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The Waring problem for upper triangular
matrix algebras
Qian Chen and Yu Wang
Abstract. Our goal of the paper is to investigate the Waring problem for upper triangular matrix
algebras, which gives a complete solution of a conjecture proposed by Panja and Prasad in 2023.

1 Introduction

The classical Waring problem proposed by Edward Waring in 1770 asserted that for
every positive integer k there exists a positive integer g(k) such that every positive
integer can be expressed as a sum of g(k) kth powers of nonnegative integers. In 1909,
David Hilbert solved the problem. Various extensions and variations of this problem
have been studied by different groups of mathematicians (see [2–4, 9, 11, 13, 14, 16, 17,
18]).

In 2009, Shalev [18] proved that given a word w ≠ 1, every element in any finite
non-abelian simple group G of sufficiently high order can be written as the product of
three elements from w(G), the image of the word map induced by w. In 2011, Larsen,
Shalev, and Tiep [14] proved that, under the same assumptions, every element in G is
the product of two elements from w(G), which gave a definitive solution of the Waring
problem for finite simple groups.

Let n ≥ 2 be an integer. Let K be a field, and let K⟨X⟩ be the free associative algebra
over K, freely generated by the countable set X = {x1 , x2 , . . .} of noncommutative
variables. We refer to the elements of K⟨X⟩ as polynomials.

Let p(x1 , . . . , xm) ∈ K⟨X⟩. Let A be an algebra over K. The set

p(A) = {p(a1 , . . . , am) ∣ a1 , . . . , am ∈ A}
is called the image of p (on A).

In 2020, Brešar [2] initiated the study of various Waring’s problems for matrix
algebras. He proved that if A = Mn(K), where n ≥ 2 and K is an algebraically closed
field with characteristic 0, and f is a noncommutative polynomial which is neither an
identity nor a central polynomial of A, then every trace zero matrix in A is a sum
of four matrices from f (A) − f (A) [2, Corollary 3.19]. In 2023, Brešar and Šemrl
[3] proved that any traceless matrix can be written as sum of two matrices from
f (Mn(C)) − f (Mn(C)), whereC is the complex field and f is neither an identity nor a
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central polynomial for Mn(C). Recently, they [4] have proved that if α1 , α2 , α3 ∈ C/{0}
and α1 + α2 + α3 = 0, then any traceless matrix overC can be written as α1A1 + α2A2 +
α3A3, where A i ∈ f (Mn(C)).

By Tn(K), we denote the set of all n × n upper triangular matrices over K. By
Tn(K)(0), we denote the set of all n × n strictly upper triangular matrices over K.
More generally, if t ≥ 0, the set of all upper triangular matrices whose entries (i , j) are
zero, for j − i ≤ t, will be denoted by Tn(K)(t). It is easy to check that J t = Tn(K)(t−1),
where t ≥ 1 and J is the Jacobson radical of Tn(K) (see [1, Example 5.58]).

Let p(x1 , . . . , xm) be a noncommutative polynomial with zero constant term over
K. We define its order as the least positive integer r such that p(Tr(K)) = {0} but
p(Tr+1(K)) ≠ {0}. Note that T1(K) = K. We say that p has order 0 if p(K) ≠ {0}.
We denote the order of p by ord(p). For a detailed introduction of the order of
polynomials, we refer the reader to the book [7, Chapter 5].

In 2023, Panja and Prasad [16] discussed the image of polynomials with zero
constant term and Waring-type problems on upper triangular matrix algebras over
an algebraically closed field, which generalized two results in [6, 19]. More precisely,
they obtained the following main result.

Theorem 1.1 [16, Theorem 5.18] Let n ≥ 2 and m ≥ 1 be integers. Let p(x1 , . . . , xm) be
a polynomial with zero constant term in noncommutative variables over an algebraically
closed field K. Set r =ord(p). Then one of the following statements holds.

(i) Suppose that r = 0. We have that p(Tn(K)) is a dense subset of Tn(K) (with respect
to the Zariski topology).

(ii) Suppose that r = 1. We have that p(Tn(K)) = Tn(K)(0).
(iii)Suppose that 1 < r < n − 1. We have that p(Tn(K)) ⊆ Tn(K)(r−1), and equality

might not hold in general. Furthermore, for every n and r, there exists d such that
each element of Tn(K)(r−1) can be written as a sum of d many elements from
p(Tn(K)).

(iv) Suppose that r = n − 1. We have that p(Tn(K)) = Tn(K)(n−2).
(v) Suppose that r ≥ n. We have that p(Tn(K)) = {0}.

They proposed the following conjecture.

Conjecture 1.1 [16, Conjecture] Let p(x1 , . . . , xm) be a polynomial with zero con-
stant term in noncommutative variables over an algebraically closed field K. Suppose
ord(p) = r, where 1 < r < n − 1. Then p(Tn(K)) + p(Tn(K)) = Tn(K)(r−1).

We note that if p is a multilinear polynomial and K is an infinite field, then
p(Tn(K)) = Tn(K)(r−1) (see [8, 10, 15]).

In the present paper, we shall prove the following main result of the paper, which
gives a complete solution of Conjecture 1.1.

Theorem 1.2 Let n ≥ 2 and m ≥ 1 be integers. Let p(x1 , . . . , xm) be a polynomial
with zero constant term in noncommutative variables over an infinite field K. Suppose
ord(p) = r, where 1 < r < n − 1. We have that p(Tn(K)) + p(Tn(K)) = Tn(K)(r−1).
Furthermore, if r = n − 2, we have that p(Tn(K)) = Tn(K)(n−3).
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We organize the paper as follows: In Section 2, we shall give some preliminaries. We
shall modify some results in [5, 8, 12], which will be used in the proof of Theorem 1.2.
In Section 3, we shall give the proof of Theorem 1.2 by using some new arguments (for
example, compatible variables in polynomials and recursive polynomials).

2 Preliminaries

Let N be the set of all positive integers. Let m ∈ N. Let K be a field. Set K∗ = K/{0}.
For any k ∈ N, we set

T k
m = {(i1 , . . . , ik) ∈ Nk ∣ 1 ≤ i1 , . . . , ik ≤ m} .

Let p(x1 , . . . , xm) be a polynomial with zero constant term in noncommutative
variables over K. We can write

p(x1 , . . . , xm) =
d
∑
k=1

⎛
⎝ ∑
(i1 , i2 , . . . , ik)∈T k

m

λ i1 i2 . . . ik x i1 x i2 . . . x ik

⎞
⎠

,(1)

where λ i1 i2 . . . ik ∈ K and d is the degree of p.
We begin with the following result, which is slightly different from [5, Lemma 3.2].

We give its proof for completeness.

Lemma 2.1 For any u i = (a(i)jk ) ∈ Tn(K), i = 1, . . . , m, we set

ā j j = (a(1)j j , . . . , a(m)j j ),

where j = 1, . . . , n. We have that

p(u1 , . . . , um) =
⎛
⎜⎜⎜
⎝

p(ā11) p12 . . . p1n
0 p(ā22) . . . p2n
⋮ ⋮ ⋱ ⋮
0 0 . . . p(ānn)

⎞
⎟⎟⎟
⎠

,(2)

where

pst =
t−s
∑
k=1

⎛
⎜⎜⎜
⎝

∑
s= j1< j2< ⋅ ⋅ ⋅ < jk+1=t
(i1 , . . . , ik)∈T k

m

p i1 . . . ik(ā j1 j1 , . . . , ā jk+1 jk+1)a(i1)
j1 j2

. . . a(ik)
jk jk+1

⎞
⎟⎟⎟
⎠

for all 1 ≤ s < t ≤ n, where p i1 , . . . , ik(z1 , . . . , zm(k+1)), 1 ≤ i1 , i2 , . . . , ik ≤ m, k = 1, . . . ,
n − 1, is a polynomial in commutative variables over K.

Proof Let u i = (a(i)jk ) ∈ Tn(K), where i = 1, . . . , m. For any 1 ≤ i1 , . . . , ik ≤ m, we
easily check that

u i1 . . . u ik =
⎛
⎜⎜⎜
⎝

m11 m12 . . . m1n
0 m22 . . . m2n
⋮ ⋮ ⋱ ⋮
0 0 . . . mnn

⎞
⎟⎟⎟
⎠

,
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where

mst = ∑
s= j1≤ j2≤ ⋅ ⋅ ⋅ ≤ jk+1=t

a(i1)
j1 j2

. . . a(ik)
jk jk+1

for all 1 ≤ s ≤ t ≤ n. It follows from (1) that

p(u1 , . . . , um) =
d
∑
k=1

⎛
⎝ ∑
(i1 , . . . , ik)∈T k

m

λ i1 . . . ik u i1 . . . u ik

⎞
⎠

=
d
∑
k=1

⎛
⎜⎜⎜
⎝

∑
(i1 , . . . , ik)∈T k

m

λ i1 . . . ik

⎛
⎜⎜⎜
⎝

m11 m12 . . . m1n
0 m22 . . . m2n
⋮ ⋮ ⋱ ⋮
0 0 . . . mnn

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

p11 p12 . . . p1n
0 p22 . . . p2n
⋮ ⋮ ⋱ ⋮
0 0 . . . pnn

⎞
⎟⎟⎟
⎠

,

where

pst =
d
∑
k=1

⎛
⎝ ∑
(i1 , . . . , ik)∈T k

m

λ i1 . . . ik mst
⎞
⎠

=
d
∑
k=1

⎛
⎝ ∑
(i1 , . . . , ik)∈T k

m

λ i1 . . . ik

⎛
⎝ ∑

s= j1≤ j2≤ ⋅ ⋅ ⋅ ≤ jk+1=t
a(i1)

j1 j2
. . . a(ik)

jk jk+1

⎞
⎠
⎞
⎠

=
d
∑
k=1

⎛
⎜⎜⎜
⎝

∑
s= j1≤ j2≤ ⋅ ⋅ ⋅ ≤ jk+1=t
(i1 , . . . , ik)∈T k

m

λ i1 i2 . . . ik a(i1)
j1 j2

. . . a(ik)
jk jk+1

⎞
⎟⎟⎟
⎠

,

where 1 ≤ s ≤ t ≤ n. In particular,

pss =
d
∑
k=1

⎛
⎝ ∑
(i1 , . . . , ik)∈T k

m

λ i1 i2 . . . ik a(i1)
ss . . . a(ik)

ss
⎞
⎠

= p(āss)

for all s = 1, . . . , n, and

pst =
d
∑
k=1

⎛
⎜⎜⎜
⎝

∑
s= j1≤ j2≤ ⋅ ⋅ ⋅ ≤ jk+1=t
(i1 , . . . , ik)∈T k

m

λ i1 i2 . . . ik a(i1)
j1 j2

. . . a(ik)
jk jk+1

⎞
⎟⎟⎟
⎠

=
t−s
∑
k=1

⎛
⎜⎜⎜
⎝

∑
s= j1< j2<⋅⋅⋅< jk+1=t
(i1 , . . . , ik)∈T k

m

p i1 i2 . . . ik(ā j1 j1 , . . . , ā jk+1 jk+1)a(i1)
j1 j2

. . . a(ik)
jk jk+1

⎞
⎟⎟⎟
⎠
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for all 1 ≤ s < t ≤ n, where p i1 , . . . , ik(z1 , . . . , zm(k+1)) is a polynomial in commutative
variables over K. This proves the result. ∎

The following result will be used in the proof of our main result.
Lemma 2.2 Let m ≥ 1 be an integer. Let p(x1 , . . . , xm) be a polynomial with zero
constant term in noncommutative variables over K. Let pi1 , . . . , ik(z1 , . . . , zm(k+1)) be a
polynomial in commutative variables over K in (2), where 1 ≤ i1 , . . . , ik ≤ m, 1 ≤ k ≤
n − 1. Suppose that ord(p) = r, 1 < r < n − 1. We have that:

(i) p(K) = {0}.
(ii) p i1 , . . . , ik(K) = {0} for all 1 ≤ i1 , . . . , ik ≤ m, where k = 1, . . . , r − 1.

(iii) p i′1 , . . . , i′r(K) ≠ {0} for some 1 ≤ i′1 , . . . , i′r ≤ m.
Proof The statement (i) is clear. We now claim that the statement (ii) holds true.
Suppose on the contrary that

p i′1 . . . i′s(K) ≠ {0}

for some 1 ≤ i′1 , . . . , i′s ≤ m, where 1 ≤ s ≤ r − 1. Then there exist b̄ j ∈ Km , where
j = 1, . . . , s + 1 such that

p i′1 . . . i′s(b̄1 , . . . , b̄s+1) ≠ 0.

We take u i = (a(i)jk ) ∈ Ts+1(K), i = 1, . . . , m, where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ā j j = b̄ j , j = 1, . . . , s + 1,

a(i
′

k)

k ,k+1 = 1, k = 1, . . . , s,

a(i)jk = 0, otherwise.

It follows from (2) that

p1,s+1 = p i′1 . . . i′s(b̄1 , . . . , b̄s+1) ≠ 0.

This implies that p(Ts+1(K)) ≠ {0}, a contradiction. This proves the statement (ii).
We finally claim that the statement (iii) holds true. Note that p(T1+r(K)) ≠ {0}.

Thus, we have that there exist u i = (a(i)jk ) ∈ T1+r(K), i = 1, . . . , m, such that

p(u1 , . . . , um) = (pst) ≠ 0.

In view of the statement (ii), we get that

p1,r+1 = ∑
1= j1< j2< ⋅ ⋅ ⋅ < jr+1=r+1

(i1 , . . . , ir)∈T r
m

p i1 i2 . . . ir(ā j1 j1 , . . . , ā jr+1 jr+1)a(i1)
j1 j2

. . . a(ir)
jr jr+1

≠ 0.

This implies that p i′1 , . . . , i′r(K) ≠ {0} for some 1 ≤ i′1 , . . . , i′r ≤ m. This proves the state-
ment (iii). The proof of the result is complete. ∎

The following well-known result will be used in the proof of the rest results.
Lemma 2.3 [12, Theorem 2.19] Let K be an infinite field. Let f (x1 , . . . , xm) be a
nonzero polynomial in commutative variables over K. Then there exist a1 , . . . , am ∈ K
such that f (a1 , . . . , am) ≠ 0.

https://doi.org/10.4153/S0008414X24000385 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000385


6 Q. Chen and Y. Wang

Lemma 2.4 Let n, s be integers with 1 ≤ s ≤ n. Let p(x1 , . . . , xs) be a nonzero poly-
nomial in commutative variables over an infinite field K. We have that there exist
a1 , . . . , an ∈ K such that

p(a i1 , . . . , a is) ≠ 0

for all 1 ≤ i1 < ⋅ ⋅ ⋅ < is ≤ n.

Proof We set

f (x1 , . . . , xn) = ∏
1≤i1< ⋅ ⋅ ⋅ <is≤n

p(x i1 , . . . , x is).

It is clear that f ≠ 0. In view of Lemma 2.3, we have that there exist a1 , . . . , an ∈ K such
that

f (a1 , . . . , an) ≠ 0.

This implies that

p(a i1 , . . . , a is) ≠ 0

for all 1 ≤ i1 < ⋅ ⋅ ⋅ < is ≤ n. This proves the result. ∎
The following technical result is a generalized form of [8, Lemma 2.11], which

discusses compatible variables in polynomials.

Lemma 2.5 Let t ≥ 1. Let U i = {i1 , . . . , is} ⊆ N, i = 1, . . . , t. Let p i(x i1 , . . . , x is) be a
nonzero polynomial in commutative variables over an infinite field K, where i = 1, . . . , t.
Then there exist ak ∈ K with k ∈ ⋃t

i=1 U i such that

p i(a i1 , . . . , a is) ≠ 0

for all i = 1, . . . , t.

Proof Without loss of generality, we assume that

{1, 2, . . . , n} =
t
⋃
i=1

U i .

We set

f (x1 , . . . , xn) =
t
∏
i=1

p i(x i1 , . . . , x is).

It is clear that f ≠ 0. In view of Lemma 2.3, we have that there exist a1 , . . . , an ∈ K such
that

f (a1 , . . . , an) ≠ 0.

This implies that

p i(a i1 , . . . , a is) ≠ 0

for all i = 1, . . . , t. This proves the result. ∎
The following technical result will be used in the proof of the main result of the

paper.

https://doi.org/10.4153/S0008414X24000385 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000385


The Waring problem for upper triangular matrix algebras 7

Lemma 2.6 Let s ≥ 1 and t ≥ 2 be integers. Let K be an infinite field. Let a i j ∈ K, where
1 ≤ i ≤ t, 1 ≤ j ≤ s with a11 ∈ K∗ and b ∈ K∗. For any 2 ≤ i ≤ t, there exists a nonzero
element in {a i1 , . . . , a i s}. Then there exist c i ∈ K, i = 1, . . . , s, such that

{
a11c1 + ⋅ ⋅ ⋅ + a1s cs = b;
a i1c1 + ⋅ ⋅ ⋅ + a i s cs ≠ 0

for all i = 2, . . . , t.

Proof Suppose first that s = 1. Note that a i1 ∈ K∗, i = 1, . . . , t. Take c1 = a−1
11 b. It is

clear

{
a11c1 = b;
a i1c1 ≠ 0

for all 2 ≤ i ≤ t. Suppose next that s ≥ 2. Suppose first that a i1 ≠ 0 for all i = 2, . . . , t.
We define the following polynomials:

⎧⎪⎪⎨⎪⎪⎩

f1(x2 , . . . , xs) = b − a12x2 − ⋅ ⋅ ⋅ − a1s xs ;
f i(x2 , . . . , xs) = a i1a−1

11 b + (a i2 − a i1a−1
11 a12)x2 + ⋅ ⋅ ⋅ + (a i s − a i1a−1

11 a1s)xs

for all 2 ≤ i ≤ t. Since b, a i1 ∈ K∗, i = 1, . . . , t, we note that f i ≠ 0 for all i = 1, . . . , t. In
view of Lemma 2.5, we get that there exist c2 , . . . , cs ∈ K such that

f i(c2 , . . . , cs) ≠ 0

for all i = 1, . . . , t. This implies that
⎧⎪⎪⎨⎪⎪⎩

b − a12c2 − ⋅ ⋅ ⋅ − a1s cs ≠ 0;
a i1a−1

11 b + (a i2 − a i1a−1
11 a12)c2 + ⋅ ⋅ ⋅ + (a i s − a i1a−1

11 a1s)cs ≠ 0
(3)

for all 2 ≤ i ≤ t. We set

c1 = a−1
11 (b − a12c2 − ⋅ ⋅ ⋅ − a1s cs).

It follows from (3) that

{
a11c1 + ⋅ ⋅ ⋅ + a1s cs = b;
a i1c1 + ⋅ ⋅ ⋅ + a i s cs ≠ 0

for all 2 ≤ i ≤ t, as desired.
Suppose next that a i1 = 0, i = 2, . . . , t. Note that a i l(i) ≠ 0, for some 2 ≤ l(i) ≤ s for

all i = 2, . . . , t. We define the following polynomials:

{
f1(x2 , . . . , xs) = a12x2 + ⋅ ⋅ ⋅ + a1s xs − b;
f i(x2 , . . . , xs) = a i2x2 + ⋅ ⋅ ⋅ + a i s xs

for all 2 ≤ i ≤ t. Note that f i ≠ 0 for all i = 1, . . . , t. In view of Lemma 2.5, we get that
there exist c i ∈ K, i = 2, . . . , s, such that

f i(c2 , . . . , cs) ≠ 0
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for all i = 1, . . . , t. That is

{
a12c2 + ⋅ ⋅ ⋅ + a1s cs − b ≠ 0;
a i2c2 + ⋅ ⋅ ⋅ + a i s cs ≠ 0

for all 2 ≤ i ≤ t. Since a11 ≠ 0 we get that there exists c1 ∈ K such that

a11c1 = b − a12c2 − ⋅ ⋅ ⋅ − a1s cs .

This implies that

{
a11c1+a12c2 + ⋅ ⋅ ⋅ + a1s cs = b;

a i2c2 + ⋅ ⋅ ⋅ + a i s cs ≠ 0

for all 2 ≤ i ≤ t, as desired.
We finally assume that there exist a i1 ≠ 0 and a j1 = 0 for some i , j ∈ {2, . . . , t}.

Without loss of generality, we assume that a i1 ≠ 0 for all i = 2, . . . , t1 and a i1 = 0 for
all i = t1 + 1, . . . , t. We define the following polynomials:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1(x2 , . . . , xs) = b − a12x2 − ⋅ ⋅ ⋅ − a1s xs ;
f i(x2 , . . . , xs) = a i1a−1

11 b + (a i2 − a i1a−1
11 a12)x2 + ⋅ ⋅ ⋅ + (a i s − a i1a−1

11 a1s)xs ;
f j(x2 , . . . , xs) = a j2x2 + ⋅ ⋅ ⋅ + a js xs

for all 2 ≤ i ≤ t1 and t1 + 1 ≤ j ≤ t. Note that b, a i1 ∈ K∗, i = 1, . . . , t1, a j l( j) ≠ 0 where
2 ≤ l( j) ≤ s for all j = t1 + 1, . . . t. It is clear that f i ≠ 0 for all i = 1, . . . , t. In view of
Lemma 2.5, we get that there exist c i ∈ K, i = 2, . . . , s, such that

f i(c2 , . . . , cs) ≠ 0,

where i = 1, . . . , t. This implies that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b − a12c2 − ⋅ ⋅ ⋅ − a1s cs ≠ 0;
a i1a−1

11 b + (a i2 − a i1a−1
11 a12)c2 + ⋅ ⋅ ⋅ + (a i s − a i1a−1

11 a1s)cs ≠ 0;
a j2c2 + ⋅ ⋅ ⋅ + a js cs ≠ 0

(4)

for all 2 ≤ i ≤ t1 and t1 + 1 ≤ j ≤ t. We set

c1 = a−1
11 (b − a12c2 − ⋅ ⋅ ⋅ − a1s cs).

It follows from (4) that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a11c1 + ⋅ ⋅ ⋅ + a1s cs = b;
a i1c1 + ⋅ ⋅ ⋅ + a i s cs ≠ 0;
a j1c2 + ⋅ ⋅ ⋅ + a js cs ≠ 0

for all 2 ≤ i ≤ t1 and t1 + 1 ≤ j ≤ t, as desired. The proof of the result is now
complete. ∎
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3 The proof of Theorem 1.2

Let n ≥ 2 and m ≥ 1 be integers. Let p(x1 , . . . , xm) be a polynomial with zero constant
term in noncommutative variables over an infinite field K. Suppose that 1 < r < n − 1,
where r = ord(p).

Take any u i = (a(i)jk ) ∈ Tn(K), i = 1, . . . , m. In view of both Lemma 2.1 and
Lemma 2.2, we have that

p(u1 , . . . , um) = (ps ,r+s+t),(5)

where

ps ,r+s+t =
r+t
∑
k=r

⎛
⎜⎜⎜
⎝

∑
s= j1< ⋅ ⋅ ⋅ < jk+1=r+s+t
(i1 , . . . , ik)∈T k

m

p i1 . . . ik(ā j1 j1 , . . . , ā jk+1 jk+1)a(i1)
j1 j2

. . . a(ik)
jk jk+1

⎞
⎟⎟⎟
⎠

for all 1 ≤ s < r + s + t ≤ n and

p i′1 . . . i′r(K) ≠ {0}

for some 1 ≤ i′1 , . . . , i′r ≤ m. It follows from Lemma 2.4 that there exist c̄1 , . . . , c̄n ∈ Km

such that

p i′1 . . . i′r(c̄ j1 , . . . , c̄ jr+1) ≠ 0(6)

for all 1 ≤ j1 < ⋅ ⋅ ⋅ < jr+1 ≤ n. We set
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ā j j = c̄ j , j = 1, . . . , n;

a(k)i , i+1 = a(k)i , i+1 , i = 1, . . . , r − 1 and k = 1, . . . , m;

a(i
′

k)
r+s−1,r+s+t = x(i

′

k)
r+s−1,r+s+t , 1 ≤ s < r + s + t ≤ n, k = 1, . . . , r;

a(k)i j = 0, otherwise.

For any 1 ≤ s < r + s + t ≤ n, we set

Us ,r+s+t = {(r + u − 1, r + u +w , i′k) ∣ x(i
′

k)
r+u−1,r+u+w in ps ,r+s+t}

and

U s ,r+s+t = {(r + u − 1, r + u, i′k) ∣ (r + u − 1, r + u, i′k) ∈ Us ,r+s+t} .

We define an order on the set

{(s, r + s + t) ∣ 1 ≤ s < r + s + t ≤ n}

as follows:
(i) (s, r + s + t) < (s1 , r + s1 + t1) if t < t1;

(ii) (s, r + s + t) < (s1 , r + s1 + t1) if t = t1 and s < s1.
That is,

(1, r + 1) < ⋅ ⋅ ⋅ < (n − r, n) < (1, r + 2) < ⋅ ⋅ ⋅ < (n − r − 1, n) < ⋅ ⋅ ⋅ < (1, n).(7)
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For any 1 ≤ s < r + s + t ≤ n, we set

Ws ,r+s+t = ⋃
(1,r+1)≤(i ,r+i+ j)≤(s ,r+s+t)

U i ,r+i+ j ,

and

W s ,r+s+t = ⋃
(1,r+1)≤(i ,r+i+ j)≤(s ,r+s+t)

U i ,r+i+ j .

We begin with the following lemmas, which will be used in the proof of our main
result.

Lemma 3.1 Let 1 ≤ s < r + s ≤ n. Suppose that (s, r + s) ≠ (1, r + 1). We claim that

W s ,r+s/ {(r + s − 1, r + s, i′k) ∣ 1 ≤ k ≤ r} = W s−1,r+s−1 .(8)

Proof We first claim that

W s ,r+s/ {(r + s − 1, r + s, i′k) ∣ 1 ≤ k ≤ r} ⊆ W s−1,r+s−1 .

Take any (r + i − 1, r + i , i′k) ∈ W s ,r+s/ {(r + s − 1, r + s, i′k) ∣ 1 ≤ k ≤ r}. We have
that

(r + i − 1, r + i , i′k) ∈ U s2 ,r+s2

for some (1, r + 1) ≤ (s2 , r + s2) ≤ (s, r + s). This implies that

r + i ≤ r + s2 ≤ r + s.

We get that i ≤ s. Suppose that i = s. It follows that

(r + i − 1, r + i , i′k) ∈ {(r + s − 1, r + s, i′k) ∣ 1 ≤ k ≤ r} ,

a contradiction. Hence i ≤ s − 1. It is clear that

(r + i − 1, r + i , i′k) ∈ U i ,r+i ,

where (1, r + 1) ≤ (i , r + i) ≤ (s − 1, r + s − 1). It follows that

(r + i − 1, r + i , i′k) ∈ W s−1,r+s−1 .

We obtain that

W s ,r+s/ {(r + s − 1, r + s, i′k) ∣ 1 ≤ k ≤ r} ⊆ W s−1,r+s−1 ,

as desired. We next claim that

W s−1,r+s−1 ⊆ W s ,r+s/ {(r + s − 1, r + s, i′k) ∣ 1 ≤ k ≤ r} .

If (r + s − 1, r + s, i′k) ∈ W s−1,r+s−1 for 1 ≤ k ≤ r, we have that

r + s ≤ r + s − 1,

a contradiction. Hence

{(r + s − 1, r + s, i′k) ∣ 1 ≤ k ≤ r}⋂W s−1,r+s−1 = ∅.
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Since W s−1,r+s−1 ⊆ W s ,r+s we get that

W s−1,r+s−1 ⊆ W s ,r+s/ {(r + s − 1, r + s, i′k) ∣ 1 ≤ k ≤ r} ,

as desired. We obtain that

W s−1,r+s−1 = W s ,r+s/ {(r + s − 1, r + s, i′k) ∣ 1 ≤ k ≤ r} .

This proves the result. ∎

Lemma 3.2 Let 1 ≤ s < r + s + t ≤ n. Suppose that t > 0. We claim that

W s1 ,r+s1+t1 = W s ,r+s+t ,

where

(s1 , r + s1 + t1) = max{(i , r + i + j) ∣ (1, r + 1) ≤ (i , r + i + j) < (s, r + s + t)}.

Proof We first claim that

W s ,r+s+t = W n−r ,n .

Since t > 0, we note that

(s, r + s + t) > (n − r, n).

This implies that W s ,r+s+t ⊇ W n−r ,n . Take any (r + u − 1, r + u, i′k) ∈ W s ,r+s+t . It is
clear that

(r + u − 1, r + u, i′k) ∈ U u ,r+u ⊆ W n−r ,n .

This implies that W s ,r+s+t ⊆ W n−r ,n . Hence, W s ,r+s+t = W n−r ,n as desired.
Since (n − r, n) < (s, r + s + t) we get that

(n − r, n) ≤ (s1 , r + s1 + t1) < (s, r + s + t).

This implies that

W n−r ,n ⊆ W s1 ,r+s1+t1 ⊆ W s ,r+s+t .

Since W s ,r+s+t = W n−r ,n we obtain that W s1 ,r+s1+t1 = W s ,r+s+t . This proves the
result. ∎

The following technical result will be used in the proof of the next result.

Lemma 3.3 Let 1 ≤ s < r + s + t ≤ n. If (r + i − 1, r + i + j, i′k) ∈ Us ,r+s+t , we have that
j ≤ t.

Proof Suppose that (r + i − 1, r + i + j, i′k) ∈ Us ,r+s+t . That is, x(i
′

k)
r+i−1,r+i+ j appears in

ps ,r+s+t . In view of (5), we note that every monomial in ps ,r+s+t is made up of at least
r elements multiplied together. This implies that

((r + s + t) − s) − ((r + i + j) − (r + i − 1)) ≥ r − 1.

We obtain that j ≤ t. This proves the result. ∎
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Lemma 3.4 Let 1 ≤ s < r + s + t ≤ n and t > 0. We claim that

Ws1 ,r+s1+t1 = Ws ,r+s+t/{(r + s − 1, r + s + t, i′k) ∣ 1 ≤ k ≤ r},

where

(s1 , r + s1 + t1) = max{(i , r + i + j) ∣ (1, r + 1) ≤ (i , r + i + j) < (s, r + s + t)}.

Proof We first claim that

Ws1 ,r+s1+t1 ⊆ Ws ,r+s+t/{(r + s − 1, r + s + t, i′k) ∣ 1 ≤ k ≤ r}.

If (r + s − 1, r + s + t, i′k) ∈ Ws1 ,r+s1+t1 for some 1 ≤ k ≤ r, we get that

(r + s − 1, r + s + t, i′k) ∈ Us2 ,r+s2+t2(9)

for some (1, r + 1) ≤ (s2 , r + s2 + t2) ≤ (s1 , r + s1 + t1). It is clear that

t2 ≤ t1 ≤ t.

In view of Lemma 3.3, we get that t ≤ t2. It follows that

t1 = t2 = t.

Since (s1 , r + s1 + t1) < (s, r + s + t) we get that s1 < s. Since (s2 , r + s2 + t2) ≤
(s1 , r + s1 + t1) we get that s2 ≤ s1. Thus, we obtain that s2 < s. It follows from (9) that

r + s + t ≤ r + s2 + t2 .

This implies that s ≤ s2, a contradiction. Hence, we have that

(r + s − 1, r + s + t, i′k) /∈ Ws1 ,r+s1+t1

for all 1 ≤ k ≤ r. It is clear that Ws1 ,r+s1+t1 ⊆ Ws ,r+s+t . We obtain that

Ws1 ,r+s1+t1 ⊆ Ws ,r+s+t/{(r + s − 1, r + s + t, i′k) ∣ 1 ≤ k ≤ r},

as desired. We next claim that

Ws ,r+s+t/{(r + s − 1, r + s + t, i′k) ∣ 1 ≤ k ≤ r} ⊆ Ws1 ,r+s1+t1 .

For any (r + i − 1, r + i + j, i′k) ∈ Ws ,r+s+t/{(r + s − 1, r + s + t, i′k) ∣ 1 ≤ k ≤ r}, we have

(r + i − 1, r + i + j, i′k) ∈ Us2 ,r+s2+t2

for some (1, r + 1) ≤ (s2 , r + s2 + t2) ≤ (s, r + s + t). This implies that t2 ≤ t. In view of
Lemma 3.3, we note that j ≤ t2. We have that j ≤ t. It is clear that

(r + i − 1, r + i + j, i′k) ∈ U i ,r+i+ j ,

where (1, r + 1) ≤ (i , r + i + j) ≤ (s, r + s + t). Note that

(r + i − 1, r + i + j, i′k) /∈ {(r + s − 1, r + s + t, i′k) ∣ 1 ≤ k ≤ r}.
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We get that

(i , r + i + j) ≠ (s, r + s + t).

This implies that

(1, r + 1) ≤ (i , r + i + j) ≤ (s1 , r + s1 + t1) ≤ (s, r + s + t).

It follows that U i ,r+i+ j ⊆ Ws1 ,r+s1+t1 . We have that

(r + i − 1, r + i + j, i′k) ∈ Ws1 ,r+s1+t1 .

We obtain that

Ws ,r+s+t/{(r + s − 1, r + s + t, i′k) ∣ 1 ≤ k ≤ r} ⊆ Ws1 ,r+s1+t1 ,

as desired. Thus, we obtain that

Ws1 ,r+s1+t1 = Ws ,r+s+t/{(r + s − 1, r + s + t, i′k) ∣ 1 ≤ k ≤ r}.

This proves the result. ∎

We set

ĉs ,t = (c̄s , c̄s+1 , . . . , c̄r+s−1 , c̄r+s+t).

It follows from (6) that

p i′1 . . . i′r(ĉs ,t) ≠ 0.(10)

For any 1 ≤ s < r + s ≤ n and s ≤ r − 1, we set

fs ,r = ∑
(i1 , . . . , ir−s)∈T r−s

m

p i1 . . . ir−s i′r−s+1 . . . i′r(ĉs ,t)a(i1)
s ,s+1 . . . a(ir−s)

r−1,r .

We set

Vs ,r = {(i , i + 1, k) ∣ i = s, . . . , r − 1, k = 1, . . . , m},

where 1 ≤ s < r + s ≤ n and s ≤ r − 1. It is clear that fs ,r is a polynomial on commutative
variables indexed by elements from Vs ,r .

For any 1 ≤ s < r + s ≤ n and s ≥ r, we set

fs ,r = p i′1 . . . i′r(ĉs ,t).

We claim that fs ,r(K) ≠ {0} for all 1 ≤ s < r + s ≤ n. In view of (10), it suffices to
prove that fs ,r(K) ≠ 0, where 1 ≤ s < r + s ≤ n and s ≤ r − 1.

We take a(k)i , i+1 ∈ K, (i , i + 1, k) ∈ Vs ,r such that

⎧⎪⎪⎨⎪⎪⎩

a(i
′

i+1)
s+i ,s+i+1 = 1, i = 0, . . . , r − s − 1;

a(k)i , i+1 = 0, otherwise.

It follows from (10) that

fs ,r(a(k)i , i+1) = p i′1 . . . i′r(ĉs ,t) ≠ 0,

https://doi.org/10.4153/S0008414X24000385 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000385


14 Q. Chen and Y. Wang

as desired. In view of Lemma 2.5, we get that there exist a(k)i , i+1 ∈ K, (i , i + 1, k) ∈
⋃min{n−r ,r−1}

s=1 Vs ,r such that

fs ,r(a(k)i , i+1) ≠ 0

for all 1 ≤ s < r + s ≤ n and s ≤ r − 1.
For any 2 ≤ s ≤ r + s ≤ n, we define

fs ,r+s−i = ∑
(i1 , . . . , ir−i)∈T r−i

m

p i1 . . . ir−i i′r−i+1 . . . i′r(ĉs ,t)a(i1)
s ,s+1 . . . a(ir−i)

r+s−i−1,r+s−i(11)

for all 1 ≤ i ≤ min{s − 1, r − 1}. It is clear that fs ,r+s−i is a polynomial over K on
commutative variables indexed by elements from W s−i ,r+s−i , where 1 ≤ i ≤ min{s − 1,
r − 1}.

The following result implies that fs ,r+s−i , where 1 ≤ i ≤ min{s − 1, r − 1}, is a recur-
sive polynomial.

Lemma 3.5 For any 2 ≤ s < r + s ≤ n, we claim that

fs ,r+s−i = fs ,r+s−i−1x(i
′

r−i)
r+s−i−1,r+s−i + ∑

1≤k≤r
i′k≠i′r−i

αs ,r+s−i−1,k x(i
′

k)
r+s−i−1,r+s−i

for all 1 ≤ i ≤ min{s − 1, r − 1}, where both fs ,r+s−i−1 and αs ,r+s−i−1,k are polynomials
over K on commutative variables indexed by elements from W s−i−1,r+s−i−1.

Proof We get from (11) that

f s ,r+s−i =
⎛
⎝ ∑
(i1 , . . . , ir−i−1)∈T r−i−1

m

p i1 . . . ir−i−1 i′r−i . . . i′r(ĉs ,t)a(i1)
s ,s+1 . . . a(ir−i−1)

r+s−i−2,r+s−i−1
⎞
⎠

x(i′r−i)

r+s−i−1,r+s−i

+ ∑
1≤k≤r
i′k≠i′r−i

⎛
⎝ ∑
(i1 , . . . , ir−i−1)∈T r−i−1

m

p i1 . . . ir−i−1 i′k i′r−i+1 . . . i′r(ĉs ,t)a(i1)
s ,s+1 . . . a(ir−i−1)

r+s−i−2,r+s−i−1
⎞
⎠

x(i′k)
r+s−i−1,r+s−i

(12)

for all 1 ≤ i ≤ min{s − 1, r − 1}. It follows from (11) that

fs ,r+s−i−1 = ∑
(i1 , . . . , ir−i−1)∈T r−i−1

m

p i1 . . . ir−i−1 i′r−i . . . i′r(ĉs ,t)a(i1)
s ,s+1 . . . a(ir−i−1)

r+s−i−2,r+s−i−1 .

We set

αs ,r+s−i−1,k = ∑
(i1 , . . . , ir−i−1)∈T r−i−1

m

p i1 . . . ir−i−1 i′k i′r−i+1 . . . i′r(ĉs ,t)a(i1)
s ,s+1 . . . a(ir−i−1)

r+s−i−2,r+s−i−1

for all 1 ≤ i ≤ min{s − 1, r − 1} and k = 1, . . . , r. It follows from both (11) and (12) that

fs ,r+s−i = fs ,r+s−i−1x(i
′

r−i)
r+s−i−1,r+s−i + ∑

1≤k≤r
i′k≠i′r−i

αs ,r+s−i−1,k x(i
′

k)
r+s−i−1,r+s−i
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for all 1 ≤ i ≤ min{s − 1, r − 1}. It is clear that both fs ,r+s−i−1 and αs ,r+s−i−1,k are
polynomials over K on commutative variables indexed by elements from

W s−i ,r+s−i/{(r + s − i − 1, r + s − i , i′k) ∣ k = 1, . . . r}.

In view of Lemma 3.1, we note that

W s−i−1,r+s−i−1 = W s−i ,r+s−i/{(r + s − i − 1, r + s − i , i′k) ∣ k = 1, . . . r}.

We have that both fs ,r+s−i−1 and αs ,r+s−i−1,k are polynomials over K on commutative
variables indexed by elements from W s−i−1,r+s−i−1. This proves the result. ∎

Lemma 3.6 For any 1 ≤ s < r + s ≤ n, we have that

ps ,r+s+t = fs ,r+s−1x(i
′

r)
r+s−1,r+s+t + ∑

1≤k≤r
i′k≠i′r

βs ,r+s−1,k x(i
′

k)
r+s−1,r+s+t + βs ,r+s+t ,

where f1,r ∈ K∗, β1,r ,k ∈ K, k = 1, . . . , r with i′k ≠ i′r , fs ,r+s−1 , βs ,r+s−1,k , s ≥ 2, 1 ≤ k ≤ r
with i′k ≠ i′r are polynomials on some commutative variables in W s1 ,r+s1+t1 and βs ,r+s+t ,
where t > 0, is a polynomial over K in some commutative variables in Ws1 ,r+s1+t1 , where

(s1 , r + s1 + t1) = max{(i , r + i + j) ∣ (1, r + 1) ≤ (i , r + i + j) < (s, r + s + t)}.

Moreover, βs ,r+s = 0.

Proof It follows from (5) that

ps ,r+s+t =
⎛
⎝ ∑
(i1 , . . . , ir−1)∈T r−1

m

p i1 . . . ir−1 i′r(ĉs ,t)a(i1)
s ,s+1 . . . a(ir−1)

r+s−2,r+s−1
⎞
⎠

x(i
′

r)
r+s−1,r+s+t

+ ∑
1≤k≤r
i′k≠i′r

⎛
⎝ ∑
(i1 , . . . , ir−1)∈T r−1

m

p i1 . . . ir−1 i′k(ĉs ,t)a(i1)
s ,s+1 . . . a(ir−1)

r+s−2,r+s−1
⎞
⎠

x(i
′

k)
r+s−1,r+s+t

+
r+t
∑
k=r

⎛
⎜⎜⎜⎜⎜⎜
⎝

∑
s= j1< ⋅ ⋅ ⋅ < jk+1=r+s+t
( jk , jk+1)≠(r+s−1,r+s+t)

(i1 , . . . , ik)∈T k
m

p i1 . . . ik(c̄ j1 , . . . , c̄ jk+1)a(i1)
j1 j2

⋅ ⋅ ⋅ a(ik)
jk jk+1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

(13)

It follows from (11) that

fs ,r+s−1 = ∑
(i1 , . . . , ir−1)∈T r−1

m

p i1 . . . ir−1 i′r(ĉs ,t)a(i1)
s ,s+1 . . . a(ir−1)

r+s−2,r+s−1 .

We set

βs ,r+s−1,k = ∑
(i1 , . . . , ir−1)∈T r−1

m

p i1 . . . ir−1 i′k(ĉs ,t)a(i1)
s ,s+1 . . . a(ir−1)

r+s−2,r+s−1
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for k = 1, . . . , r with i′k ≠ i′r , and

βs ,r+s+t =
r+t
∑
k=r

⎛
⎜⎜⎜⎜⎜⎜
⎝

∑
s= j1< ⋅ ⋅ ⋅ < jk+1=r+s+t
( jk , jk+1)≠(r+s−1,r+s+t)

(i1 , . . . , ik)∈T k
m

p i1 . . . ik(c̄ j1 , . . . , c̄ jk+1)a(i1)
j1 j2

. . . a(ik)
jk jk+1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

It follows from (13) that

ps ,r+s+t = fs ,r+s−1x(i
′

r)
r+s−1,r+s+t + ∑

1≤k≤r
i′k≠i′r

βs ,r+s−1,k x(i
′

k)
r+s−1,r+s+t + βs ,r+s+t ,(14)

where f1,r ∈ K∗ , β1,r ,k ∈ K, k = 1, . . . , r with i′k ≠ i′r , fs ,r+s−1 , βs ,r+s+t ,k , where s ≥ 2,
1 ≤ k ≤ r with i′k ≠ i′r , are polynomials on some commutative variables indexed by
elements from

W s ,r+s+t/ {(r + s − 1, r + s + t, i′k), k = 1, . . . , r}(15)

and βs ,r+s+t , where t > 0, is a polynomial over K in some commutative variables
indexed by elements from

Ws ,r+s+t/ {(r + s − 1, r + s + t, i′k), k = 1, . . . , r} .(16)

Suppose first that t = 0. In view of Lemma 3.1, we note that

W s−1,r+s−1 = W s ,r+s+t/ {(r + s − 1, r + s, i′k), k = 1, . . . , r} .

We get from (15) that fs ,r+s−1 , βs ,r+s+t ,k , where s ≥ 2, 1 ≤ k ≤ r with i′k ≠ i′r , are polyno-
mials on some commutative variables indexed by elements from W s−1,r+s−1. It is clear
that βs ,r+s = 0. Suppose next that t > 0. In view of Lemma 3.2, we note that

W s1 ,r+s1+t1 = W s ,r+s+t .

We get from (15) that fs ,r+s−1 , βs ,r+s+t ,k , where s ≥ 2, 1 ≤ k ≤ r with i′k ≠ i′r , are polyno-
mials on some commutative variables indexed by elements from W s1 ,r+s1+t1 . In view
of Lemma 3.4, we note that

Ws1 ,r+s1+t1 = Ws ,r+s+t/ {(r + s − 1, r + s + t, i′k), k = 1, . . . , r} .

We get from (16) that βs ,r+s+t is a polynomial over K in some commutative variables
indexed by elements from Ws1 ,r+s1+t1 . This proves the result. ∎

The following result is crucial for the proof of the main result.

Lemma 3.7 Let p(x1 , . . . , xm) be a polynomial with zero constant term in noncom-
mutative variables over an infinite field K. Suppose ord(p) = r, where 1 < r < n − 1. For
any A′ = (a′s ,r+s+t) ∈ Tn(K)(r−1), where a′s ,r+s ≠ 0 for all 1 ≤ s < r + s + t ≤ n, we have
that A′ ∈ p(Tn(K)).
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Proof Take any A′ = (a′s ,r+s+t) ∈ Tn(K)(r−1), where a′s ,r+s ≠ 0 for all
1 ≤ s < r + s ≤ n. For any 1 ≤ s < r + s + t ≤ n, we claim that there exist c(i

′

k)
r+u−1,r+u+w ∈ K

with

(r + u − 1, r + u +w , k) ∈ Ws ,r+s+t

such that

p i ,r+i+ j(c(i
′

k)
r+u−1,r+u+w) = a i ,r+i+ j

for all (1, r + 1) ≤ (i , r + i + j) ≤ (s, r + s + t) and

fs′ ,r+s′−v(c(i
′

k)
r+u−1,r+u) ≠ 0

for all fs′ ,r+s′−v on commutative variables in W s ,r+s+t , where s′ ≥ 2 and 1 ≤ v ≤
min{s′ − 1, r − 1}.

We prove the claim by induction on (s, r + s + t). Suppose first that (s, r + s + t) =
(1, r + 1). Note that

W1,r+1 = W 1,r+1 = {(r, r + 1, i′k) ∣ k = 1, . . . , r}.

In view of Lemma 3.6, we get that

p1,r+1 = f1,r x(i
′

r)
r ,r+1 + ∑

1≤k≤r
ik≠i′r

β1,r ,k x(i
′

k)
r ,r+1 ,(17)

where f1,r ∈ K∗, β1,r ,k ∈ K, k = 1, . . . , r with i′k ≠ i′r .
Take any fs′ ,r+s′−v on x(i

′

k)
r ,r+1, where k = 1, . . . , r, s′ ≥ 2, and 1 ≤ v ≤ min{s′ − 1, r − 1},

we get from Lemma 3.5 that

r + s′ − v − 1 = r

and so v = s′ − 1. It follows that

fs′ ,r+s′−v = fs′ ,r x(i
′

r−v)
r ,r+1 + ∑

1≤k≤r
i′k≠i′r−v

αs′ ,r ,k x(i
′

k)
r ,r+1 .(18)

Note that fs′ ,r ∈ K∗ and αs′ ,r ,k ∈ K, k = 1, . . . , r with i′k ≠ ir−v . Note that a′1,r+1 ∈ K∗.
In view of Lemma 2.6, we get from both (17) and (18) that there exist c(i

′

k)
r ,r+1 ∈ K,

k = 1, . . . , r, such that
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p1,r+1(c(i
′

k)
r ,r+1) = a′1,r+1 ,

fs′ ,r+s′−v(c(i
′

k)
r ,r+1) ≠ 0,

where 2 ≤ s′ ≤ r and v = s′ − 1, as desired.
Suppose next that (s, r + s + t) ≠ (1, r + 1). We rewrite (7) as follows:

(1, r + 1) < ⋅ ⋅ ⋅ < (s1 , r + s1 + t1) < (s, r + s + t) < ⋅ ⋅ ⋅ < (1, n),

where

(s1 , r + s1 + t1) = max{(i , r + i + j) ∣ (1, r + 1) ≤ (i , r + i + j) < (s, r + s + t)}.
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By induction on (s1 , r + s1 + t1), we have that there exist c(i
′

k)
r+u−1,r+u+w ∈ K with

(r + u − 1, r + u +w , k) ∈ Ws1 ,r+s1+t1

such that

p i ,r+i+ j(c(i
′

k)
r+u−1,r+u+w) = a′i ,r+i+ j

for all (1, r + 1) ≤ (i , r + i + j) ≤ (s1 , r + s1 + t1) and

fs′ ,r+s′−v(c(i
′

k)
r+u−1,r+u) ≠ 0

for any fs′ ,r+s′−v with commutative variables in W s1 ,r+s1+t1 , where s′ ≥ 2, and 1 ≤ v ≤
min{s′ − 1, r − 1}. We now divide the proof into the following two cases.

Suppose first that t = 0. Note that

(s1 , r + s1 + t1) = (s − 1, r + s − 1).

That is, s1 = s − 1 and t1 = 0. In view of Lemma 3.6, we get that

ps ,r+s = fs ,r+s−1x(i
′

r)
r+s−1,r+s + ∑

1≤k≤r
i′k≠i′r

βs ,r+s−1,k x(i
′

k)
r+s−1,r+s ,(19)

where fs ,r+s−1 , βs ,r+s−1,k , where k = 1, . . . , r with i′k ≠ i′r , are polynomials in commu-
tative variables in W s1 ,r+s1 . By induction hypothesis, we get that fs ,r+s−1 ∈ K∗ and
βs ,r+s−1,k ∈ K.

Take any fs′ ,r+s′−v on commutative variables indexed by elements from W s ,r+s ,
where s′ ≥ 2 and 1 ≤ v ≤ min{s′ − 1, r − 1}. Suppose first that fs′ ,r+s′−v is a polynomial
on commutative variables indexed by elements from W s1 ,r+s1 . By induction hypothesis
we have that fs′ ,r+s′−v ∈ K∗. Suppose next that fs′ ,r+s′−v is not a polynomial on
commutative variables indexed by elements from W s1 ,r+s1 . In view of Lemma 3.1, we
note that

W s ,r+s/W s−1,r+s−1 = {(r + s − 1, r + s, i′k) ∣ k = 1, . . . , r} .

This implies that x(i
′

k)
r+s−1,r+s appears in fs′ ,r+s′−v for k = 1, . . . , r. In view of Lemma 3.5

we get that

(r + s′ − v − 1, r + s′ − v) = (r + s − 1, r + s)

and so v = s′ − s. We get that

fs′ ,r+s′−v = fs′ ,r+s′−v−1x(i
′

r−v)
r+s−1,r+s + ∑

1≤k≤r
i′k≠i′r−v

αs′ ,r+s′−v−1,k x(i
′

k)
r+s−1,r+s ,(20)

where fs′ ,r+s′−v−1 and αs′ ,r+s′−v−1,k , k = 1, . . . , r with i′k ≠ i′r−v , are polynomials over K
on commutative variables indexed by elements from W s1 ,r+s1 . By induction hypoth-
esis, we have that fs′ ,r+s′−v−1 ∈ K∗ and αs′ ,r+s′−v−1,k ∈ K, where k = 1, . . . , r with
i′k ≠ i′r−v .
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Note that a′s ,r+s ∈ K∗. In view of Lemma 2.6, we get from both (19) and (20) that
there exist c(i

′

k)
r+s−1,r+s ∈ K, k = 1, . . . , r, such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ps ,r+s(c(i
′

k)
r+s−1,r+s) = a′s ,r+s ;

fs′ ,r+s′−v(c(i
′

k)
r+s−1,r+s) ≠ 0,

as desired.
Suppose next that t > 0. It follows from Lemma 3.6 that

ps ,r+s+t = fs ,r+s−1x(i
′

r)
r+s−1,r+s+t + ∑

1≤k≤r
i′k≠i′r

βs ,r+s−1,k x(i
′

k)
r+s−1,r+s+t + βs ,r+s+t ,(21)

where fs ,r+s−1 , βs ,r+s−1,k , where k = 1, . . . , r with i′k ≠ i′r , are polynomials over K in
commutative variables indexed by elements from W r+s1+t1 , and βs ,r+s+t is a poly-
nomial over K in commutative variables indexed by elements from Ws1 ,r+s1+t1 . By
induction hypothesis, we have that fs ,r+s−1 ∈ K∗, βs ,r+s−1,k ∈ K for all k = 1, . . . , r with
i′k ≠ i′r , and βs ,r+s+t ∈ K.

Take c(i
′

k)
r+s−1,r+s+t ∈ K, where k = 1, . . . , r in (21) such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

c(i
′

r)
r+s−1,r+s+t = f −1

s ,r+s−1(a′s ,r+s+t − βs ,r+s+t);

c(i
′

k)
r+s−1,r+s+t = 0, for all 1 ≤ k ≤ r with i′k ≠ i′r .

We get that

ps ,r+s+t(c(i
′

k)
r+s−1,r+s+t) = a′s ,r+s+t .

Take any fs′ ,r+s′−v on commutative variables indexed by elements from W s ,r+s+t ,
where s′ ≥ 2 and 1 ≤ v ≤ min{s′ − 1, r − 1}. In view of Lemma 3.2, we note that

W s ,r+s+t = W s1 ,r+s1+t1 .

This implies that fs′ ,r+s′−v is a commutative polynomial over K on some commutative
variables indexed by elements from W s1 ,r+s1+t1 . By induction hypothesis, we get that

fs′ ,r+s′−v ∈ K∗ ,

where s′ ≥ 2 and 1 ≤ v ≤ min{s′ − 1, r − 1}, as desired. This proves the claim.
Let (s, r + s + t) = (1, n). We have that there exist c(i

′

k)
r+u−1,r+u+w ∈ K, k = 1, . . . , r,

with

(r + u − 1, r + u +w , k) ∈ W1,n ,

such that

p i ,r+i+ j(c(i
′

k)
r+u−1,r+u+w) = a′i ,r+i+ j(22)

for all (1, r + 1) ≤ (i , r + i + j) ≤ (1, n) and

fs′ ,r+s′−v(c(i
′

k)
r+u−1,r+u) ≠ 0
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for all fs′ ,r+s′−v on commutative variables indexed by elements from W 1,n , where s′ ≥ 2
and 1 ≤ v ≤ min{s′ − 1, r − 1}. It follows from both (5) and (22) that

p(u1 , . . . , um) = (ps ,r+s+t) = (a′s ,r+s+t) = A′ .

This implies that A′ ∈ p(Tn(K)). The proof of the result is complete. ∎

Lemma 3.8 Let n ≥ 4 and m ≥ 1 be integers. Let p(x1 , . . . , xm) be a polynomial with
zero constant term in noncommutative variables over an infinite field K. Suppose that
ord(p) = n − 2. We have that p(Tn(K)) = Tn(K)(n−3).

Proof In view of Lemma 2.2(ii), we note that p(Tn(K)) ⊆ Tn(K)(n−3). It suffices to
prove that Tn(K)(n−3) ⊆ p(Tn(K)).

For any u i = (a(i)jk ) ∈ Tn(K), i = 1, . . . , m, in view of Lemma 2.2(ii), we get from
(2) that

p(u1 , . . . , um) =
⎛
⎜⎜⎜
⎝

0 0 . . . p1,n−1 p1n
0 0 . . . 0 p2n
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . 0 0

⎞
⎟⎟⎟
⎠

,(23)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,n−1 = ∑
(i1 , . . . , in−2)∈Tn−2

m

p i1 . . . in−2(ā11 , . . . , ān−1,n−1)a(i1)
12 . . . a(in−2)

n−2,n−1;

p2n = ∑
(i1 , . . . , in−2)∈Tn−2

m

p i1 . . . in−2(ā22 , . . . , ān ,n)a(i1)
23 . . . a(in−2)

n−1,n ;

p1n = ∑
(i1 , . . . , in−1)∈Tn−1

m

p i1 . . . in−1(ā11 , . . . , ānn)a(i1)
12 . . . a(in−1)

n−1,n

+ ∑
1= j1< ⋅ ⋅ ⋅ < jn−1=n
(i1 , . . . , in−2)∈Tn−2

m

p i1 . . . in−2(ā j1 j1 , . . . , ā jn−1 jn−1)a(i1)
j1 j2

. . . a(in−2)
jn−2 jn−1

.

In view of Lemma 2.2(iii), we have that

p i′1 , . . . , i′n−2
(K) ≠ {0},

for some i′1 , . . . , i′n−2 ∈ {1, . . . , m}. It follows from Lemma 2.4 that there exist
b̄1 , . . . , b̄n ∈ Km such that

p i′1 , . . . , i′n−2
(b̄ j1 , . . . , b̄ jn−1) ≠ 0

for all 1 ≤ j1 < ⋅ ⋅ ⋅ < jn−1 ≤ n.
For any A′ = (a′s ,n−2+s+t) ∈ Tn(K)(n−3), where 1 ≤ s < n − 2 + s + t ≤ n, we claim

that there exist u i = (a(i)jk ) ∈ Tn(K), i = 1, . . . , m, such that

p(u1 , . . . , um) = (ps ,n−2+s+t) = A′ .
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That is,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p1,n−1 = a′1,n−1;
p2n = a′2n ;
p1n = a′1n .

We prove the claim by the following two cases:

Case 1. Suppose that a′1,n−1 ≠ 0. We take

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ā j j = b̄ j , for all j = 1, . . . , n;

a(i
′

1)
12 = x(i

′

1)
12 ;

a(k)12 = 0 for all k = 1, . . . , m with k ≠ i′1;

a(i
′

n−2)
n−1,n = x(i

′

n−2)
n−1,n ;

a(k)n−1,n = 0 for all k = 1, . . . , m with k ≠ i′n−2;

a(i
′

n−2)
n−2,n = x(i

′

n−2)
n−2,n ;

a(i)j, j+2 = 0 for all 1 ≤ i ≤ m, 3 ≤ j + 2 ≤ n with ( j, j + 2, i) ≠ (n − 2, n, i′n−2).

It follows from (23) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,n−1 =
⎛
⎜
⎝

∑
(i2 , . . . , in−2)∈Tn−3

m

p i′1 i2 . . . in−2(b̄1 , . . . , b̄n−1)a(i2)
23 . . . a(in−2)

n−2,n−1

⎞
⎟
⎠

x(i
′

1)
12 ;

p2n =
⎛
⎜
⎝

∑
(i1 , . . . , in−3)∈Tn−3

m

p i1 . . . in−3 i′n−2
(b̄2 , . . . , b̄n)a(i1)

23 . . . a(in−3)
n−2,n−1

⎞
⎟
⎠

x(i
′

n−2)
n−1,n ;

p1n =
⎛
⎝ ∑
(i2 , . . . , in−2)∈Tn−3

m

p i′1 i2 . . . in−2 i′n−2
(b̄1 , . . . , b̄n)a(i2)

23 . . . a(in−2)
n−2,n−1

⎞
⎠

x(i
′

1)
12 x(i

′

n−2)
n−1,n

⎛
⎜
⎝

∑
(i2 , . . . , in−3)∈Tn−4

m

p i′1 i2 . . . in−3 i′n−2
(b̄1 , . . . , b̄n−2 , b̄n)a(i2)

23 . . . a(in−3)
n−3,n−2

⎞
⎟
⎠

x(i
′

1)
12 x(i

′

n−2)
n−2,n .

(24)

We set

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1,n−1 = ∑
(i2 , . . . , in−2)∈Tn−3

m

p i′1 i2 . . . in−2(b̄1 , . . . , b̄n−1)a(i2)
23 . . . a(in−2)

n−2,n−1 ,

f2n = ∑
(i1 , . . . , in−3)∈Tn−3

m

p i1 . . . in−3 i′n−2
(b̄2 , . . . , b̄n)a(i1)

23 . . . a(in−3)
n−2,n−1 ,

f1n = ∑
(i2 , . . . , in−3)∈Tn−4

m

p i′1 i2 . . . in−3 i′n−2
(b̄1 , . . . , b̄n−2 , b̄n)a(i2)

23 . . . a(in−3)
n−3,n−2 ,

(25)
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and
V1,n−1 = {(i , i + 1, k) ∣ i = 2, . . . , n − 2, k = 1, . . . , m};

V2n = V1,n−1;
V1n = {(i , i + 1, k) ∣ i = 2, . . . , n − 3, k = 1, . . . , m}.

Note that f1,n−1 , f2n , f1n are polynomials over K on commutative variables indexed
by elements from V1,n−1 , V2n , V1n , respectively.

We claim that f1,n−1 , f2n , f1n ≠ 0. Indeed, we take a(i)jk ∈ K, ( j, k, i) ∈ V1,n−1 such
that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a(i
′

s)
s ,s+1 = 1, for all s = 2, . . . , n − 2;

a(i)jk = 0, otherwise.

It follows from (25) that

f1,n−1(a(i)jk ) = p i′1 . . . i′n−2
(b̄1 , . . . , b̄n−1) ≠ 0,

as desired. Next, we take a(i)jk ∈ K, ( j, k, i) ∈ V2n such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a(i
′

s−1)
s ,s+1 = 1, for all s = 2, . . . , n − 2;

a(i)jk = 0, otherwise.

It follows from (25) that

f2n(a(i)jk ) = p i′1 . . . i′n−2
(b̄2 , . . . , b̄n) ≠ 0,

as desired. Finally, we take a(i)jk ∈ K, ( j, k, i) ∈ V1n such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a(i
′

s)
s ,s+1 = 1, for all s = 2, . . . , n − 3;

a(i)jk = 0, otherwise.

It follows from (25) that

f1n(a(i)jk ) = p i′1 . . . i′n−2
(b̄1 , . . . , b̄n−2 , b̄n) ≠ 0,

as desired. In view of Lemma 2.5, we get that there exist a(i)jk ∈ K, where ( j, k, i) ∈
V1,n−1 ∪ V2n ∪ V1n such that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f1,n−1(a(i)jk ) ≠ 0;

f2n(a(i)jk ) ≠ 0;

f1n(a(i)jk ) ≠ 0.

We set

α = ∑
(i2 , . . . , in−2)∈Tn−3

p i′1 i2 . . . in−2 i′n−2
(b̄1 , . . . , b̄n)a(i2)

23 . . . a(in−2)
n−2,n−1 .
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It follows from (24) that
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p1,n−1 = f1,n−1x(i
′

1)
12 ;

p2n = f2n x(i
′

n−2)
n−1,n ;

p1n = f1n x(i
′

1)
12 x(i

′

n−2)
n−2,n + αx(i

′

1)
12 x(i

′

n−2)
n−1,n .

(26)

We take
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x(i
′

1)
12 = f −1

1,n−1a′1,n−1;

x(i
′

n−2)
n−1,n = f −1

2n a′2n ;

x(i
′

n−2)
n−2,n = f −1

1n f1,n−1(a′1,n−1)−1 (a′1n − α f −1
1,n−1a′1,n−1 f −1

2n a′2n) .

It follows from (26) that
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p1,n−1 = a′1,n−1;
p2n = a′2n ;
p1n = a′1n ,

as desired.

Case 2. Suppose that a′1,n−1 = 0. We take
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ā j j = b̄ j , for all j = 1, . . . , n;

a(k)12 = 0, for all k = 1, . . . , m;

a(i
′

1)
23 = x(i

′

1)
23 ;

a(k)23 = 0, for all k = 1, . . . , m with k ≠ i′1;

a(i
′

1)
13 = x(i

′

1)
13 ;

a(k)j, j+2 = 0, for all 1 ≤ j < j + 2 ≤ n with ( j, j + 2, k) ≠ (1, 3, i′1).

It follows from (23) that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,n−1 = 0;

p2n =
⎛
⎜
⎝

∑
(i2 , . . . , in−2)∈Tn−3

m

p i′1 i2 . . . in−2(b̄2 , . . . , b̄n)a(i2)
34 . . . a(in−2)

n−1,n

⎞
⎟
⎠

x(i
′

1)
23 ;

p1n =
⎛
⎜
⎝

∑
(i2 , . . . , in−2)∈Tn−3

m

p i′1 i2 . . . in−2(b̄1 , b̄3 , . . . , b̄n)a(i2)
34 . . . a(in−2)

n−1,n

⎞
⎟
⎠

x(i
′

1)
13 .

(27)

We set
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g2n = ∑
(i2 , . . . , in−2)∈Tn−3

m

p i′1 i2 . . . in−2(b̄2 , . . . , b̄n)a(i2)
34 . . . a(in−2)

n−1,n ;

g1n = ∑
(i2 , . . . , in−2)∈Tn−3

m

p i′1 i2 . . . in−2(b̄1 , b̄3 , . . . , b̄n)a(i2)
34 . . . a(in−2)

n−1,n ;
(28)
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and

V = {(i , i + 1, k) ∣ i = 3, . . . , n − 1, k = 1, . . . , m}.

Note that both g2n and g1n are polynomials over K on some commutative variables
indexed by elements from V. We claim that g2n , g1n ≠ 0. Indeed, we take a(i)jk ∈ K,
( j, k, i) ∈ V such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a(i
′

s−1)
s ,s+1 = 1, for all s = 3, . . . , n − 1;

a(i)jk = 0, otherwise.

It follows from (28) that

g2n = p i′1 . . . i′n−2
(b̄2 , . . . , b̄n) ≠ 0;

g1n = p i′1 . . . i′n−2
(b̄1 , b̄3 , . . . , b̄n) ≠ 0,

as desired. It follows from (27) that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p1,n−1 = 0;

p2n = g2n x(i
′

1)
23 ;

p1n = g1n x(i
′

1)
13 .

(29)

We take

⎧⎪⎪⎨⎪⎪⎩

x(i
′

1)
23 = g−1

2n a′2n ;

x(i
′

1)
13 = g−1

1n a′1n .

It follows from (29) that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p1,n−1 = 0;
p2n = a′2,n ;
p1n = a′1n ,

as desired. We obtain that

p(u1 , . . . , um) = (ps ,n−2+s+t) = (a′s ,n−2+s+t) = A′ .

This implies that Tn(K)(n−3) ⊆ p(Tn(K)). Hence p(Tn(K)) = Tn(K)(n−3). ∎

We are ready to give the proof of the main result of the paper.

The proof of Theorem 1.2 For any A = (as ,r+s+t) ∈ Tn(K)(r−1), we set

{
fs ,r+s(xs ,r+s) = as ,r+s − xs ,r+s ;
gs ,r+s(xs ,r+s) = xs ,r+s
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for all 1 ≤ s < r + s ≤ n. It is clear that both fs ,r+s and gs ,r+s are nonzero polynomials
in commutative variables over K, where 1 ≤ s < r + s ≤ n. It follows from Lemma 2.5
that there exist bs ,r+s ∈ K, 1 ≤ s < r + s ≤ n, such that

{
fs ,r+s(bs ,r+s) ≠ 0;
gs ,r+s(bs ,r+s) ≠ 0

for all 1 ≤ s < r + s ≤ n. That is,

{
as ,r+s − bs ,r+s ≠ 0;

bs ,r+s ≠ 0

for all 1 ≤ s < r + s ≤ n. We set

bs ,r+s+t = as ,r+s+t

for all 1 ≤ s < r + s + t ≤ n and t > 0 and

{
cs ,r+s = as ,r+s − bs ,r+s , for all 1 ≤ s < r + s ≤ n;

cs ,r+s+t = 0, for all 1 ≤ s < r + s + t ≤ n and t > 0.

We set

B = (bs ,r+s+t) and C = (cs ,r+s+t).

It is clear that

A = B + C ,

where B, C ∈ Tn(K)(r−1) with bs ,r+s , cs ,r+s ∈ K∗ for all 1 ≤ s < r + s ≤ n. In view of
Lemma 3.7, we get that there exist u i , v i ∈ Tn(K), i = 1, . . . , m, such that

p(u1 , . . . , um) = B and p(v1 , . . . , vm) = C .

It follows that

p(u1 , . . . , um) + p(v1 , . . . , vm) = A.

This implies that

Tn(K)(r−1) ⊆ p(Tn(K)) + p(Tn(K)).

In view of Lemma 2.2(ii), we note that p(Tn(K)) ⊆ Tn(K)(r−1). Since Tn(K)(r−1) is a
subspace of Tn(K), we get that

p(Tn(K)) + p(Tn(K)) ⊆ Tn(K)(r−1) .

We obtain that

p(Tn(K)) + p(Tn(K)) = Tn(K)(r−1) .

In particular, if r = n − 2, we get from Lemma 3.8 that

p(Tn(K)) = Tn(K)(n−3) .

The proof of the result is complete. ∎

We conclude the paper with following example.
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Example 3.1 Let n ≥ 5 and 1 < r < n − 2 be integers. Let K be an infinite field. Let

p(x , y) = [x , y]r .

We have that ord(p) = r and p(Tn(K)) ≠ Tn(K)(r−1).

Proof It is easy to check that p(Tr(K)) = {0}. Set

f (x , y) = [x , y].

Note that f is a multilinear polynomial over K. It is clear that ord( f ) = 1. In view of
[10, Theorem 4.3] or [15, Theorem 1.1], we have that

f (Tr+1(K)) = Tr+1(K)(0) .

It implies that there exist A, B ∈ Tr+1(K) such that

[A, B] = e12 + e23 + ⋅ ⋅ ⋅ + er ,r+1 .

We get that

p(A, B) = [A, B]r = e1,r+1 ≠ 0.

This implies that p(Tr+1(K)) ≠ {0}. We obtain that ord(p) = r.
Suppose on contrary that p(Tn(K)) = Tn(K)(r−1) for some n ≥ 5 and 1 < r < n − 2.

For e1,r+1 + e3,r+3 ∈ Tn(K)(r−1), we get that there exists B, C ∈ Tn(K) such that

p(B, C) = [B, C]r = e1,r+1 + e3,r+3 .

It is clear that [B, C] ∈ Tn(K)(0). We set

[B, C] = (as ,1+s+t).

It follows that

[B, C]r = e1,r+1 + e3,r+3 .

We get from the last relation that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(a12a23 . . . ar ,r+1)e1,r+1 = e1,r+1;
(a23a34 . . . ar+1,r+2)e2,r+2 = 0;
(a34a45 . . . ar+2,r+3)e3,r+3 = e3,r+3 .

This is a contradiction. We obtain that p(Tn(K)) ≠ Tn(K)(r−1) for all n ≥ 5 and
1 < r < n − 2. This proves the result. ∎

We remark that [16, Example 5.7] is a special case of Example 3.1 (r = 2 and n = 5).
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