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108.12 Proof without words: a lower bound for n!
Maximum point

Inflection point

f (x) =
xn

ex

n − n n n + n

Inflection point

n! = Γ (n + 1) = ∫
∞

0
f (x)  dx >

1
2

(2 n) f (n) = (n
e )n

n
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108.13 Indeterminate exponentials without tears

Every calculus student learns how to solve indeterminate limits of the
form  where  and ; most quickly learn to hate
and fear this process. It is error-prone, full of tedious algebra, and requires
careful attention to L'Hôpital's rule. Here is a typical “fairly simple” example.

f (n)g(n) f (n) → 1 g (n) → ∞

lim
n→ ∞

ln(n + 4
n )3n+ 1

= lim
n→ ∞

ln(n+ 4
n )

1
3n+ 1

= lim
n→ ∞

( n
n+ 4)(−4

n2 )
− 3

(3n+ 1)2

 using L'Hôpital's rule

= lim
n→ ∞

( −4
n(n + 4) ×

−(3n + 1)2

3 )
= lim

n→ ∞

4(3n + 1)2

3n(n + 4)
= 12

and so

lim
n→ ∞

(n + 4
n )3n+ 1

= e12.
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What tedium! And this is the short version, suppressing details on the two
derivatives (perhaps two quotient rules, perhaps something slightly better).
Of course, this may be tedious for students, but some people who are experts
use simpler and shorter ways. Indeed, replacing  by  converts the limit to

, equivalently . So the problem reduces

to the familiar limit.

n 4k
lim

k → ∞
(k + 1

k )12k + 1 ( lim
k → ∞

(k + 1
k )k)12

= e12

Here, we are interested in formulating these methods as a general
formula for calculating indeterminate limits. We prove the following
theorem.

Theorem: Suppose that  is a function with , and  is a

function with . Then

f (n) lim
n → ∞

f (n) = 1 g (n)
lim

n → ∞
g (n) = ∞

lim
n → ∞

f (n) g(n) = e
lim

 n → ∞
g(n)(f (n) − 1)

.

We present two proofs for this theorem. In the first proof we assume
that the function  is differentiable and then L'Hôpital's rule is used. The
second proof needs neither L'Hôpital's rule, nor the hypothesis that  is
differentiable, nor interpolation with cubic splines.

f (n)
f (n)

First proof: After the use of L'Hôpital’s rule, 

lim
n → ∞

ln f (n)g(n) = lim
n → ∞

g (n) ln f (n)

= lim
n → ∞

g (n) [f (n) − 1] ln f (n)
f (n) − 1

= lim
n → ∞

g (n) [f (n) − 1]
and so, if , then .lim

n → ∞
g (n) [f (n) − 1] = L lim

n → ∞
f (n)g(n) = eL

Second proof: 
Now begin with . Replacing  by  shows thatlim

x → 0

1
x ln (1 + x) = 1 x f (n) − 1

lim
n → ∞

f (n) g(n) = lim
n → ∞

eg(n) ln(1 + (f (n) − 1)) = e
lim

n → ∞
g(n)(f (n) − 1)

.

With this theorem our “fairly simple” example becomes truly fairly
simple:

lim
n → ∞

(n + 4
n )3n + 1

= e
lim

n → ∞
(3n + 1)(n + 4

n − 1)
= e

lim
n → ∞

4
n(3n + 1)

= e
lim

n → ∞
12 + 4

n = e12.

This theorem can be applied to the famous Euler's Limit ,

and, to some extensions thereof, such as (from [1]) 

lim
n → ∞

(n +1
n )n = e

lim
n → ∞ (An + 1

An
)

An
An + 1 − An

= e,
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where  is a strictly increasing sequence of positive numbers satisfying the
asymptotic formula .

An
An + 1� An
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108.14 A triangle number identity

The triangle number , Tn =
n (n + 1)

2
n ≥ 1.

Tk
T(2k + 1)n+ k = (2k + 1)2Tn + Tk

2k + 1

2k + 1

T(2k + 1)n + k

(2k + 1)2Tn
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