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The Waring problem for upper triangular
matrix algebras

Qian Chen and Yu Wang

Abstract. Our goal of the paper is to investigate the Waring problem for upper triangular matrix
algebras, which gives a complete solution of a conjecture proposed by Panja and Prasad in 2023.

1 Introduction

The classical Waring problem proposed by Edward Waring in 1770 asserted that for
every positive integer k there exists a positive integer g(k) such that every positive
integer can be expressed as a sum of g(k) kth powers of nonnegative integers. In 1909,
David Hilbert solved the problem. Various extensions and variations of this problem
have been studied by different groups of mathematicians (see [2-4, 9, 11, 13, 14, 16, 17,
18]).

In 2009, Shalev [18] proved that given a word w # 1, every element in any finite
non-abelian simple group G of sufficiently high order can be written as the product of
three elements from w(G), the image of the word map induced by w. In 2011, Larsen,
Shalev, and Tiep [14] proved that, under the same assumptions, every element in G is
the product of two elements from w(G), which gave a definitive solution of the Waring
problem for finite simple groups.

Let n > 2 be an integer. Let K be a field, and let K(X) be the free associative algebra
over K, freely generated by the countable set X = {x1, x5, ...} of noncommutative
variables. We refer to the elements of K(X) as polynomials.

Let p(x1,...,%m) € K{X). Let A be an algebra over K. The set

p(A) ={p(ar,....am) | a1,...,am € A}

is called the image of p (on A).

In 2020, Bre$ar [2] initiated the study of various Waring’s problems for matrix
algebras. He proved that if A = M,,(K), where n > 2 and K is an algebraically closed
field with characteristic 0, and f is a noncommutative polynomial which is neither an
identity nor a central polynomial of A, then every trace zero matrix in A is a sum
of four matrices from f(A) - f(A) [2, Corollary 3.19]. In 2023, Bresar and Semrl
[3] proved that any traceless matrix can be written as sum of two matrices from
f(M,(@)) - f(M,(C)), where € is the complex field and f is neither an identity nor a
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central polynomial for M, (C). Recently, they [4] have proved thatif o, &, a5 € C\{0}
and o + o + a3 = 0, then any traceless matrix over C can be written as a1 A; + a A, +
a3As, where A; € f(M,(C)).

By T,(K), we denote the set of all #n x n upper triangular matrices over K. By
T, (K)(®, we denote the set of all n x n strictly upper triangular matrices over K.
More generally, if t > 0, the set of all upper triangular matrices whose entries (i, j) are
zero, for j — i < t, will be denoted by T, (K)(*). It is easy to check that J* = T, (K)(*™,
where ¢ > 1and ] is the Jacobson radical of T,,(K) (see [1, Example 5.58]).

Let p(x1, ..., %m ) be a noncommutative polynomial with zero constant term over
K. We define its order as the least positive integer r such that p(T,(K)) = {0} but
p(T1(K)) # {0}. Note that T;(K) = K. We say that p has order 0 if p(K) + {0}.
We denote the order of p by ord(p). For a detailed introduction of the order of
polynomials, we refer the reader to the book [7, Chapter 5].

In 2023, Panja and Prasad [16] discussed the image of polynomials with zero
constant term and Waring-type problems on upper triangular matrix algebras over
an algebraically closed field, which generalized two results in [6, 19]. More precisely,
they obtained the following main result.

Theorem 1.1 (16, Theorem 5.18]  Let n > 2 and m > 1 be integers. Let p(x1,...,%n ) be
a polynomial with zero constant term in noncommutative variables over an algebraically
closed field K. Set r =ord(p). Then one of the following statements holds.

(i) Suppose thatr = 0. We have that p( T, (K)) is a dense subset of T, (K) (with respect
to the Zariski topology).

(i) Suppose that r = 1. We have that p(T,(K)) = T, (K)(©),

(iii) Suppose that 1< r < n—1. We have that p(T,(K)) € T,(K)"™Y, and equality
might not hold in general. Furthermore, for every n and r, there exists d such that
each element of T,(K)"™ can be written as a sum of d many elements from
p(T,(K)).

(iv) Suppose that r = n — 1. We have that p(T,(K)) = T, (K)"2),

(v) Suppose that r > n. We have that p(T,(K)) = {0}.

They proposed the following conjecture.

Conjecture 1.1 [16, Conjecture] Let p(x1,...,%m) be a polynomial with zero con-
stant term in noncommutative variables over an algebraically closed field K. Suppose
ord(p) = r, where1 < r < n -1 Then p(T,(K)) + p(T,(K)) = T, (K)rD.

We note that if p is a multilinear polynomial and K is an infinite field, then
P(Tu(K)) = T, (K)V (see [8, 10, 15]).

In the present paper, we shall prove the following main result of the paper, which
gives a complete solution of Conjecture 1.1.

Theorem 1.2 Let n>2 and m > 1 be integers. Let p(x1,...,%nu) be a polynomial
with zero constant term in noncommutative variables over an infinite field K. Suppose
ord(p) = r, where 1< r < n—1. We have that p(T,(K)) + p(T,(K)) = T, (K).
Furthermore, if r = n — 2, we have that p(T,(K)) = T,(K)"=),
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We organize the paper as follows: In Section 2, we shall give some preliminaries. We
shall modify some results in [5, 8, 12], which will be used in the proof of Theorem 1.2.
In Section 3, we shall give the proof of Theorem 1.2 by using some new arguments (for
example, compatible variables in polynomials and recursive polynomials).

2 Preliminaries

Let N be the set of all positive integers. Let m € N. Let K be a field. Set K* = K\{0}.
For any k € N, we set

T8 = {(in,.oix) e NV 1<y, i <mb

Let p(x1,...,%n) be a polynomial with zero constant term in noncommutative
variables over K. We can write

d
(1) p(XIa-.-;Xm) = Z( Z /\iliz-nikxilxiz'”xik))
k=1 \ (i1, iz, ....ix)eTE

where A; ;,. i, € K and d is the degree of p.
We begin with the following result, which is slightly different from [5, Lemma 3.2].
We give its proof for completeness.

Lemma 2.1 Forany u; = (aﬁ,?) €eT,(K),i=1,...,m, weset
= _ (gD (m)
ajj—(ajj,...,ajj ),

where j =1, ..., n. We have that

p(an) P12 P1n
0 7
) P(Ul,---,”m) _ ; P(c:’ZZ) ; P:Zn ’
0 0 ... pldmm)
where
S G) (i)
Pst = Z Z pil---ik(ajljl"'"ajk+ljk+1)ajl}2 "'ajk’;'k“
k=1| s=j1<j2<*** <jgs1=t
(itsemrig)€TE

for all 1< s <t<n, where pi,. i (215 s Zm(ke1) ) 1S d1sdssipg <my, k=1,
n —1, is a polynomial in commutative variables over K.

Proof Let u; = (a;c)) € T,(K), where i =1,...,m. For any 1< iy, ..., iy < m, we

easily check that
my mip . Min
0 mpy ... My,
uzl . ”ik = . . . 5
0 0 e Mypy
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where
_ (i1) (ix)
Mst = Z ) Bjija ** Bikjin
s=j1<ja< "+ Skt
forall1 < s < t < n. It follows from (1) that
d
p(ul,...,um): Z Z A,-l_,,,-kuil...u,-k
k=1 \ (i1,...,ix )eTk
i muy M Min
B 1 0 myo Map
- Z 1.0k : : .
k=1 | (ivo.ori )eTE : '
0 0 Muyn
pu  pn Pin
| 0 pxn P2n
- . . . bl
0 0 Pnn
where
d
Dst = Z Z Ail...ikmst
k=1 \ (i1,...,i )eTk
d
_ o (i1) (ix)
= Z Aiy.i o Z . A5y B
k=1 \ (i1,...,ix)eTk s=j1<ja< "t <=t
d
_ o (i) (ix)
- Z L. Z . Alllz"'l"aﬁjz EEL
k=1\ s=j1<j2< " " <jppr=t
(itseesin )ETE
where 1< s < t < n. In particular,
$ (ir) (ix)
1 1
Dss = Z A1'11‘2~-ikassl "'assk
k=1 \ (i1,...,i )eTk
= P(L_lss)
foralls=1,...,n,and
$ () ()
— - . n 3
Pst = Z o Z ) A’llz""kajljz ke
k=1 s=j1<j2< "+ * <jppr=t
(ityeerig )T
t—s
_ - - (ir) (ix)
- Z piliZ---ik(ajljl""’ajk+1jk+1)aj1j2 A ien
k=1 s=j1<j2<<jgp1=t

(itsemrin )ETE
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for all 1< s <t <n, where p; i, (21,. .. Zmu(k+1)) is @ polynomial in commutative
variables over K. This proves the result. [ ]

The following result will be used in the proof of our main result.

Lemma 2.2 Let m >1 be an integer. Let p(x1,...,%n) be a polynomial with zero
constant term in noncommutative variables over K. Let pi, .. i (Z1,...sZm(k+1)) be a
polynomial in commutative variables over K in (2), where 1< iy,...,ip <m, 1<k <
n — 1. Suppose that ord(p) = 1, 1< r < n — 1. We have that:

(i) p(K) ={0}.
(i) pi,..i(K)={0}foralll<i,...,ix <m, wherek=1,...,r—1L
(iii) pu,...i(K) # {0} for some1<if, ..., i, < m.

Proof The statement (i) is clear. We now claim that the statement (ii) holds true.
Suppose on the contrary that

pir..i(K) # {0}

for some 1<if,...,i, <m, where 1<s<r—1 Then there exist b; € K™, where
j=1,...,s+1such that

pi{...is’(l;l) ey [)5+1) + 0.
We take u; = (aﬁ;;)) € T11(K), i =1,...,m, where
djj:l;j’ j:l,...,5+1,
a,(iﬁ())rl =1, k=1...,s,
a(.]? =0, otherwise.
j
It follows from (2) that

Prs+1= Pi;...i;(l-?l, <oy bei) £ 0.
This implies that p(Ts+1(K)) # {0}, a contradiction. This proves the statement (ii).
We finally claim that the statement (iii) holds true. Note that p(Ti.,(K)) # {0}.
Thus, we have that there exist u; = (a](.;()) € T14+,(K),i=1,...,m,such that

P(“1>~ .. >um) = (PSI) # 0
In view of the statement (ii), we get that

- - - (i) (ir)
Prra1 = Z piliz---ir(ajljl’ s ajr+1jr+1)aj1,li2 e ajrjrﬂ #0
1=j1<ja< " * " <jpp=r+l1
(iryernnis)€T?,
This implies that p;s, i (K) # {0} for some 1 < ij, ..., i, < m. This proves the state-
ment (iii). The proof of the result is complete. [ ]

The following well-known result will be used in the proof of the rest results.

Lemma 2.3 [12, Theorem 2.19] Let K be an infinite field. Let f(x1,...,%,) be a
nonzero polynomial in commutative variables over K. Then there exist ay,...,am € K
such that f(ay,...,am) # 0.
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Lemma 2.4 Let n,s be integers with 1 < s < n. Let p(xy,...,xs) be a nonzero poly-
nomial in commutative variables over an infinite field K. We have that there exist
ai,...,a, € K such that

p(a,-l,...,ais)io
foralll<ij< --- <is<n.

Proof We set

flxy, .. x,) = I1 p(xips .. xi).

1<ij<+ = <ig<n

Itis clear that f # 0. In view of Lemma 2.3, we have that there exist ay, . . ., a, € K such
that

f(a,...,a,) #0.
This implies that
p(ail,...,a,-s) 0
foralll1<i < --- < is < n. This proves the result. ]

The following technical result is a generalized form of [8, Lemma 2.11], which
discusses compatible variables in polynomials.

Lemma 2.5 Lett>1 LetU;={i,...,is} SN, i=1,...,¢ Let p;(xi,...,x;,) bea
nonzero polynomial in commutative variables over an infinite field K, wherei =1,. .., t.
Then there exist ay € K with k € U!_, U; such that

pi(ail,...,a,-s) +0
foralli=1,...,t

Proof Without loss of generality, we assume that

t
{1,2,....,n} =J U,
i=1

We set
t
f(xl,. . .,xn) = Hpi(xil,. ..,xis).
i=1
Itis clear that f # 0. In view of Lemma 2.3, we have that there exist ay, . . ., a, € K such
that
f(ay,...,a,) #0.
This implies that
pi([lil,.. .,a,-s) +0
forall i =1,...,t. This proves the result. ]

The following technical result will be used in the proof of the main result of the
paper.
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Lemma2.6 Lets>1andt > 2 beintegers. Let K be an infinite field. Let a;; € K, where
1<i<t,1<j<s with ay € K* and b e K*. For any 2 < i < t, there exists a nonzero
element in {a;,...,a;s}. Then there exist c; € K, i =1,...,s, such that

ancy + -+ + aCs =b;
ajcr+ - +aiscs #0
foralli=2,...,t.

Proof Suppose first that s = 1. Note that a;; € K*, i =1,...,t. Take ¢; = aj'b. It is

clear

anc = b;

anc =0
for all 2 < i < t. Suppose next that s > 2. Suppose first that a;; # 0 forall i =2,...,¢.
We define the following polynomials:

filxas o xs) =b—apx, — -+ — axs;
filxa, .. x) = ailaﬁlb +(aip - ailaﬁlalz)xz + o+ (ags - a,-lal_llals)xs

forall2<i<t. Since b,a; € K*,i=1,...,t, wenote that f; # Oforalli=1,...,¢.In
view of Lemma 2.5, we get that there exist c,, ..., ¢; € K such that

filcas.oiics) #0

forall i =1,...,t. This implies that
b—apcy— -+ —apcs £ 05
©) {ailaﬁlb +(aip — apaytan)cs + - + (ais — apnagtay)cs # 0
forall 2 < i < t. We set
cr=a;(b-apcy— -+ —agcs).
It follows from (3) that

ancy+ -+ + aics = by
ajc+ - +ajcs #0

forall 2 < i <t as desired.
Suppose next that a;; = 0,i = 2,..., t. Note that a;;(;) # 0, for some 2 < I(i) < s for
all i =2,...,t. We define the following polynomials:

{fl(xz,...,xs) =apXy + -+ axs — b;
fi(Xa, .. 0ix5) = apXa + -+ + ajsXs

forall 2 < i<t Notethat f; # 0 forall i =1,..., ¢t In view of Lemma 2.5, we get that
there exist ¢c; € K, i =2,...,s, such that

fica,.oscs) 0
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foralli=1,...,¢t Thatis

{a12c2+ < tapscs —b#0;

aipcy+ - +ajscs #0
for all 2 < i < t. Since ay; # 0 we get that there exists ¢; € K such that
anc =b-apcy — -+ — agscs.
This implies that

{a1161+a12C2 + o+ aCs = b;

ajpCy+ -+ +ajscs #0

forall 2 < i < t, as desired.

We finally assume that there exist a;; # 0 and aj; = 0 for some i,j € {2,...,t}.
Without loss of generality, we assume that a;; # 0 forall i =2,...,# and a;; = 0 for
alli =t +1,...,t. We define the following polynomials:

f1(X2> . )xs) =b—apx;— - - aXs;
fi(xas. ..o xs) = anay'b+ (ain — anay'an)xs + - + (ais — anay'ais) xs;

.f}(x2>- ~-,xs) =djXyt+ o+ AjsXs

forall2<i<tand t; +1< j<t Notethatb,a; € K*,i=1,...,14, ajjy # 0 where
2<I(j)y<sforall j=t +1,...¢t Itis clear that f; #0 for all i =1,...,¢. In view of
Lemma 2.5, we get that there exist ¢; € K, i = 2, ..., s, such that

filca,..hc5) #0,
where i =1,..., t. This implies that

b—a12C2— s —apscs # 0
-1 -1 -1
(4) anay b+ (aiz — apdy alz)Cz +oe F (ais —aidy als)cs # 05

ajpcr+ - +ajcs#0
forall2<i<tjand f; +1< j<t. Weset
c=a(b-apc;— - — agcs).
It follows from (4) that

anci + -+ +apcs = b
ajcy+ -+ +ajscs 05

ajcr+ - +ajcs #0

for all 2<i<t and t;+1<j<t, as desired. The proof of the result is now
complete. [ ]
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3 The proof of Theorem 1.2

Let n > 2and m > 1 be integers. Let p(xy, ..., X, ) be a polynomial with zero constant
term in noncommutative variables over an infinite field K. Suppose that 1 < r < n -1,
where r = ord(p).

Take any u; = (aé,i)) € T,(K), i=1,...,m. In view of both Lemma 2.1 and
Lemma 2.2, we have that

(5) p(ub---,um) = (ps,r+s+t)a
where
r+t
_ - p (i1) (ix)
Ps,rs+t = Z ' Z pil---ik(ajljl’ T ajk+1jk+1)aj1j2 o Bkn
k=r | s=j1<** <jgp=r+s+t
(itsemrig )ETE

foralll<s<r+s+t<mnand

pi..ir(K) # {0}

for somel<ij,...,i < m.It follows from Lemma 2.4 that there exist ¢, ..., ¢, € K™
such that

(6) pir.ir(CjpreesCjpy) #0
forall1< j; < < jrq < n. We set
ajj=¢, j=l...,m
a®) =gk i=1...,r-landk=1,...,m;

i,i+1 = 7i,i+1?

(i) _ (1)

ar+s—l,r+s+t - xr+s—1,r+s+t’

I<s<r+s+t<n,k=1,...,1;
k .
afj) =0, otherwise.
Foranyl<s<r+s+1t<n,weset

.
_ ./ (lk) .
Us,raset = {(" tu-Lr+u+w,ip)| Xoru-1,r+urw 11 Ps,r+5+t}

and
Uspeset = {(r+u—-Lr+u i) | (r+u—1Lr+u, i) € Uspyest ).
We define an order on the set
{(s,r+s+t)|1<s<r+s+t<n}

as follows:

(i) (s,r+s+t)<(sp,r+s+t)ift <ty
(i) (s,r+s+t)<(s,r+s+1t)ift="1tands<s.

That is,

7 Qr+)<---<(n-rn)<(Lr+2)<---<(n-r-1,n)<---<(1,n).
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Foranyl<s<r+s+t<n, weset

M]s,r+s+t = U Ui,r+i+js
(Lr+1)<(i,r+i+j)<(s,r+s+t)

and

Wi reset = U Ui,r+i+j-
(Lr+1)<(i,r+i+j)<(s,r+s+t)

We begin with the following lemmas, which will be used in the proof of our main
result.

Lemma 3.1 Letl1<s<r+s<mn. Supposethat (s,r+s) # (1,r +1). We claim that
(8) Wer\{(r+s—1Lr+s,iy) [1<k<r} =W e
Proof We first claim that

W\ {(r+s-Lr+s,i ) |[1<k<r} € Wo s

Take any (r+i—1,r+i,i;()GWS,r+S\{(r+s—1,r+s,i;()|1§k£r}. We have
that

(r+i-Lr+1i,i;) € Us, ris,
for some (1,7 +1) < (s, 7+ s2) < (s,7+s). This implies that
r+i<r+sy<r+s.
We get that i <'s. Suppose that i = s. It follows that
(r+i-Lr+iip)e{(r+s-1Lr+s,i)|1<k<r},
a contradiction. Hence i < s — 1. It is clear that
(r+i-Lr+1i,i) € Ui i,
where (1,7 +1) < (i,r+i) < (s —1,r +s—1). It follows that
(r+i-Lr+i,i;) e We g s
We obtain that
W\ {(r+s-Lr+s,ip) [1<k<r} S Wy e,
as desired. We next claim that
W1 EWe i\ {(r+s—1Lr+s,i) |[1<k<r}.
If(r+s—Lr+s,i;)e€ W 1451 for 1 < k < r, we have that
r+s<r+s-1,
a contradiction. Hence

{(r+s-Lr+s,ip) | 1<k <r}(\Wit,ris1 = @
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Since W 1451 € Wy ris We get that

Wit S Wem\{(r+s-Lr+s,ip) [1<k<r},
as desired. We obtain that

Wetresa=Wer\{(r+s-Lr+s,ip)|[1<k<r}.
This proves the result. [ ]
Lemma 3.2 Let1<s<r+s+t<n. Supposethatt>0. We claim that

Wsl,r+s,+t1 = Ws,r+s+ta
where
(snr+si+ ) =max{(i,r+i+j) | (Lr+1)<(i,r+i+j)<(s,r+s+1)}.
Proof We first claim that
Ws,r+s+t = Wn—r,rr
Since t > 0, we note that
(s,r+s+t)>(n-r,n).

This implies that W45, 2 W,_, . Take any (r+u—-1r+u, ip) € Wi ressr. It is
clear that

(r+u—-Lr+u,ip) € Upriu S Worn.

This implies that W .4+ € W,y ,. Hence, W 1 g1r = W,_,., as desired.
Since (n—r,n) < (s,r+s+t) we get that

(n=r,n)<(s,r+si+h)<(s,r+s+t).
This implies that
Wn—r,n S Wsl,r+sl+t1 c Ws,r+s+t-

Since Wi it = Wh_r.n we obtain that Wy ,is4e = Wi risee. This proves the
result. u

The following technical result will be used in the proof of the next result.

Lemma3.3 Letl<s<r+s+t<nlIf(r+i-1r+i+j,i) € Us isis, we have that
j<t.

Proof Suppose that (r+i—1,7+i+ j,i}) € Us pis4r. That s, xfi"l)_l r+i+; Appears in

Ps,r+s+¢- In view of (5), we note that every monomial in p; .+ is made up of at least
r elements multiplied together. This implies that

((r+s+t)=s)-((r+i+j)-(r+i-1)2r-1

We obtain that j < . This proves the result. [ ]
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Lemma3.4 Letl<s<r+s+t<nandt>0. Weclaim that
Werisiots = Werssi\{(r+s=Lr+s+ti) |[1<k<r},
where
(sr+si+t)=max{(i,r+i+j)| (Lr+1)<(i,r+i+j)<(s,;r+s+t)}
Proof We first claim that
Werisiots € Wersse\{(r+s—Lr+s+ti;) |[1<k<r}.
If(r+s—Lr+s+t,i;) € Wy i for somel <k <r, we get that
9) (r+s-Lr+s+tiy) € Us, ris i
for some (1,7 +1) < (sp, v+ s3 + £5) < (81,7 + 51 + #1). It is clear that
Iy <t <t
In view of Lemma 3.3, we get that t < . It follows that
fi=t)=t.

Since (s;,r+s1+1)<(s,r+s+t) we get that s; <s. Since (sp,7r+sy+1t)<
(s1, 7+ 51 + t1) we get that s, < s;. Thus, we obtain that s, < s. It follows from (9) that

r+s+t<r+s;+ 1.
This implies that s < s,, a contradiction. Hence, we have that
(r+s=-Lr+s+tip) ¢ W resien,
forall1 < k < r. Itis clear that Wy, ,46,41, € Wi, r45++. We obtain that
Werisiots € Wersse\{(r+s—Lr+s+t i) |[1<k<r},
as desired. We next claim that
Werise \{(r+s—Lr+s+t,i ) [1<k<r} € Wy rig4n-
Forany (r+i—1r+i+j,i;) € Wy e \{(r+s—-Lr+s+1t,i;)|1<k <r},wehave
(r+i-Lr+i+j, i) € Us, rigen

for some (1,7 +1) < (52,7 +s2 + t2) < (s, 7 + s + t). This implies that ¢, < . In view of
Lemma 3.3, we note that j < t,. We have that j < t. It is clear that

(r+i-1r+i+j, l;c) € Ui rvit)s
where (1,7 +1) < (i,7+i+ j) < (s, 7+ s+ t). Note that

(r+i-Lr+i+ji) ¢{(r+s-Lr+s+ti)|l<k<r}.
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We get that
(i,r+i+j)=(s,r+s+1t).

This implies that

Lr+1)<(r+i+j)<(spr+si+h)<(s,r+s+1t).
It follows that U r4i4j € Wi, ris,41,. We have that

(r+i-Lr+i+j,ip) € Wy resst-

We obtain that

Werrsot\{(r+s—Lr+s+t,i ) [ 1<k <r} € Wy risi4»
as desired. Thus, we obtain that

Wiresion, = Worrsee\{(r+s—Lr+s+ti) | 1<k <r}.
This proves the result. [ ]

We set

Cs,t = (C_s, Cstls s> Cras—1s Er+s+t)-

It follows from (6) that

(10) pir..ir () # 0.
Foranyl<s<r+s<mnands<r—1, weset
— A (i ) (ir—s)
for = > Piveciivmgit_yyyoit (Es,0) A 4y - @71

(itsenesip_s )ETES

We set
Var={(i,i+1Lk)|i=s,....,r=1, k=1,...,m},

wherel<s <r+s<mnands < r—LItisclear that f; , isa polynomial on commutative
variables indexed by elements from V.
Foranyl<s<r+s<mnands>r, weset

for = Pi{...i;(fs,t)-
We claim that f; ,(K) # {0} for all 1 <s <7+ s < n. In view of (10), it suffices to
prove that f; ,(K) # 0, where1<s<r+s<mnands<r-1
We take %) € K, (i,i+1,k) € V,,, such that

i,i+1

agii;’{;li+1:1a i=0,...,r—5—l;
® o

a; i otherwise.

It follows from (10) that

k A
fs,r(a,(,i)ﬂ = pi{...i;(cs,t) #0,
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as desired. In view of Lemma 2.5, we get that there exist a® ek, (i,i+L,k)e

ii+l
U;n:fl{"_r’r_l} Vs, such that
(k)
for(aiig) #0
foralll<s<r+s<nands<r-1
Forany 2 < s <r+s < n, we define
_ - (i1) (ir-i)
(11) fS,HS—i = Z pil---ir-ii;,,.ﬂ---i;(Cs,i)as,slﬂ e O i rbs—i

(itymeerip—i )ETH

for all 1< i <min{s—1,r—-1}. It is clear that f;,.s_; is a polynomial over K on
commutative variables indexed by elements from W_; ,,_;, where1< i < min{s — 1,
r—1}.

The following result implies that f; ,—;, where1 < i < min{s - 1,7 — 1}, is a recur-
sive polynomial.

Lemma 3.5 Forany?2 <s<r+s<n, weclaim that

" "
_ (iy-;) (ix)
Jores-i = .f5xf+5—’—1xr+s—i—1,r+s—i + } : Fsyrts—i-1kXpps—i-1,r+s—i
1<k<r
v s
i Fil;

for all1< i <min{s—1,7 — 1}, where both f; s i1 and & ris_i-1,k are polynomials
over K on commutative variables indexed by elements from W_;_ ris_i_1.

Proof We get from (11) that

(12)
_ A (i1) (ir—ic1) (iy_y)
f3>7+5—1 - pibuir—i—li:,in-i;(CS’t)a$,$+1 s s i rs—io1 | Xras—i-lr+s—i
(itreemipia) €TT=1
A (i1) (iriz1) (iy)
+ Z Z ‘ pil-'-ir—i—li,'{i:,,-ﬂml';(CS’t)as,s-H s O i rrs—im1 | Xrs—imlrts—i
Isksr \ (ip,eoipoir ) €Ty
Ll

forall1< i < min{s — 1,7 —1}. It follows from (11) that

_ A (ir) (dr-i-1)
Joras—iz1 = Z pi1~-~ir—i—li;,,~~-~i£(Cs)t)a5,5+l o Bpsmilors—io1
(i1seeesipmio1)€Th 7
We set
_ A (ir) (ir-i1)
s ris—i-1,k = Pil...i,,,-,li;i;_m...i;(Cs,t)%,m s B i rs—ie1

(itseeripojy )€TETT

forall1<i<min{s-1,r—-1}and k =1,...,r. It follows from both (11) and (12) that

(ir—s) (i%)
Josrs—i = forrs—im1X iy pasmi Z Cs,rs—i—1,kXpi5—i—1,r+s—i
1<k<r
i#i,_
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for all 1<i<min{s—-1,r—1}. It is clear that both f;, s—;-1 and &, ,s—;-1,x are
polynomials over K on commutative variables indexed by elements from

W imsiM{(r+s—i-Lr+s—i,i;)|k=1...r}.

In view of Lemma 3.1, we note that

Ws—i—l,r+s—i—1 = Ws—i,r+s—i\{(r +s—i—-Lr+s—1, l;() | k=1,... 7’}.

We have that both f; ;4s-i-1 and a&;,,45-;-1,k are polynomials over K on commutative
variables indexed by elements from W_;_; ,4s_;_;. This proves the result. ]

Lemma 3.6 Foranyl<s<r+s<mn, wehave that

_ (iy) (ix)
Psyreset = fores1X, 1 pesre + Z Bs,ras—1,kX, 51 paser T Bsresets
1<k<r
i #i;
ot

where fi, € K*, Birr € K, k=1,...,r with i} # iy, frrs—15Bsras—1,k $ 22, 1<k <7
with i} # iy are polynomials on some commutative variables in Wy r.s, v, and B risit
where t > 0, is a polynomial over K in some commutative variables in Wy, rs,1+,, where

(sr+si+t) =max{(i,r+i+j)|(Lr+1)<(i,r+i+j)<(s,r+s+1)}.
Moreover, B 45 = 0.

Proof It follows from (5) that

_ A (ir) (ir-1) (iy)
Ps,rs+t = pil---ir—li;(cs,t)as,s+1 v O D pas 1 | Xrs—Lras+t
(i15eeeripmr )€TH!
A (i1) (ir-1) (i)
+ Z Z piln-ir—li;‘ (Cs)f)as,s-H s Oy 2 rrs1 | Xras—1, 454t
1<k<r \ (i1,eeepip—1)€Th!
(13) i,'cii:
T« (). ()
- - 11 1
+> ' Z p,l.,,,k(c,l,...,c],m)ajljz--~a].kjk+l
k=r s=j1< "t " <jgp1=r+s+t
Giksjrs1)E(r+s—1r+s+t)
(ityeemrig )T
It follows from (11) that
_ A (i) (ir-1)
fs,r+s—l = Z pil-nir—li,'.(csyt)as,s-PI R PP
(i1yeeerip )€THT
We set
_ A (i) (ir-1)
ﬁSJ+S—1,k - Z piln-ir—li,,( (CS)t)as,s-#l SRR T P |

(i1yeeerip1 )ETHT
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fork =1,...,rwith i #i],and
S () (i)
_ - - 1 1k
ﬁs,r+s+t— Z Z pil'“ik(cjl’...’Cjk+1)a]’l].2'..a]'kjk+1

k=r| s=ji<**<jgp1=r+s+t
(rofrs1)#(r+s=1,r+s+t)

(ityeerig )T
It follows from (13) that
(i) (i)
(14) Psyrestt = fores1X, 01 ppers * Z Bs,ras—1,kX s 1 paser T Bsrasets
1<k<r
i #iy

where fi, € K*, B,k €K, k=1,...,7 with i} # i}, f; 51, Bs,res+t,k> Where s >2,
1<k <r with i} # i, are polynomials on some commutative variables indexed by
elements from

(15) Wi\ {(r+s-Lr+s+ti), k=1...,r}

and fs, 45+, Where t >0, is a polynomial over K in some commutative variables
indexed by elements from

(16) Werrse\{(r+s-Lr+s+ti), k=1,...,r}.

Suppose first that ¢ = 0. In view of Lemma 3.1, we note that

Wetrisa=Werma\{(r+s-1Lr+s,it), k=1,...,r}.

We get from (15) that f; .51, Bs,r+s+t,k» Where s > 2,1 < k < rwith i} # i/, are polyno-
mials on some commutative variables indexed by elements from W_; ,,;_;. Itis clear
that S, ,.s = 0. Suppose next that ¢ > 0. In view of Lemma 3.2, we note that

W51)7'+51+t1 = Ws,r+s+t-

We get from (15) that f; 451, Bs,r+s+t,k» Where s > 2,1 < k < rwith i} # i/, are polyno-
mials on some commutative variables indexed by elements from Wy, ;. 4. In view
of Lemma 3.4, we note that

vvsl,r+sl+t1 = M]s,r+s+t\{(r+5 -Lr+s+t, l;)» k=1,. ..,7’} .

We get from (16) that S .4+ is @ polynomial over K in some commutative variables
indexed by elements from Wy, ,s,++,. This proves the result. [ |

The following result is crucial for the proof of the main result.

Lemma 3.7 Let p(xi,...,%,) be a polynomial with zero constant term in noncom-
mutative variables over an infinite field K. Suppose ord(p) = r, where1 < r < n - 1. For
any A’ = (a,,s.,) € To(K)U™D, where al ., # 0 forall L <s <r+s+t<n, we have
that A" € p(T,(K)).
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Proof Take any A’=(al,,.,) € T,(K)"™D, where #0 for all

: (i%)
I<s<r+s<mForanyl<s<r+s+t< n,wecla1mthatthereex1stc,+u_1’,+u+w €K
with

S 1"+S

(r+u-Lr+u+w,k)e W peur
such that

pi, f+1+J(Cr+u 1 r+u+w) = Ai,r+i+j

forall (Lr+1) < (i,r+i+j)<(s,r+s+t)and

fS’ T+S'*V(Cr+u 1, r+u) #0

for all fy .y, on commutative variables in W, , s, where s'>2 and 1<v <
min{s’ - 1,r-1}.

We prove the claim by induction on (s, r + s + t). Suppose first that (s, 7 + s+ t) =
(1,7 +1). Note that

‘/V],H.l :Wl’y+1 = {(7’,1’+1, l;c) | k= 1,. ..,1’}.

In view of Lemma 3.6, we get that

(17) prr+1 = fl Txr r+1 + Z ﬁl 7, er r+1’
1<k<r
ig#iy
where fi,, € K*, fi,k € K, k=1,...,rwith i} # ).
(ix)

Takeany fo ,4g—yonx, !/, wherek =1,...,r,s" >2,and1 < v < min{s" - 1,7 - 1},

we get from Lemma 3.5 that
r+s —v-1l=r
and so v = s’ — 1. It follows that

(18) fS')T‘FS'—V f? rxr r+1 + Z st kar r+1

1<k<r
i #il_

Note that fi, € K* and &y, € K, k =1,...,r with i} #i,_,. Note that a7 ,,; € K*.
In view of Lemma 2.6, we get from both (17) and (18) that there exist cf ﬁil ek,
k=1,...,r, such that
(i)
p1:7+1(c1’,:+1) = a;,rJrl’

fS’,rJrS’fV(Ci,l:L) #0,

where 2 < s’ <randv = s’ -1, as desired.
Suppose next that (s,7 + s+ t) # (1, 7 + 1). We rewrite (7) as follows:

(Lr+D) < <(spr+s1+t)<(s,r+s+t)<---<(1,n),
where

(s,r+si+t)=max{(i,r+i+j)| (Lr+1)<(i,r+i+j)<(s,r+s+1)}.
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By induction on (s1, 7 + 51 + #;), we have that there exist cfi’fﬁlﬁuw € K with

(rvu-Lr+u+w,k)e W ri+1
such that
(ix) _
pi,f+i+j(cr+u—l,r+u+w) - ai,r+i+j
forall (Lr+1) < (i,r+i+j)<(s,r+s+1#)and
fs T+5'—V(Cr+u 1r+u) #0

for any fy ,+s—y with commutative variables in Wsl,,ﬂlﬁl, where s’ >2,and1<v <
min{s’ - 1,7 — 1}. We now divide the proof into the following two cases.
Suppose first that ¢ = 0. Note that

(spr+si+h)=(s-Lr+s-1).

Thatis, s; = s —1and t; = 0. In view of Lemma 3.6, we get that

_ (ir) (i%)
(19) Ds,res = fs,r+S—1xr+rs—1,r+s + z : ﬁs,r+5—1,er+s—1,r+s’
1<k<r
i #il

where f 1151, Bs,r+s-1,k» Where k = 1,..., r with i} # i], are polynomials in commu-
tative variables in Wy, ,.s,. By induction hypothesis, we get that f; ,.;_; € K* and
ﬁs,r+s—1,k e K. o

Take any fy ,+s—y On commutative variables indexed by elements from Wi .,
where s’ >2and 1 <v < min{s’ —1,r — 1}. Suppose first that fy ,.s_, is a polynomial
on commutative variables indexed by elements from W, .. By induction hypothesis
we have that fy ,,v_, € K*. Suppose next that fy , v, is not a polynomial on
commutative variables indexed by elements from W, ., . In view of Lemma 3.1, we
note that

Ws,r+s\Ws—1,r+s—l = {(T+ s—=Lr+s, 1],() | k=1,..., 1’} .
(ix)

r+s—1,r+s

This implies that x
we get that

appears in fy , v, for k =1,...,r. In view of Lemma 3.5

(r+s' —v-Lr+s' —=v)=(r+s-1Lr+s)

and so v = s’ — s. We get that

(i)
(20) fs’,r-%—s’—v fs r+s/—v— l-xr+s 1 r+s + Z K/ pts'—v—1,kX 1 1,r+s?
1<k<r
1k¢1r v
where fo rvo_y_1and &y ooy 1k k= 1,..., 7 with i} # i;_,, are polynomials over K

on commutative variables indexed by elements from W, ,., . By induction hypoth-
esis, we have that fy ,.o_y_1 € K* and &y rie—y-1,k € K, where k=1,...,r with
iy # iy,
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Note that a; ., € K*. In view of Lemma 2.6, we get from both (19) and (20) that
there exist ¢\*) €eK,k=1,...,r, such that

r+s—1,r+s

(i)

psa"+5(cr+s—1,r+s) = a;,rJrs;
s
ﬂ’,r+5’—V(C£jrks)—1,r+s) #0,

as desired.
Suppose next that ¢ > 0. It follows from Lemma 3.6 that

(iy) (i)
(21) Ds,res+t = fs,r+s—1xr+r5_1,r+5+t + E ﬁs,r+s—1,er+5_1,r+5+t + ﬁs,r+s+t)
1<k<r
i #il

where fi r+s-15 Bs,rs-1,6>» where k =1,..., 7 with i} # i}, are polynomials over K in
commutative variables indexed by elements from W, ., and B ,+s4¢ is a poly-
nomial over K in commutative variables indexed by elements from W, , s .+. By
induction hypothesis, we have that f; ,.;1 € K, Bs 451,k € Kforallk =1,...,r with
iy # i, and By, et € K.

Take c(i”‘) € K, where k =1,...,rin (21) such that

r+s—1,r+s+t

(iy) _ f-1 / 3
Cr+rs—1,r+s+t - fs,r+s—1(as,r+s+t - /35,7‘+5+t)’

(ix) _ L
oot raser =0, foralll <k <rwith iy #i,.

We get that

(ik) _
Ps,r+5+t(cr+s—1,r+s+t) = O res+te

Take any fy/ ,.s—, on commutative variables indexed by elements from Wi resets
where s’ >2and 1< v < min{s’ - 1,7 - 1}. In view of Lemma 3.2, we note that

Ws,r+s+t = Wsl,r+sl+t1 .

This implies that f .+, is a commutative polynomial over K on some commutative
variables indexed by elements from Wy, ,. .. By induction hypothesis, we get that

fs’,r+s’—v € K*s
where s’ >2and 1< v < min{s’ —1,r -1}, as desired. This proves the claim.

Let (s,r+s+1t)=(1,n). We have that there exist (i) eK, k=1,...,r,

r+u—l,r+u+w

with

(rt+u-Lr+u+w,k)e W,
such that
(22) pi,r+i+j(cfi;(u)—l,r+u+w) = ag,r+i+j

forall (1,7 +1) < (i,r+i+j) < (L n)and

fs':HS'*V ( Cﬁ-l%—ktz—l,r-#u ) #0
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forall fy ,+s—, on commutative variables indexed by elements from W, wheres’ > 2
and1<v < min{s’ - 1,7 — 1}. It follows from both (5) and (22) that

p(un .o tim) = (Ps,resee) = (a;,r+s+t) = A
This implies that A" € p(T,(K)). The proof of the result is complete. |

Lemma 3.8 Let n >4 and m > 1 be integers. Let p(x1,...,Xm) be a polynomial with
zero constant term in noncommutative variables over an infinite field K. Suppose that
ord(p) = n — 2. We have that p(T,(K)) = T, (K)"=3).

Proof In view of Lemma 2.2(ii), we note that p(T,(K)) ¢ T, (K)("=*). It suffices to
prove that T, (K)("=*) ¢ p(T,(K)).

For any u; = (aﬁ)) € T,(K),i=1,...,m, in view of Lemma 2.2(ii), we get from

(2) that
0o 0 ... Pl,n—l Pln
00 0  pan
(23) plug,...oum)=| . . _ : : ,
0o 0 ... 0 0
where
_ p = (i1) (in-2) .
P1n-1= Z Piroins (G115 -+ s Gnopno1) @y, a5 s
(i15eeerin—2)eTH?
- - (i1) (in-2),
pan = Z Piroina (G225 o3 Gnn) Ay - 8105
(i1seerin_y )€TH2
_ p - (i) (in-1)
Pin = Z Pil...infl(all"">arm)"1121 "-an—l,ln
(i1yeeerin—1)eTH
) = = (i) (in-2)
+ > Piveccin-s (sjir s Gjujud )@ - 0550
1=j1<* " " <ju=n
(ityeeerin_2)€TE72

In view of Lemma 2.2(iii), we have that

pil’ ..... i;iz(K) # {0}7

for some ij,...,i, 5 €{l,...,m}. It follows from Lemma 2.4 that there exist
bi,..., b, € K™ such that

p,-l/ ..... i;_z([)jl,...,[)jn_l)#:o

foralll1<j; < -+ <jp1 <.
For any A’ = (a!

s,n—2-.f—s+t)
that there exist u; = (‘Z;}?) € T,(K),i=1,...,m,such that

€ T,(K)("™3) where 1< s <n—2+s+t<n, we claim

p(ul; e um) = (Ps,n—2+s+t) =A"
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That is,
Prn-1= a1,
Pan = a;,ﬁ
P = a{n'

We prove the claim by the following two cases:

Case 1. Suppose that aj , | # 0. We take

It follows from (23) that

(24)
pl,n—l = Z Pi{iz...infz(l;lw . -rl;n—l)ag?) .. ;(11"227? 1 xl(zll)’
(i2yverin-2)€T?
DPan = > Pir.insil_ z(bZ""’ n)a; (ll) 5;1"233 1 S;lnlzn)’
(itsenerin-3)eTh?
Pln = Z pz (70 P zln 2(bb‘") ) (12) 5117‘2212 l)xl(Zl )xflznlzn)
(izsererin_a)€TET3
Z 4p1 inerinsil,_ z(bl"" n— 2,1:7 )a§;2) _,.aﬁ’ngsz ) xl(2 )xfl’nZZr?.
(i25eeerin-3)€Tp
We set
fina = Z Pi{iz...in_z(iﬂl’--- n— 1)‘1(12)'-- 5;1"223 i
(i25everin-2)€T3
fr= X Py, (b B)ay) e
(25) 2n = Pir.igsif,_,(025 5 0n)8y3" ... Gy 55

(i1yeenrin-3 )T

2

(i2yenerin-3)e T

fin = Pitiy..insit_, (1>
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dj]:l}], forall j=1

(i) (i),

Ap " =Xp s

a® =0 forallk=1,...,mwith k # i
(l,, 2) _ (ln 2).

n 1,n n ln’

a® 0 forallk=1,...,mwithk#i _,;
nln_ T e n-2»
(l,, ) _ (ln 2).

n 2,n — n 211’

al),=0 foralll<i<m3<j+2<nwith (j,j+2,i) % (n-2,ni,,).

(in—3)

e an_3’n_2,
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and
Vina = {(ii+Lk)|i=2,...,n=2,k=1,...,m};
VZnZVI,n—l;
Vin={(i,i+Lk)|i=2,...,n=-3,k=1,...,m}.

Note that fi ,_1, f2n> fin are polynomials over K on commutative variables indexed
by elements from V ,,_1, V2,1, Vi, respectively.

We claim that fi ,_1, fon, fin # 0. Indeed, we take a](.,ic) €K, (j,k,i) € Vi,,-1 such
that

“EEL =1, foralls=2,...,n-2;
aﬁ) =0, otherwise.
It follows from (25) that
,f_l,n—l(a;]i)) = Pil’...i;iz(éla corbun) %0,
as desired. Next, we take aﬁ,? €K, (j, k,i) € Vp, such that

as(f;’jrll) =1, foralls=2,...,n-2
a(.,i) =0, otherwise.
j
It follows from (25) that
f2n(a](~]ic)) = Pil’...i;,z(éz, cba) %0,
as desired. Finally, we take aj(.;() €K, (j, k, i) € V1, such that

as(’is"il =1, foralls=2,...,n-3;
a(.li) =0, otherwise.
j
It follows from (25) that
fln(aj;c)) = pi{...i;_z([’b cee 6n—2a Bn) +0,

as desired. In view of Lemma 2.5, we get that there exist a;}? € K, where (j, k, i) €
Vi,n1 U Vo U Vi such that

fl,n—l(agli)) #0;
Fan(al)) # 0;
fin(@)) =0,
We set

_ 2 iy, (i2) (in-2)
o= Z pi{iz---in—zi;_z(bb'"’b”)aZS "'an—Z,n—l'

(i2.eerin—2)€Ty-3
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It follows from (24) that

(i) (iy )

Pin-1= fin- 1x1(2),
(26) pan = fanx2);
= flnxl(zl )xilnzzn) Xy X,
We take
x1(21 ) fl_rll—la{ n—15
;(11"1 2n) 2n aZn’

(n ) _
l flnflﬂ l(aln 1) (aln “fln laln lenaZn)

Xn-2,n
It follows from (26) that
Prn-1= a1, 5
Pan = @33
Pin = a{n,
as desired.

Case 2. Suppose that aj ,,_; = 0. We take
ajj=bj, forallj=1,...,n
al(zk)—O, forallk =1,...,m;

It follows from (23) that

P1n-1=0
Pan = Z Pil’iz...i,.,z(l;z, ..
(27) (izyermrin_2) €T
pln = Z pilriz.‘.in,z(lj)la 133;---
(i2yeemrin=2)eTh
We set
8an = Z Pi{iz...i,,,z(l;z, ..

(i2yverin-2 ) €T3

(28)

(i2severin—2)€T?

https://doi.org/10.4153/50008414X24000385 Published online by Cambridge University Press

8in = Z pi{iz...in_z(l-71,l-73,..

(i) (i),

3" = X33

al® =0, forallk=1,...,mwith k # il;
ay” = 1",

(k) _
ajj+2 =0,

,by )a(”)...a

by )a(”)..

,I_an)agff)..

b, )a3’2)..

forall1< j< j+2<mnwith (j,j+2,k) = (13,4).

(in-2) | (D),

23

n-1,n X23 >
(in-2) (11)
A1 |*13 -

(ln 2)

n ln’

(’n 2)
n -1,n>
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and
V={(G,i+Lk)|i=3,...,n-Lk=1,...,m}.

Note that both g, and g1, are polynomials over K on some commutative variables
indexed by elements from V. We claim that g,, g1, # 0. Indeed, we take a?,’() €K,
(j, k, i) € V such that

A0 g

sorl =L foralls=3,...,n-1;

aﬁ) =0, otherwise.
It follows from (28) that

§on=pirir_(bay.. by) 205
gin = pi;..‘i;72(1_71,l_73, . by) %0,

as desired. It follows from (27) that

P1,n-1=0;
(29) Pan = gznxg‘);
Pin = glnxl(sil)'

We take

(i)

S
X135 = 8in%in-

(i) _ 11 .
X23" = &an%2n>

It follows from (29) that

P1u-1=0;
’

Pan = a5 45
’

Pin = a1y

as desired. We obtain that
Pt osttm) = (Psyn-zisit) = (@5 yopisrs) = A%
This implies that T;,(K)("~*) ¢ p(T,(K)). Hence p(T,(K)) = T, (K)("=3. [
We are ready to give the proof of the main result of the paper.

The proof of Theorem 1.2 For any A = (ag,r45+t) € Tn(K)(f‘l), we set

{fs,r+s(xs,r+s) = As,r+s — Xs,r+s>

s,r+s (xs,r+s) = Xs,r+s
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forall 1 <s <r+s<mn. Itis clear that both f; ,,s and g, ,.; are nonzero polynomials
in commutative variables over K, where 1 < s < r + s < n. It follows from Lemma 2.5
that there exist b ;.5 € K,1< s <1+ s < n, such that

{](s,r+s(bs,r+s) # 05
gs,r+s(bs,r+s) #0
foralll1<s < r+s < n. Thatis,

{as,r+s - bs,r+5 # 05
bs,r+s #0

foralll1<s <r+s<n Weset
bs,r+s+t = Qs,r+s+t

foralll<s<r+s+t<mandt>0and
{ Csrs = O ris — Dsprs, foralll<s<r+s<n;

Csris4t =0, foralll<s<r+s+t<mandt>0.
We set
B=(bs,rss+t) and C=(cgriset)-
It is clear that

A=B+C,

where B, C € Tn(K)("l) with by, Cs,res € K* for all 1<s<r+s<n. In view of
Lemma 3.7, we get that there exist u;,v; € T,(K), i =1, ..., m, such that

p(us,...,um)=B and p(v,...,vnu)=C.
It follows that
plut, ..o tim) + p(vi, ..o, vm) = A.
This implies that
T, (K)"™ ¢ p(Tu(K)) + p(T(K)).

In view of Lemma 2.2(ii), we note that p(T,(K)) ¢ T, (K)"V. Since T, (K)" isa
subspace of T, (K), we get that

P(Tu(K)) + p(Tu(K)) € Tu(K) .
We obtain that
P(Ta(K)) + p(Ta(K)) = T, (K)Y.
In particular, if r = n — 2, we get from Lemma 3.8 that
P(Tu(K)) = Ty (K) ",
The proof of the result is complete. [ ]

We conclude the paper with following example.

https://doi.org/10.4153/50008414X24000385 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X24000385

26 Q. Chen and Y. Wang

Example 3.1 Letn>5and1<r < n—2be integers. Let K be an infinite field. Let
plx.y) =[x y]".

We have that ord(p) = r and p(T,(K)) # T,(K)V,

Proof It is easy to check that p(T,(K)) = {0}. Set

flx,y) =[x, y].

Note that f is a multilinear polynomial over K. It is clear that ord(f) = 1. In view of
[10, Theorem 4.3] or [15, Theorem 1.1], we have that

f(Tra(K)) = Traa (K)©.
It implies that there exist A, B € T,;1(K) such that
[A,B]=enp+exy+ - +erri1.
We get that
p(A,B) = [A,B]" = eyy41 # 0.

This implies that p(T,41(K)) # {0}. We obtain that ord(p) = r.
Suppose on contrary that p( T, (K)) = T, (K)" for some n > 5and1< r < n - 2.
For ey,,41 + €3,r43 € T,,(K)(r’l), we get that there exists B, C € T, (K) such that

p(B,C) = [B,C]" = e1,r41 + €3,43-
It is clear that [B, C] € T, (K)(®). We set
[B,C] = (as,145+t)-
It follows that
[B, C]r =eLr+1 1 €3,r43.
We get from the last relation that

(61126123 cee ar,r+1)el,r+l = eLr+1s
(a23034 ... Arir,r42)€2,042 = 05

(a34a45 e ar+2,r+3)e3,r+3 = €3,r43-

This is a contradiction. We obtain that p(T,(K)) # T, (K)"™V for all #>5 and
1< r < n — 2. This proves the result. [ ]

We remark that [16, Example 5.7] is a special case of Example 3.1 (r = 2 and n = 5).
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