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In multispecies electrolyte solutions, even in the absence of an external electric field,
differences in ion diffusivities induce an electric potential and generate additional
fluxes for each species. This electro-diffusion process is well-described by the advection
Nernst—Planck equation. This study aims to analyse the long-time behaviour of the
governing equation under electroneutrality and zero current conditions, and to investigate
how the diffusion-induced electric potential and shear flow enhance the effective diffusion
coefficients of each species in channel domains. The exact solutions of the effective
equation with certain special parameters, as well as the asymptotic analyses for ions with
large diffusivity discrepancies, are presented. Furthermore, there are several interesting
properties of the effective equation. First, it is a generalization of the Taylor dispersion,
with a nonlinear diffusion tensor replacing the scalar diffusion coefficient. Second, the
effective equation exhibits a scaling relation, revealing that the system with a weak flow
is equivalent to the system with a strong flow under scaled physical parameters. Third, in
the case of injecting an electrolyte solution into a channel containing well-mixed buffer
solutions or electrolyte solutions with the same ion species, if the concentration of the
injected solution is lower than that of the pre-existing solution, then the effective equation
simplifies to a multi-dimensional diffusion equation. However, when introducing the
electrolyte solution into a channel filled with deionized water, the ion—electric interaction
results in several phenomena not present in the advection—diffusion equation, including
upstream migration of some species, spontaneous separation of ions, and non-monotonic
dependence of the effective diffusivity on Péclet numbers. Finally, the dependence of
effective diffusivity on concentration and ion diffusivity suggests a method to infer the
concentration ratio of each component and ion diffusivity by measuring the effective
diffusivity.
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1. Introduction

Fluid flow plays an important role in the transport of solutes. When a solute is transported
in a fluid through a narrow tube or channel, the interaction of fluid flow and molecular
diffusion causes the solute to spread out and become more dispersed as it travels down
the tube. This effect is known as Taylor dispersion, named after G.I. Taylor, who first
investigated the phenomenon in Taylor (1953). Since Taylor’s seminal work, theoretical
studies on Taylor dispersion have exploded in many directions (Aris 1956, 1960; Chatwin
1970; Vedel & Bruus 2012; Ding & McLaughlin 2022a) and established applications in
many disciplines, such as molecular diffusivity measurement (Bello, Rezzonico & Righetti
1994; Leaist 2017; Taladriz-Blanco et al. 2019), chemical delivery in micro-channels
(Dutta & Leighton 2001; Aminian et al. 2016) and contaminant dispersion (Chatwin 1975;
Smith 1982; Ngo-Cong et al. 2015).

In an electrolyte solution, the electric current is carried by the dissolved ions. The
electric field exerts significant body forces on the ions, affecting their fluxes, which is
another key factor in mass transfer. Even in the absence of an external electric field,
where the electroneutrality and zero current conditions are met, it is necessary to consider
ion—electric interaction in multispecies electrolyte solutions because dissolved ions have
different diffusivities. To maintain electroneutrality, the faster-moving ion is slowed down,
creating a balance between positive and negative charges. For example, sodium fluorescein
is a tracer used commonly in fluid experiments, and its self-diffusion coefficient in
water has been measured experimentally by several authors to be approximately 4-5 x

1076 cm? s~! (Casalini er al. 2011). However, in a sodium chloride stratified fluid, the
diffusion coefficient of sodium fluorescein could exhibit a significant increase, reaching
values 8-9 x 107° cm? s~! (Ding er al. 2021).

The system involves fluid flow, electric field diffusion, and can be well-described
by the advection Nernst—Planck equation (Deen 1998; Lyklema 2005; Cussler 2013).
Many recent studies show that the transport of multiple electrolytes exhibits different
properties compared with the transport of a single binary electrolyte (Hosokawa et al.
2011; Liu, Shang & Zachara 2011; Gupta et al. 2019). When dealing with two different
ion species, the nonlinear governing equation can be reduced to the advection—diffusion
equation (Deen 1998), allowing for simplified analysis. However, when dealing with
more than two different ion species, the complexity of the nonlinear governing
equation prohibits simplification to the advection—diffusion equation, necessitating a
comprehensive consideration of the electro-diffusive process to describe the system’s
behaviour accurately.

Understanding how fluid flow, electric potential and diffusion interact in multispecies
electrolyte solutions is essential for measuring accurately mutual diffusion (Price 1988;
Leaist & Hao 1993; Ribeiro et al. 2019; Rodrigo et al. 2021, 2022), as well as for
simulating the system with stratified fluids (Ben-Yaakov 1972; Yuan-Hui & Gregory 1974;
Poisson & Papaud 1983; Ding et al. 2021; Ding & McLaughlin 2023), and for controlling
diffusiophoresis (Ault et al. 2017; Alessio et al. 2022) and modelling isotachophoresis
(Bhattacharyya et al. 2013; Gopmandal & Bhattacharyya 2015; GanOr, Rubin & Bercovici
2015) and chromatography (Biagioni, Cerbelli & Desmet 2022). Despite its importance,
the interplay between these three factors has not been studied extensively in the literature,
creating a knowledge gap. The main goal of this study is to fill this gap by presenting a
comprehensive investigation of this interplay.

To this end, we use homogenization methods to derive an effective equation that is
valid at the diffusion time scale for the advection Nernst—Planck equation in a channel
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with arbitrary cross-sectional geometry. In addition, the resulting effective equation
depends only on the longitudinal variable of the channel, and provides a more tractable
approximation for analysing mass transfer that captures the combined effects of flow
advection and ion—electric interaction. Our analysis of the effective equation shows that
the variance of the concentration distribution increases asymptotically linearly with time,
and we demonstrate that the effective diffusivity can be calculated efficiently via the
self-similar solution of the effective equation. Effective diffusivity is a critical parameter
for understanding the mass transfer and guiding the designing of microfluidic devices
(Dutta & Leighton 2001), and we show that it can also be used to infer the concentration
ratio of each component and ion diffusivity in multispecies electrolyte solutions. We
demonstrate that the effective equation exhibits a reciprocal property, namely, the system
without flow is mathematically equivalent to the system with a strong flow and scaled
physical parameters. We derive the self-similarity solution of the effective equation and
present asymptotic analyses for ions with large diffusivity discrepancies. Moreover, we
find that the nonlinear effective equation can be approximated by a diffusion equation with
mutual diffusion coefficients when the background concentration is non-zero, consistent
with previous studies (Rodrigo et al. 2022).

To complement our analytical results, we conduct numerical simulations to explore
the behaviour of multispecies electrolyte solutions under different flow and electric field
conditions, validating our analytical results. Our simulations reveal several interesting
properties arising from the nonlinearity of the advection Nernst—Planck equation, such
as upstream migration of some species, separation of ions depending on the flow strength,
the presence of highly non-Gaussian and bimodal shapes of concentration distribution,
and a non-monotonic dependence of the effective diffusivity on Péclet numbers.

The paper is organized as follows. In §2, we introduce the governing equations for
the transport of multispecies electrolyte solutions in channel domains and provide a
comprehensive overview of effective diffusivity. Section 3 presents the derivation of
the effective equation for the advection Nernst—Planck equation at long times using
homogenization methods. In § 3.2, we outline the effective equation for specific shear
flows in parallel-plate channel domains and circular pipes. Section 3.3 discusses the
self-similarity solution for different types of initial conditions, and presents the formula
for calculating the effective diffusivity using this solution. Section 3.4 compares our
results with those of Taylor dispersion, and highlights the reciprocal property exhibited
by the effective equation. In § 4, we provide the exact solution of the effective equation
for certain parameter combinations, and analyse cases with significant differences in ion
diffusivity. Section 5 validates our analytical results through numerical simulations, and
explores intriguing phenomena resulting from ion—electric interactions. Finally, in § 6, we
summarize our findings and discuss potential avenues for future research.

2. Governing equation and effective diffusivity
2.1. Advection Nernst—Planck equation
We consider the electrolyte solution transport in a channel domain: (x, y) € R x £2, where
the x-direction is the longitudinal direction of the channel, and 22 C R¢ stands for the
cross-section of the channel. Here, n is the outward normal vector of the boundary R x
052, where 02 is the boundary of §2. Some practical examples of the channel boundary
geometry include the parallel-plate channel 2 = {y|y € [0, Ly]} (sketched in figure 1),
the circular pipe £2 = {y|y*> < Lg}, the rectangular duct £2 = {y|y € [0, L,] x [0, H)]},
and bowed rectangular channels (Lee et al. 2021).
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Figure 1. The schematic shows the set-up for the special case of a quadratic shear flow in the parallel-plate
channel domain. A multispecies electrolyte in water exists in the form of dissolved ions. Ions of like charges
repel, while ions of opposite charges attract, due to electrostatic forces. The interplay between the flow and the
ion—electric interactions has a crucial role in determining the behaviour and dynamics of the system.

Denote the concentration and valence of the ith species of ion as c¢;(x,y, ) and z;,
respectively. The concentration evolution of 7 ion species under the shear flow advection
and ionic interaction can be modelled by the Nernst—Planck equation (see § 11.7 in Deen
(1998), or Maex (2013))

KiZje X .
0:c; + V - (uc;) = ki Ac; + T Ve Vep), cix,y,0)=cr; (—) , i=1,...,n,
B
(2.1)

where «; is the diffusivity of the ith species of ion, ¢ (x, y, t) is the electric potential, e is
the elementary charge, kp is the Boltzmann constant, 7 is the temperature, c; ; is the initial
condition of the ith species of ion, and L, is the characteristic length scale of the initial
condition. The second term on the left-hand side of (2.1) describes the fluid flow advection.
The first term on the right-hand side of (2.1) describes the ion diffusive motion, while the
second term represents the electromigration in response to the local electric field.

We assume that the electrolyte solutions are advected passively by a prescribed velocity
field that takes the form u = (u(y, ), 0, ...,0). The function u(y, t) vanishes on the
boundary wall and exhibits periodic time-varying behaviour with period L,. While steady
pressure-driven flow is common in many applications (Price 1988; Leaist & Hao 1993;
Rodrigo et al. 2021), we maintain the general form and time dependence of the flow to
ensure the theoretical framework’s applicability to various scenarios, including blood flow
(Marbach & Alim 2019) and scalar intermittency (Majda & Kramer 1999; Camassa et al.
2021). We impose the no-flux boundary condition for the concentration fields of the ion
species n - (k; Vc; + (kizie/kpT)ci Vo) |rxa2 = 0.

Now there are n conservation equations for n concentration fields, and an unknown
electric potential ¢. An additional Poisson equation can be derived from Gauss’ law, which
is one of Maxwell’s equations of electricity and magnetism. When combined with the
Nernst—Planck equation, it forms the Poisson—Nernst—Planck system (Schmuck & Bazant
2015). However, this work focuses on the case in the absence of an external electric field.
The net charge density is zero almost everywhere. We consider two alternative equations
that serve as reasonable approximations of the Poisson equation in this setting. The first
additional equation arises from the electroneutrality condition ) ", zic; = 0. The second
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condition is the zero electric current condition, given by

n

n
0= ZziJ,- = Zzi (uci —Kk; Ve — % Ci qu) , (2.2)
i=1 B

i=1

which is used commonly in the literature when there is no external electric field
(Ben-Yaakov 1972; Gupta et al. 2019; Tournassat, Steefel & Gimmi 2020; Tabrizinejadas
et al. 2021). Moreover, for the electroneutrality initial data, the zero electric current
condition ensures that the electroneutrality condition is always true (see Boudreau,
Meysman & Middelburg 2004).

Using the zero electric current condition, the gradient of the electric potential can be
expressed in terms of ion concentrations:

n n—1
Y oaiuei—kiVe) Y (kn— i)z Ve
e i=1 i=1
v = - , 2.3)

n—1

n
2
Z Z;KiCj Z(Zi’(i — ZnKn)ZiCi
i=1

i=1

kgT

where the second step follows the electroneutrality condition. Equation (2.3) shows that
the electric potential gradient is induced by the difference in ion diffusivities. When all
diffusivities take the same value, the gradient of the diffusion-induced potential becomes
zero, and (2.1) reduces to the advection—diffusion equation. When there is a difference in
diffusivities, substituting (2.3) into the Nernst—Planck equation (2.1) yields the equation
that will be used mainly in this study:

n—1

Ci Z(Kn — Kj)Zj VCj
j=1

n—1

Y@K — zkn)zc

j=1

oici +u(y, 1) 0xc; = ki Aci +kizi V +

(2.4)

This system of equations exhibits an interesting scaling property, wherein any solution
multiplied by a constant remains a valid solution to the system. Furthermore, if all valences
are multiplied by a constant, then the original solution of the system remains a solution to
the system with the new valences.

We proceed by considering a combination of typical experimental physical parameters,
aiming to identify the dominant factors in the problem and facilitate perturbation analysis.
The diffusivity of the solute is approximately 107> c¢cm? s~!. The length scale of
concentration, denoted as L, ranges from millimetres to centimetres. Meanwhile, the
channel width, denoted as Ly, spans from micrometres to millimetres. As depicted in
figure 2, the advection caused by flow and the diffusion contribute to the phenomenon,
leading to the condition L, > Ly. The characteristic fluid velocity varies from millimetres
per second to centimetres per second. Additionally, apart from microfluidic experiments,
our study also has implications for blood flow scenarios, where a rich variety of

electrolytes are present. Depending on the type of blood vessel, typically their radii range

from 10 to 200 micrometres, and blood velocities vary from 0.1 to 20 cm s~ .
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Figure 2. Experimental photo showing the advection of a sodium fluorescein solution in a pipe through
pressure-driven flow. The purple regions represent the presence of ultraviolet tube lights. Upon exposure to
these lights, the sodium fluorescein solution emits a vibrant green light. The experimental set-up includes a
pump attached to the left-hand end of the pipe, which generates a steady pressure-driven flow to transport the
sodium fluorescein solution towards the right. For the detailed procedure and set-up of the laminar channel
flow experiments, we refer to Aminian et al. (2018).

When an object’s surface is exposed to a fluid, two parallel layers of charge surrounding
the object appear. Specifically, under a strong applied electric field, electro-osmotic flow
occurs (Ghosal & Chen 2012), which has numerous applications in microfluidics. One
might question whether the assumptions of electroneutrality and zero current still hold
in the presence of surface changes. However, in this study, we can neglect the effects of
surface charge for the following reasons. First, the characteristic thickness of the double
layer, known as the Debye length, is typically of the order of nanometres (Hashemi et al.
2018). This is significantly smaller than the characteristic width of the micro-channel,
which ranges from micrometres to millimetres. Second, in the absence of an external
electric field, electro-osmotic flow is negligible compared to the fluid flow imposed by
other factors, such as the pressure-driven flow produced by the pump.

2.2. Effective diffusivity

As demonstrated by many studies (Taylor 1953; Aris 1956; Chatwin 1970; Ding &
McLaughlin 2022b), the solution of the advection—diffusion equation in the channel
domain converges to a Gaussian distribution function at long times. To model this
behaviour, one can use a diffusion equation with an enhanced effective diffusion
coefficient. Therefore, understanding the dependence of the effective diffusion coefficient
on the flow conditions, channel geometries and ion physical parameters is important for
optimizing microfluidic device performance, either enhancing or reducing mixing (Dutta
& Leighton 2001; Aminian et al. 2015, 2016).

The precise definition of the effective diffusion coefficient depends on the initial
condition. In this study, we consider three types of initial conditions. The first type

is an integrable function that vanishes at infinity, such as ¢ ;(x) = (2//7) e~ This
type of initial condition can be used to model the delivery of chemicals with a finite
volume in a capillary tube (see Aminian et al. 2016). In the second type of initial
condition, the concentration field can be expressed as c;(x, y, ) = c;j(00) + ¢i(x, y, 1),
where ¢;(c0) is a constant representing the background concentration, and ¢; is an
integrable function representing the deviation from the background concentration,
for example, ¢y ;(x) = 1+ (2/4/7) e In many experimental studies (e.g. Leaist &
MacEwan 2001; Leaist 2017), the pipe is filled with buffer solutions. In such cases,
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ci(o0) > 0, and ¢; can take negative values as long as ¢; remains non-negative. In the
third type of initial condition, the concentration field tends to a constant value at infinity,
but the values at positive and negative infinity can be different, such as ¢y ;(x) = erf(x) =

(2//m) fg e " dt, which can be used to model the continuous injection of a solution with
a constant concentration into the channel domain (see Taylor 1953). The solutions of the
equations with these three types of initial conditions exhibit different long-time asymptotic
properties, therefore we have treated them separately in our analysis.

For the first type of initial condition, the effective longitudinal effective diffusivity is
given by

) Var(¢;) . 0 Var(c)
i = Jim, — s = lim @5)
ZI/ c;dx 2/ c;dx
—00 —0Q
where
_ 1
ci(x,t) = — f ci(x,y, t)dy (2.6)
12| Jo

is the cross-sectional average of the scalar field c;. Here, |£2] is the area of £2, and

00 00 2
Var(¢;) = / cic® dx — ( / Eixdx) 2.7

is the variance of the cross-sectional averaged concentration field ¢;. In other words, the
asymptotics of the variance is given by

o0
Var(c;) =~ Var(cy ;) + ZZKeff/ cidx, t— oo. (2.8)
—00
For the second type of initial condition, where the background ion concentration is
non-zero, ¢; is not integrable. One can define the effective longitudinal effective diffusivity
via the perturbed concentration

Var(¢; — ¢; 9, Var(¢; — ¢;
Keﬁ,i:thm ar(c; — ¢i(00)) _ lim ¢ Var(c; — ¢;(00)) . (2.9)

o Zr/w G —condr T 2/00 (@ — ci(00)) dr

The solution with the third type of initial condition is also not integrable, but we can
investigate its derivative:

(2.10)

) Var(0,c;) . 0; Var(0xc;)
Keff,i = lim = lim .
T 1200 21(ci(00) — ¢i(—00)) 100 2(ci(00) — ¢i(—00))

Although the diffusion-induced electric potential may cause the concentration field to
deviate from a Gaussian distribution function, we are still interested in computing the
effective diffusivity for several reasons. First, when the electric potential is weak and the
background concentration is non-zero, the solution can be approximated reasonably by a
Gaussian distribution function or error function. Second, as the time approaches infinity,
the longitudinal variance of the concentration field increases linearly, ensuring that the
effective diffusivity remains a well-defined quantity for characterizing the system. Third,
by examining the relationship between effective diffusivity and other physical parameters,
e.g. ion diffusivity, one can devise an experimental method for measuring the latter.
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3. Effective equation

It is possible to develop a simplified model that depends only on the longitudinal variable
and time, given that the length scale in the longitudinal direction of the channel domain is
significantly larger than the length scale in the transverse direction (as shown in figure 2).
By simplifying the model in this way, one can reduce the computational complexity of
the problem while retaining the relevant physical phenomena without compromising the
key features of interest. The homogenization method is a method that is widely used to
achieve this goal, especially for the linear advection—diffusion problem (Camassa, Lin &
McLaughlin 2010; Wu & Chen 2014). Here, we will employ the homogenization method
to derive the effective equation for the nonlinear equation (2.1).

3.1. Homogenization method
The first step is to non-dimensionalize the equation, which helps to identify the dominant
terms. The change of variables for the non-dimensionalization is
2
Ly L

Lx =x, Ly =y, e=-—=,

/
5 =1,
L. ke?

(3.1)

/

och = ¢ id/:qﬁ U’ y't— =u(y,1)
1 1 kBT ’ ’ 62 ’ ’

where ¢ is the characteristic concentration, and « is the characteristic diffusivity. One can
drop the primes without confusion and obtain the non-dimensionalized equation

t
Peu (y, —2) i
L
i + % duci = kit (sci + 2iCid:$) + =5 V- (Vyci + zici Vyd)
1 1
Cili=o = c1,i(x), meki|0xci+ = Vyci+2zici | 0x¢ + — Vyo =0,
€ € Rx082
izl,...,n—l, (32)
n—1
> kn — )z Vi
i=1
V¢ -1 ’
Z(Zi"i — ZnKn)ZiCi
i=1
where Vy, = (9y,, ..., dy,), Pe = LyU/k is the Péclet number, and u(y, 1) has a temporal

period L, = KL,/L%. It is convenient to introduce two different scales in time: ¢ (slow)
and T = 1/€? (fast). Consequently, the differential operators in time will be replaced 8, —
ar+ (1/ €2)d;, and the equation becomes
drc; Pe Ki
+ —u(y, v) 0x¢i = K;i0x(0xCi + 2iCi0xP) + — Vy - (Vyci + zici Vyd)) .
€ €2

8,Cl' + )
‘ (3.3)

Notice that the equation is invariant under the translation in x. For convenience, one can
consider applying the Galilean transformation X = x — (u(y, 7))y, t so that the resulting
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new shear flow u = u — (u(y, 7)), has a zero average, where the average of a function is
defined as

1 L
, = — , 7)dydr. 3.4
s Dy |9|Lt/9/o 1) dydr (3.4)

Assume that the asymptotic expansion of ¢; in the limit e — 0 is

iy, 1) = cio(e,y, 1, T) + € i1 (%, 3, 1, T) + € cin(x,y. 1, T) + O(€). (3.5)
Substituting the asymptotic expansion of ¢; into the formula for ¢ and using the Taylor

expansion yields the asymptotic expansion of ¢, i.e. ¢ = ¢o + €p1 + €2¢y + O(e?). In
particular, the gradients of the first two coefficients are given by

n—1
> (kn — )z Vi
i=1
n—1
Z(Zi/fi — Znkn)ZiCi,0

i=1

Vo =

’

n—1

> en — k)zi Ve

i=1

i=1

n—1 n—1
(Z(Kn — Ki)Zi ch-,o) <Z(Ziki — Znkn)ZiCi,1

i=1

)

Vo = +

n—1

Z(Zi/(i — Znkn)ZiCi,0

2

n—1
(Z(Zi’(i - ZnKn)ZiCi,o>

i=1 i=1

(3.6)

Substituting the expansion of ¢; and V¢ into (3.3) leads to an equation involving the power
series of €. Since the equation holds for arbitrarily small €, the coefficient of each power
of € should be zero, which yields a hierarchy of equations for ¢; .

Grouping all terms of order O(e ~2) and setting the coefficient to be zero yields

drcio = ki Vy - (Vycio + zicio Vo) , Ci,OLZOJZO =cri (x). (3.7a,b)

The initial condition is a function of the variable x only, which means that ¢; o(x, y, t, T) =

ciolx,1),i=1,...,n Consequently, the evolution equation for ¢; ¢ provides the desired

approximation. The goal of this homogenization calculation is to derive this equation.
Grouping all terms of order O(e~!) yields

drcit + Peu(y, ) 0xcio = ki Vy + (Vycit + zici1 Vydo + zicio Vyi) » (3.8)
with the initial condition c¢;1l;=0r=0 =0 and the no-flux boundary condition
n- (Vyci1 +zici1 Vygo + zicio Vyd1)Irxoe =0, i=1,...,n—1. Since c¢;o 1is

independent of y, (3.6) implies

n—1

D (en — k)2 Vycin
-

Vypr = -
yd’l 1

Z(Zilfi — Znkn)ZiCi,0

i=1

Vy¢0 = 0’ (39a,b)
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Therefore, (3.8) is a linear equation of ¢; 1,

dzc1 + Peu(y, t) dyco = D(co) Aycy,

. 0 k121€1,0 [(c1 — k)21, - .o, (Kne1 — Kn)Zn—1]
D= ... — . ,
n—1
0 ... Kkn Kn—1Zn—1Cn—1,0
Z(Ziifi — Znkn)ZiCi,0
i=1
(3.10)
d
where ¢o = (c1,0, ..., Cn-1,0)s €1 = (CL,1,..-,Cn—1,1), Ay = Zi:l 8)%, and Ayc; =
(Ayct,1, ..., Aycy—1,1). Hence the matrix D is the difference of a diagonal matrix and

an outer product of two vectors.
For unsteady shear flow u(y, ), the solution of this diffusion equation can be expressed
as

1 = Pe(—d; + DAy~ (udep) . (3.11)

If the periodic unsteady shear flow admits a Fourier integral representation
u(y, ) = 2m)~1/2 f]R e ii(y, k) dk, then we can obtain the integral representation of ¢;:

¢ = Pe(2m)~1/? / e® iy, k) (—ik + DAy~ dyep dk. (3.12)
R

For the steady shear flow u(y), the expression of ¢; simplifies to
1 =Pe A () D™ 9o, (3.13)

where the inverse of D is available from the Sherman—Morrison formula (see Sherman &
Morrison 1950):

D! @ ’
- 0 1
Kn—1
o [(Iq — Kn)Z1 (Kn—1 — Kn)zn—1:|
x | Loy + D 1 fnl . (3.14)
Kn—12n—1€n—1,0 Kn Zl(Zi — Zn)ZiCi0
iz

where [,,_1 is the (n — 1) x (n — 1) identity matrix. An additional concern is whether
(3.10) is solvable. Fredholm solvability states that the linear equation L¥ = f has a
solution if and only if (fg) = O for any solution of equation £*g = 0, where L* is the
adjoint operator of L. Here, the constant function solves the adjoint problem, and the
solvability condition of (3.10) is guaranteed by the assumption that the average of flow is
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Zero:
(Peu(y, ) E)xco)%r = Pe (u(y, 1:))),7r dxco = 0. (3.15)

Grouping all O(e®) terms yields
0rci0 + 0-cin + Peu(y, T) 0xci

= ki 0x(3xci,0 + 2iCi,00xP0) + ki Vy + (Vycin + zi (ci2 Vo + 2¢i.1 Vot +¢io Vy2)) -
(3.16)
In order to ensure the existence of a solution, the solvability condition requires the forcing
term to have a zero average. When no-flux boundary conditions are imposed and the
divergence theorem is applied, the average of the last term on the right-hand side of the
above equation is shown to be zero. Therefore, the solvability condition can be expressed
as

dcio + Pelu(y, 1) 3xCi,1>y’, = K 0x(9xCi,0 + Zi€i,0 Oxpo). (3.17)
One can eliminate ¢; 1 using (3.11) and obtain the equation of ¢; o:

dico + Pe? 3 (u(DAy — 3;) ™" (udrc0))y,r = dx(Dvdco), (3.18)

where D is defined in (3.10). For the steady shear flow, the equation reduces to
dico + Pe? 3 (uA;  u)y D" Brco = 0:(D D). (3.19)

The constant-coefficient nonlinear equation (3.19) is an approximation of (2.1) in the
limit as € — 0, as well as at long times. It is worth noting that as time elapses, the diffusion
term in (2.1) smooths out the solution, which leads to an increase in the length scale of the
solution L, and a decrease in the ratio € = L, /L.

Finally, it should be noted that the homogenization calculation presented in this paper
is not limited to the equation studied here. In fact, it can be applied to other nonlinear
equations, including the one governing shear-enhanced diffusion in colloidal suspensions
(Griffiths & Stone 2012). Moreover, this method offers a systematic way to obtain
higher-order approximations for these equations.

3.2. Effective equation for some shear flows

This subsection summarizes the effective equation derived by the homogenization method

and presents an explicit expression of the coefficient (uA u)y,r in (3.19) for some
classical flows and the flow used in the numerical simulation.

The inversion of the Laplace operator in (3.19) depends on the domain geometry. In the
parallel-plate channel domain, £2 = {y|y € [0, 1]}, the formula is

u—/ / u(sy) dsy dsp. (3.20)

In the pipe geometry, £2 = {y| |[y| < 1}, the formula for an axisymmetric function u(r),

r=1ly|,1is
rq 5
lu:/ —/ s1u(sy) dsy dsp. (3.21)
0 $2Jo

In the parallel-plate channel domain, the non-dimensionalized pressure-driven shear
flow is u = 4(1 — y)y, where the characteristic velocity is selected to be the maximum
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velocity. To use the conclusion in § 3.1, one has to make a Galilean translation in the
x-direction as mentioned earlier, so that the average shear over the transverse plane has
mean zero. The shear flow in the new frame of reference isu = 4((1 — y)y + é). With this

expression, (uAy_lu)y,, = —2/945, and (3.19) becomes

aeo—o((D+ 2 D 1) 5 (3.22)
tC0O = Ox 945 xCO | - .

The numerical simulation presented in this paper uses a simpler shear flow profile
u(y) = cos(2my), which leads to (uA, ]u)y,, = —1/8n?. The corresponding effective

equation is
Pe? _1
dico =0y | | D+ @D axco | - (3.23)

In the pipe geometry, the non-dimensionalized pressure-driven shear flow in the

mean velocity frame of reference is u = % — 7%, r=|y|. With this expression,

(A, uy - = —1/192, and (3.19) becomes

Pe? 1
oico =0y | | D+ 0 D dxco | - (3.24)

3.3. Self-similar solution of the effective equation

Deriving the exact solution of the initial value problem (3.18) and (3.19) is challenging.
However, investigating the long-term behaviour of the reaction—diffusion equation is
possible, as it typically converges to its similarity solution (Barenblatt & Isaakovich 1996;
Eggers & Fontelos 2008; Wang & Roberts 2013; Gupta et al. 2019). For the first type of
initial condition, where the solution vanishes at infinity, similar to the classical diffusion
equation, the scaling relation of (3.18) and (3.19) allows for a self-similar solution of the
form

1
o) = - Ci). & = % (3.25a.D)

The conservation of mass imposes an additional condition

/ Ci(é)dSZ/ cr,i(x) dx. (3.26)

With the change of variable v =logt, & = ~12x and e(x, 1) =112 C(, 1), (3.19)
becomes

1 § - _
0:C=5C+ 2 %C— Pe? 0 (uA; ' u)y - D(C) ' 9:C + 8:D(C) 0: C, (3.27)
where C = (Cy, ..., Cy—1). The self-similarity solution is the steady solution of this
equation, which satisfies
1 § - _
0=2C+20C— Pe? 0 (uA; ' u)y - D(C) ™" 9:C + 0:D(C) 0 C. (3.28)
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Integrating both side of the equation and using the vanishing condition at infinity reduces
the equation to

3

0=2C- Pe*(uA; ' u)y :D(C) ' 0:C + D(C) 3 C. (3.29)

While the self-similarity solution of the ion concentration may not be a Gaussian
distribution function, it has the property

oo (.¢] xl’l X /2 oo
X eiolx, ) dx = —Ci| —=|dx=1" / "Ci(§) d&. 3.30
[ anmna= [~ Za(Z) [ ea@e 60
This equation implies that the second moment of the ion concentration,
— x“ci(x, y, 1) dydx, (3.31)
1£2] J—oo

grows linearly asymptotically for large ¢. Since ¢; converges to c; o at long times, the
longitudinal effective diffusivity of ith ion defined in (2.5) can be expressed in terms of

Cii

00 00 2
/ X ciolx, r)dx — (/ xciolx, 1) dx)

o = fim = e
2[/ Ci,odx
00 00 2
/ szc,-@)ds—(/ sc,-@)ds)
= L= = —© . (3.32)
2 / Ci(&) de

The previous definition (2.5) required advancing the solution of the governing equation in
the full domain (a high-dimensional space) until the diffusion time scale was resolved. In
contrast, the definition (3.32) presented here requires only solving the steady-state solution
of the effective equation that depends on one variable, which is more computationally
efficient.

Due to the structure of (3.29), we can derive an approximation of the effective equation
as follows. Assume that Co = (Co.1, ..., Cp,n) and Cpe = (Cpe.1, - - ., Cpe,) satisfy the
equations

§

0= Co+D(Co)dCo, 0= % Cpe — <uA;1u> D(Cp,) ' 3:Cp,.  (3.33a,b)
T

e
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Then we have an approximation for the effective diffusivity that is valid at small and large

Pe:
00 00 2
/ §2Co,i($)d$—</ sco,,»@)ds)

Keff,i ~ o0
2 / Co.(E) d
—00

0 00 2
/ sche,,-@)ds—(/ SCPe,i(S)d§>

> / Croi() de

+ Pe? (3.34)

In the numerical simulation presented in the next section, we observe that this
approximation agrees with the effective diffusivity for most Pe values, deviating only for
moderate Pe values (approximately 1-10).

For the second type of initial condition, where the background ion concentration is
non-zero, one can search for the asymptotic expansion of the concentration field in the
form

1 _
cio(x, 1) = ci(00) + —= Ci (§) + ot~ (3.35)
Jt
When c¢j(c0) #0 fori=1,...,n — 1, it is possible to simplify the nonlinear effective

equation to a linear diffusion equation as time approaches infinity. In order to achieve this,
we substitute this expression into (3.19) and take the limit as ¢ tends to infinity, which

yields the equation for C;:

1 - -
0=-C+ % 9:C + 0 (D — Pe*(ud; 'u)y, . D™ H2: C, (3.36)
where D and D! are constant matrices
B K| ... 0
D=
0 ... Kn-q
K121 €1(00) [(Kl — Kn)Zls .-y (Kp—1 — Kn)zn—l]
- PR n_] )
Kn—1Zn—1 Cn—1(00) Z (ziki — Znkn)zi €i(00)
i=1
1
{ .0 L (3.37)

K1

|

0o ...
Kp—1
( ) [(Kl — Kn)Z1 (Kn—1 — Kn)zn—l]
K121 €1(00 1o
« I_|- :| K1 — Kn—1 )
fen—12n—1 €n—1(00) kn 3 (2 — Z)zi €i(00)
i=1
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The constant diffusion tensor implies that for a non-zero background ion concentration,

the perturbed concentrations satisfy a multi-dimensional diffusion equation at long times.

The expression of the diffusion tensor provides a formula for measuring the mutual

diffusion coefficients. It is worth noting that if the background ion concentration is smaller

compared to the perturbed concentration, then the system will take a longer time to reach
this long-time asymptotic state.

For the third type of initial condition, the self-similar solution takes the form
X
ciolx,n) =C;i (§), &= 7 (3.38a,b)

where C;(&) solves

5
2
It is easy to show that the second moment of the derivative of the solution grows linearly
in

1 o0 ) oon X 00 )

— x°0xciolx, y, t)dydx =~ — 0:Ci | — |dx =1t 0:C; (&) dE.

|~Q|/;oo xz,()(y)y »/;oo [§l<ﬁ> /—oog Sl(g)g
(3.40)

0= 2 0:C — Pe’ 9 (uA; 'u)y D" 9:C + 0 D(C) 0 C. (3.39)

Therefore, we can also define the effective diffusivity via the self-similarity solution,

0 00 2
/ §2agCi(€)d§—</ E3sCi(§)dE)
Keff,i = — = —© .
2 / 9 Ci(8) d&

When the diffusion tensor is constant, such as in the case that diffusion-induced electric
potential is negligible, the first and third types of initial conditions result in the same
effective diffusivity, as the equation of the self-similarity solution commutes with the
differential operator. However, if the diffusion tensor varies with concentration, then these
two types of initial conditions can yield different effective diffusivities. Nonetheless, in
the examples presented in the following sections, the relative difference is less than 0.03.

(3.41)

3.4. Comparison to the Taylor dispersion and reciprocal property

When the diffusion-induced electric potential is negligible, all ions are advected
passively by the fluid flow. As a result, the governing equation can be simplified to the
advection—diffusion equation

oici +uly, t)occi = ki Acy, i=1,...,n. (3.42)

The corresponding effective equation has been reported in the literature of Taylor
dispersion (Young & Jones 1991; Taylor 2012; Ding et al. 2021):

Pe* (u(d: — A)~'u),

Ki

0rcio = (Ki + ‘) %cio. i=1,...,n (3.43)

Therefore, (3.19) can be considered to be a generalization of (3.43) with a nonlinear
diffusion tensor taking the place of a scalar diffusion coefficient. Additionally, both
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equations exhibit a ‘reciprocal property’ whereby, under strong shear flow, the system
behaves as if it were a different system with distinct parameters and weak flow.

To see that, using the change of variables k; = k;” : ,Pe = ({(u(0; — A)_lu)yyf I;e)_1 and
x= Peic\/(u(at — A)~lu), . (3.43) becomes

~2 _
Pe <u(81 —A) lu)yyt 3 5 _
oicio = 3 + ki | 9cio, i=1,...,m, (3.44)
1

which retains the same form, but with the transformed parameters. Hence (3.43) with large
Péclet numbers (representing strong flow) corresponds to (3.44) with small Péclet numbers
(representing weak flow).

Next, we show that the effective equation (3.19) for the Nernst—Planck system with
steady flow has the same property. The equivalent form of (3.19) is

n—1 i K
] — RKn
Ci,0 E Zj 0xCj,0
j=1

Kj

1
deio = P u(=a)7"u) | = 82ci0 + 2
T Ki

1

n—1

Kn Y (@i — Zn)iCi0

i=1
n—1
ci0 Y (Kn = K))zj 0xCj.0
J=1
n—1 ’
Z(ZjKj — ZnKn)ZjCj0

j=1

+ «; ch,-,o + KizZi Ox

After rescaling using k; = 1/k;, Pe = ({u(d; — A)_lu)y,t IBé)_], ¢i0 = Ci0/Kis 2i = KiZi

andx = PeX,/ (u(—A)_lu)y,T, the above equation becomes

n—1
Ci,0 Z(I?n — Kj)Zj 0%Cj,0
j=1

~ ~ a2~ -~
Ci,o = Ki 95Ci0 + Ziki I | ——

> Giki — Znkn)ziCi0

i=1

+ ﬁez <u(—Ay)_1u>

Lo
= 0:Cio + 2 0k
yr | Ki

n—1
Rn Y Gi—ZnEiio
i=1
i=1,...,n—1. (3.46)
Similar to the scenario where the diffusion-induced electric potential is negligible, after
the change of variable, the resulting equation takes the same form as (3.45), albeit with
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different parameters. Hence (3.45) with large Péclet numbers (representing strong flow)
corresponds to (3.46) with small Péclet numbers (representing weak flow).

The reciprocal property observed in the effective equations has two implications. First,
in the limit of large Péclet numbers, it simplifies the problem to the Nernst—Planck
equation in the absence of flow. Second, it establishes a correspondence between
phenomena observed in systems with and without flow, allowing us to expect similar
behaviour in different systems.

Finally, akin to the governing equation (2.4), the effective equations also demonstrate
the following scaling properties. Any solution multiplied by a constant remains a valid
solution to the system. Moreover, if all valences are multiplied by a constant, then the
original solution of the system remains valid for the system with the new valences

4. Theoretical results for two or three different ion species

In this section, a series of examples will be analysed to gain a deeper understanding of
how individual ion diffusivities interact and impact the overall dynamics of dissolved salt.

4.1. Two different ion species

We first consider the simplest example where the solution consists of two different type of
ion species. When n = 2, the diffusion tensor provided in (3.10) and its inverse matrix are
scalars. Effective equation (3.19) becomes a diffusion equation:

K1k2(21 — 22) _ K121 — K222
9C1.0 = Kefr 10210, Kefr1 = | ———— 2 — P (uATly) —— 22 ).
50 ffs X ,O ffs y
K121 — K222 y.1 K1k2(21 — 22)

(4.1a,b)

Deen (1998) shows that in the absence of flow, the Nernst-Planck equation reduces to
a diffusion equation with a constant diffusion coefficient x1x2(z1 — 22)/ (k121 — K222).
The calculation here verifies that this result also holds in the presence of the shear flow.
Therefore, the transport of binary electrolyte solution can be described by the classical
Taylor dispersion theory.

4.2. Three different ion species
Many physical systems contain three different ion species, such as the ternary electrolyte
solutions and the mixture of two of the binary electrolyte solutions, e.g. the mixture of

sodium fluorescein and sodium chloride. When n = 3, the diffusion tensor provided in
(3.10) and its inverse matrix depend on the ion concentrations, in contrast to the case with
n=2:

o — ciki(kr — k3)z23 B cik1 (k2 — K3)2122
D— c1z1(k121 — k323) + c222(Kk222 — K323) c1z1(k121 — K323) + 222 (k222 — K323) ’
B caka (k1 — k3)2122 o 22 (k2 — K3)Z3
c1z1(k1z1 — k323) + c222(k222 — K323) c1z1(k1z1 — k323) + c222(k222 — K323)
c2k322(22 — 23) + c1z1(k121 — K323) c1(k2 — K3)7122
p-l_ | KiKs (c1z1(z1 —z3) + c222(z2 — 23)) KoKz (c121(21 — 23) + 222(22 — 23))
(k) — K3)2122 c1k321(21 — 23) + 222 (K222 — K323)
ki3 (c1z1(z1 — z3) + 222(z2 — 23))  Kk2k3 (c121(z1 — 23) + 222(22 — 23))
4.2)
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4.2.1. Exact solutions

In contrast to the binary electrolyte case, the presence of nonlinearity in the system makes
it generally challenging to obtain an exact self-similarity solution. However, in certain
special cases, we can still derive exact solutions. For the sake of simplicity and without
loss of generality, let us assume that the first and second ion species carry charges of the
same sign, whereas the third ion species carries a charge of the opposite sign.

The first special case arises when k| = 3. In this situation, we can effectively treat the
first and second types of ions as a single type, thereby simplifying the system to a scenario
with two ion species. For the first type of initial condition, (3.29) for the self-similarity
solution becomes

O=§C1+085C1 =%—C2+035C2,

o — (A (k122(z2 — 21) + k3(21 + 22) (21 — 23))
k1 (23 +23) — k3(z1 + 22)23

»,T

(u(=Ay) ") Pe? (k1z1(z1 + 22) — K3 (22(23 — 22) + 21 (22 + 23)))
n - . (@43)
ki3 (27 + 25 — (@1 + 22)23)

The self-similarity solutions are given by

[m61,1(x)ﬁ 17\ [wcl,z(x)ﬁ 176\
Ci(§) = ——F———exp ——<;> L GE) =2 exp __(_) .

oA/ 2T 2 oN2T 2 \o
(4.4a,b)

The second special case arises when k> = k3, where the diffusion tensor (4.2) becomes

. K1 (K2 — K1)2122€1
. _
D— zic1(k121 — K123) + 2202 (K222 — K123)
0 x K2 (K2 — K1)Z5C2 '
, -
zic1 (K121 — K123) + 2202 (K222 — K123)
K151 — K12321¢1 + K122(22 — 23) 2 (k2 — K1)Z122€]
D! — Kt (zie1 — z3z1c1 + 22(22 — 23)¢2) Kika (zie1 — z3zicr + 22(22 — 23)¢2)
0 Kizicr — k1232101 + 2262 (K2Zo — K123)
K1k (zier — z3zier + (22 — 23))
4.5)
The self-similarity solutions are
C = ay g(&)P VB D hg) Cy = ap g(&)M /BT (g,
(z1 + 22 g(S))Kl(ZZ—ZI)ZZ(K32+P€2)/dl(K1(21—22)+K3(Zz—23))
h&) = - 5 ,
(k12121 = 23)d3 — 22dy g(§)) =My ne P i (1 mi)s s ddsd
dy = /<12 — (uA;lu)y,rPez, dr) = K22 — (uA;lu)y,fPez, (4.6)
d3 = —(uA;lu)y,,Pe2 — K1K2,

dy = _<MA;1u>y,rPez (k123 — Kk222) + K12K2(Zz —23),

ds = —(MA;lu)y,rPe2 (k222 — K121) + KTK2 (21 — 22),
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where

&k = k) (1 — ) ) ' @)

_ 1
s6)=7s (al 42 — (uAy u), , Pe?)

Here, a; and a; are constants that can be determined by the total mass of each ion species,

and ! is the inverse of the function

<MA;1u>y,rPez diki (k1 — k2)?k325 (21 — z3) log (dazox + daki (23 — 21)21)
dsdads
log(xz + z1) (—(uAy“u)y,,Pe2 (k121 — k222)% + kK3 (21 — Z2)2>

ds

f =

drk1(z3 — z1) log(x)
+ .
d3

In general, the closed form expression of the moment of the above exact solution is
unavailable, necessitating the computation of the effective diffusivity through numerical

(4.8)

integration.
Next, we present two examples that will be discussed in the following section. When
the diffusivities and valences are k1 = 1, ko = 0.1, k3 =1,z1=1,20 =1, z3 = —2 and

Pe = 0, the self-similarity solutions are

10a;  5&2
@EP\ 97 T

Ci1(¢) = (4.9a,b)

If ffooo Ci1(¢)dE = ffooo Cr(£)dé =1, then we have a; =~ 4.18439, ap; ~ 0.29164 and
Kefr,1 2 11774, kepr,2 = 0.117514, kopr,3 =~ 0.647457.

When the diffusivities and valences are 1 =1, ko =10, k3 =1, 71 =2, 20 = 2,
73 = —3 and Pe = 0, the self-similarity solutions are

o (20 9)
5 s
9 4
(oo (5 (%)) +2)
(4.10)
a exp (_M)
360
CZ(S) = 1 9 5 2/5°
(Zexp (5 (a1 + %)) + 2)

If [%,Ci(§)ds = [ C2(§)dé = 1, then we have a) ~ —3.12729, ap ~ 0.23872 and
Kefr,1 22 0.825144, ko 2 ~ 2.55403, ko3 ~ 1.84843.

Finally, for certain combinations of valences, the exact solution is obtainable. However,
the solution may become lengthy when the Péclet number is non-zero. Here, we present
only the exact solutions for the combination where z; = 1,20 = 1, z3 = —1 and Pe = 0,

970 A27-19


https://doi.org/10.1017/jfm.2023.626

https://doi.org/10.1017/jfm.2023.626 Published online by Cambridge University Press

L. Ding

which has been used in many studies (Price 1988; Gupta et al. 2019; Ribeiro et al. 2019;

Rodrigo et al. 2022):

( 52(K1+K3))
aexp | ——2

8Kk1K3

C1¢) =

4.2.2. Large diffusivity discrepancy

(4.11)

In numerous scenarios, there is often a significant disparity in diffusivity between ions,
with one ion being extremely diffusive compared to the others, or conversely, one
ion exhibiting significantly slower diffusion. For example, this discrepancy is observed
frequently in systems under acidic conditions, where hydrogen ions can be nearly 10 times
faster than all other ions (Vanysek 1993). Conversely, in the presence of larger ions, such as
polyelectrolytes or buffered proteins (Leaist & Hao 1993), their diffusivity may be smaller

compared to the other ions.

Therefore, it is intriguing to examine the dynamics of the system when there is a
significant difference in diffusivity between ions. First, we consider the limit of large
diffusivity. One might anticipate that if the diffusivity of one ion species tends to infinity,
then the effective diffusivity of all ion species would diverge. However, the asymptotic

expansion of (4.11) for kp = oo is

2 2
a % exp (§— ) +K3))

diy 8Kk1k3

é:2 3/2
8/(2 <a1 exp (4_Iq> + 1>

( 52(K1+K3)>
exp | ————2

8K1K3

2
\/al exp (%) + 1

Cié)=a

+ +0 (k%) |,
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which reveals that, contrary to expectations, the self-similarity solution converges to

a limiting distribution, and the effective diffusivities of the ion species converge to a
finite value. To demonstrate this more rigorously, we consider the limit as k; — 00. The
diffusion tensor (3.29) takes the form

p _K]Z]Cl
D 1 2262
| & —k3)z K1Z3C1 — K32321C1 + K325C2 — K32223C2 |
2 e
Ki1Zic1 — k3232101 + K322(22 — 23)C2 2122€1
p-1_ | ks (zic1 —zzici + 2 — 23)2) k3 (gfer — 232101 + 22(22 — 23)¢2)

(K1 — K3)212202 5ea

ki3 (gfer — z3zic1 + 2(2 — 3)e2) k3 (Ffer — maicr + 22(22 — 23)e2)

4.13)
In this case, the self-similarity solutions are
Ci=a g(%-)(K3Z3_KIZI)/K] (z1—22)+x3(22—23) h(€),
C=w g(s)(’(l—K3)Z2/—KIZI+(K1—K3)ZZ+K3Z3 h(€),
(z1 + 22 g(g))ducz(m —22) (K121 —K222) /d5 (k2 —K1) (21 —23)
h(€) = ,
© (k1K321 (3 — 21) + oz g(§)) 5 P di/dihlir i) Ga=2)
dy = _<MA;1M>y,rPez 22 + k1k3(21 — 22),
dr = —(uAy_lu)y,rPe2 22 + k1k3(23 — 22),
dy = _<uA;1u>y,1:Pez (k323 — Kk121) + K1k3 (K1(22 — 21)23 + €321(23 — 22)) »
dy = k721 — 22)° — (A, 'u)y  Pe* 25,
ds = kK3 (21 —23)° = (A u)y o Pe® (121 — Kk323)°,
4.14)

where g(&) =f_1(a1 + %Sz(lq(zl —22) + k3(z0 — z3))). Here, a; and ap are constants
that can be determined by the total mass of each ion species, and £ ! is the inverse of the
function

dslog(x)  da(k — (A, ), Pe) log(xza + 21)
f = -
K1k3(21 — 23) d
—(uA;l Uy, Pe? d3 log (k1k321 (21 — 23) — xda22)

~ . (4.15)
didrk1k3(z1 — 23)

Next, we consider the same parameters used in (4.10), except for the diffusivity of the
second ion species, which is assumed to be infinite in this case. Using the formula above,
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the self-similarity solutions are

(-5)
aexp| —=
Ci(E) = h Co(E) = 4t (4.16a,b)

£2 2/5° 2 £2 2/5°
on())” " (aon() )

For [0 C1(§)dg = [°0 C2(§)dE = 1, we have a; ~ 0.48018, ap ~ 0.35928, key,1 ~
0.647516, k1,2 ~ 3.04934 and k7 3 ~ 0.987248. Several observations can be made from
these results. First, when comparing these approximations with the effective diffusivities
obtained using (4.10), it becomes evident that the error of this asymptotic approximation is

of the order of «, ! To obtain a more accurate approximation, it is necessary to calculate

the «, ! terms in the asymptotic expansion. Second, in this case, the effective diffusivities
of all three ion species are lower than their respective bare diffusivities. Additionally, even
if the diffusivity of the second ion species is extremely high, the diffusion-induced electric
potential constrains the effective diffusivity of that particular ion species. Finally, when
the third ion species is significantly more diffusive compared to the remaining ions, the
results exhibit similar behaviour. However, for brevity, we will omit the discussion of this
case here.

We consider the limit of small diffusivity, which can be divided into two cases. In the
first case, we consider the limit k3 — 0. In the absence of flow, all self-similarity solutions
collapse to a Dirac delta function, resulting in the vanishing of all effective diffusivities.
To obtain non-trivial results, it is necessary to consider terms of O(x3) in the asymptotic
expansion. In the presence of flow, the dominant term in the effective equation (3.29) is

D!, which can be expressed in the form

2
zicr - 22(z2 — 23)c2 — 2123€ 7122€1  2122C1
Dl — Kk3dy Kk1dy Kk3dy K2dy
- k)
2122€2  2122€2 z%cz z%q — 2321C1 — 2223C2 4.17)
K3d) Kk1d K3d) K2d)
di = zic) — 37101 + 22(22 — 23) 2.

Therefore, for non-zero Péclet numbers, the effective diffusivities scale as K3 ! for small
K3.

In the second case, we consider the limit kp — 0. Unlike the limit k3 — 0, in this
scenario, the concentration distribution for some ion species converges to a non-trivial
limiting distribution. Taking (4.11) as an example, for small x», the concentration
distribution for the second ion species becomes localized near £ = 0. The distribution
of the first ion species can be approximated by a Gaussian function for £ away from the
origin. The distribution of the third ion species is similar to the distribution of the second
ion species near the origin, but closer to the distribution of the first ion species away from
the origin.
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The effective diffusivities converge to the following values:

. K1k3 (21 — 23) p 0
eff,1 = s eff, 2 — Y,
o K121 — K323 7

o0

. / c1(0) dr

—0oQ
2 o
szf crj(x) dx
=1 0T

K1k3 (21 — 23) (4.18)
K121 — K323

Keff,3 =

We can interpret these results as follows. Some ions from the third species bind with the
second ion species and remain localized at the origin, while the remaining ions bind from
the third species to the ions from the first species and diffuse throughout the channel.
Consequently, the difference in diffusivities leads to ion separation. We will investigate
this phenomenon further in § 5.2.

In the presence of flow, the dominant term in the effective equation (3.29) is D~!, and

the effective diffusivity scales as «, ! for small «».

5. Numerical results

In this section, we will investigate the electrolyte transport through numerical simulations.
The numerical simulations employed in this study hold several implications. First,
it is important to note that the effective equation is a valid approximation at the
diffusion time scale, wherein the concentration field becomes homogenized across the
channel. However, prior to reaching the diffusion time scale, the asymptotic results
obtained through the homogenization method are not applicable. Therefore, we rely
on numerical simulations to examine the dynamics of the concentration during this
initial stage. Second, we utilize numerical simulations to validate the accuracy of the
effective equation obtained through the homogenization method at the diffusion time
scale. The results indicate that the solution of the effective equation approximates reliably
the solution of the full governing equation. Third, the effective equation (3.19), which
incorporates nonlinearity, introduces various intriguing phenomena that are not observable
in binary electrolyte solutions. These phenomena will be explored through numerical
simulations.

For our simulations, we employ the Fourier spectral method as described in Ding &
McLaughlin (2022b), which utilizes an implicit—explicit third-order Runge—Kutta method.
Specifically, we employ the explicit Runge—Kutta method to integrate the advection terms
and diffusion-induced electric potential terms, while the diffusion term is integrated using
the implicit Runge—Kutta method.

The computational domain is (x,y) € [—8m, 8w] x [0, 1]. The shear flow is u(y) =
Pecos2my, and the corresponding effective equation is provided in (3.23). We choose
this flow for two reasons. First, it can be fully resolved in the Fourier spectral algorithm
and ensures higher accuracy. Second, the flow profile is close to the pressure-driven flow.
When the background concentration is non-zero, the system can be described by the Taylor
dispersion theory. In this section, the initial conditions, diffusivities and valences are
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Nernst—Planck equation, Pe =2, 1=0.2 Advection—diffusion equation, Pe =2,7=0.2

¢,(x, ), max(c,) = 0.54249 ¢ (x, ), max(c;) = 0.57686
—15 -1.0 0.5 5 —15 -1.0 -0.5 5

(%, 1), max(cz)—l 1243 (d) (%, 1), max(cz)—l 181
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¢5(x, ), max(c;) = 0.78843 ( f ) ¢5(x, y), max(c;) = 0.86464

0.9
—15 -1.0 0.5 —15 -1.0 0.5
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Figure 3. Numerical solution to (a,c,e) (2.4) and (b.d,f) (3.42), at t = 0.2 with Pe = 2. The initial condition,
diffusivities and valences are provided in (5.1). The black dashed lines depict the shape of the shear flow profile.

assumed to be of the following form unless stated otherwise:

w(5G))

cj1=cip = , o=—-, Kk1=1, k=01 k3=1, .
1,1 1,2 o/ I 1 2 3 6.
=1 =1 zz3=-2

5.1. Transverse variations

The concentration fields in the channel undergo a transition from an initially
inhomogeneous distribution to a homogenized distribution over long time scales. To
study the dynamics of this transition, which cannot be captured by the homogenization
calculation, we begin by performing numerical simulations of the governing equation
(2.4), which reveal that the system undergoes complex behaviour as it approaches the
homogenized state.

Figures 3(a,c,e) show the solution of (2.4) at an early stage, = 0.2. For comparison,
figures 3(b,d, f) present the result when the electric potential is negligible, i.e. the solution
of the advection—diffusion equation (3.42). When the simulation time is small compared
to the diffusion time scale, the shear flow advection dominates, and one would expect
the concentration field to follow the shear flow profile, as shown in figures 3(b.d,f). In
figures 3(a,c,e), the concentration fields of the second and third ion species also follow the
shear flow profile. However, for the first ion species, the concentration field does not follow
the expected behaviour, and instead bends in the direction opposite to the shear flow, as
shown in figure 3(c). This behaviour is the result of the electric interaction between ions.
Both the first and second ion species are cations, so the repulsive electromagnetic force
pushes ions away from each other. If one of them follows the shear flow profile, then the
other one will bend in the opposite direction. As a result, the second ion species visually
migrates upstream.
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Nernst-Planck equation, Pe =2, =2
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Figure 4. (a—c) Numerical solutions to (2.4) at t = 2 with Pe = 2. The initial condition, diffusivities and
valences are provided in (5.1). (d) The thicker curves represent the cross-sectional average of concentration
fields presented in (a—c), with ¢(x, 1) = (1/|$2]) f o ¢(x, y, 1) dy. The thinner curve represents the solution of
effective equation (3.23). The complete dynamics of the simulation in (a—c) can be observed in supplementary
movie 1, available at https://doi.org/10.1017/jfm.2023.626.

It is interesting to see how concentration distribution changes at larger time scales where
diffusion has a greater influence. Figures 4(a—c) present the numerical solution for (2.4)
at a larger time ¢ = 2. As expected, all concentration profiles are more blurred due to
diffusion. The concentration profiles of the first and second ions still bend in opposite
directions. In figure 4(d), we compare the cross-sectional averaged concentration field with
the solution to the effective equation (3.23) that was derived using the homogenization
method. The curves overlap perfectly, demonstrating the validity of the homogenization
calculation. It is worth noting that due to the assumption of the asymptotic analysis,
the effective equation is valid for small € or large ¢, where € = L, /L, and L, and L,
are characteristic lengths of the initial condition and the channel width, respectively. In
this numerlcal test case, we have L, = 4, Ly =1 and € = 4. The diffusion time scale is
max(/c1 Ky . Ky hy =10, indicating that the parameter regime for the effective equation
to reach a good approximation is larger than thought previously.

The variations of the concentration field across the channel are different for a stronger
flow. Figure 5 presents the numerical solutions to the advection Nernst—Planck equation
(2.4) for a stronger flow with Pe = 8 at r = 0.2 and = 1. We have several observations.
First, the effect of flow becomes more prominent over the ion—electric interaction, resulting
in all concentration profiles bending in the direction of the shear flow. This is in contrast
to the case of weak flow, where the concentration profiles of the first and second ion
species bend in opposite directions due to the ion—electric interaction. Second, at the early
stages, there is a clearer separation between the first and second ion species, with the
majority of the first ion species remaining near their original positions, while the second
ion species are pushed away by the electromagnetic force. However, due to diffusion,
the solutions homogenize, and the separation becomes weaker as time increases. This
homogenization is evident in figures 5(b,d, f), where the separation is no longer visible.
The third observation is that the different ion species have different spreading rates in the
longitudinal direction. The second ion species, with the smallest diffusivity, spreads the
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Nernst—Planck equation, Pe =8, 1=0.2 Nernst-Planck equation, Pe =8, =1
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Figure 5. The numerical solution to (2.4), with Pe =8 at (a,c,e) t = 0.2, and (b,d,f) t = 1. The initial
condition, diffusivities and valences are provided in (5.1). The complete dynamics of the simulation can be
observed in supplementary movie 2.
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Figure 6. (@) Comparison between the variance of the numerical solutions for (2.4) (thicker curves) and
their theoretical asymptotics (thinner curves), in log-log scale. The numerical solutions at # = 2 are plotted

in figure 4. The asymptotics of the variance is provided in (2.8). In this case, Var(c;) ~ 2t kef,; + o2, where
o= % and k. ; is defined in (3.32). (b) The infinity norm of 9, C as a function of t, where C solves (3.27).

most. These unexpected results highlight the importance of studying effective diffusivity
in understanding the transport of ions in micro-channels under flow conditions.

5.1.1. Dependence of the effective diffusivity on Péclet numbers
In this subsection, we will further explore the dependence of the variance of the
cross-sectional averaged concentration and the effective diffusivity on the Péclet numbers.
Figure 6(a) compares the variance of the longitudinal distribution of the numerical
solution to the theoretical variance asymptotics for Pe = 2 and the parameters provided in
(5.1). At a larger time scale, the variance grows linearly, and converges to the asymptotics
expansions, demonstrating the validity of the asymptotic analysis.

To calculate the effective diffusivities defined in (2.5), we approximate them using
the derivative of Var(c;) at t = 5, resulting in ke, 1 = 1.1614, kepr 2 = 0.55829, kofr 3 =
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Figure 7. (a) The effective diffusivities as functions of the Péclet number Pe. The inset shows the functionsfor
Péclet numbers from 1 to 10. The three curves intersect at Péclet number approximately 3. (b) The relative
difference between the effective diffusivity and its approximation provided in (5.2). The solid red curve
represents the first ion species, the dashed blue curve represents the second ion species, and the dotted black
curve represents the third ion species.
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0.85984. On the other hand, (3.32) allows us to calculate the effective diffusivity via the
self-similarity solution. Notice that the self-similarity solution is the steady solution of
(3.27). Therefore, we can obtain the self-similarity solution by solving the initial value
problem (3.27) until the solution reaches a steady state. Figure 6(b) plots the infinity
norm of d;C as a function of t, which verifies that the solution of the initial value
problem converges to the self-similarity solution. Integrating the self-similarity solution
yields kg1 = 1.1618, kepr,2 = 0.558978, k3 = 0.860387. The effective diffusivities
calculated by the two different methods are consistent, demonstrating that self-similarity
can characterize accurately the system’s dynamics at long times. As an additional
verification, we also solve the equivalent equation (3.29) for the self-similarity solution
using NDSolve in Mathematica, and the results are consistent up to six significant digits.

Figure 7(a) shows the effective diffusivities as functions of the Péclet number Pe for
the parameters provided in (5.1). We make three observations. First, in classical Taylor
dispersion given by (3.43), the effective diffusivity increases monotonically with the
Péclet number. In contrast, when considering the diffusion-induced electric potential, the
effective diffusivities of some ion species may exhibit non-monotonic behaviour with
respect to the Péclet number, as shown in the inset of figure 7(a). Second, the species
exhibiting the largest effective diffusivity can vary depending on the Péclet number.
For instance, at small Péclet numbers, the first ion species demonstrates the highest
effective diffusivity. However, when the Péclet number is approximately 3, all three ion
species exhibit the same effective diffusivity. Conversely, at large Péclet numbers, the
second ion species displays the greatest effective diffusivity. These findings align with the
observations depicted in figures 4 and 5. Third, for large Péclet numbers, the effective
diffusivity scales as Pe?, which is the same as the classical Taylor dispersion.

Using the exact solution (4.6) and (4.9a,b), the approximation of effective diffusivities
(3.34) becomes

= 1.1774x1 + 0.84036 .2 = 1.17514k2 + 0.71643
Ker1 = 1. K . ,  Kern = 1. K . ,
(4 ,1 1 8 2[(1 (4 ,2 2 2[{
(5.2)
= 0.64746k3 + 4.00232
K . K . .
off-3 3 8m2k3
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Figure 7(b) displays the relative difference between the effective diffusivity and its
approximation, revealing that the approximation performs well for both small and large
Péclet numbers. In a microfluidic experiment, a typical flow speed can be 0.2 cm s~ !, the
channel width is 0.05 cm, and the diffusivity of the solute is approximately 107> cm? s~ !,
resulting in Péclet number 1000. The aforementioned approximation performs well in this
parameter regime.

We are interested in comparing these results with two other ‘naive’ approaches. In the
first approach, we neglect the diffusion-induced electric potential and assume that all ions
are advected passively by the shear flow. As a result, the governing equation simplifies
to the advection—diffusion equation. In this case, the effective diffusivities for each ion
species can be calculated as

Pe? .
KeffJ:Ki—Fm’ 1= 1,2,3. (53)

In the second approach, we assume that the solution is a mixture of two binary
electrolytes. We further assume that there is no interaction between these two electrolytes,
and they are passively advected by the shear flow. The first binary electrolyte consists of
the first and third ion species, while the second binary electrolyte consists of the second
and third ion species. By employing the formula for binary electrolytes as presented in
(4.1a,b), we can determine the diffusivity of the first and second binary electrolytes to be
1 and ,l,, respectively. In this case, the effective diffusivities for each ion species can be
calculated as

. 0 v 7 PP aageey 07t
Keff.1 = K . Keffa = — Ky + — ~ 1. K ) ,
o ! 812k 2= 7T 812k> 2 812k> (5.4)
e a P o5 1a |
Kelf.3 = 7 3 8m2k3 e 3 8m2k3y’

In this example, (5.3) fails to provide a good estimation for the effective diffusivity
of the three ion species. As we expected, since (5.4) takes into account the ion—electric
interaction in each binary electrolyte, (5.4) is closer to (5.2) than (5.3). Both (5.3) and (5.4)
underestimate the effective diffusivity of the first ion species for small Péclet numbers, and
overestimate it for large Péclet numbers compared to (5.2). Interestingly, for the effective
diffusivity of the second and third ion species, (5.4) differs from (5.2) for small Péclet
numbers, while it is very close to (5.3) for large Péclet numbers. Therefore, treating
the electrolytes in the mixture independently may describe the effective diffusivity for
some ion species with a reasonable error, but it may not correctly describe the effective
diffusivity for all ion species.

Finally, it is worth noting that the effective diffusivity resulting from the initial
conditions of the same type is the same. However, when the initial conditions belong
to different types, even if the physical parameters and mass ratio are the same, the
resulting effective diffusivity can be different. For instance, when the initial conditions
are given by ¢;1 = ¢ = 1 +erf(x/2)/2, with Pe =2 and the same diffusivities and
valences provided in (5.1), the effective diffusivities are kepr 1 = 1.1554, kofr 2 = 0.55242
and k.3 = 0.85392. This result differs from the case when the initial condition is
the Gaussian distribution function. While the relative difference in effective diffusivity
between the initial conditions considered here is small, it is worth noting that this may
not always be the case. In other parameter regimes, the difference in effective diffusivity
between different initial conditions could be more significant.
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Figure 8. (a) The upper plot shows the numerically solved self-similarity solution of the effective equation
(3.28). The initial condition, diffusivities and valences are provided in (5.1). The lower plot shows the ratio of

each component, C;/ Z?:l C;. (b) The blue solid curve represents M (§*) and is associated with the left-hand
y-axis. The red dashed curve represents M (§*) /M1 (£*) and is associated with the right-hand yaxis.

5.2. lon separation

After the solute has been homogenized across the channel, the concentration distribution
is described by a self-similar solution of the effective equation (3.28). In some parameter
regimes, this self-similarity solution exhibits properties that differ from the case without
the diffusion-induced electric potential. Here, we examine the shape of this solution, and
explore these unique properties in more details.

The upper plot of figure 8(a) displays the self-similarity solution C;(§) for Pe = 0,

where & = x/4/t. Interestingly, C;(£) exhibits a highly non-Gaussian shape and is not
even unimodal. It is important to mention that deviations from regular Gaussian profiles

are due to the ion—electric interaction and can be observed without relying on the shear

flow. In the lower plot of figure 8(a), we plot the ratio of each component C;/ 21'3:1 Ciasa

function of &. The ratio of the third ion species is almost constant, while the ratios of the
first and second ion species vary significantly. At small values of &, there are more second
ion species than first ion species, while at large &, there are virtually no second ion species
in the relative sense. These results imply a spontaneous separation of ions.

By keeping the solution to the region |&| > &* for some threshold &£*, which is practical
for experimental implementation, we can obtain a solution that consists predominantly of
the first and third ions, which implies that we can separate one binary electrolyte from the
mixture of three ion species. To investigate the ion separation qualitatively, we plot the

mass of each component M;(£*) = fﬁé* Ci(&) dE + f;f C;(€) d¢ and their ratio M, /M,

—00
as functions of £* in figure 8(b). For example, by allowing a tolerance ratio M, /M; = 0.1,
we can choose £* ~ 0.9003, which keeps the mass M; = 0.6145. Note that this method
can separate approximately 61 % of the binary electrolytes consisting of the first and third
ion species from the mixture of three ion species, given that the total mass of the first
ion species is 1. If the tolerance ratio decreases to M, /M7 = 0.01, then we can choose
£* ~ 1.3409, which still retains 41 % of the first ion species.

In the presence of a shear flow, the ion separation may be weakened. Figure 9
summarizes the results for the case where the Péclet number is Pe = 2. In this case,
the concentration profiles C; become unimodal functions that are close to Gaussian
distributions. Although there are still very few second ion species present in the solution
for large £*, the amount of first ion species that can be retained through separation is much
smaller compared to the case without flow. To illustrate this, we consider a tolerance ratio
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Figure 9. (a) The upper plot shows the self-similarity solution of the effective equation (3.28) with Pe = 2.
The initial condition, diffusivities and valences are provided in (5.1). The lower plot shows the ratio of each

component, C;/ Z?:I C;. (b) The blue solid curve represents M1 (§*) and is associated with the left-hand y-axis.
The red dashed curve represents M» (§*) /M1 (™) and is associated with the right-hand y-axis.

M, /M = 0.1. The optimal value of £&* that achieves this ratio is found to be £* = 3.0741,
and the mass of the separated first ion species is M1 = 0.04121. If we reduce the tolerance
ratio to Mp /M = 0.01, then the optimal value of £* is approximately £* ~ 4.7011, but the
mass of the separated first ion species is much smaller, with M1 = 0.001477. These results
suggest that the separation of different ion species is weaker in the presence of a shear
flow, indicating that the flow strength plays an important role in the separation process.

This example suggests that the presence of a shear flow can weaken the separation
of different ion species, highlighting the importance of flow strength in the separation
process. On the other hand, this can be rationalized by observing figure 7, where the
effective diffusivities of the three ion species converge to the same value, approximately
Pe = 3. As Pe approaches 3, the dispersion rates of the three ion species become closer,
resulting in weaker separation. However, when the Péclet number increases beyond 3, the
difference in effective diffusivities increases, which results in stronger separation. Figures
5(b.d,f) illustrate this phenomenon, where the second ion species exhibits the highest
dispersion. Consequently, at larger values of x, the solution consists predominantly of
the second and third ions. This effect becomes even more pronounced at higher Péclet
numbers.

Figure 10(a) illustrates the self-similarity solution for Pe = 100, using identical
diffusivities and valences. Surprisingly, the result is contrary to that observed when
Pe = 0. Specifically, at small values of &, the first ion species outnumber the second ion
species, whereas at large £, the relative abundance of first ion species becomes negligible.
Figure 10(b) displays M>(¢) and M /M5 as functions of £*. In this scenario, it is possible
to obtain a solution that consists mainly of the second and third ion species by retaining
the solution at & > &*, while still preserving a reasonable amount of the second ion
species. For instance, if we allow a tolerance ratio M/M; = 0.1, then we can select
&* ~ —28.3, resulting in mass M = 0.51308. Notably, this approach allows the separation
of approximately 61 % of the binary electrolytes comprising the first and third ion species
from the mixture of three ion species, considering that the total mass of the first ion species
is 1. If we reduce the tolerance ratio to M»/M; = 0.01, then we can choose £* ~ —41.33,
which still retains 33.5 % of the first ion species.

Finally, the reciprocal property discussed in § 3.4 suggests that the observed phenomena
in this specific system could also manifest in different systems. To illustrate this, we
present an example that highlights the reciprocal property and demonstrates how ion
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Figure 10. (a) The upper plot shows the self-similarity solution of the effective equation (3.28) with Pe = 100.
The initial condition, diffusivities and valences are provided in (5.1). The lower plot shows the ratio of each
component, C;/ 21‘3:1 C;. (b) The blue solid curve represents M7 (§*) and is associated with the left-hand y-axis.
The red dashed curve represents M (§*)/M> (&™) and is associated with the right-hand y-axis.
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Figure 11. The normalized self-similarity solution for effective equation (3.28) with Pe =100 and the
diffusivities k1 = 1, ko = 10, k3 = 1, valences z; = 1, 2o = 0.1, Z3 = =2 (or equivalently, z; = 10, Z» =

1, z3 = —20), and the initial condition ¢; 1 = (1/0+/27) e_1/2<"/")2, ¢r2 = (10/o/27) e_l/z("/o)z, where

o =

I

separation, observed in the aforementioned system without fluid flow, can occur in a
different system characterized by strong fluid flow. By employing the change of variable
described in § 3.4, we establish an equivalence between the system discussed previously
and the system with K1 =1, k=10, k3=1, 1 =1, 23 = 0.1, Z3 = —2, and initial
conditions ¢7,1 = (1/0«/%) e~ 1/20/0)? and Cro = (lO/o«/ﬂ) efl/z("/")z, where o =
%. We proceed to solve numerically the self-similarity solution of the transformed system
with Pe = 100, and present it in figure 11. According to the reciprocal property, the
normalized solution should be equivalent to the solution of the original system with
Pe = WIO' In fact, the solution of the transformed system closely resembles the solution
depicted in figure 8, demonstrating that the highly non-Gaussian shape and lack of
unimodality can exist in the presence of strong flow.

5.3. Limiting concentration

The concentration-dependent diffusion-induced electric potential gives rise to variations in
the effective diffusivities of the ion species. Table 1 presents the effective diffusivities for
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Ratio 0.01 0.1 0.5 1 2 10 100

Pe=0  Ke1 1.00297 1.02772 1.10914 1.1774 1.26774 1.5464 2.0527
kefr2  0.100359  0.103251  0.111673 0.117514 0.12373  0.13505  0.14135
kefr3 0994038 0.943682  0.776652  0.647457  0.50507  0.26336  0.16028

Pe=2 ke 1.05214 1.06501 1.11424 1.16179 1.22965  1.44014  1.74591
kefr2  0.605669  0.598014  0.57506 0.558975  0.542145 0.513617  0.500019
kefr3  1.04772 1.02256 0.93452 0.860384  0.771314  0.597846  0.512355

Table 1. Effective diffusivity for different mass ratios of the second and first ion species,
[, cadx/ [°2 ¢y dx. The parameters are k1 = 1, ko = 0.1, k3 = 1,21 = L, zp = 1,23 = —2.

different mass ratios of the second and first ion species, ffooo cpdx/ f_oooo c1 dx, with fixed
diffusivities and valences: k1 =1, kp =0.1, k3 =1, z1 =1, 2o =1 and z3 = —2, and
two different Péclet numbers, Pe = 0 and 2. The table shows that the triplet of effective
diffusivities (kefr,1, Keff,2, Keff,3) varies widely as the mass ratio increases from 0.01 to
100.

As the mass ratio of the second and first ion species decreases to zero, the solution
becomes dominated by the first and third ion species, and the effective diffusivity can be
calculated using the formula for binary electrolytes in (4.1a,b):

— Pe? - 1
@) | Pk mian gy L o5, (5.5)

Keff.1 = Keff.3 = — =
1 1 K121 —k3zz  81? kik3(z1 — 23) 2m2

As shown previously in figures 8 and 9, for these physical parameters, ¢ is much larger
than ¢, for large x. Therefore, the mass ratio of the second and first ion species decreasing
to zero implies that ¢2/c; — O for all x. As a result, the diffusion tensor D + Pe? D!
provided in (4.2) becomes

K1k3(z1 — 23) P_€2 K121 — K323 P_62 (k2 —Kk3)z K1k — K3)22
K121 — K323 812 kik3(z1 —z3)  8m2 Kkok3(z1 — 23) KIZL— K333 | (56
Pe?
8m2k>

0

Therefore, the formula for .z > remains the same as the formula in classical Taylor
dispersion (3.43),
i + 2~ 0.606606 (5.7)
K =K+ -—=—+—5=0. , .
W22 Rk, T 10 w2
which suggests that when the concentration of the second ion species is much smaller than
that of the first and third ion species, the second ion species can be considered as advected
passively by the shear flow and is decoupled from the first and third ion species.
In the opposite limit, where the mass ratio of the second and first ion species tends to
infinity, the effective diffusivities of the second and third ion species converge to
Kak3(z2—23) | P Kz —k3zz 17
Keff.2 = K =4+ — —— = -4+ — 0497481, (5.8
" T3 - | 8@ —n) T 2% 69
which is consistent with the formula for binary electrolytes in (4.1a,b). Although we
may expect the first ion species still follows the formula of the Taylor dispersion,
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Keff,1 = K1 + Pez/8n2/q =1+ 1/27(2 ~ 1.05066 is inconsistent with the value presented
in table 1. The reason is that the limit ffooo cpdx/ ffooo c1 dx — oo does not necessarily
imply ¢3/c1 — oo uniformly for all x according to the exact solution (4.9a,b), and the
conditions for the previous asymptotic analysis are not valid. Due to the nonlinearity of
the problem, it is difficult to find a closed-form expression for k.1 in this limit.

The classical theory of Taylor dispersion has been used to study the effective diffusivity
of a solute in a channel, taking into account factors such as molecular diffusivity, channel
cross-sectional geometry, and flow rate. Using the measured effective diffusivities, the
molecular diffusivity can be calculated easily by determining the geometry factor and
flow rate. This technique has been used widely for diffusivity measurement (Bello et al.
1994; Leaist 2017; Taladriz-Blanco et al. 2019). However, as we have demonstrated in this
section for a multispecies electrolyte solution, the effective diffusivity is also dependent
on the concentration ratio of the components. This finding suggests that the Taylor
dispersion method can be used to identify the relative concentrations of the components
in a multispecies electrolyte mixture.

6. Conclusion and discussion

This paper presents a theoretical and numerical study on the interplay between shear
flow advection and ion—electric interaction in electrically neutral multispecies electrolyte
solutions within a channel domain, without the presence of an external electric field.

The governing equation for this system is the advection Nernst—Planck equation, given
as (2.1). In order to simplify the analysis, we have derived an effective equation using
homogenization methods, which captures the behaviour of the system at the diffusion
time scale or when the length scale of the initial data is much larger than the channel
width. For unsteady shear flows, the effective equation is represented by (3.18), while for
steady shear flows, it is given by (3.19). Importantly, the effective equation depends only
on the longitudinal variable of the channel and time, making it easier to solve compared to
the governing equation, while still capturing its essential features. Furthermore, we have
included the explicit form of the effective equation for several commonly encountered
channel geometries and flow conditions. For instance, (3.22) is the effective equation
for pressure-driven flow in a parallel-plate channel domain. Similarly, (3.24) provides the
effective equation for flow in a circular pipe.

Several conclusions have been drawn from the analysis of the effective equation. First,
it has been observed that the solution to the effective equation (3.18) converges to a
self-similarity solution described by (3.28) at long times. By examining the scaling
properties of this self-similarity solution, it has been demonstrated that the concentration
distribution’s variance increases linearly over time. Furthermore, the self-similar solution
of the effective equation can be utilized to calculate the effective diffusivity using (3.32).
Second, it has been shown that the nonlinear effective equation can be approximated by
a diffusion equation when the background concentration is non-zero. This approximation
provides a formula for measuring the mutual diffusion coefficients. Third, it has been
demonstrated that the effective equation exhibits a reciprocal property, meaning that a
system with weak flow is equivalent to a system with strong flow and appropriately scaled
physical parameters. Furthermore, we obtain the exact self-similarity solution for the
effective equation involving three ion species in some cases. When the diffusivities of two
ions are equal, the solutions are described in (4.4a,b) and (4.6). For a special combination
of the valences of the ions, the solution is given in (4.11). Finally, we provide asymptotic
analyses for ions with significant diffusivity discrepancies. When one ion species has
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an extremely large diffusivity compared to the remaining ions, we offer an asymptotic
approximation for the self-similarity solution in (4.14). Conversely, when one ion species
has an extremely small diffusivity, the effective diffusivity can be approximated using
(4.18).

In addition to the analytical results, to validate our analytical findings, we have
conducted numerical simulations, which reveal several interesting properties arising
from the nonlinearity of the advection Nernst—Planck equation. First, we observe that
ion—electric interaction can dominate shear flow, resulting in some species moving in
the direction opposite to the shear flow. Second, different ion species can separate at
the early stage or at the diffusion time scale, and the degree of separation can be
increased or decreased by the shear flow, depending on the physical parameters. Third,
effective diffusivity can be a non-monotonic function of the Péclet number, in contrast
to Taylor dispersion where the effective diffusivity increases monotonically with the
Péclet number. Fourth, when the initial conditions belong to different types, even if the
physical parameters and mass ratio are the same, the resulting effective diffusivities can
be different. Fifth, even with the Gaussian initial condition, the longitudinal distribution
of the concentration can have a highly non-Gaussian shape and may not be unimodal.
Sixth, the relationship between effective diffusivity and concentration offers a method to
calculate the ratio of each component’s concentrations.

Future study could include several directions. First, while we focused mainly on
solutions with three ion species in our numerical simulations, it would be interesting to
extend the study to solutions with more components. Second, the current study considers
only straight channel domains, but the inclusion of curved boundaries would provide
insight into many practical applications, such as manufacturing a passive mixer for
micro-channels (Stroock et al. 2002; Stone, Stroock & Ajdari 2004; Ajdari, Bontoux &
Stone 2006; Oevreeide et al. 2020), modelling fluid flows over rough surfaces (Carney
& Engquist 2022), analysing solute transport in rivers (Fischer 1969; Yotsukura & Sayre
1976; Smith 1983) and modelling blood vessels (Marbach & Alim 2019). Third, while
our study considers the scalar advected passively by the fluid flow, future research could
explore the full coupling of the ion—electric interaction with the fluid equation such as
a Nernst—Planck—Euler system (Ignatova & Shu 2021), providing a more comprehensive
understanding of the system’s behaviour. Finally, our study explores primarily the system
in the absence of an external electric field. However, by introducing an applied external
electric field, the electro-osmotic flow becomes significant. This can lead to the emergence
of nonlinear macro-transport equations, resulting in non-Gaussian solute profiles (Ghosal
& Chen 2010, 2012). Additionally, the time-varying external field can generate an
asymmetric rectified electric field (Hashemi et al. 2018), which in turn affects solute
transport. Exploring these cases would be of great interest for extending our study.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jtm.2023.626.

Acknowledgements. I would like to acknowledge the inspiration for this study provided by R. Hunt and
Professor R.M. McLaughlin, who brought the paper Gupta et al. (2019) to my attention. In addition, I thank the
anonymous referees, whose comments improved the quality of the paper.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Lingyun Ding https://orcid.org/0000-0002-4622-3694.

970 A27-34


https://doi.org/10.1017/jfm.2023.626
https://orcid.org/0000-0002-4622-3694
https://orcid.org/0000-0002-4622-3694
https://doi.org/10.1017/jfm.2023.626

https://doi.org/10.1017/jfm.2023.626 Published online by Cambridge University Press

Shear dispersion of multispecies electrolyte solutions

REFERENCES

AJDARI, A., BONTOUX, N. & STONE, H.A. 2006 Hydrodynamic dispersion in shallow microchannels: the
effect of cross-sectional shape. Anal. Chem. 78 (2), 387-392.

ALESSIO, B.M., SHIM, S., GUPTA, A. & STONE, H.A. 2022 Diffusioosmosis-driven dispersion of colloids:
a Taylor dispersion analysis with experimental validation. J. Fluid Mech. 942, A23.

AMINIAN, M., BERNARDI, F., CAMASSA, R., HARRIS, D.M. & MCLAUGHLIN, R.M. 2016 How boundaries
shape chemical delivery in microfluidics. Science 354 (6317), 1252-1256.

AMINIAN, M., BERNARDI, F., CAMASSA, R., HARRIS, D.M. & MCLAUGHLIN, R.M. 2018 The diffusion
of passive tracers in laminar shear flow. JoVE (J. Vis. Exp.) 135, e57205.

AMINIAN, M., BERNARDI, F., CAMASSA, R. & MCLAUGHLIN, R.M. 2015 Squaring the circle: geometric
skewness and symmetry breaking for passive scalar transport in ducts and pipes. Phys. Rev. Lett. 115 (15),
154503.

ARIS, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A
235 (1200), 67-77.

ARIS, R. 1960 On the dispersion of a solute in pulsating flow through a tube. Proc. R. Soc. Lond. A 259 (1298),
370-376.

AULT, J.T., WARREN, P.B., SHIN, S. & STONE, H.A. 2017 Diffusiophoresis in one-dimensional solute
gradients. Soft Matt. 13 (47), 9015-9023.

BARENBLATT, G.I. & ISAAKOVICH, B.G. 1996 Scaling, Self-Similarity, and Intermediate Asymptotics:
Dimensional Analysis and Intermediate Asymptotics. Cambridge University Press.

BELLO, M.S., REZZONICO, R. & RIGHETTI, P.G. 1994 Use of Taylor—Aris dispersion for measurement of a
solute diffusion coefficient in thin capillaries. Science 266 (5186), 773-776.

BEN-YAAKOV, S. 1972 Diffusion of sea water ions — I. Diffusion of sea water into a dilute solution. Geochim.
Cosmochim. Acta 36 (12), 1395-1406.

BHATTACHARYYA, S., GOPMANDAL, P.P., BAIER, T. & HARDT, S. 2013 Sample dispersion in
isotachophoresis with Poiseuille counterflow. Phys. Fluids 25 (2), 022001.

BiaGioNI, V., CERBELLI, S. & DESMET, G. 2022 Shape-enhanced open-channel hydrodynamic
chromatography. Anal. Chem. 94 (46), 15980-15986.

BOUDREAU, B.P., MEYSMAN, F.J.R. & MIDDELBURG, J.J. 2004 Multicomponent ionic diffusion in
porewaters: Coulombic effects revisited. Earth Planet. Sci. Lett. 222 (2), 653—-666.

CAMASSA, R., DING, L., KiLIC, Z. & MCLAUGHLIN, R.M. 2021 Persisting asymmetry in the probability
distribution function for a random advection—diffusion equation in impermeable channels. Physica D 425,
132930.

CAMASSA, R., LIN, Z. & MCLAUGHLIN, R.M. 2010 The exact evolution of the scalar variance in pipe and
channel flow. Commun. Math. Sci. 8 (2), 601-626.

CARNEY, S.P. & ENGQUIST, B. 2022 Heterogeneous multiscale methods for rough-wall laminar viscous flow.
Commun. Math. Sci. 20 (8), 2069-2106.

CASALINI, T., SALVALAGLIO, M., PERALE, G., MASI, M. & CAVALLOTTI, C. 2011 Diffusion and
aggregation of sodium fluorescein in aqueous solutions. J. Phys. Chem. B 115 (44), 12896-12904.

CHATWIN, P.C. 1970 The approach to normality of the concentration distribution of a solute in a solvent
flowing along a straight pipe. J. Fluid Mech. 43 (2), 321-352.

CHATWIN, P.C. 1975 On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes.
J. Fluid Mech. 71 (3), 513-527.

CUSSLER, E.L. 2013 Multicomponent Diffusion, vol. 3. Elsevier.

DEEN, W.M. 1998 Analysis of Transport Phenomena, vol. 2. Oxford University Press.

DING, L., HUNT, R., MCLAUGHLIN, R.M. & WOODIE, H. 2021 Enhanced diffusivity and skewness of a
diffusing tracer in the presence of an oscillating wall. Res. Math. Sci. 8, 34.

DING, L. & MCLAUGHLIN, R.M. 2022a Ergodicity and invariant measures for a diffusing passive scalar
advected by a random channel shear flow and the connection between the Kraichnan-Majda model and
Taylor—Aris dispersion. Physica D 432, 133118.

DING, L. & MCLAUGHLIN, R.M. 2022b Determinism and invariant measures for diffusing passive scalars
advected by unsteady random shear flows. Phys. Rev. Fluids 7 (7), 074502.

DING, L. & MCLAUGHLIN, R.M. 2023 Dispersion induced by unsteady diffusion-driven flow in parallel-plate
channel. Phys. Rev. Fluids 8 (8), 084501.

DuTtTA, D. & LEIGHTON, D.T. 2001 Dispersion reduction in pressure-driven flow through microetched
channels. Anal. Chem. 73 (3), 504-513.

EGGERS, J. & FONTELOS, M.A. 2008 The role of self-similarity in singularities of partial differential
equations. Nonlinearity 22 (1), R1.

FISCHER, H.B. 1969 The effect of bends on dispersion in streams. Water Resour. Res. 5 (2), 496-506.

970 A27-35


https://doi.org/10.1017/jfm.2023.626

https://doi.org/10.1017/jfm.2023.626 Published online by Cambridge University Press

L. Ding

GANOR, N., RUBIN, S. & BERcovICI, M. 2015 Diffusion dependent focusing regimes in peak mode
counterflow isotachophoresis. Phys. Fluids 27 (7), 072003.

GHOSAL, S. & CHEN, Z. 2010 Nonlinear waves in capillary electrophoresis. Bull. Math. Biol. 72 (8),
2047-2066.

GHOSAL, S. & CHEN, Z. 2012 Electromigration dispersion in a capillary in the presence of electro-osmotic
flow. J. Fluid Mech. 697, 436-454.

GOPMANDAL, P.P. & BHATTACHARYYA, S. 2015 Effects of convection on isotachophoresis of electrolytes.
Trans. ASME J. Fluids Engng 137 (8), 081202.

GRIFFITHS, [.M. & STONE, H.A. 2012 Axial dispersion via shear-enhanced diffusion in colloidal suspensions.
Europhys. Lett. 97 (5), 58005.

GUPTA, A., SHIM, S., ISSAH, L., MCKENZIE, C. & STONE, H.A. 2019 Diffusion of multiple electrolytes
cannot be treated independently: model predictions with experimental validation. Soft Matt. 15 (48),
9965-9973.

HASHEMI, A., BUKOSKY, S.C., RADER, S.P., RISTENPART, W.D. & MILLER, G.H. 2018 Oscillating
electric fields in liquids create a long-range steady field. Phys. Rev. Lett. 121 (18), 185504.

HOSOKAWA, Y., YAMADA, K., JOHANNESSON, B. & NILSSON, L.-O. 2011 Development of a multi-species
mass transport model for concrete with account to thermodynamic phase equilibriums. Mater. Struct.
44, 1577-1592.

IGNATOVA, M. & SHU, J. 2021 Global solutions of the Nernst—Planck—Euler equations. SIAM J. Math. Anal.
53 (5), 5507-5547.

LEAIST, D.G. 2017 Quinary mutual diffusion coefficients of aqueous mannitol 4 glycine + urea + KCI and
aqueous tetrabutylammonium chloride + LiCl + KCI + HCI solutions measured by Taylor dispersion.
J. Solution Chem. 46 (4), 798-814.

LEAIST, D.G. & HAO, L. 1993 Diffusion in buffered protein solutions: combined Nernst—Planck and
multicomponent Fick equations. J. Chem. Soc. Faraday Trans. 89 (15), 2775-2782.

LEAIST, D.G. & MACEWAN, K. 2001 Coupled diffusion of mixed ionic micelles in aqueous sodium dodecyl
sulfate + sodium octanoate solutions. J. Phys. Chem. B 105 (3), 690-695.

LEE, G., LUNER, A., MARZUOLA, J. & HARRIS, D.M. 2021 Dispersion control in pressure-driven flow
through bowed rectangular microchannels. Microfluid Nanofluid 25, 34.

Liu, C., SHANG, J. & ZACHARA, J.M. 2011 Multispecies diffusion models: a study of uranyl species
diffusion. Water Resour. Res. 47, W12514.

LYKLEMA, J. 2005 Fundamentals of Interface and Colloid Science: Soft Colloids, vol. 5. Elsevier.

MAEX, R. 2013 Nernst—Planck Equation, pp. 1-7. Springer.

MAIJDA, A.J. & KRAMER, P.R. 1999 Simplified models for turbulent diffusion: theory, numerical modelling,
and physical phenomena. Phys. Rep. 314, 237-574.

MARBACH, S. & ALIM, K. 2019 Active control of dispersion within a channel with flow and pulsating walls.
Phys. Rev. Fluids 4 (11), 114202.

NGO-CONG, D., MOHAMMED, F.J., STRUNIN, D.V., SKVORTSOV, A.T., MAI-DUY, N. & TRAN-CONG, T.
2015 Higher-order approximation of contaminant transport equation for turbulent channel flows based on
centre manifolds and its numerical solution. J. Hydrol. 525, 8§7-101.

OEVREEIDE, [.H., ZOELLNER, A., MIELNIK, M.M. & STOKKE, B.T. 2020 Curved passive mixing
structures: a robust design to obtain efficient mixing and mass transfer in microfluidic channels.
J. Micromech. Microengng 31 (1), 015006.

PoISSON, A. & PAPAUD, A. 1983 Diffusion coefficients of major ions in seawater. Mar. Chem. 13 (4),
265-280.

PrRICE, W.E. 1988 Theory of the Taylor dispersion technique for three-component-system diffusion
measurements. J. Chem. Soc. Faraday Trans. 84 (7), 2431-2439.

RIBEIRO, A.C.F., BARROS, M.C.F., VERISSIMO, L.M.P., ESTESO, M.A. & LEAIST, D.G. 2019 Coupled
mutual diffusion in aqueous sodium (salicylate 4+ sodium chloride) solutions at 25 °C. J. Chem. Thermodyn.
138, 282-287.

RODRIGO, M.M., ESTESO, M.A., RIBEIRO, A.C.F., VALENTE, A.J.M., CABRAL, AAM.T.D.P.V.,
VERISSIMO, L.M.P., MUSILOVA, L., MRACEK, A. & LEAIST, D.G. 2021 Coupled mutual diffusion
in aqueous paracetamol + sodium hydroxide solutions. J. Mol. Lig. 334, 116216.

RODRIGO, M.M., VALENTE, A.J.M., ESTESO, M.A., CABRAL, AAM.T.D.P.V. & RIBEIRO, A.C.F. 2022
Ternary diffusion in aqueous sodium salicylate + sodium dodecyl sulfate solutions. J. Chem. Thermodyn.
174, 106859.

SCHMUCK, M. & BAZANT, M.Z. 2015 Homogenization of the Poisson—Nernst—Planck equations for ion
transport in charged porous media. SIAM J. Appl. Maths 75 (3), 1369-1401.

970 A27-36


https://doi.org/10.1017/jfm.2023.626

https://doi.org/10.1017/jfm.2023.626 Published online by Cambridge University Press

Shear dispersion of multispecies electrolyte solutions

SHERMAN, J. & MORRISON, W.J. 1950 Adjustment of an inverse matrix corresponding to a change in one
element of a given matrix. Ann. Math. Statist. 21, 124-127.

SMITH, R. 1982 Contaminant dispersion in oscillatory flows. J. Fluid Mech. 114, 379-398.

SMITH, R. 1983 Longitudinal dispersion coefficients for varying channels. J. Fluid Mech. 130, 299-314.

STONE, H.A., STROOCK, A.D. & AJDARI, A. 2004 Engineering flows in small devices: microfluidics toward
a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381-411.

STROOCK, A.D., DERTINGER, S.K.W., AIDARI, A., MEZIC, I., STONE, H.A. & WHITESIDES, G.M. 2002
Chaotic mixer for microchannels. Science 295 (5555), 647-651.

TABRIZINEJADAS, S., CARRAYROU, J., SAALTINK, M.W., BAALOUSHA, H.M. & FAHS, M. 2021 On the
validity of the null current assumption for modeling sorptive reactive transport and electro-diffusion in
porous media. Water 13 (16), 2221.

TALADRIZ-BLANCO, P., ROTHEN-RUTISHAUSER, B., PETRI-FINK, A. & BALOG, S. 2019 Precision of
Taylor dispersion. Anal. Chem. 91 (15), 9946-9951.

TAYLOR, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond.
A 219 (1137), 186-203.

TAYLOR, M. 2012 Random walks, random flows, and enhanced diffusivity in advection—diffusion equations.
J. Discrete Continuous Dyn. Syst. 17 (4), 1261.

TOURNASSAT, C., STEEFEL, C.I. & GiMMI, T. 2020 Solving the Nernst—Planck equation in heterogeneous
porous media with finite volume methods: averaging approaches at interfaces. Water Resour. Res. 56 (3),
€2019WR026832.

VANYSEK, P. 1993 Ionic Conductivity and Diffusion at Infinite Dilution. In CRC Hand Book of Chemistry and
Physics, pp. 5-92. CRC.

VEDEL, S. & BRUUS, H. 2012 Transient Taylor—Aris dispersion for time-dependent flows in straight channels.
J. Fluid Mech. 691, 95-122.

WANG, W. & ROBERTS, A.J. 2013 Self-similarity and attraction in stochastic nonlinear reaction—diffusion
systems. SIAM J. Appl. Dyn. Syst. 12 (1), 450-486.

Wu, Z. & CHEN, G.Q. 2014 Approach to transverse uniformity of concentration distribution of a solute in a
solvent flowing along a straight pipe. J. Fluid Mech. 740, 196-213.

YOTSUKURA, N. & SAYRE, W.W. 1976 Transverse mixing in natural channels. Water Resour. Res. 12 (4),
695-704.

YOUNG, W.R. & JONES, S. 1991 Shear dispersion. Phys. Fluids A 3 (5), 1087-1101.

YUAN-HUI, L. & GREGORY, S. 1974 Diffusion of ions in sea water and in deep-sea sediments. Geochim.
Cosmochim. Acta 38 (5), 703-714.

970 A27-37


https://doi.org/10.1017/jfm.2023.626

	1 Introduction
	2 Governing equation and effective diffusivity
	2.1 Advection Nernst--Planck equation
	2.2 Effective diffusivity

	3 Effective equation
	3.1 Homogenization method
	3.2 Effective equation for some shear flows
	3.3 Self-similar solution of the effective equation
	3.4 Comparison to the Taylor dispersion and reciprocal property

	4 Theoretical results for two or three different ion species
	4.1 Two different ion species
	4.2 Three different ion species
	4.2.1 Exact solutions
	4.2.2 Large diffusivity discrepancy


	5 Numerical results
	5.1 Transverse variations
	5.1.1 Dependence of the effective diffusivity on Péclet numbers

	5.2 Ion separation
	5.3 Limiting concentration

	6 Conclusion and discussion
	References

