table X. The discrete results of device consistency for PM2.5.

Comparing station Device 1 Device 2 Device 3
Sniffer 4D olfactory V2 MAE 28.76 31.45 29.95

RMSE 38.69 44.80 37.89
Luquan No.1 Middle School MAE 42.27 44.80 43.44

RMSE 53.92 58.67 54.50

Table XI. The discrete results of device consistency for PM10.

Comparing station Device 1 Device 2 Device 3
Sniffer 4D olfactory V2 MAE 39.41 42.04 40.08

RMSE 52.38 60.06 51.33
Luquan No.1 Middle School MAE 58.36 60.41 56.18

RMSE 67.01 72.00 67.67

RMSE =
√√√√1

n

n∑
i=1

(xi − x)2 (26)

where n represents the total number of gas samples measured in the experiment, xiis the measured value
of the gas samples, and x is the corresponding true value of the gas data.

The data from the monitoring station at Luquan No. 1 Middle School and the measurement results
of the Sniffer 4D V2 were used as the actual environmental values, and the above formula was used to
calculate the average absolute error and RMSE of the PM2.5 and PM10 measurements taken by the gas
measurement device used in this study with respect to them. The results are shown in Tables X and XI,
respectively.

The calculated MAE and RMSE results in Tables X and XI show that the gas measurement device
used in this paper has small differences from the monitoring station used at Luquan No. 1 Middle School
and the Sniffer 4D V2. The RMSE and absolute mean square error of PM2.5 and PM10 are relatively
small, indicating that the accuracy and consistency of the measured data are excellent. The above exper-
imental results show that the gas measurement device designed in this article has high accuracy and
consistency and can be used for subsequent collaborative detection in three-dimensional space using
multiple drones and for constructing pollutant gas information distributions in the target space.

5.3. Multi-UAV collaborative three-dimensional spatial fine-grained distribution
To further study the spatial distribution of atmospheric pollutants in the experimental area, it is necessary
to use the multi-UAV collaborative task planning system proposed in this paper to design a multidrone
coverage flight path and use the gas measurement device designed in this paper to measure the gas at
the spatial sampling points, thereby constructing a fine-grained distribution of pollutants in the target
three-dimensional space.

This article uses three drones to carry gas measurement devices and sets the task area with the
geofence of the ground station. With the help of the geofence, the boundaries of the task area can be
flexibly delineated, and the maximum flight boundary of the drone can be restricted at the same time so
that the drone will not cross the fence and the safety of the flight mission will be ensured. To verify the
multi-UAV collaborative task planning system designed in this article, the overall experimental area was
set within an area with GPS coordinates ranging from 115.791◦ E to 115.7935◦ E and from 37.19745◦

N to 37.199◦ N. Two irregular three-dimensional spaces, convex and nonconvex, were established with
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The fence of convex region. The fence of concave region.

(a) (b)

Figure 29. The fencing of the task area designated by the ground station.

The Convex area three-dimensional space 
detection path.

The Concave area three-dimensional space 
detection path.

(a) (b)

Figure 30. The planning results of three-dimensional space exploration missions.

fences for actual flight experiments on multi-UAV collaborative task allocation. To verify the path plan-
ning of multi-UAV collaborative coverage in irregular three-dimensional space, the gas measurement
devices carried by the three drones measured environmental gas data in the three-dimensional space.

This article delineates two types of target three-dimensional spaces, convex and nonconvex, through
the secondary development of ground stations. As shown in Fig. 29, the target three-dimensional space is
vertically projected to obtain a convex polygon area with six vertices and a concave polygon area with six
vertices, including one concave point. The experimental height is set between 10 m and 30 m. The param-
eter settings of the multi-UAV collaborative task planning system are the same as those in Table VIII.

The task planning system is initialized, and the modeling information of the target three-dimensional
space is loaded into the system. The system automatically performs multi-UAV task planning and assigns
the planned tasks to three drones. The three-dimensional detection task path of each drone after planning
is completed is shown in Fig. 29. Additionally, the tasks are loaded to the ground station for subsequent
cluster control of the multiple drones, as shown in Fig. 30.

To increase the accuracy of the flight trajectory, this article uses RTK for auxiliary positioning. The
fixed RTK ground station and its analytical information are shown in Fig. 31.

Before the exploration mission began, the DJI Mavic 3 was used to monitor the flight status and
trajectory of each drone at high altitude. After the DJI Mavic 3 hovered above the mission area, the
ground station was used to initiate the detection mission of the three drones. The Fig. 31(b) shows the
flight status of each drone during the mission.

https://doi.org/10.1017/S0263574724000596 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000596


Robotica 2275

The Initial position and RTK deployment of 
drones.

The DJI Magic 3 class captured drone flight 
status.

(a) (b)

Figure 31. The actual flight scenario.

The task execution status in convex space. The task execution status in concave space.

(a) (b)

Figure 32. The task execution status displayed by the ground station.

The ground control station designed in this article can monitor the flight parameters and pose infor-
mation of multiple drones in real time. The drones hover at the sampling points for 1 to 2 s during the
mission to ensure correct sampling of the planned sampling points. After all the sampling points are
completed, the drones automatically return to the takeoff point. At this time, the complete flight trajec-
tories of the three drones during the detection mission can be observed at the ground control station, as
shown in Fig. 32.

Table XI shows the planning results and actual flight effects of the multi-UAV collaborative task
planning system. The task path length planned by the task planning system for each drone in the fleet
is relatively balanced, and the planning time is relatively short. This indicates that the multi-UAV col-
laborative task planning system designed in this article can quickly and effectively partition the target
three-dimensional space and plan the path.

When evaluating environmental pollution in space, spatial interpolation algorithms are usually used
to determine the relationship between gas concentration and spatial location to increase the accuracy of
the evaluation results. Common spatial interpolation algorithms include nearest-neighbor interpolation,
the radial basis function method, and kriging interpolation.

During the sampling process of the above experiment, the drone focused on hovering to take measure-
ments near the preset sampling points, and there may not be measurement data at nonsampled points. To
address this situation, we used the kriging interpolation method to reconstruct the relationship between
gas concentration and spatial position in the target three-dimensional space. The kriging interpolation
method is a regression algorithm that can model and predict random processes in space. The interpola-
tion process considers not only the relationship between the predicted point and the given data point’s
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Table XII. The planning results of irregular stereoscopic
space exploration tasks.

Type Convex Concave
UAV1 452 m 304 m
UAV2 432 m 317 m
UAV3 468 m 325 m
Standard deviation of path length 17.20 13.25
Mission planning time 3.61 s 3.19 s
Detection time 10.62 min 7.53 min

spatial position but also the spatial correlation of the predicted points, thereby minimizing the error
between the estimated value of the unknown position and the true value [37].

The kriging interpolation method uses the weighted sum operation on data from known points in
space to estimate the data of unknown points. The estimation formula is as follows:

Ẑ (x′) =
∑n

i=1
wiZ(xi) (27)

Here, x′ is an unknown prediction point, Ẑ(x′) is the estimated value, Z(xi) is the measured value of a
known point in space, and wi is the weight factor of the measurement value, which represents the ability
of the current measurement value to affect the final estimated value. The value of the weight factor is
determined jointly by the estimated value and the measured value. The weight factor corresponding to
each measurement and value should satisfy the estimated value at x′. The coefficient that minimizes
the variance between Ẑ(x′) and the measured value Z(x′) should also satisfy the condition of unbiased
estimation, as shown in the following equations:

E
(

Ẑ (x′) − Z (x′)
)

= 0 (28)

wi = argminwi Var(Ẑ (x′) − Z(x′)) (29)

Based on the above experiment proving that the measurement data and position of the gas measure-
ment device are correct, the gas data measured in this experiment are used to construct the fine-grained
distribution of pollutants in the target three-dimensional space. Because the gas measurement device
hangs below the rotor aircraft, rotor disturbance during rapid flight can affect the gas distribution around
the drone, thereby affecting the measurement results. To minimize the impact of rotor disturbance,
the drone is set to hover at the sampling point position because a hovering drone has a more stable
surrounding airflow than a moving drone, making the measurement data more accurate.

The pollutant concentration data of all the sampling points were selected in this experiment, and
the kriging interpolation method was used to generate an environmental pollution distribution map of
the target three-dimensional space. Due to the relatively small airflow influence between each sampling
point, the pollutant concentration in the spatial distribution is more in line with the Gaussian distri-
bution. Therefore, in the kriging interpolation process, a Gaussian-type variation function is selected
for interpolation operation prediction, the PM2.5 and PM10 concentrations are interpolated in the
three-dimensional space of the concave and convex regions, respectively, and their distributions in the
horizontal and vertical directions are analyzed. The results are shown in Fig. 33 and Fig. 34.

From Figs. 33 and 34, it can be seen that the distribution of pollutants in the target three-dimensional
space is the same. Although it is at the same location, the multi-UAV collaborative detection experi-
ment on the three-dimensional space was not conducted in the same concave convex area set on the
same day. Considering the different weather conditions in the 2 days, there are differences in the dis-
tribution of pollutants in the same space constructed through the multi-UAV detection experiment in
the concave convex area. However, there is no significant difference in the distribution of pollutants in
the space reflected in Figs. 33 and 34. From the horizontal interpolation results, it can be seen that the
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Horizontal distribution of PM2.5. Vertical distribution of PM2.5.

Horizontal distribution of PM10. Vertical distribution of PM10.

(a) (b)

(c) (d)

Figure 33. Distribution of pollutants in convex three-dimensional space.

Horizontal distribution of PM10. Vertical distribution of PM10.

(a) (b)

(c) (d)

Horizontal distribution of PM2.5. Vertical distribution of PM2.5.

Figure 34. Distribution of pollutants in concave three-dimensional space.
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concentration of pollutants gradually increases from west to east at the same horizontal height. From
the vertical interpolation results, it can be seen that the concentration of pollutants gradually increases
with the increase in height. This is due to the lower terrain of the playground where the experimental
site is located and the presence of a school’s teaching building, experimental building, and traffic lane
on the east side. Therefore, under the influence of vehicles and a large number of personnel flow, the
pollutant concentration on the east side of the experimental site is significantly higher than that on the
west side and increases with height. The overall experimental results indicate that the multi-UAV collab-
orative atmospheric environment detection system designed and constructed in this paper is feasible and
stable and can quickly complete the atmospheric environment detection task of multiple UAVs in the
three-dimensional space of the target. It has high application value in the measurement of atmospheric
environment quality in three-dimensional space.

6. Conclusions and future work
In this paper, for the application of multi-UAV cooperative environmental exploration, the division of
nonregular stereo spatial region, sampling, and the path planning method of full domain coverage are
studied, and a multi-UAV cooperative environmental exploration mission planning system is designed.
First, the target three-dimensional spatial region is divided by graphical decomposition, and each sub-
space is decomposed and sampled by hexagonal sampling units to obtain a collection of sampling points
covering each subspace. In the CPP of these sampling point sets, this paper proposes a SA-WOA, and
with the help of the eil76 and st70 datasets, SA-WOA is compared with the basic SA, WOA, Im-GA,
and other algorithms respectively, and the results show that the planning length of SA-WOA algorithm
is 10.15% and 31.19% shorter than that of the WOA planning results for the two datasets, respectively,
13.25% and 15.44% shorter than SA planning results, 4.08% and 3.17% shorter than Im-GA plan-
ning results, and only 0.95% and 0.34% difference from the optimal path length corresponding to the
dataset. Compared with other algorithms, SA-WOA is in the optimal position in terms of the number
of convergence generations and convergence time, which is sufficient to prove that SA-WOA has good
feasibility and novelty. After using SA-WOA to plan the paths for each collection of sampling points,
these paths are smoothed using NURBS curves to obtain the coverage mission paths that satisfy the con-
tinuous flight of the UAV. The system is validated using the Gazebo simulation platform, and then the
hardware implementation platform of the multi-aircraft collaborative environmental detection system
is constructed and a 1-week environmental gas measurement experiment and target stereo spatial cov-
erage detection experiment are carried out. The experimental results show that the concentration data
of PM2.5 and PM10 measured by the gas measurement device used in this paper are consistent with
the trend of the monitoring data from the monitoring stations of Sniffer 4D olfactory V2 and Luquan
No.1 Middle School, and the atmospheric pollutant distribution maps of the target three-dimensional
space are constructed using the kriging interpolation method, which verifies that the multi-UAV collab-
orative environmental detection mission planning system designed in this paper can rapidly detect and
construct the pollutant distribution map of the target nonregular three-dimensional space, which is of
practical value and significance for the research of multi-UAV collaborative technology in the field of
atmospheric environmental pollution prevention and control.

Future research can be conducted in several directions. One is to optimize the system architecture,
carry out product upgrades, and achieve a multi-UAV collaborative task planning system that integrates
emergency takeoff, portable monitoring, and space gas distribution construction. Second, environmental
factors such as wind speed and temperature can be taken into account in the energy consumption of
UAVs so that the system can stably and effectively carry out task planning and environmental detection
in different emergency environments. Finally, the collaborative communication mechanism between
multiple drones can be optimized to ensure the security of task execution.
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