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Abstract
The value-creation opportunities enabled by the ubiquitous availability of data indisputably
lead to the necessity of restructuring innovation processes. Moreover, the variety of
stakeholders potentially involved in innovation processes and the apparent heterogeneity
of scenarios and contexts imply much less established practices and routines and not yet
constituted reference frameworks to lead the transition to data-driven product innovation.
In this context, the paper attempts, from the analysis of the data-driven innovation processes
of 36 Italian companies, to recognise the emerging innovationopportunities offered by the rich
network of the resulting data flows. However, these opportunities also imply new tasks, which
in turn raise further concerns. Building on data-driven design literature and on industrial
practices in the field of innovation management, the authors discuss the role that research
achievements in the field of engineering design can play in addressing such concerns.

Keywords: data-driven design, digitalisation, digital design paradigm, innovation process,
digital innovation

1. Introduction
The set of technological advances brought about by digitalisation have enabled
radical changes in products that have become ‘smart’, in processes that have
abandoned their physical nature to become ‘digital’, and in services that are
consequently enabled by such smart products and digital processes (Cantamessa
et al. 2020; Verhoef et al. 2021). These changes are often accompanied by disrup-
tion in business models, industries and value chains, whereby ‘servitisation’ has
become a pervasive phenomenon and ‘digital’ corporations have now risen to the
top of the market capitalisation league tables.

Since digital technology has led to changes in many industries throughout the
world, it is reasonable to presume that innovation processes, design and product
development have consequently been affected.

Digitalisation, in particular, has been having consequences on designers, both
individually and when they are part of a team, thus leading to changes in design
processes (Porter & Heppelmann 2014; Bstieler et al. 2018; Cantamessa et al. 2020;
Jiao et al. 2022). Moreover, digitalisation has induced a shift in the use of digital
product data and also extended the types of data that can be used. Data, in fact, can
be derived from both customers/users (‘demand-side data’) and the production/
distribution chain (‘supply-side data’) (Cantamessa et al. 2020), or they can be
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specifically related to the features, performances or operating processes of a product,
or to all such aspects throughout the product lifecycle (Wellsandt et al. 2015). Data
may also be generated by different sources (‘sensor-collected, user-generated, expert-
generated and internal/external documents’; Lee & Ahmed-Kristensen 2023) and
acquired through various channels (Zero-, First-, Second-, Third-party data;
Khatibloo et al. 2017). Among others, a value chain perspective is deemed
appropriate to reveal the organisational and operational consequences of digital-
isation (Cantamessa et al. 2020), especially since a distinction into demand-side
and supply-side is useful in analysing technological paradigm transitions like the
digital one. ‘Any technological paradigm (in fact) ideally is fostered by supply and
demand-side elements’ (Dosi 1982; Cantamessa et al. 2020).

The ubiquity of data has correspondingly been enabling advancements in data
analytics, which, in turn, aid design decision-making processes (Van Horn et al.
2012), allow product innovation opportunities, but also imply challenges and
operational changes in product development. However, these process changes
have not yet been accompanied by any theoretically-framed or structured support,
although proposals of practices to guide product design processes within data-
driven innovation environments are emerging (e.g., Cao et al. 2021; Liu et al. 2022).

Therefore, the aim of this paper has been to determine what data flows
characterise data-driven innovation processes. The objective has been to validate,
at least partially, the challenges and concerns resulting from the literature, which can
be associated with the data flows and can be discussed in light of the engineering
design resources currently available to designers. The paper considers the definition
of ‘challenge’, according to theOxford dictionary, as a ‘new or demanding task’ that
could test the current abilities and skills of designers, and ‘concern’ as an issue
brought about by digitalisation that causes ‘shared solicitous regard, anxiety or
worry’ in designers.

The paper builds upon the relational model of Cantamessa et al. (2020) and its
following extensions –specifically Kim 2022 – which depict the new paradigm of
data-driven design, and attempts to overcome their limitations. It does so through
the analysis of 36 case studies of data-driven innovation processes, by considering a
greater number of involved actors and discussing engineering design practices in
light of the challenges and concerns that have emerged. As such, the paper can be
seen as an extension of the works of Cantamessa et al. (2020) and Kim (2022), with
the goal of validating and complementing those models.

The ultimate objective of the concluding discourse about engineering design
practices is to identify relevant topics emerging from this knowledge domain that
can support data-driven innovation and, at the same time, anticipate directions of
further development for engineering design research.

The paper is structured as follows: first, the Literature Review outlines the
challenges and concerns that arise from the usage of data by distinguishing the data
type and roles; this section is followed by the identification of the gap in the
literature and a reflection on the original contribution of the paper. The Method-
ology section then presents and briefly describes the analysed companies. Finally,
the Results and Discussion are illustrated and followed by possible Implications
and Conclusions.
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2. Literature review
The ‘Digitalisation’ of product and process data has been characterising the
evolution of product development processes for more than four decades. Since
early digitalisation processes, product/process information migrated to digital
models, which allowed product information to be conveniently generated and
stored, and then to shift to ‘virtual product models’. However, such a ‘fast forward’,
which involved the substitution of hand drawings with CAD models, the integra-
tion of simulations and experimental data through Product Data Management
(PDM) tools and the transition to Product Lifecycle Management (PLM) systems,
has led to the progressive broadening of product digital data, from the micro-
perspective of an individual designer to the multiple dimensions of enterprise
operations and product life stages (Terzi et al. 2010).

Although product development was able to boast well-established practices of
using digital data or integration processes with external data, digitisation was
beginning to completely change the environment in which product development
took place and, consequently, the role data could play as digital-based antecedents
of innovation (Agostini et al. 2020; Luo 2023). Hence, the purposes of and the roles
that data can play in aiding design and development activities are overviewed
hereafter, together with a discussion about how data forces design and develop-
ment to integrate with other business processes to enable innovation.

2.1. Customers’ or users’ data as sources of needs, preferences
and behaviour

Amazon’s story highlights the power that digital data processes provide with
respect to traditional ones (Moore & Tambini 2018). Walmart was gathering more
than 2.5 petabytes of data every hour from its customers’ transactions already a
decade ago (McAfee et al. 2012), and General Electric has become the leading
manufacturing industry in managing customers’ data and designing service offer-
ings (Davenport & Dyché 2013).

Customers’ data are mainly collected by recording the purchasing behaviour of
customers through the observation of individual choices (Lesser et al. 2000), by
investigating customers’ preferences (e.g., Stone & Choi 2013; Jin et al. 2016; Ng &
Law 2020) and sometimes by analysing customers’ complaints and claims (e.g.,
Park & Lee 2011). It is apparent that these elements can guide product develop-
ment in defining and choosing design alternatives (e.g., Park& Lee 2011; Gangurde
& Akarte 2013), even if they change over time and, therefore, need to be continu-
ously tracked. In this sense, customers’ reviews (e.g., Tucker & Kim 2011) or social
mediamining (e.g., Jeong et al. 2019; Choi et al. 2020) aremore able to address such
dynamic capturing requirements.

Users’ data are gathered in parallel from people who use products and services
or from users’ stakeholders (Cantamessa et al. 2012, 2016). In the same way as
Facebook or LinkedIn collect data to suggest new personal contacts, Netflix
continuously adapts its content offer according to individual daily choices of
fruition. Nowadays, this usually occurs in digital services, but it is increasingly
happening for products since designers integrate users’ data with product ones
(Ferguson et al. 2015) or because smart products are able to provide data about
users or their usage during use (Wang et al. 2019). Smart speakers, such as Alexa,
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pick up conversations, and Tesla collects more data than most car companies, that
is, data that spans from a vehicle’s location and a car’s settings to short video clips
from the car’s external cameras.

Users’ data also allow the users’ profiles (users’ psychological and social
characteristics, physical and sensory characteristics, demographics, ISO 20282-1
section 7, 2006), behaviour, needs and preferences to be detected, and this leads to
the product features that are explicitly linked to the users’ experiences being
recognised (Timoshenko & Hauser 2019). Again, users’ data are sometimes
gathered from the field, even though perhaps with more design-oriented purposes
(e.g., Lewis & van Horn 2013; Lee et al. 2017): about the users’ profiles (Yang et al.
2019), about the most essential requirements (e.g., Li et al. 2013; Jiao & Yang 2019)
or about the affordance elements (Hou et al. 2019). Sometimes, they are collected
from sensor data or product usage logs to detect the users’ profiles, behaviour or
real-time interactions (e.g., Klein et al. 2019; Voet et al. 2019). Social media help
identify the users’ needs or preferences (Wellsandt et al. 2015), and identify those
stakeholders that could affect the modes of product use (Rathore et al. 2018) or the
lead users (Tuarob & Tucker 2014).

It is well known that demand-side data allows companies not only to have a
real, and not simply estimated, understanding of mission profiles but also to
continuously adapt to market stimuli. This adaptation might consist of newly
added functions, identified through the analysis of data generated by already
launched products, or real-time adjustment of the offering to address the evolving
customers’ needs or self-customised products (Porter & Heppelmann 2014).

However, this speed of adaptation is far from being taken for granted and represents a
challenge that still has to be solved for designers (Challenge 1, in the following, CH1).
Moreover, it calls for new analysis methods and leads to operational, managerial and
organisational changes in design and development processes.

2.1.1. Contextual data and the role of complementary goods in determining
environmental, economic and socio-cultural conditions
Not only are users a source of information, but also the usage context can be
referred to. The usage context of a product represents ‘all aspects that describe the
context of product use that vary under different use conditions and that affect
product performance and consumers’ preferences for the product attributes’
(He et al. 2012). The context of use is embodied by environmental or external/
boundary conditions, including both physical and social aspects, the main usage
goal(s) and other related equipment (ISO 20282-1 2006).

While marketing studies on environmental factors that influence adoption/
purchasing aremore traditional (Kotler 2000), those on the determination of usage
are novel and are strictly due to the possibility of collecting real-time data from
smart/digital systems (Sestino &DeMauro 2021). Wang et al. (2019), for instance,
investigated various contextual data (e.g., raining or not, wind speed, etc.; ISO
20282-1 section 6.3, 2006) associatedwith the use conditions of smart bicycles (e.g.,
riding time), while Martí Bigorra and Isaksson (2017) associated environmental
conditions with the car owners’ driving styles.

Producers also relate such working context/external conditions with other
data about products to derive insights into the performances/behaviour of
products in relation to their main goal(s) (ISO 20282-1 section 6.1, 2006;
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Von Stietencron et al. 2017; Bertoni et al. 2017).Martí Bigorra and Isaksson (2017),
for instance, included other factors that they considered beneficial for technical
design analysis in their study, such as the precondition of a car before starting,
which they associated with engine braking, smooth operation, etc.

Apart from working on environmental/external conditions, the influence that
socio-cultural settings could have on the form and usage of a product, as an
immaterial factor of a user’s behavioural experience and interpersonal interaction
(ISO 20282-1 section 6.4, 2006), has been investigated for decades (Ram & Jung
1990). New means for gathering data can support this practice. Hou et al. (2019),
for instance, adopted online reviews to detect in what conditions customers
use/interact/perceive products and how these affect product affordances.

Finally, complementary assets also play an important role in determining
contextual data (ISO 20282-1 section 6.2, 2006), especially when an architecture
design assumesmore strategic implications since they are enablers of adoption and
affect the technological paradigms (Montagna & Cantamessa 2019; Burton &
Galvin 2020). These data often include the interaction of the system with comple-
mentary components, especially when such an interaction occurs through the real-
time exchange of functional data.

Again, real-time data need to be collected, albeit about all the implications the product
has for the outside. In order to ensure these data become readily usable for the
definition of functional changes or design parameters, the procedures of design and
development processes need to change (CH2).

2.1.2. Product usage and operational data used to analyse product
performance
Product data have traditionally been investigated to analyse a system’s perform-
ance, monitor failures and optimise efficiency. The emerging difference is that the
analysis of data can be conducted in real-time, on data collected either directly from
embedded sensors (for instance, spin rate and load weight, which allow a washing
machine’s bearing load to be calculated during washings; Klein et al. 2019), or from
data that are ‘around’ the product, in order to provide insights into such a product.
Tesla represents an emblematic case: the company was able to adapt the functional
parameters of the suspensions of their cars without the car owners having to go to a
maintenance station to do so (Muller 2019). Suspension damping can, in fact, be
adjusted in real time on the basis of the driving preferences, specific driving
locations or the encountered road conditions. Similarly, smart irrigation systems
(e.g., Irriga-Smart; Swamp, Togneri et al. 2019) plan different irrigation operations
according to the data received from weather stations or on the basis of different
culture development needs and soil characteristics.

Field data from customers (e.g., Akinluyi et al. 2014; Joung et al. 2019), custom-
ers’ services (e.g., Bandaru et al. 2015) and warranties (e.g., Bueno & Borsato 2014;
Moudoub et al. 2018) are just a few examples of other usage data that can be used to
aid designers in envisioning the failures, reliability and performance degradation of
products, as well as in monitoring failure modes and detecting failure patterns.
Similarly, reviews and social media data can help in the investigation of those
product features that are debated more among people when they are commenting
on their experience and the reasons why a certain product performs better/worse
than others (e.g., Zhang et al. 2018; Kim & Noh 2019).

5/36

https://doi.org/10.1017/dsj.2025.10016 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10016


The previously cited typologies of data can be used to investigate specific
product features or components, especially when failure modes can be explicitly
associated with failure-prone elements (Tseng et al. 2016; Ma et al. 2017; Pal et al.
2019). In other cases, they can allow comparative analysis to be conducted among
performance indicators (Ma & Kim 2016; Mikulec et al. 2017) or provide indica-
tions on product industrialisation (Alkahtani et al. 2019).

Users’ and usage data can also be considered to investigate the performance
and functional improvements of a product, as well as how usage affects a
product’s lifecycle. This can lead to suggestions for design changes (e.g., Shin
et al. 2015b) or even for conceiving product family design variants (e.g., Sotos
et al. 2014). Again, in this case, data can be derived from embedded sensors (e.g.,
Klein et al. 2019; Voet et al. 2019), usage field data (e.g., Shin et al. 2015a) and
warranty data (e.g., Dai et al. 2017).

In turn, the real-time collection of operational data could lead to immediate functional
adjustments of the design parameters, but this challenge (CH3), although more
advanced in designer practice, still partially needs to be addressed, especially consid-
ering its generalisation to all industrial sectors.

2.2. Supply-side data used to identify production/distribution
requirements and industrialisation alternatives

Companies also collect valuable data from their manufacturing environments,
such as production machinery, supply chain management systems, etc.
(Ghobakhloo 2019), often using systemic approaches (Mahmood & Montagna
2013). In these cases, data are often analysed by focusing on cost and efficiency
issues (Jenab et al. 2019) or by addressing sustainability (Li et al. 2021). However,
they sometimes lead to broader benefits when this information is fed early to
product development (Schuh et al. 2016; Tao et al. 2018). For instance, TeslaModel
3 proved to be particularly critical during the assembly phase, since many of its
weld points and rivets were not suitable for heavy production automation (Welch
2018). Data obtained from the manufacturing sector stimulated the definition of
alternative product architectures in view of the consequences in the assembly
phase.

Maintenance processes or the prototyping and testing phases of development
processes are obviously valuable sources of information. These data are used more
traditionally (e.g., Product re-engineering) and are easier to imagine, in part due to
the PLM systems usually implemented in companies which are accustomed to
exploiting data from maintenance, e.g., from MRO (Maintenance, Repair and
Operations) reports. Again, what is different is the immediate use of data. Field
data on maintenance, for instance, can be used to determine changes in design
parameters (e.g., material, functional constraints, Abramovici et al. 2017) or used
more widely on entire components (Soleimani et al. 2014) with the purpose of
reducing the probability of failure.

Similarly, data pertaining to logistics and the supply chain can affect the design
of a product (Manohar & Ishii 2008): supply chain metrics, in fact, which were
originally aimed at measuring the performance for customers, have a huge impact
on the social and environmental sustainability aspects of the product itself, but also

6/36

https://doi.org/10.1017/dsj.2025.10016 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10016


affect the material procurement and transportation constraints that define specific
functional and shape requirements.

Supply-side data represent the traditionally most applied application, although real-
time collection poses the same concerns as the other data analysis sources and with
respect to the operational/managerial/organisational changes induced for design and
product development (CH4).

2.3. New sources of data call for design analytics to support
design decisions

Apart from the increased computational capabilities of companies, the ubiquity of
data has enabled the creation and advancement of a new field, which is known as
design analytics (Van Horn et al. 2012). Design Analytics embodies a set of
practices and tools that support the transformation of design-related data to make
them suitable for aiding design decision-making processes (Cotter 2014; Chiarello
et al. 2021).

In general, data mining techniques (cluster analysis, conjoint analysis, etc.),
optimisation algorithms, neural networks andmachine learning are relatively well-
established and widely applied to design problems (e.g. Liao 2010; Elgendy &
Elragal 2016; Tan et al. 2019). The former are mainly used to suggest requirements
from data patterns or to determine the optimal settings of design attributes; the
latter are instead primarily applied for leveraging decisions on previous design
cases or to provide designers with relevant insights into the reasons behind the
generated predictions. Machine learning (mainly classified as supervised and
unsupervised algorithms) is used for both descriptive and predictive purposes
(for a review, see Kotsiantis et al. 2007; Leskovec et al. 2020).

There are many application contexts of such tools/techniques along with the
different phases of product development. Cluster analysis, for instance, has been
employed for descriptive purposes during the planning phase for product posi-
tioning purposes (Tao et al. 2018) and within requirement elicitation (Zhang et al.
2017). Conjoint analysis has instead been used to define customers’ preferences
and suggest the possible functions and performances of a new design solution
(Song & Kusiak 2009). Finally, the multiple response surfaces methodology (Jun &
Suh 2008), ordinal logistical regression (Demirtas et al. 2009) and genetic algo-
rithms (Hsiao & Tsai 2005) have been used, for instance, to determine the optimal
settings of design attributes to maximise customers’ satisfaction. Case-based
reasoning, data-driven design-by-analogy and neural network approaches have
been used extensively during idea generation, either to leverage decisions of
previous design cases (e.g., Hu et al. 2017) and analogical reasoning (Jiang et al.
2021) or to simulate design alternatives concerning specific performance param-
eters (e.g., Dering & Tucker 2017). Optimisation tools have mainly been employed
for predictive purposes during the design phase of the details. In this case, the aim is
to foresee the impact of a design change at the subsystem level on the overall
performance of a system (e.g., Yao et al. 2017) or of design optimisation (Quintana-
Amate et al. 2015). Finally, data-driven computational tools can support problem-
exploration practices (Obieke et al. 2021) and information retrieval (Shi et al. 2017;
Han et al. 2021) along the whole design process.
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However, the choice of using data to aid design decisions introduces certain
technical, operational andmanagerial concerns and consequences, all of which will
be discussed in the following.

2.4. The resulting concerns (CN) induced by data-driven design in
product development

The aforementioned technical concerns specifically refer to data analysis tech-
niques, the operational concerns refer to the purpose of using data, while the
managerial/organisational concerns refer to the interactions of design teams
during the innovation and development processes inside a company.

Technical concerns arise since data analysis tools are contextual to the phase of
product development in which they should be applied (Concern 1, in the following,
CN1) (Van Horn et al. 2012; Bstieler et al. 2018; Altavilla & Montagna 2019).
Algorithms are specific to the context and application forwhich they were developed
and cannot be applied independently for any purpose. Moreover, the ability of
algorithms to automate the learning process has experienced a lack of implementation
during the different design and development phases (CN2) (Fisher et al. 2014).

Three operational concerns emerge from the operational point of view. First, the
modalities of the identification of the customer segments whose needs have to be
addressed should be entirely changed for two reasons. On the one hand, custom-
isation/personalisation leads to each customer being considered as a ‘segment-of-
one’ (Canhoto et al. 2013), whose needs are different from the ‘standard’ ones (Chen
et al. 2012; Ma & Kim 2016); on the other hand, companies are increasingly turning
towards continuous/real-time interactions with customers and designers and there-
fore must keep abreast with the evolving needs not only of those who have already
adopted such interactions but also of those who will adopt them (Roblek et al. 2016).

Therefore, the traditional separation between ex-ante product development
and ex-post product use no longer exists, and companies experience almost simul-
taneous elicitation and satisfaction of the customers’ needs together with the
validation of the corresponding product/service performance for each product
development iteration (CN3) (Montagna & Cantamessa 2019).

Moreover, since new needs are collected after commercial deployment and
because of digital technology re-programmability, the possibility of derivative
innovations emerges (Yoo et al. 2012). More in general, designers discover impli-
cations that were not anticipated during the initial design process (CN4) (Gawer
2010), new features that were initially not conceived and therefore new functions
and behaviour to be designed (Van Horn & Lewis 2015; Bstieler et al. 2018; Wang
et al. 2018). This transformation calls for the integration of information from
different domains, such as marketing, design, manufacturing and after-sales
services (Schuh et al. 2008; Li et al. 2019), and new competencies in data analysis
(De Mauro et al. 2018). Furthermore, the capability of managing such diversity in
extensive volumes of data (Li et al. 2015; Trunzer et al. 2019) has become essential
(CN5) since virtual prototyping, digitalisation or simply collection from diverse
data sources generate various data formats, as has the requirement of making the
use of such data volume effective (Zhan et al. 2018).

Apart from operational processes, all these elements also have managerial
consequences on the interactions that design teams have externally and on other
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functions and departments of the firm (e.g., Bstieler et al. 2018; Agostini et al. 2020),
as well as on the product development process itself (Cantamessa et al. 2020).

First, it becomes impossible – but also irrelevant – to develop a reliable and
complete set of product/service specifications (CN6) (Gunasekaran et al. 2019).
Designers have to design an initial product version, which is then used as a basis
for further product improvements/extensions. Subsequent iterations lead to itera-
tive validation steps, and it is possible to wonder who should be in charge of
deciding on these iterations, that is, designers, marketing people or data analysts
(Song 2017). This, in turn, can lead to a reissuing (but also an amplification) of the
problems posed by concurrent engineering practices (Krishnan et al. 1997), as well
as reflections on the applicability of Agile principles (Ahmed-Kristensen & Daal-
huizen 2015). Moreover, without a given or fixed set of specifications, producers
cannot draft any legal documents, and certification processes should be revised
coherently (Magnusson & Lakemond 2017; Song 2017).

Second, design modularity and platforms become key enablers (Porter & Hep-
pelmann 2014; Rossit et al. 2019) since they enable customisation/personalisation
(Mourtzis & Doukas 2014) and combinatorial innovations (Yoo et al. 2012; Marion
et al. 2015). However, they have their counterpart and entail costs.Companies are, in
fact, faced with the issue of understanding the trade-off between cost, production
constraints, openness and flexibility of the product architecture (Ripperda & Krause
2017),whichhas strategic andmanagerial consequences, such as significant economies
of scale and a lower development cost (CN7) (Simpson et al. 1999).

Moreover, apart from deciding what product components should be shared
and what should not, companies have to choose what layers of the platform they
will permit other firms to extend (Yoo et al. 2012) and, therefore, they have to
decide on a vertical integration at the organisational level (CN8) (Cantamessa and
Montagna, 2016; Cantamessa et al. 2020).

Third, ‘form’ decouples from ‘function’ (Zittrain 2006), and ‘digital affordance’
for features and functionalities of a digital product (Oxman 2006; Yoo et al. 2012;
Colombo et al. 2022)might overturn the traditional approach to design, which was
based on a relatively rigid mapping between functions, behaviour, and structure
(CN9). Product development managers have to control a process in which new
structural (immaterial/digital) features and their related behaviour are added, even
after the product has been designed, produced and delivered, thus introducing new
functions or changing previously existing ones (i.e., derivative innovations). This
situationmay represent ameans of encouraging and supporting unpredictability in
innovation processes (CN10) (Austin et al. 2012), which implies understanding how
to control and support creativity and serendipity behaviour in such frequently
changing processes (Andriani & Cattani 2016).

A final shift occurs in design information and knowledge management. In the
distant past, digitisation processes helped explicate design knowledge through
modelling (CAD systems and simulations), thus making what had previously been
done through intuition and experience (e.g., storing design choices and verification
activities through validated parameters and variable values) codifiable. Instead, the
progressive transition to design automation is currently having the opposite effect,
that is, of attributing an active role in design processes to support systems. Design
support systems can incorporate the knowledge that had previously belonged to an
individual or to the design team (CN11), that is, moving it from individuals to
capital and changing process rules and organisation equilibria.
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2.5. Gap in the literature and original contribution of the paper

The previous discussion describes the opportunities, challenges and concerns
about the use of data, as well as the operational and managerial changes in design
and development (summarised in Figure 1), and it highlights an increasing
relevance of design analytics in design, which has led to a new data-driven design
paradigm (Cantamessa et al. 2020, in Figure 2).

The paradigm shown in Figure 2 represents a first overview of the shift that has
been occurring in the data-driven design context; however, this overview fails to

Figure 1. The challenges and emerging concerns according to the literature.

Figure 2. The new paradigm of the data-driven design context (as presented in Cantamessa et al. 2020).
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investigate the challenges and technical/operational concerns posed by the litera-
ture (the ones shown in Figure 1) in great detail and to characterise the innovative
processes. In fact, it neither details the sources of the data flows and the involved
stakeholders nor defines the emerging processes and practices. Indeed, only
customers and producers are represented as stakeholders, without other players,
such as complementors or policy-makers, who are typically decisive in innovation
processes, being considered. At the same time, again with reference to the latter
point, the model in Figure 2 does not represent a guideline for product design
processes within data-driven innovation environments, as other emerging early
proposals do (e.g., Cao et al. 2021; Liu et al. 2022).

Thus, the paper investigates data-driven innovation processes on the basis of
36 case studies and elaborates on their characterising data flows. The large number
of analysed companies and the rich amount of data collected allow for the
validation, at least partially, of the opportunities, challenges and concerns that
emerge from the literature. Specifically, it reflects on the actors involved in the
processes and their roles, the data and information exchanged, as well as the tools
and methods adopted. This enables to build a relational diagram upon the data-
driven paradigm of Cantamessa et al. (2020), incorporating also the extension of
Kim (2022) about experience-centred data, so as to validate and complement that
conceptual model. On the basis of the obtained results, considerations about the
current engineering design practices that can contribute to addressing the emerged
challenges are discussed.

Since the studies in the literature on emerging engineering practices (Cao et al.
2021; Liu et al. 2022) are still somewhat scant and not equally structured, the
contribution of this paper, that is, of clearly and rigorously framing the resources
for designers in such a data-driven environment, might constitute a definitive and
original step forward. Moreover, it does so on the basis of the elements of
complexity that emerged from the literature investigation and the validation of
numerous case studies from different industries. This approach, albeit consoli-
dated in adjacent fields such as the domain of innovation management, represents
an element of novelty in the Design research.

3. Methodology
The present paper has analysed 36 Italian companies that have invested in Industry
4.0 technologies, using a qualitative multiple case study method, and investigated
their resulting data-driven innovation processes. The selection criterion was aimed
at representing the composition of Italian industry in terms of the most relevant
sectors. Overall, 90% of the selected companies operate in the manufacturing
sector, which represents the most important Italian industrial activity. Moreover,
among these companies, 30% represent the metal and mechanical sector, 13%
operate in the fashion industry and 9% operate in the furniture sector, while 6%
operate in the food industry. These sectors are among the most relevant manu-
facturing sectors in Italy, according to the number of companies (Cappelli et al.
2024).

Although most companies in Italy are ‘micro’ enterprises (Istat, 2021), the
companies considered in the sample are larger in size (i.e., medium-large com-
panies). Such companies were included since they either represent leaders in
digitalisation initiatives or are business units of multinational companies (hence,
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Table 1. Companies selected for the study

Operating
sector # Offering and business activity

Corporate
governance

Number of
employees

Digitalisation
initiative

Automotive
industry

1 Design and production of
complex interior
components for the
automotive sector

Listed 51–100 Support for
development/
design

2 Provision of solutions for
race-car drivers

Listed 251–1000 Support for
development/
design

3 Development and
production of gearboxes

Family business 1000+ Production process
transformation

4 Engineering and production
of two-wheeled vehicles
and compact commercial
vehicles

Business unit of a
multinational
company

1000+ Service development

Biomedical
sector

5 Production of prostheses
and software solutions to
support doctors

Controlled by a
private equity
fund

1000+ Support for
development/
design

Chemical
industry

6 Production of oils and
lubricants for sheet metal
cutting

Family business 10–50 Production process
transformation

7 Production of
pharmaceuticals

Family business 101–250 Service development

8 Production of chemicals for
the rubber industry

Listed 101–250 Production process
transformation

Consumer
electronics
sector

9 Production of digital
cameras, projectors,
imaging technologies,
printers, multifunctional
copiers and document
management solutions

Business unit of a
multinational
company

251–1000 Service development

Fashion
industry

10 Tailoring services of fabrics
for the designing of
personalised products

Business unit of a
multinational
company

10–50 Support for
development/
design

11 Creation of sportswear and
sport-inspired leisure
apparel

Listed 51–100 Service development

12 Design and production of
warp-knitted seamless
apparel

Listed 51–100 Support for
development/
design

13 Design and engineering of
international luxury
brands in the apparel
sector

Listed 101–250 Support for
development/
design

14 Screen printing and laser
engraving for leather and
synthetic decoration

Ltd company 0–9 Production process
transformation

Continued
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Table 1. Continued

Operating
sector # Offering and business activity

Corporate
governance

Number of
employees

Digitalisation
initiative

Food sector 15 Production of dried fruit Family business 101–250 Production process
transformation

16 Production of pasta Listed 251–1000 Production process
transformation

Furniture
sector

17 Design and production of
furniture elements

Ltd company 10–50 Production process
transformation

18 Production of furnishing
elements in bent glass

Ltd company 51–100 Production process
transformation

19 Building, architecture,
interior design and
furnishing using flat glass

Ltd company 10–50 Production process
transformation

Health care
industry

20 Production of personal care
and cleaning products

Business unit of a
multinational
company

1000+ Service development

21 Operational services in the
healthcare environment

Cooperative 1000+ Production process
transformation

Logistic
sector

22 Design, production and
installation of automated
warehouses

Family business 51–100 Service development

23 Production of warehouse
vehicles

Listed 251–1000 Production process
transformation

24 Design and production of
automated material
distribution and handling
systems

Ltd company 10–50 Support for
development/
design

Mechanical
sector

25 Design and prototyping of
mechanical components

Family business 10–50 Support for
development/
design

26 Development and
production of machinery
for the rubber industry

Family business 10–50 Support for
development/
design

27 Design, manufacturing and
assembling of automatic
spray guns

Ltd company 10–50 Production process
transformation

28 Design and production of
mechanical components

Family business 101–250 Support for
development/
design

29 Provision of solutions for
mechanical components

Family business 251–1000 Production process
transformation

30 Production of components
for household appliances

Business unit of a
multinational
company

1000+ Production process
transformation

Continued
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akin to an Small Medium Enterprise). In the latter case, the official registered
number of all the corporation employees had to be considered.

Table 1 presents the sample and the different sectors in which the companies
operate, together with a brief description of their offerings and other characteristics
of their business model. The last column shows the scope of their digitalisation
initiatives according to the adopted grouping approach explained below.

Data were collected through desk research in the field, and companies were
chosen based on the documented digitalisation initiatives. Some of the case studies
have been generated as a part of a project conducted with the Turin Chamber of
Commerce between 2020 and 2022. The objective of such a project was to
investigate the impact of design on strategic decisions and business model con-
version choices (Bruno 2024).

The remaining case studies were selected from a number of contributions that
describe the digitalisation processes of companies. Some were chosen from studies
on the role of capabilities in digital transformation (e.g., Ardolino et al. 2018;
Matarazzo et al. 2021; Mazali et al. 2023), others were taken from papers aimed at
presenting efficient applications of digital tools and data analytics (e.g., Datar et al.
2020; Giallanza et al. 2020) and still others from contributions that examined
digital trends in a given sector (e.g., Trino 2020). Such documentations recognised
the exploitation of digital opportunities by analysing companies’ management of
innovation, strategies and business models. Changes in value creation processes,
along with the relationships and transformation of roles, collaboration with
stakeholders and the generation of new information and knowledge, were des-
cribed. Therefore, from the readings, it was possible to extract the activities
involved in the technological change resulting from those investments, which,
according to their objective, led to the distinction of three prevalent groups, namely
service development, production process transformation and support to

Table 1. Continued

Operating
sector # Offering and business activity

Corporate
governance

Number of
employees

Digitalisation
initiative

31 Manufacture of complete
final assembly plants for
the automotive, aviation
and aerospace industries

Business unit of a
multinational
company

51–100 Production
process
transformation

32 Manufacture of elevators
and handling systems

Listed 1000+ Service development

Metal
industry

33 Production of semi-finished
aluminium profiles

Family business 51–100 Production process
transformation

34 Hot and warm steel forging Family business 101–250 Production process
transformation

35 Continuous process
production of special
steels

Business unit of a
multinational
company

1000+ Production process
transformation

Shipbuilding
industry

36 Construction of fast ferries Listed 251–1000 Production process
transformation
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development/design (the groups and their characteristics are later presented in
Table 2, adopting the labelling of group 1, group 2 and group 3, respectively). Seven
companies in the sample belong to the first group, 19 to the second group and 10 to
the third.

Reflecting on the data flows and information gathered and exchanged in the
processes, a relational diagram was built and overlaid upon the data-driven
paradigm (Cantamessa et al. 2020, Figure 2). That activity was used to validate
the already represented relationships and complement them with those that had
emerged. Finally, the raised opportunities, challenges and concerns were examined
against the findings from the literature review and framed according to the scope of
the initiative (Table 3 in Section 4).

4. Results and discussion

4.1. Companies’ digitalisation initiatives and the emerging data
flows

Group 1 identifies the companies in the sample that have mainly invested in
Artificial Intelligence (AI), Augmented Reality (AR) and Internet of Things (IoT)
technologies to target specific customer segments or provide personalised services,
coherently with section 2.1 of the literature review and with Wang et al. (2019),

Table 2. Characteristics of the groups and their initiatives

GROUP Companies Investment targets
Data-driven design
activities Data type

1
(Service
development)

4; 7; 9; 11; 20;
22; 32

AI, AR, IoT,
sensors, data
analytics and
data sharing,
cloud platform

Understand the usage
context better; User
behaviour change;
Assess/Predict/
Improve the
performance; Build
business strategy and
ecosystem; Product
portfolio planning;

Customers’ data
Contextual data
Product usage and
operational data

(Section 2.1)

2
(Production
processes
transformation)

3; 6; 8; 14; 15;
16; 17; 18;
19; 21; 23;
27; 29; 30;
31; 33; 34;
35; 36

Remote Control
Sensors, IoT, AI,
AR and VR,
MES, PLC, ERP,
data analytics

Validate/support design
decision; Design
reliability into the
system; Serve product
lifecycle better; Assess/
Predict/Improve the
performance

Supply-side data
(Section 2.2)

3
(Support for
development/
design)

1; 2; 5; 10; 12;
13; 24; 25;
26; 28

CAD 3D, AI,
digital models
for development
and engineering,
CFIST
technology

Validate/support design
decision; Generate
product/service design
ideas; User behaviour
change

Design-related data
(Section 2.4)

Real-time feedback
from consumers/
clients
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Table 3. Data flow types and the related opportunities and concerns

Data flow Literature review

Opportunities that have emergedGROUP Data type Consolidated opportunities Identified concerns

1
(Service
development)

User data Identifying the consumers’
needs, preferences and
behaviour

Continuously adapting to
market needs

Understanding the
performance, reliability,
failure modes and patterns of
the products

CH1, CH2, CH3,
CN4, CN6, CN7,
CN8, CN9,
CN10

Alternative uses afforded by the
product can lead to the
introduction of new features and
functionalities

Usage context data (environmental
and cultural conditions and the
role of complementary assets)

Product performance and
operational data

Developing condition
monitoring and preventive
and predictive maintenance

(Design for maintenance)

Reducing production costs

2
(Production
process
transformation)

Data from production machines
Data from the prototyping and
testing phases

Suggesting product
architectures and design
alternatives

Satisfying stricter quality
requirements

CH1, CH3, CH4,
CN1, CN2, CN5,
CN6, CN11

Improving plant efficiency
Reducing the number of supervisory
operators

Reducing the environmental impact

Updated information from
suppliers and retailers

Setting up a single integrated
information system

Reducing production costs and
increasing efficiency

CH4, CN5 Obtaining higher-quality and more
complex products

Real-time data for the forecasting of
the demand

Obtaining greater traceability and
visibility along the supply chain

Synchronising the information flows

3
(Support for
development/
design)

Digital model data (CAD 3D,
digital twins, Virtual Realty)

Determining the optimal
settings of design attributes

Simulating design alternatives
Coordinating the design team

CH1, CH3, CN3,
CN11, CN10

Designing personalised
recommendations and receiving
real-time feedback from consumersReal-time feedback from

consumers/clients

Codified tacit and procedural
knowledge of an experiential
nature

CN3, CN11 Integrating knowledge of the
production processes in design
teams and in algorithms for digital
twins
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who had identified such a trend, especially about user and usage data (demand-side
data).Moreover, thanks to their capacity to perform data analysis, these companies
have been able to offer complementary or additional services (sometimes also very
far from their original focus) to position themselves in differentmarkets. This is the
case of Company 9, which operates in the consumer electronics sector (Ardolino
et al. 2018). By provisioning their printing machines with IoT sensors, they have
managed to combine the sales of printers with a subscription for the automatic
replenishment of consumables. Consequently, data on machine status and usage
(e.g., the number of printed copies) have been used to generate automatic invoices
and to schedule maintenance interventions and toner supplies.

Apart from demand-side data exploitation, some of the companies in the
sample have also invested in digitalisation for production assets and automation
(i.e., group 2) in view of increasing their production efficiency, integration and
quality. The target technologies in group 2 mainly included IoT, Manufacturing
Execution System (MES) or Programmable Logic Controller (PLC). Coherently
with the literature, elements of non-quality tend to become less frequent or at least
measurable and predictable, thanks to these technologies (Tao et al. 2018). For
example, Company 36, which is a leading fast ferry operator, applied the principles
of Industry 4.0 to a shipyard to collect accurate real-time data, especially during
real-life condition tests (Giallanza et al. 2020). During thruster test runs, digital
technologies, such as the IoT, cloud computing and big data analytics, allow
specific control parameters (rotation speed, rated power, applied torque, etc.) to
be monitored and real-time values (plus the maximum values) of the temperature,
pressure and strain to be collected.

At the same time, industrialisation alternatives can be conceived as advanced
technologies that enable the production of enhanced-performance products
(Soleimani et al. 2014; Abramovici et al. 2017) or the minimisation of the environ-
mental impact of production processes (Mayyas et al. 2012). For instance, Com-
pany 19 operates in the glass furniture sector and, thanks to investment in PLC
and automation in their cutting and grinding lines, has been able to process large
sheets of float glass up to 19mm thick. Data from digital models are sent directly to
digital printing machines, which are able to reproduce any graphical element and
decoration using ceramic inks. Company 18 pursued digitalisation initiatives or
even created ‘ad hoc’ technologies within the production environment in order to
control the success of specific processes (e.g., glass bending process) and, at the
same time, integrate environmental practices (e.g., reprocessing activities concern-
ing waste and garbage) (Barbaritano & Savelli 2020).

Finally, digitalisation initiatives cannot exclude investments in CAD 3D and in
AR for the development of a ‘digital twin’ and support in product development
(i.e., group 3). Again, coherently with the literature in Section 2.4, these technolo-
gies support designers in the exploration of alternatives and their decision-making
processes, and they assist the creative process by reducing designers’ discretion
(Chiarello et al. 2021). The development activities frequently take place in
co-design mode with the customer/client, which is frequently the main goal of
the investment. Companies 10 and 13, both of which operate in the fashion
industry, are examples of this approach (Trino 2020; Mazali et al., 2023). In
Company 10, the user, supported by systems that gather data directly from
customers (e.g., body scanner 3D), can personalise each tailoring detail through
a 3D configurator. The output can be visualised in real-time through the 3Dmodel
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so that immediate feedback can be obtained. Similarly, Company 13 has included
3D technologies in product development phases, thereby increasing the inter-
actions between model makers and stylists, as well as enabling users to be involved
in choosing the design solution. Coordination takes place remotely and almost in
real-time.

Company 5 is a similar case, but in a different sector. Working on the
production of prostheses and software solutions to aid doctors, they model a
patient’s skeleton, digitally reproduce the prostheses, detect any possible fitting
problems and intervene in the fine-tuning (Mazali et al. 2023). When they employ
additive manufacturing techniques, they send digital models directly to the pro-
duction machines.

Table 2 shows the differences between the digital initiatives of the companies,
grouped according to the objective of the activities in their innovation processes
(i.e., group 1, group 2 and group3). The table highlights the technology investment
targets and maps the data-driven design activities (as suggested in Lee & Ahmed-
Kristensen 2023) affected by the initiatives. The last column reports the type of data
exploitable thanks to the new technologies, with reference to the literature
section where they are presented.

The data flows emerging from the case studies have been overlaid on the data-
driven design paradigm (Cantamessa et al. 2020) and presented in Figure 3,
distinguishing the initiatives from which they originate (i.e., group 1, group
2 and group 3). Such a representation emphasises how the observed data flows
validate and complement the paradigm.

Figure 3. Extended data-driven design paradigm with the new data flows identified in the present study.
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Indeed, the role of both demand and supply flow of information is confirmed to
be relevant and to involve designers and producers together with the novel figure of
the data analyst. Moreover, the role of tools and methods in guiding designers’
analysis activity is broadened, recognising the relevance not only pertaining to data
analytics and platform design but also including design analytics methods.

Thanks to the case studies, new actors have been confirmed to be decisive in
data-driven innovation activities, thus deserving consideration and, specifically, to
be added to the paradigm. As a matter of fact, in light of a demand-side data
evolution, actors like complementors and market data providers have demon-
strated to be crucial in collecting data about the artefact usage and surrounding
context, especially in those initiatives aimed at providing additional and persona-
lised services to customers (i.e., group 1). Data provided directly by users, con-
sumers and customers are also added here, with consideration of the extension of
Kim (2022) with zero-party data, reflected in the dual-directional arrow between
data and user.

The digitalisation of production assets and automation (i.e., group 2) instead
revealed the contributions of external suppliers and final retailers in the exchange
of data and information, often aimed at creating an integrated information system
and generating new design alternatives. Finally, apart from confirming the direct
observation of customers’ interaction with the artefacts, and thus the continuous
acquisition of data, the paradigm in Figure 3 also adds a potential direct relation-
ship between the designer and consumers through real-time feedback exchanged
during co-design activities (i.e., group 3).

4.2. Challenges and concerns emerged from the literature and
from the study

The analysis of the companies’ initiatives in digitalisation highlights the differences
in the mode of action of the companies, which depend on their strategic intent, the
scope and technological target of the initiative and the related application. Exam-
ining the companies was also useful in confirming the changes, concerns and
challenges identified in the literature.

The digitalisation initiatives in group 1 have enabled companies to collect
information on the users and their usage to develop tailored solutions and offer
additional services. Data about the users’ profiles, behaviour, needs and prefer-
ences, as well as environmental/external conditions, are gathered in real time, and
the gathered information is used to create new design parameters and make
functional adjustments. Thanks to this information, features that were not antici-
pated and new functions emerge (CN4, CN6, CN9, CN10). However, it is neither
trivial nor automatic to change design procedures in order to ensure that these data
become readily usable and to keep up with continuously evolving market stimuli
(CH1, CH2, CH3). Such solutions in fact often involve trade-offs between costs,
production constraints and flexibility of the product architecture, with certain
consequences at the organisational level (CN7, CN8). Company 9 is a clear
example of this. On the one hand, the connected machines have guaranteed
consumers the possibility of automatically replenishing consumables as soon as
the printers detect that the ink or toner is running out. On the other hand, this has
raised issues in terms of security, doubts about complexity and costs due to the
necessary hardware and softwaremodifications. In order to address these problems
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and to maximise the potential of the obtained data and the benefits of large-scale
projects, the company decided to develop a new platform as a layer of the
‘technology stack’ (Porter & Heppelmann 2014), in order to build and support
new technology infrastructures.

The companies in group 2 are characterised by initiatives of digitalisation and
automatisation in theirmanufacturing environment. Such companies have the aim
of receiving data directly from the production machines and integrating their
supply chain with an updated exchange of information. These interventions enable
greater efficiency and higher quality, and also offer novel industrialisation alter-
natives (CH4). In the sameway as in group 1, but this timewith a broader scope, the
changes that had to be introduced were far from being straightforward (CH1,
CH3). Different domains, such as design and manufacturing and after-sales
services are affected, as they are called upon to cooperate by integrating different
competencies and to make what was previously done by intuition codifiable (CN5,
CN11). All of this contributes to the development of an innovative environment
that supports the interactive engineering of the company, where the design and
development phases are performed in parallel rather than in series (CN6), in order
to reduce production times and costs.

Company 36 is an emblematic case, as the complete digital transformation of
manufacturing has not only involved the production and management of the
shipyard but also the product design and engineering techniques. Experimental
data are directly transmitted to the technical office so that engineers can analyse the
data in real time and perform an interactive design to improve the performance of
the entire system or of any critical components. The digitalisation initiatives in
Companies 16 and 19 are linked to the production of higher quality and more
complex products: data integration helps Company 16 to choose higher quality
wheat for the production of pasta, while the automation of the machines allows
Company 19 to process thicker glass sheets, realise engravings, etc. Conversely,
Company 18 was able to reinvent glass by transforming the production process,
thanks to the technological advancements and a continuous interaction between
material and process engineers, designers and marketers. Such an innovative
material is composed of recycled scraps from sheets of glass, resulting in random
combinations of colours, which improves the creative features of the final products
and fully embraces the principles of circular economy.

Finally, the companies in group 3 have pursued digitalisation initiatives in
product development and (co)design activities with the users. The customers/users
contribute to the creation of an artefact, validate its characteristics and perform-
ance and give real-time feedback (CN3). Again, in this case, challenges associated
with the speed of adaptation and with immediate functional adjustments and
changes in the design parameters have emerged (CH1, CH3, CN10). Moreover, the
use of digital tools to support the design process considerably decreases the
discretion of the designers (CN11).

In Companies 10 and 13, both of which work in the fashion industry, the users
are actively involved in the design process. In Company 10, thanks to a 3D
configurator, the users autonomously edit and simultaneously visualise their
preferences, while a 3D body scanner enables immediate functional and design
adaptations to be made; the users of Company 13 can intervene remotely in the
exploration of the different design alternatives and eventually highlight errors or
more suitable options. Instead, in Company 5, digital models enable different
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simulations to be run (e.g., to move a screw) and mechanical tests to be performed
without destroying expensive samples. In all these cases, the experience and
intuition of designers are incorporated into the support systems/tools, which have
begun to play an active role in the process.

The aforementioned results have been summarised and structured in Table 3,
specifically highlighting the changes, concerns and challenges that havemanifested
within the case studies, to which the engineering design domain can contribute.
Indeed, for each group, the type of data that characterises the flow of information
exchanged and gathered in the process involved in digitalisation initiatives is
explicated. Then, the opportunities and concerns arising from such data flows
are presented and divided depending on whether they are ‘consolidated’ or newly
emerging from the case studies. The former are examined in light of the state of the
art and presented in the ‘Literature review’ column, while the latter are summarised
in the final column.

Information that is more relevant for design and development processes has
been distinguished from information that has other purposes, with the latter
highlighted in grey, even though all the information is relevant to the innovation
strategies of the companies.

5. The potential role of engineering design
Most of the evidence emerged from the study validates the literature discussion
proposed in Section 2. However, some of these elements are still not established in
the literature and concern the possibility of

1) Designing personalised recommendations and real-time feedback from the
customers/users;

2) Recognising alternative uses afforded by the product for the introduction of
new features and functionalities;

3) Integrating knowledge about the production processes in algorithms for digital
models to complement the designers’ background, knowledge and expertise.

However, these elements of opportunity in data-driven environments present
some unresolved problems related to the real-time data collection itself. Indeed,
although innovation approaches are based on profound market research and are
aimed at achieving an improved personalisation of customer experience, the
adaptation of operational and management practices to arrive at the systematic
use of real-time data still needs to be completed, and this involves an increasing
variety of tasks and roles, as well as the definition of new practices and processes.
However, some consolidated engineering design practices can help address the
challenges arising from the new elements of complexity in such a data-driven
environment and contribute to their resolution.

First, it is essential to radically enhance the changeability and adaptability of
processes and products to ensure flexibility and deal with critical aspects rapidly.
Moreover, exploiting supply-side data enables increasingly demanding require-
ments, in terms of quality, time and costs, to be dealt with. Practices such asDesign
for Manufacturing, Assembly or Logistics, etc. are aimed at reducing the lead times,
total production costs and/or the total cost of ownership throughout the entire
lifecycle, in view of ease of manufacturing, a simplified assembly of parts and
reduced issues of transportation and maintenance (Emmatty & Sarmah 2012).
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Robust design instead focuses on making the functions of a product more consist-
ent with variations in the downstream processes and environmental changes.
Design for Mass Personalisation approaches enable the user to tailor a seed design
according to their own preferences, even beyond the range of configurations
initially conceived by the manufacturer (Ozdemir et al. 2022). Personalisation
usually concerns aesthetic features, but it could also pertain to adjustments of
product functionalities and ergonomics.

So far, personalisation has been introduced as the result of the explicit demands
of consumers. However, Machine Learning algorithms, applied to the data col-
lected in smart products, may be increasingly used to support the recognition of
human preferences, even those that the users are not aware of, thus offering new
personalisation opportunities. The comprehensive, special issue edited by Panchal
et al. (2019) provides a rich overview of machine learning applications in engin-
eering design, which can also be used to elicit users’ preferences. Nevertheless,
some gaps still exist in translating the observed behaviour into proposals for new
product functions. For example, in the context of this study, Company 4 produces
two-wheeled vehicles and has started to offer ‘sharing services’ to exploit real-time
data about the density and timing of scootermovements to target specific customer
segments, such as residents of the same building, and to develop tailored solutions
(Ardolino, 2018).

The recognition of unexpected alternative uses could enable ex-post updates of
the software of a product to match the new functionalities that are offered. In this
perspective, Affordance-based Design (Maier and Fadel, 2009) provides the cogni-
tive elements necessary to frame the development of smart products that can be
easily upgraded to offer new functions and unexpected user experiences (Pucillo &
Cascini 2014). For instance, the smart toothbrush made by Company 20, which
produces personal care and cleaning products, could be used to help adult users
monitor the hygiene habits of elderly people as a proxy for their wellness and care
(Datar et al. 2020).

Overall, functional expansion is emerging as a pervasive phenomenon that
increasingly involves consumer products, and the design theory allows such
dynamics to be represented beyond the optimisation perspective of econometric
models (Le Masson et al. 2019). Qualitative transformations of products are also
being mapped through patterns derived from the empirical observations of the
evolution of technical systems, as proposed in TRIZ models (Cascini 2012). In this
context, the systematic comparison of successful and unsuccessful products with
their predecessors (Borgianni et al. 2013; Casagrande-Seretti et al. 2019) allows the
expected market appraisal of the alternative product profiles that have to be
designed to be assessed in advance, thereby partially addressing the phenomenon
of derivative innovations.

Furthermore, User-centred Design has analysed the similarities and differences
in the concept of user value in different domains, such as anthropology, sociology,
philosophy, business and economics, thus producing a comprehensive categorisa-
tion to distinguish between utility, social significance and emotional and spiritual
dimensions of user value (Boztepe 2007).

The Agile approach, applied to design and development, also goes in this
direction, thanks to its iterative process, as it does not force a designer to start
working on high-fidelity prototypes straight away, but instead fosters interactions
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to constantly validate the users’ needs, translate them into design attributes and
improve the product (Da Silva et al. 2011).

This kind of data exploitation obviously raises serious ethical concerns about
what the new balance betweenmachines and human beings should be, and itmight
infringe on privacy and security regulations. These concerns are well known in the
design of assistive technology. Participatory multidisciplinary approaches have
already been successfully adopted in this field, and they could inspire reference
models to incorporate ethical and social issues in the development of smart
products (Participatory Design; Oishi et al. 2010; Udoewa 2022).

Finally, analogous considerations can be made for design practices aimed at
integrating production process knowledge. Production process parameters can be
taken into account in Design Optimisation models through both simulation and
empirical approaches (Zhao et al. 2007).

Table 4. Concerns from the literature, opportunities recognised in the case studies and engineering
design topics that might have a role in addressing them

Concerns indicated in the
literature

Consolidated engineering
design topics

Emerging topics in
engineering design

Contextual beneficial features
and limits of data analysis
tools in product development
(CN1)

Machine Learning for Engineering
Design (Panchal et al. 2019)

Combination of customer
evaluation with context
information to customise
offer (Kim & Hong 2019)

Lack of implementation of data
analysis tools in design (CN2)

Machine Learning for Engineering
Design (Panchal et al. 2019)

Simultaneous elicitation and
satisfaction of the customers’
needs, and validation of the
corresponding product/
service performance for each
product development
iteration (CN3)

Platform Design (Simpson et al.
1999)

Agile approach (Da Silva et al.
2011)

Design for mass
personalisation: (Ozdemir
et al. 2022)

Use of Large Language Models
(LLMs) to support the
elicitation and evaluation of
customer preferences
(Chiarello et al. 2024; Song
et al. 2024)

Derivative innovations, not
anticipated implications, new
functions, behaviour and
structures to be designed
(CN4)

Affordance theory and models
(Maier and Fadel, 2009; Pucillo
& Cascini 2014; Colombo et al.
2022)

Functional expansion (Le Masson
et al. 2019)

Technology paradigm assessment
models (Borgianni et al. 2013;
Casagrande et al., 2019)

Patterns of evolution of technical
systems (Cascini 2012)

Continued
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Table 4. Continued

Concerns indicated in the
literature

Consolidated engineering
design topics

Emerging topics in
engineering design

Ability to manage such diversity
in extensive volumes of data
(CN5)

Robust Design (Park et al. 2006);
Inverse Design (Hou & Jiao
2020)

Design for Manufacturing,
Assembly or Logistics (Emmatty
& Sarmah 2012)

Design optimisation and/or
DDOM (Zhao et al., 2007)

Design for sustainability, Eco-
design (Pigosso et al. 2015;
Ceschin & Gaziulusoy 2016)

Impossible – but also irrelevant
– to develop reliable and
complete set of product/
service specifications (CN6)

Participatory design, Design ethics
(Oishi et al. 2010)

Large participatory design
involving communities
(Udoewa 2022)

Trade-off between cost,
production constraints and
openness and flexibility of the
product architecture 2)
critical vertical integration
choices (CN7–8)

Product platform and product
family design (Simpson et al.
1999)

Digital affordance overturns the
traditional approach to
design, which is based on a
relatively rigid mapping of
functions, behaviour and
structures (CN9)

Affordance theory and models
for digital artefacts (Colombo
et al. 2022)

Unpredictability of innovation
processes, control and
support of creativity and
serendipity behaviour in such
frequently changing processes
(CN10)

Technology paradigm assessment
models (Borgianni et al. 2013;
Casagrande et al., 2019)

Patterns of evolution of technical
systems (Cascini 2012)

Design support systems
incorporate the knowledge of
designers, changing process
rules and organisation
equilibria (CN11)

Opportunities that have
emerged from the case studies

Design of personalised
recommendations and real-
time feedback to change the
use behaviour (Table 3,
Group 3)

Persuasive Design (Crilly 2011)

Continued
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Table 4 presents the concerns that have emerged from the literature (Section 2,
CN1-CN11) and the opportunities recognised from the analysis of the case studies
(Table 3), relating them to the extant engineering design literature. In the second
and third columns, indeed, the authors suggest some engineering design practices,
either consolidated or emerging, that appear relevant to address those identified
concerns and opportunities. Even though only in a preliminary state, this attempt
at mapping concerns and engineering design resources is meant to offer insights
into future directions of design research.

6. Conclusions
Exploiting digitalisation and data-driven innovation raises new concerns that have
not yet been addressed for the current innovation and development processes or
practices.

Table 4. Continued

Concerns indicated in the
literature

Consolidated engineering
design topics

Emerging topics in
engineering design

Alternative uses afforded by the
product can guide
manufacturers towards the
introduction of new features
and functionalities (Table 3,
Group 1)

Affordance theory and models
(Maier & Fadel, 2009; Pucillo &
Cascini 2014; Colombo et al.
2022)

Functional expansion (Le Masson
et al. 2019)

User value (Boztepe 2007);
User-centred Design, PSS design
(Vasantha et al. 2012;
Machchhar et al. 2022);

Interaction design and
gamification (Sailer et al., 2017)

Integration of knowledge about
production processes in
algorithms for digital models,
in order to complement the
background, knowledge and
expertise of designers (Table 3,
Group 3)

Product Data Management
(PDM); Product Lifecycle
Management (PLM)

Reducing the environmental
impact (Table 3, Group 2)

Lean manufacturing in Industry
4.0, cyber-physical production
system, big data-driven and
smart communications, artificial
intelligence for sustainability,
the circular economy in a digital
environment (Tseng et al. 2021)

Obtaining higher-quality and
more complex products
(Table 3, Group 2)

Data-driven product quality
prediction models (Ren et al.
2020)
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The paper offers a structured overview of the use of data in innovation
processes, distinguishing between the studies available in the literature on cus-
tomer and user data, data related to the context (environmental conditions, socio-
cultural conditions, complementary goods), usage and operational data, as well as
supply-side data. All these types of data can play a role in the design of smart
products and digital services and allow the technical, operational and managerial
changes necessary to lead such a data-driven transformation to be depicted.
Starting from a careful literature review, this paper provides an original structured
classification of challenges and concerns emerging in the field of data-driven
innovation processes. These have been analysed and discussed against the infor-
mation related to digitalisation initiatives that occurred in 36 Italian manufactur-
ing companies from several industrial sectors. In doing so, the paper also proposes
an updated version of the data-driven design paradigm presented by Cantamessa
et al. 2020, incorporating the extension of Kim (2022). The analysis of the 36 Italian
companies confirms the validity of the revised model by mapping the data flows
and information gathered and exchanged in the innovation processes.

Among the others, it emerged that new operational and design tasks are
becoming increasingly necessary, but the current industrial practice has no refer-
ence processes to address such tasks, and the literature does not offer adequate
responses. Moreover, although design teams and processes are largely involved in
the digital transition, the role design research and its literature can play in enabling
data-driven innovation and overcoming emerging concerns is still unclear. The
paper has attempted to provide amethodologically rigorousmap of data flow types
and the related opportunities and concerns. The latter ones offer the opportunity to
suggest some consolidated engineering design literature resources that can provide
useful support in building a new methodological reference framework for data-
driven innovation.

On the practical side, the classification of the analysed companies into three
groups (i.e., service development group, production process transformation group
and support for development/design group), the elicitation of their investment
targets and the data-driven design activities described in the reports of those
digitalisation initiatives offer an overview of what is already ongoing in some
advanced companies, hence worthy of consideration for replicability. Further-
more, strategically relevant data flow types in the groups of companies recognised
in this study have been connected with innovation opportunities andmight attract
the attention of further stakeholders in the exploitation of product and process
data. Ultimately, the collection of the proposed cases and new ones in a repository
built on the main types of companies and data flows identified in this paper can
provide practical guidance in industrial practice. Nevertheless, how to properly
structure a repository with this intent requires further elaboration and preliminary
testing; as such, it is not part of this study.
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